JP2001020027A - Al-Mg-Si-Cu ALLOY SHEET EXCELLENT IN CORROSION RESISTANCE AND FORMABILITY, AND ITS MANUFACTURE - Google Patents

Al-Mg-Si-Cu ALLOY SHEET EXCELLENT IN CORROSION RESISTANCE AND FORMABILITY, AND ITS MANUFACTURE

Info

Publication number
JP2001020027A
JP2001020027A JP2000034464A JP2000034464A JP2001020027A JP 2001020027 A JP2001020027 A JP 2001020027A JP 2000034464 A JP2000034464 A JP 2000034464A JP 2000034464 A JP2000034464 A JP 2000034464A JP 2001020027 A JP2001020027 A JP 2001020027A
Authority
JP
Japan
Prior art keywords
formability
solution treatment
corrosion resistance
producing
alloy sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000034464A
Other languages
Japanese (ja)
Inventor
Yuichi Sato
雄一 佐藤
Toshiyasu Ukiana
俊康 浮穴
Makoto Saga
誠 佐賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2000034464A priority Critical patent/JP2001020027A/en
Publication of JP2001020027A publication Critical patent/JP2001020027A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)

Abstract

PROBLEM TO BE SOLVED: To manufacture an Al-Mg-Si-Cu alloy sheet having high BH characteristic and excellent in corrosion resistance as well as in formability. SOLUTION: This alloy has a composition consisting of, by weight, 0.1-0.65% Mg, 0.4-2% Si, 0.8-1.4% Cu, further one or plural kinds among 0.03-1.5% Zn, 0.03-0.2% Mn, 0.03-0.2% Cr, 0.03-0.15% Zr, 0.03-0.15% V, 0.03-0.3% Fe, and 0.005-0.1% Ti, and the balance Al with inevitable impurities and satisfying Mg+Cu=0.9 to 1.5. Moreover, the maximum size of Cu-containing precipitates on the grain boundaries is <=0.5μm and these precipitates comprise <=5% of the grain boundary surface, and further, the number of crystallized substances of >=0.2μm maximum size in the grain is <20 pieces to 100 μm2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、自動車のボディシ
ートや部品、各種機械器具、家電部品等の素材として使
用する、成形加工用Al−Mg−Si−Cu系合金板と
その製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an Al-Mg-Si-Cu alloy plate for forming and used as a material for body sheets and parts of automobiles, various machine tools, home electric parts and the like, and a method for producing the same.

【0002】[0002]

【従来の技術】高成形性および高強度を要求する用途、
例えば自動車のボディーシートには、主として冷延鋼板
が使用されているが、燃費向上の観点から軽量化が求め
られ、アルミニウム合金板の採用が進められている。こ
の自動車ボディシートにはプレス加工による成形性が要
求されるため、アルミニウム合金の中でも強度および成
形性に優れる5000系、すなわち、Al−Mg合金が
使用されている。ところが、Al−Mg合金は製造性が
悪いためにコストが高く、また、リューダースマークが
発生しやすいため、成形後、良好な表面性状が得られ難
い。そこで、製造コストが安く、リューダースマークを
生じない6000系、すなわち、Al−Mg−Siを用
いることが望ましいため、開発が進められている。
2. Description of the Related Art Applications requiring high moldability and high strength,
For example, cold rolled steel sheets are mainly used for body sheets of automobiles, but weight reduction is required from the viewpoint of improving fuel efficiency, and aluminum alloy sheets are being used. Since the formability by press working is required for this automobile body sheet, 5000 series which is excellent in strength and formability among aluminum alloys, that is, Al-Mg alloy is used. However, Al-Mg alloys have a high cost due to poor manufacturability, and are liable to generate Rudersmark, so that it is difficult to obtain good surface properties after molding. Therefore, it is desirable to use the 6000 series, which has a low production cost and does not generate Ruder's mark, that is, Al-Mg-Si, and therefore, development is proceeding.

【0003】[0003]

【発明が解決しようとする課題】しかし、Al−Mg−
Si系合金はAl−Mg系合金に比べて成形性が劣って
いる。これは、Al−Mg−Si系合金が析出強化によ
り高強度を得られる合金であり、塗装焼き付け後の強度
上昇、いわゆるBH性に優れる反面、製造時に析出物を
生じ易く、その析出物によって延性が低下するためであ
る。さらに、これまでは強度確保のためのBH性を高め
る点に着目した、熱処理条件等の製造条件の検討が優先
的に行われており(例えば、特開平4−259358号
公報、特開平6−204259号公報等)、成形性の検
討は不十分である。
However, Al-Mg-
The formability of the Si-based alloy is inferior to that of the Al-Mg-based alloy. This is an alloy in which an Al-Mg-Si-based alloy can obtain high strength by precipitation strengthening. The strength is increased after baking, so-called BH property is excellent, but a precipitate is easily generated at the time of production, and ductility is caused by the precipitate. Is to be reduced. Further, a study of manufacturing conditions such as a heat treatment condition has been prioritized with a focus on enhancing the BH property for securing the strength (for example, JP-A-4-259358 and JP-A-6-259358). 204259), the study of moldability is insufficient.

【0004】この課題に対してCuの添加により成形性
を向上させるという手段がある。しかし、Cuの添加に
より成形性は向上するが、耐食性が低下するため、自動
車ボディーシートに用いる際には、特に耐糸錆性が問題
である。本発明はAl−Mg−Si系にCuを添加して
成形性を向上させ、さらにはCu添加による耐食性の低
下を防止した、高BH性を有するAl−Mg−Si−C
u系合金を提供するものである。
[0004] To solve this problem, there is a method of improving the formability by adding Cu. However, although the moldability is improved by the addition of Cu, the corrosion resistance is deteriorated. Therefore, when used for an automobile body sheet, the rust resistance is particularly problematic. The present invention improves the formability by adding Cu to an Al-Mg-Si system, and further prevents Al-Mg-Si-C having a high BH property from preventing a decrease in corrosion resistance due to the addition of Cu.
It provides a u-based alloy.

【0005】[0005]

【発明を解決するための手段】本発明者は前述の課題を
解決するために詳細な検討を重ね、Cu添加による耐食
性の低下が結晶粒界に生じたCu系析出物であることを
明らかにし、この析出物の制御により、BH性、成形性
および耐食性の兼備が可能であることを見いだした。さ
らに、成分系、特にMgとCu量を限定し、さらに好ま
しくは製造条件、特に溶体化処理後の冷却速度の下限を
限定することによってCu系析出物のサイズおよび析出
状態を制御し、成形性にも耐食性にも優れた、BH性の
高いAl−Mg−Si−Cu系合金を発明するに至っ
た。
The present inventors have conducted detailed studies in order to solve the above-mentioned problems, and have clarified that the decrease in corrosion resistance due to the addition of Cu is caused by Cu-based precipitates generated at crystal grain boundaries. It has been found that by controlling the precipitates, it is possible to achieve both BH property, formability and corrosion resistance. Furthermore, the size and the state of the Cu-based precipitates are controlled by limiting the component systems, particularly the amounts of Mg and Cu, and more preferably by limiting the lower limit of the cooling rate after the solution treatment, particularly the production conditions, and Al-Mg-Si-Cu based alloys having excellent BH properties and excellent corrosion resistance have been invented.

【0006】すなわち、本発明の要旨とするところは、 (1)重量%で、Mg:0.1〜0.65%、Si:
0.4〜2%、Cu:0.8〜1.4%、Mg+Cu:
0.9〜1.5%を含有し、Zn:0.03〜1.5
%、Mn:0.03〜0.2%、Cr:0.03〜0.
2%、Zr:0.03〜0.15%、V:0.03〜
0.15%、Fe:0.03〜0.3%、Ti:0.0
05〜0.1%のうちの1種または2種以上を、さらに
含有し、残部はAl及び不可避的不純物からなるAl合
金であって、結晶粒界上のCuを含有する析出物の最大
径が0.5μm以下で、かつ、その結晶粒界面に占める
割合が5%以下であり、さらに、粒内に0.2μm以上
の最大径を有する晶析出物が、100μm2 当たり20
個未満であることを特徴とする耐食性および成形性に優
れたAl−Mg−Si−Cu系合金板。
That is, the gist of the present invention is as follows: (1) Mg: 0.1 to 0.65%, Si:
0.4-2%, Cu: 0.8-1.4%, Mg + Cu:
0.9-1.5%, Zn: 0.03-1.5
%, Mn: 0.03 to 0.2%, Cr: 0.03 to 0.
2%, Zr: 0.03 to 0.15%, V: 0.03 to
0.15%, Fe: 0.03 to 0.3%, Ti: 0.0
The maximum diameter of a Cu-containing precipitate on a crystal grain boundary, which further contains one or more of 0.05 to 0.1%, and the balance is an Al alloy including Al and unavoidable impurities. Is 0.5 μm or less, and the proportion occupying the crystal grain interface is 5% or less, and crystal precipitates having a maximum diameter of 0.2 μm or more in the grains are 20 μm / 100 μm 2.
An Al-Mg-Si-Cu-based alloy plate excellent in corrosion resistance and formability, characterized in that the number is less than one.

【0007】(2)前記(1)に記載のAl−Mg−S
i−Cu系合金板の製造方法であって、冷間圧延後の溶
体化処理を520℃以上で5分以下とし、溶体化処理後
の冷却を溶体化温度〜200℃の温度域の冷却速度を1
5℃/sec超とすることを特徴とする耐食性および成
形性に優れたAl−Mg−Si−Cu系合金板の製造方
法。 (3)前記(1)に記載のAl−Mg−Si−Cu系合
金板の製造方法であって、熱間圧延後に250℃以上4
50℃未満で0.5〜4時間の保持を施すことを特徴と
するAl−Mg−Si−Cu系合金板の製造方法。
(2) Al-Mg-S as described in (1) above
A method for producing an i-Cu alloy sheet, wherein a solution treatment after cold rolling is performed at 520 ° C. or more and 5 minutes or less, and a cooling rate after the solution treatment is a cooling rate in a temperature range from a solution treatment temperature to 200 ° C. 1
A method for producing an Al-Mg-Si-Cu alloy sheet excellent in corrosion resistance and formability, characterized in that the temperature is higher than 5 ° C / sec. (3) The method for producing an Al-Mg-Si-Cu-based alloy sheet according to (1), wherein after hot rolling, the temperature is 250 ° C or higher.
A method for producing an Al-Mg-Si-Cu-based alloy sheet, wherein the sheet is held at a temperature lower than 50C for 0.5 to 4 hours.

【0008】(4)前記(1)に記載のAl−Mg−S
i−Cu系合金板の製造方法であって、冷間圧延後の溶
体化処理を520℃以上で5分以下とし、溶体化処理後
の冷却を溶体化温度〜200℃の温度域の冷却速度を1
5℃/sec超とし、40〜100℃で巻取った後、
0.1〜10℃/hの冷却速度で冷却することを特徴と
する耐食性および成形性に優れたAl−Mg−Si−C
u系合金板の製造方法。 (5)前記(1)に記載のAl−Mg−Si−Cu系合
金板の製造方法であって、冷間圧延後の溶体化処理を5
20℃以上で5分以下とし、溶体化処理後の冷却を溶体
化温度〜200℃の温度域の冷却速度を15℃/sec
超とし、40〜100℃で巻取った後、40〜100℃
で0.5〜50時間保持することを特徴とする耐食性お
よび成形性に優れたAl−Mg−Si−Cu系合金板の
製造方法。
(4) Al-Mg-S as described in (1) above
A method for producing an i-Cu alloy sheet, wherein a solution treatment after cold rolling is performed at 520 ° C. or more and 5 minutes or less, and a cooling rate after the solution treatment is a cooling rate in a temperature range from a solution treatment temperature to 200 ° C. 1
After 5 ° C / sec or more and winding at 40 to 100 ° C,
Al-Mg-Si-C excellent in corrosion resistance and formability characterized by cooling at a cooling rate of 0.1 to 10 ° C / h.
A method for producing a u-based alloy plate. (5) The method for producing an Al-Mg-Si-Cu alloy sheet according to (1), wherein the solution treatment after the cold rolling is performed by 5
The cooling after the solution treatment is performed at a cooling rate of 15 ° C./sec in the temperature range from the solution temperature to 200 ° C.
After super winding and winding at 40-100 ° C, 40-100 ° C
The method for producing an Al-Mg-Si-Cu alloy sheet excellent in corrosion resistance and formability, characterized by holding for 0.5 to 50 hours.

【0009】(6)前記(1)に記載のAl−Mg−S
i−Cu系合金板の製造方法であって、冷間圧延後の溶
体化処理を520℃以上で5分以下とし、溶体化処理後
の冷却を溶体化温度〜200℃の温度域の冷却速度を1
5℃/sec超とし、40〜100℃で巻取った後、
0.1〜10℃/hの冷却速度で冷却し、さらに130
〜280℃に加熱して0超〜30分保持することを特徴
とする耐食性および成形性に優れたAl−Mg−Si−
Cu系合金板の製造方法。 (7)前記(1)に記載のAl−Mg−Si−Cu系合
金板を製造方法であって、冷間圧延後の溶体化処理を5
20℃以上で5分以下とし、溶体化処理後の冷却を溶体
化温度〜200℃の温度域の冷却速度を15℃/sec
超とし、40〜100℃で巻取った後、0.1〜10℃
/hの冷却速度で冷却し、さらに130〜280℃に加
熱して0超〜30分保時した後、40〜100℃まで冷
却して巻取り、0.1〜10℃/hの冷却速度で冷却す
ることを特徴とする耐食性および成形性に優れたAl−
Mg−Si−Cu系合金板の製造方法、である。
(6) Al-Mg-S as described in (1) above
A method for producing an i-Cu alloy sheet, wherein a solution treatment after cold rolling is performed at 520 ° C. or more and 5 minutes or less, and a cooling rate after the solution treatment is a cooling rate in a temperature range from a solution treatment temperature to 200 ° C. 1
After 5 ° C / sec or more and winding at 40 to 100 ° C,
Cool at a cooling rate of 0.1 to 10 ° C / h, and further cool
Al-Mg-Si- excellent in corrosion resistance and moldability characterized in that it is heated to -280 ° C and held for more than 0 to 30 minutes.
A method for producing a Cu-based alloy plate. (7) The method for producing an Al-Mg-Si-Cu alloy plate according to (1), wherein the solution treatment after the cold rolling is performed by 5
The cooling after the solution treatment is performed at a cooling rate of 15 ° C./sec in the temperature range from the solution temperature to 200 ° C.
After super winding and winding at 40-100 ° C, 0.1-10 ° C
/ H, cooling to 130-280 ° C and keeping for more than 0-30 minutes, then cooling to 40-100 ° C and winding, cooling rate of 0.1-10 ° C / h Al- with excellent corrosion resistance and moldability characterized by cooling with
A method for producing an Mg—Si—Cu alloy plate.

【0010】[0010]

【発明の実施の形態】以下に、本発明の合金組成や析出
物の析出状態、製造条件等の限定理由を具体的に説明す
る。 Mg:Mgは本発明の合金系では基本となる合金元素で
あり、塗装焼き付け時にMg−Si系の微細な析出物を
生じて高BH性の発現に寄与するものである。しかし、
Mg量が0.1%未満ではBH性が不十分ではなく、一
方、0.65%を超える過剰な添加により結晶粒界に粗
大なMg−Si―Cu系析出物を生じ、耐食性および成
形性を低下させる。このことから、Mg量は0.1〜
0.65%の範囲とする。
BEST MODE FOR CARRYING OUT THE INVENTION The reasons for limiting the alloy composition, the precipitation state of precipitates, the production conditions and the like according to the present invention will be specifically described below. Mg: Mg is a basic alloying element in the alloy system of the present invention, and contributes to the manifestation of high BH properties by generating Mg-Si based fine precipitates during baking. But,
When the amount of Mg is less than 0.1%, the BH property is not insufficient. On the other hand, an excessive addition exceeding 0.65% produces coarse Mg-Si-Cu-based precipitates at the crystal grain boundaries, resulting in corrosion resistance and formability. Lower. From this, the amount of Mg is 0.1 to
The range is 0.65%.

【0011】Si:Siも本発明の合金系では基本とな
る合金元素であり、塗装焼き付け時にMg−Si系の微
細な析出物を生じて高BH性の発現に寄与するが、Si
量が0.4%未満ではBH性が不十分であり、一方、2
%を超えると粗大なSi相が析出して成形性を低下させ
る。このことから、Si量は0.4〜2%の範囲とす
る。
Si: Si is also a basic alloying element in the alloy system of the present invention, and contributes to the development of high BH property by generating Mg-Si based fine precipitates during baking.
When the amount is less than 0.4%, the BH property is insufficient.
%, A coarse Si phase is precipitated to lower the formability. For this reason, the amount of Si is set in the range of 0.4 to 2%.

【0012】Cu:Cuも本発明の合金系では基本とな
る合金元素であり、成形性を向上させるが、Cu量が
0.8%未満では十分な成形性が確保できず、一方、
1.4%を超える過剰な添加により結晶粒界に粗大なA
l−Mg−Si―Cu系析出物を生じ、耐食性および成
形性を低下させる。このことから、Cu量は0.8〜
1.4%の範囲とする。さらに、Mg+Cuが0.9%
未満ではBH性および成形性が不十分であり、1.5%
を超えると通常の溶体化処理条件ではAl−Mg−Si
―Cu系析出物の生成を抑制できなくなり、耐食性およ
び成形性が低下することから、Mg+Cuを0.9〜
1.5%の範囲とする。
[0012] Cu: Cu is also a basic alloying element in the alloy system of the present invention, and improves the formability. However, if the Cu content is less than 0.8%, sufficient formability cannot be ensured.
Coarse A at the grain boundaries due to excessive addition exceeding 1.4%
1-Mg-Si-Cu-based precipitates are formed, and the corrosion resistance and the formability are reduced. From this, the Cu content is 0.8 to
It is in the range of 1.4%. Furthermore, 0.9% of Mg + Cu
If it is less than 1.5%, the BH property and moldability are insufficient, and
Is exceeded, the Al-Mg-Si under normal solution treatment conditions
-Since the formation of Cu-based precipitates cannot be suppressed and the corrosion resistance and moldability are reduced, Mg + Cu is reduced to 0.9 to 0.9%.
The range is 1.5%.

【0013】Zn,Mn,Cr,Zr,V,Ti,F
e:これらの元素は強度向上や結晶粒微細化のために1
種または2種以上添加される。これらのうち、Znは合
金の時効性の向上を通じて強度向上に寄与する元素であ
り、その含有量が0.03%未満では上記の効果が不十
分であり、一方、1.5%を超えれば成形性および耐食
性が低下する。従ってZnを添加する場合のZnの量は
0.03〜1.5%の範囲内とした。
Zn, Mn, Cr, Zr, V, Ti, F
e: These elements are used for improving strength and refining crystal grains.
Seeds or two or more are added. Of these, Zn is an element that contributes to the strength improvement through the improvement of the aging property of the alloy. If its content is less than 0.03%, the above-mentioned effects are insufficient, while if it exceeds 1.5%, Moldability and corrosion resistance decrease. Therefore, when Zn is added, the amount of Zn is set in the range of 0.03 to 1.5%.

【0014】さらにMn,Cr,Zr,Vは強度向上と
結晶粒の微細化に効果のある元素であり、いずれも含有
量が0.03%未満では上記の効果が十分に得られな
い。一方、Mn,Crは0.2%を、Zrは0.15%
を、Vは0.1%を超えると巨大金属間化合物を生じて
成形性を低下させる。したがって、Mnは0.03〜
0.2%、Crは0.03〜0.2%、Zrは0.03
〜0.15%、Vは0.03〜0.15%の範囲とし
た。
Further, Mn, Cr, Zr, and V are elements that are effective in improving the strength and refining the crystal grains. If the content is less than 0.03%, the above effects cannot be sufficiently obtained. On the other hand, Mn and Cr are 0.2% and Zr is 0.15%.
When V exceeds 0.1%, a large intermetallic compound is formed to lower the moldability. Therefore, Mn is 0.03 to
0.2%, Cr is 0.03-0.2%, Zr is 0.03
V0.15%, and V was in the range of 0.03〜0.15%.

【0015】また、Feも強度向上と鋳塊組織の微細化
に有効な元素であり、その含有量が0.03%未満では
十分な効果が得られず、0.3%を超えれば巨大晶出物
を生じて成形性を低下させるため、Fe量は0.03〜
0.3%とした。Tiも強度向上と鋳塊組織の微細化に
有効な元素であり、その含有量が0.005%未満では
十分な効果が得られず、0.1%を超えれば巨大晶出物
を生じて成形性を低下させるため、Ti量は0.005
〜0.1%とした。なお、これらのZn、Mn、Cr、
Zr、V、Fe、Tiの範囲は積極的な添加元素として
これらの元素を含む場合を示したものであり、いずれも
その下限値よりも少ない量を不純物として含有すること
は特に支障ない。
Further, Fe is also an element effective for improving the strength and refining the ingot structure. If its content is less than 0.03%, a sufficient effect cannot be obtained. The amount of Fe is 0.03-
0.3%. Ti is also an element effective for improving the strength and refining the ingot structure. If the content is less than 0.005%, a sufficient effect cannot be obtained. If the content exceeds 0.1%, a giant crystal is generated. To reduce the formability, the Ti content is 0.005.
To 0.1%. In addition, these Zn, Mn, Cr,
The ranges of Zr, V, Fe, and Ti show the cases where these elements are included as positively added elements, and it is not particularly hindered to include any of the elements in an amount smaller than the lower limit as an impurity.

【0016】次に、本発明における合金板に析出するC
u系析出物およびのサイズ、析出状態について説明す
る。成形性および耐食性に影響を及ぼす析出物はその大
きさと析出する場所および分布状態に依存する。すなわ
ち、Cu系析出物が結晶粒界上にあり、その最大径が
0.5μm以上であれば、あるいは、最大径が0.5μ
m以下であっても結晶粒界を占める割合が5%を超える
状態であれば、結晶粒界に沿った割れを生じやすくなり
成形性が低下する。また、結晶粒界上に上述の分布状態
でCu系析出物が生じればその周囲のCu量が減少する
ため、粒界腐食、すなわち、糸錆が発生し易くなる。
Next, C deposited on the alloy sheet in the present invention
The size and the state of precipitation of the u-based precipitate will be described. Precipitates that affect formability and corrosion resistance depend on the size, location and distribution of the precipitates. That is, if the Cu-based precipitate is on the crystal grain boundary and the maximum diameter is 0.5 μm or more, or the maximum diameter is 0.5 μm.
If the ratio occupying the crystal grain boundary exceeds 5% even if it is less than m, cracks are likely to occur along the crystal grain boundary, and the formability decreases. In addition, if Cu-based precipitates are formed in the above-mentioned distribution state on the crystal grain boundaries, the amount of Cu around the precipitates is reduced, so that intergranular corrosion, that is, thread rust, is likely to occur.

【0017】また、晶析出物が結晶粒内にある場合は、
その最大径が0.2μm以上の析出物が100μm2
に20個以上検出できる状態では破断の起点が多くな
り、成形性が低下する。したがって、冷延板の晶析出物
の晶析出状態を前述のように規定する。なお、結晶粒界
のCu系析出物および結晶粒内の晶析出物の析出状態
は、透過型電子顕微鏡を用いて5000倍程度の倍率で
任意の5視野を撮影し、その写真からサイズを観察する
ことができる。
When the crystal precipitate is in the crystal grain,
When 20 or more precipitates having a maximum diameter of 0.2 μm or more can be detected in 100 μm 2 , the number of starting points of fracture increases, and the formability decreases. Therefore, the crystal precipitation state of the crystal precipitate of the cold rolled sheet is specified as described above. In addition, the precipitation state of the Cu-based precipitates in the crystal grain boundaries and the crystal precipitates in the crystal grains can be determined by photographing any five visual fields at a magnification of about 5000 times using a transmission electron microscope and observing the size from the photograph. can do.

【0018】さらに、前述の析出物を確保するための製
造条件について説明する。熱延板を製造するまでの工程
は、従来の一般的なJIS6000系合金と同様でよ
い。すなわち、DC鋳造または連続鋳造などの方法によ
り鋳塊とし、均質化処理を施し必要に応じて表面研削を
行い、引き続き熱間圧延、冷間圧延し、溶体化処理を施
す工程から成るものである。溶体化温度は520℃未満
では十分に添加元素が固溶せず、結晶粒界に最大径が
0.5μm以上のCu系析出物が析出し、さらに析出物
が結晶粒界を占める割合が5%を超える状態になり、あ
るいは結晶粒内に最大径が0.2μm以上の析出物が1
00μm2 内に20個以上検出できる状態になり好まし
くない。また、このような溶体化処理は連続焼鈍炉で行
うことが一般的であり、処理時間が5分を超えることは
通板速度を遅くすることを意味し、生産性を著しく低下
させる。従って溶体化処理時間は5分以下とする。
Further, production conditions for securing the above-mentioned precipitate will be described. The steps up to the production of the hot rolled sheet may be the same as those of a conventional general JIS 6000 series alloy. That is, the method comprises a step of forming an ingot by a method such as DC casting or continuous casting, performing homogenization treatment, performing surface grinding as necessary, and subsequently performing hot rolling, cold rolling, and solution treatment. . When the solution temperature is lower than 520 ° C., the added element does not form a solid solution sufficiently, and a Cu-based precipitate having a maximum diameter of 0.5 μm or more precipitates at the crystal grain boundary. % Or a precipitate having a maximum diameter of 0.2 μm or more in a crystal grain.
20 or more can be detected within 00 μm 2 , which is not preferable. Further, such a solution treatment is generally performed in a continuous annealing furnace, and if the treatment time exceeds 5 minutes, it means that the sheet passing speed is reduced, and the productivity is significantly reduced. Therefore, the solution treatment time is set to 5 minutes or less.

【0019】また、溶体化処理後の溶体化温度から20
0℃までの冷却速度は、冷却中の析出を抑制するために
15℃/sec超であることが必要である。これよりも
遅いと冷却中に結晶粒界に最大径が0.5μm以上のC
u系析出物が析出し、または析出物が結晶粒界を占める
割合が5%を超える状態になり、あるいは結晶粒内に最
大径が0.2μm以上の析出物が100μm2 内に20
個以上検出できる状態になり好ましくない。従って溶体
化処理後の冷却を溶体化温度〜200℃の温度域の冷却
速度を15℃/sec超とする。溶体化処理後は室温時
効を抑制し、高BH性を得るために速やかに100℃程
度で数時間の安定化処理を施すことが有効である。
Further, the solution temperature is set at 20% from the solution temperature after the solution treatment.
The cooling rate to 0 ° C. needs to be higher than 15 ° C./sec in order to suppress precipitation during cooling. If it is slower than this, C having a maximum diameter of 0.5 μm or more is
u-based precipitates are precipitated, or the proportion of the precipitates occupying the crystal grain boundary exceeds 5%, or precipitates having a maximum diameter of 0.2 μm or more in crystal grains are contained in 100 μm 2 .
This is not preferable because more than one can be detected. Therefore, the cooling rate after the solution treatment is set to a cooling rate of more than 15 ° C./sec in a temperature range from the solution treatment temperature to 200 ° C. After the solution treatment, it is effective to immediately perform stabilization treatment at about 100 ° C. for several hours in order to suppress aging at room temperature and obtain high BH property.

【0020】また、冷延前あるいは冷延途中において中
間焼鈍を施すことも析出物の析出状態を制御する方法と
して有効である。すなわち、中間焼鈍によりCu系析出
物を生成させ、溶体化処理時の析出物の再固溶を抑制す
ることにより、溶体化処理後の冷却時の析出を制御する
方法である。この時の熱処理条件として250℃未満で
は微細な析出物の粒界析出を抑制する効果が小さく、4
50℃を超えると粗大な析出物を生じて溶体化処理時に
再固溶させることができなくなる。そのため、十分な過
飽和固溶体を得られなくなり、その結果、成形性および
BH性を低下させる。
Further, intermediate annealing before or during cold rolling is also effective as a method for controlling the precipitation state of precipitates. That is, this is a method of controlling precipitation during cooling after solution treatment by generating Cu-based precipitates by intermediate annealing and suppressing re-dissolution of precipitates during solution treatment. If the heat treatment conditions at this time are lower than 250 ° C., the effect of suppressing the grain boundary precipitation of fine precipitates is small,
If the temperature is higher than 50 ° C., coarse precipitates are formed and cannot be solid-dissolved again during the solution treatment. Therefore, a sufficient supersaturated solid solution cannot be obtained, and as a result, moldability and BH property are reduced.

【0021】また、250℃以上450℃以下の温度で
焼鈍しても、その焼鈍時間が0.5時間未満では溶体化
処理後の冷却中の粒界析出を抑制する効果が小さい。一
方、4時間を超えると粗大な析出物を生じて溶体化処理
時に再固溶させることができなくなるため、十分な過飽
和固溶体を得られなくなり、その結果、成形性およびB
H性を低下させる。したがって、熱処理条件を250℃
以上450℃以下で0.5時間以上4時間以下とする。
上記の熱処理を施すことにより結晶粒界上に析出する析
出物を制御すれば、冷延後の溶体化処理条件を緩和させ
ることが可能になる。
Further, even when annealing at a temperature of 250 ° C. or more and 450 ° C. or less, if the annealing time is less than 0.5 hour, the effect of suppressing grain boundary precipitation during cooling after the solution treatment is small. On the other hand, if it exceeds 4 hours, coarse precipitates are formed and cannot be dissolved again during the solution treatment, so that a sufficient supersaturated solid solution cannot be obtained. As a result, moldability and B
Reduces H properties. Therefore, the heat treatment condition is set to 250 ° C.
The temperature is set to be not less than 450 ° C. and not more than 0.5 hours and not more than 4 hours.
By controlling the precipitates precipitated on the crystal grain boundaries by performing the above heat treatment, it becomes possible to relax the conditions for the solution treatment after cold rolling.

【0022】さらに、溶体化処理後の巻取り温度および
巻取り後の冷却速度の制御によってBH性を向上させる
ことが可能である。溶体化処理後、室温近傍で放置する
とクラスターの生成量が多くなり、塗装焼き付け時にG
Pゾーンの析出を妨げるため、BH性が低下する。これ
を防止するには40℃以上の温度で巻取り、冷却中にG
Pゾーンを生成させることが有効である。しかしなが
ら、巻取り温度が100℃を超えるとGPゾーンの生成
による耐力上昇が大きく、成形性が低下する。また、巻
取り後の冷却中に十分にGPゾーンを生成させ、BH性
の低下を抑制する必要があるが、冷却速度が速すぎて1
0℃/hを超えると、この効果が不十分である。逆に冷
却速度が遅すぎ、0.1℃/h未満になると、GPゾー
ンの生成による耐力上昇が大きく、成形性を阻害する。
従って、巻取り温度を40〜100℃の範囲とし、巻取
り後の冷却速度を0.1〜10℃/hの範囲とする。
Further, by controlling the winding temperature after the solution treatment and the cooling rate after the winding, the BH property can be improved. If left near room temperature after the solution treatment, the amount of clusters generated will increase.
Since the precipitation of the P zone is prevented, the BH property is reduced. To prevent this, wind at a temperature of 40 ° C or higher, and
It is effective to generate a P zone. However, if the winding temperature exceeds 100 ° C., the increase in proof stress due to the generation of the GP zone is large, and the formability decreases. In addition, it is necessary to sufficiently generate a GP zone during cooling after winding, and to suppress a decrease in BH properties.
If it exceeds 0 ° C./h, this effect is insufficient. Conversely, if the cooling rate is too slow and is less than 0.1 ° C./h, the increase in proof stress due to the generation of the GP zone is large, impairing the formability.
Therefore, the winding temperature is set in the range of 40 to 100 ° C, and the cooling rate after winding is set in the range of 0.1 to 10 ° C / h.

【0023】また、上述の条件で巻取った後、冷却速度
を制御して室温まで冷却する代わりに、速やかにGPゾ
ーンを生成する温度範囲で熱処理を施すことによって、
BH性を向上させることが可能である。この熱処理温度
も、40℃未満ではクラスターが多く生成してBH性を
阻害し、100℃を超えると耐力が増加して成形性が低
下する。また、時間は0.5時間未満ではGPゾーンの
生成が不十分であるため、その後の室温で放置するとク
ラスターを生じてBH性が低下し、50時間を超えると
耐力が上昇して成形性および曲げ性が低下する。従っ
て、熱処理温度は40〜100℃の範囲とし、熱処理時
間は0.5〜50時間の範囲とする。
Further, after winding under the above-mentioned conditions, instead of cooling to room temperature by controlling the cooling rate, heat treatment is performed in a temperature range in which a GP zone is quickly generated.
BH property can be improved. If the heat treatment temperature is lower than 40 ° C., a large number of clusters are formed to inhibit the BH property. If the heat treatment temperature is higher than 100 ° C., the yield strength increases and the formability decreases. If the time is less than 0.5 hour, the formation of the GP zone is insufficient, so that if left at room temperature thereafter, clusters are formed and the BH property is reduced. Flexibility decreases. Therefore, the heat treatment temperature is in the range of 40 to 100 ° C., and the heat treatment time is in the range of 0.5 to 50 hours.

【0024】より高いBH性を得るためには、溶体化処
理後に上述の条件で巻取り、冷却あるいは熱処理を行っ
た後、比較的高温かつ短時間の復元処理を行うことが有
効である。すなわち、溶体化処理後にGPゾーンを生成
させて、クラスターの生成を抑制し、さらに復元処理に
よってクラスターを溶解し、GPゾーンを生成させるこ
とにより極めて高いBH性が得られる。この際にも、溶
体化処理後の巻取り温度は、40℃未満ではクラスター
が生成するため下限とし、100℃を超えると耐力が増
加して成形性および曲げ性が低下するため上限とする。
また、冷却速度は0.1℃/h未満では耐力が増加して
成形性および曲げ性が低下するため下限とし、10℃/
hを超えるとGPゾーンの生成が不十分であり、その後
の室温で放置するとクラスターを生じてBH性が低下す
るため上限とする。
In order to obtain a higher BH property, it is effective to perform a rewinding treatment at a relatively high temperature and for a short time after winding, cooling or heat treatment under the above conditions after the solution treatment. That is, the generation of the GP zone after the solution treatment suppresses the generation of the cluster, and further, the cluster is dissolved by the restoring treatment to generate the GP zone, whereby an extremely high BH property is obtained. Also in this case, the winding temperature after the solution treatment is set to the lower limit when the temperature is lower than 40 ° C. because clusters are formed, and is set to the upper limit when the temperature is higher than 100 ° C. because the yield strength increases and the formability and bendability decrease.
If the cooling rate is less than 0.1 ° C./h, the yield strength is increased and the formability and bendability are reduced.
When h is exceeded, the generation of the GP zone is insufficient, and when left at room temperature thereafter, clusters are formed and the BH property is reduced, so the upper limit is set.

【0025】なお、溶体化処理後、冷却して巻取り、速
やかに40〜100℃で0.5〜50時間の熱処理を施
しても同等の効果が得られる。その後の復元処理は13
0℃未満ではクラスターが溶解せずGPゾーンの析出が
生じるため、耐力が増加し、成形性および曲げ性を損な
う。また、280℃を超えると耐力が増加し、また、中
間相を生じて成形性および曲げ性が著しく低下する。ま
た、保持時間が30分を超えると耐力が増加して成形性
および曲げ性を低下させる。従って、復元処理の温度範
囲は130〜280℃、保持時間は0超〜30分とす
る。
It is to be noted that the same effect can be obtained by cooling and winding after the solution treatment, and immediately performing a heat treatment at 40 to 100 ° C. for 0.5 to 50 hours. The restoring process is 13
If the temperature is lower than 0 ° C., the cluster does not dissolve and the GP zone is precipitated, so that the yield strength increases and the formability and bendability are impaired. On the other hand, when the temperature exceeds 280 ° C., the proof stress increases, and an intermediate phase is formed, so that the formability and the bendability are remarkably reduced. On the other hand, if the holding time exceeds 30 minutes, the proof stress increases, and the formability and the bendability decrease. Therefore, the temperature range of the restoration process is 130 to 280 ° C., and the holding time is more than 0 to 30 minutes.

【0026】さらにBH性を向上させるには、復元処理
後、GPゾーンが生成する条件で巻取りおよび冷却を行
うことが有効である。すなわち、復元処理後のクラスタ
ーの析出を抑制すればBH性の低下を防止することがで
きる。特に、200℃以上の高温で復元処理を行うと、
クラスターの溶解が促進されて溶質の過飽和度が上が
り、冷却後に室温近傍で放置すると再びクラスターが生
成してBH性が低下しやすい。これを防止するために、
溶体化処理後と同様に巻取り温度の範囲を40〜100
℃に、冷却速度の範囲を0.1〜10℃/hとする。ま
た、復元処理後、溶体化処理後と同様に40〜100℃
の温度範囲で巻取り、40〜100℃で0.5〜50時
間保持する熱処理を施すことにより同等の効果が得られ
る。
In order to further improve the BH property, it is effective to perform winding and cooling under conditions that generate GP zones after the restoration processing. That is, if the precipitation of clusters after the restoration treatment is suppressed, a decrease in BH property can be prevented. In particular, when the restoration process is performed at a high temperature of 200 ° C. or more,
The dissolution of the clusters is promoted to increase the degree of supersaturation of the solute, and if left near room temperature after cooling, the clusters are formed again and the BH property tends to decrease. To prevent this,
As in the case after the solution treatment, the range of the winding temperature is set to 40 to 100.
The cooling rate range is 0.1 to 10 ° C / h. After the restoration treatment, the temperature is set to 40 to 100 ° C. in the same manner as after the solution treatment.
The same effect can be obtained by performing a heat treatment in which the film is wound at a temperature in the range described above and held at 40 to 100 ° C. for 0.5 to 50 hours.

【0027】[0027]

【実施例】次に実施例に基づいて、本発明を具体的に説
明する。 (実施例1)表1に示すアルミニウム合金を、それぞれ
常法に従ってDC鋳造法によって鋳造し、得られた鋳塊
に530℃×5hrの均質化処理を施した後、熱間圧延
を行って熱延板とした。次いで520℃×1minの中
間焼鈍を施した後、厚さ1mmの冷延板を製造し、54
0℃×10secの溶体化処理を施した。この時の54
0℃〜200℃間の冷却速度を18℃/secとした。
さらに、溶体化処理後速やかに100℃×3hrの安定
化処理を施した。
Next, the present invention will be specifically described based on examples. (Example 1) Each of the aluminum alloys shown in Table 1 was cast by a DC casting method according to a conventional method, and the obtained ingot was subjected to a homogenization treatment at 530 ° C for 5 hours, and then subjected to hot rolling. It was a rolled sheet. Next, after performing an intermediate annealing at 520 ° C. × 1 min, a cold-rolled sheet having a thickness of 1 mm was manufactured.
A solution treatment at 0 ° C. × 10 sec was performed. 54 at this time
The cooling rate between 0 ° C and 200 ° C was 18 ° C / sec.
Further, immediately after the solution treatment, a stabilization treatment at 100 ° C. × 3 hr was performed.

【0028】[0028]

【表1】 [Table 1]

【0029】以上の製造条件によって製造した冷延板の
析出状態を透過型電子顕微鏡を用いて、5000倍の写
真を任意の場所で5視野撮影し、その範囲で観察される
析出物のサイズおよび数を測定し、評価した。機械的性
質のうち引張試験はこれらの合金板からJIS5号試験
片を切り出し、耐力測定までは1mm/min、耐力測
定以降は10mm/minの引張速度で行った。また、
BH性は引張試験片に180℃×20minの熱処理を
施し、耐力を測定して評価した。
The precipitation state of the cold-rolled sheet manufactured under the above manufacturing conditions was photographed by a transmission electron microscope at a magnification of 5000 at five arbitrary fields, and the size and size of the precipitate observed in the range were measured. The number was measured and evaluated. Among the mechanical properties, a tensile test was performed by cutting out JIS No. 5 test pieces from these alloy plates and performing a tensile speed of 1 mm / min until the proof stress measurement, and a 10 mm / min tensile speed after the proof stress measurement. Also,
The BH property was evaluated by subjecting a tensile test piece to heat treatment at 180 ° C. for 20 minutes and measuring the proof stress.

【0030】プレス成形性評価には曲げ成形および張出
成形を行った。まず、曲げ試験はJIS3号試験片を切
り出し、0.5tの内側半径で180°曲げを行い、そ
の外側部分の外観観察を行って、割れが発生しなかった
ものを○、および割れが発生したものを×として評価し
た。張出成形性は100φの球頭張出工具を用い、長さ
200mm×幅125〜140mmの試験片に対して潤
滑油を塗布した後に成形速度10mm/min、BHF
10トンで成形して破断成形高さ(LDH0)を求め、
評価した。
For press formability evaluation, bending and overhanging were performed. First, in the bending test, a JIS No. 3 test piece was cut out, bent 180 ° at an inner radius of 0.5 t, and the outer part was observed for appearance. Those were evaluated as x. The overhanging formability was determined by using a 100 mm ball-overhanging tool, applying a lubricating oil to a test piece having a length of 200 mm and a width of 125 to 140 mm, and forming at a molding speed of 10 mm / min.
10 tons to form and determine the break forming height (LDH0)
evaluated.

【0031】耐食性は、脱脂、水洗、燐酸亜鉛処理、水
洗、塗装を行った試料表面にナイフで人工疵を入れた
後、塩水噴霧、湿潤した後、糸錆性を評価した。糸錆性
の評価は最大糸錆長さを基準として行い、1mm未満を
○、1mm以上を×とした。析出物の状態、機械的性
質、成形性、および耐食性を測定した結果を表2に示
す。本発明で示したA1〜A12の合金は規定範囲内の
析出状態で粒界を占める割合が少なく、伸びおよび曲げ
性に優れ、破断限界高さの高い成形性を有し、かつ高B
H性を有している。
The corrosion resistance was evaluated by putting artificial flaws with a knife on the sample surface which had been degreased, washed with water, treated with zinc phosphate, washed with water, and painted, sprayed with salt water and wetted, and evaluated for rust resistance. The evaluation of the yarn rust property was based on the maximum length of the yarn rust, and the evaluation was as follows. Table 2 shows the results of measurement of the state of the precipitate, mechanical properties, moldability, and corrosion resistance. The alloys of A1 to A12 shown in the present invention have a small proportion occupying the grain boundaries in a precipitation state within a specified range, have excellent elongation and bendability, have high formability with a high breaking limit height, and have a high B
It has H property.

【0032】[0032]

【表2】 [Table 2]

【0033】一方、比較例で示した合金のうち、B1は
Mg量が少なく、B4はSi量が少ないため、BH性が
不十分であり、B2はMg量が多く、B5はCu量が多
いため、結晶粒界にCu系析出物を生じ、成形性および
耐食性が低下している。B3はSi量が多いため、成形
性が低下しており、B6はCu量が少ないため、成形性
が不十分である。さらに、比較例で示した他の合金は、
晶析出物を生じる成分が本発明で規定した範囲を外れて
おり、製造条件を本発明で規定した範囲内で製造したに
もかかわらず粒内の晶析出物の分布が本発明で規定する
範囲を外れ、その結果曲げ性および成形性が本発明より
著しく劣っている。
On the other hand, among the alloys shown in the comparative examples, B1 has a small amount of Mg, B4 has a small amount of Si, so the BH property is insufficient, B2 has a large amount of Mg, and B5 has a large amount of Cu. Therefore, a Cu-based precipitate is generated at the crystal grain boundary, and the formability and the corrosion resistance are reduced. B3 has a large amount of Si and therefore has low formability, and B6 has a low Cu amount and therefore has insufficient formability. Further, other alloys shown in the comparative example,
The components that generate crystal precipitates are out of the range specified in the present invention, and the distribution of crystal precipitates in the grains is defined in the present invention even though the production conditions are manufactured within the range specified in the present invention. And, as a result, the bendability and formability are significantly inferior to those of the present invention.

【0034】(実施例2)実施例1と同様に製造したA
4の本発明で規定した範囲内の合金熱延板を用いて表3
に示す条件の中間焼鈍を施して厚さ1mmの冷延板を製
造した。これらの冷延板に表に示す溶体化処理を施して
実施例1と同様に析出状態を観察し、機械的性質、プレ
ス成形性および耐食性を評価し、表4に示した。表に示
す通り、本発明では溶体化処理条件を本発明範囲内で示
す条件で行うことにより、析出物が粒界を占める割合が
小さく、その結果伸びおよび曲げ性に優れ、高い成形性
を有しかつBH性および耐食性に優れた合金板が得られ
た。
Example 2 A manufactured in the same manner as in Example 1
Table 3 was obtained by using an alloy hot-rolled sheet within the range specified in the present invention of No. 4
The steel sheet was subjected to intermediate annealing under the following conditions to produce a cold-rolled sheet having a thickness of 1 mm. These cold-rolled sheets were subjected to the solution treatment shown in the table, and the precipitation state was observed in the same manner as in Example 1. The mechanical properties, press formability, and corrosion resistance were evaluated. As shown in the table, in the present invention, by performing the solution treatment under the conditions shown in the range of the present invention, the ratio of the precipitate occupying the grain boundary is small, and as a result, the precipitate has excellent elongation and bendability, and has high formability. Thus, an alloy plate excellent in BH property and corrosion resistance was obtained.

【0035】[0035]

【表3】 [Table 3]

【0036】[0036]

【表4】 [Table 4]

【0037】一方、比較例のうちNo.30の場合は溶
体化処理温度が本発明で規定した温度より低く、粗大な
析出物が粒界に多数観察され、伸びおよび成形性が低下
している。また、比較例の内、No.31の場合は溶体
化処理後の冷却速度が本発明で規定した条件より遅く、
冷却中に粒界に析出物が析出、粗大化したと考えられ、
粒界に析出物が多数観察され、伸び、成形性および耐食
性が低下している。
On the other hand, of the comparative examples, In the case of No. 30, the solution treatment temperature is lower than the temperature specified in the present invention, a large number of coarse precipitates are observed at the grain boundaries, and the elongation and the formability are reduced. Also, among the comparative examples, No. In the case of 31, the cooling rate after the solution treatment is lower than the condition specified in the present invention,
It is considered that precipitates were precipitated at the grain boundaries during cooling and coarsened,
Many precipitates are observed at the grain boundaries, and elongation, formability and corrosion resistance are reduced.

【0038】(実施例3)実施例1と同様に製造したA
4の本発明で規定した範囲内の合金熱延板を用いて表5
に示す条件の中間焼鈍を施して厚さ1mmの冷延板を製
造した。これらの冷延板に表5に示す溶体化処理を施し
て実施例1と同様に析出状態を観察し、機械的性質、プ
レス成形性および耐食性を評価し、表6に示した。表6
に示す通り、本発明では中間焼鈍条件を本発明範囲内で
示す条件で行うことにより、析出物が粒界を占める割合
が小さく、その結果伸びおよび曲げ性に優れ、高い成形
性を有しかつBH性および耐食性に優れた合金板が得ら
れた。
Example 3 A produced in the same manner as in Example 1
Table 5 was obtained by using an alloy hot-rolled sheet within the range specified in the present invention of No. 4
The steel sheet was subjected to intermediate annealing under the following conditions to produce a cold-rolled sheet having a thickness of 1 mm. These cold-rolled sheets were subjected to a solution treatment shown in Table 5 and the precipitation state was observed in the same manner as in Example 1. The mechanical properties, press formability and corrosion resistance were evaluated. Table 6
As shown in the present invention, by performing the intermediate annealing conditions under the conditions shown in the range of the present invention, the ratio of the precipitate occupying the grain boundary is small, as a result, excellent in elongation and bendability, having high formability and An alloy plate having excellent BH properties and corrosion resistance was obtained.

【0039】[0039]

【表5】 [Table 5]

【0040】[0040]

【表6】 [Table 6]

【0041】一方、比較例のうちNo.37およびN
o.38の場合は中間焼鈍温度が本発明で規定した温度
より低く、あるいは時間が短いため、析出物が中間焼鈍
中に十分に粗大化しなかったため、溶体化処理後に微細
な析出物だ生成し、伸び、成形性および耐食性が低下し
たと考えられる。また、No.39およびNo.40は
中間焼鈍時間が長すぎるために、析出物が粗大化し、溶
体化処理による再固溶が不十分で粗大な析出物が粒界に
多数観察され、伸びおよび成形性が低下している。ま
た、No.41の場合は中間焼鈍温度が高すぎるために
晶析出物の大部分が中間焼鈍時に再固溶し、溶体化処理
温度が低い条件では、析出を促進させる結果となり、粒
界に析出物が析出、粗大化したと考えられ、粒界に析出
物が多数観察され、伸び、成形性および耐食性が低下し
ている。
On the other hand, among the comparative examples, No. 37 and N
o. In the case of No. 38, since the intermediate annealing temperature was lower than the temperature specified in the present invention or the time was short, the precipitate did not sufficiently coarsen during the intermediate annealing, so that a fine precipitate was formed after the solution treatment, and the elongation was increased. It is considered that moldability and corrosion resistance were reduced. In addition, No. 39 and no. In No. 40, since the intermediate annealing time was too long, the precipitates were coarsened, re-solid solution by the solution treatment was insufficient, and a large number of coarse precipitates were observed at the grain boundaries, and elongation and formability were reduced. In addition, No. In the case of 41, most of the crystal precipitates re-dissolved during the intermediate annealing because the intermediate annealing temperature was too high, and under the condition of low solution treatment temperature, the precipitation was promoted, and the precipitates were precipitated at the grain boundaries. It is considered to be coarse, and a large number of precipitates were observed at the grain boundaries, and elongation, formability and corrosion resistance were reduced.

【0042】(実施例4)実施例1と同様に製造した、
A4の本発明で規定した範囲内の合金熱延板に、表3N
o.27に示す条件の中間焼鈍を施して厚さ1mmの冷
延板を製造し、表3No.27に示す溶体化処理を施し
た。さらに、表7に示す条件で巻取り、室温近傍まで冷
却した後、これらの合金板の析出状態を観察し、機械的
性質、プレス成形性および耐食性を実施例1と同様に評
価し、表8に示した。表8に示す通り、本発明では溶体
化処理条件を本発明範囲内で示す条件で行うことによ
り、析出物が粒界を占める割合が小さく、その結果伸び
および曲げ性に優れ、高い成形性を有しかつBH性およ
び耐食性に優れた合金板が得られた。
(Example 4)
Table 3N shows the hot-rolled alloy sheets within the range specified in the present invention of A4.
o. No. 27 was subjected to intermediate annealing to produce a cold-rolled sheet having a thickness of 1 mm. A solution treatment shown in FIG. 27 was performed. Further, after winding under the conditions shown in Table 7 and cooling to near room temperature, the precipitation state of these alloy sheets was observed, and the mechanical properties, press formability, and corrosion resistance were evaluated in the same manner as in Example 1. It was shown to. As shown in Table 8, in the present invention, by performing the solution treatment under the conditions shown in the range of the present invention, the ratio of the precipitate occupying the grain boundary is small, and as a result, the precipitate has excellent elongation and bendability, and high formability is obtained. An alloy plate having excellent BH properties and corrosion resistance was obtained.

【0043】[0043]

【表7】 [Table 7]

【0044】[0044]

【表8】 [Table 8]

【0045】一方、比較例の内、No.46の場合は巻
取り温度が本発明で規定した温度より低いため、冷却中
にクラスターを生じてBH性が低下した。一方、No.
47の場合は巻取り温度が本発明で規定した温度より高
いため、冷却中にGPゾーンを生じて耐力が上昇し、曲
げ性が低下した。また、No.48の場合は巻取り後の
冷却速度が速すぎるために、冷却中のGPゾーンの析出
が不十分でクラスターを生じ、BH性が低下している。
一方、No.49の場合は巻取り後の冷却速度が遅すぎ
るため、冷却中にGPゾーンを生じて耐力が上昇し、曲
げ性が低下している。
On the other hand, among the comparative examples, No. In the case of No. 46, since the winding temperature was lower than the temperature specified in the present invention, clusters were formed during cooling and the BH property was lowered. On the other hand, No.
In the case of No. 47, since the winding temperature was higher than the temperature specified in the present invention, a GP zone was generated during cooling, the proof stress increased, and the bendability decreased. In addition, No. In the case of No. 48, since the cooling rate after winding was too high, the precipitation of the GP zone during cooling was insufficient and clusters were formed, and the BH property was lowered.
On the other hand, No. In the case of 49, since the cooling rate after winding is too slow, a GP zone is generated during cooling, the proof stress increases, and the bendability decreases.

【0046】(実施例5)実施例1と同様に製造した、
A4の本発明で規定した範囲内の合金熱延板に、表3N
o.27に示す条件の中間焼鈍を施して厚さ1mmの冷
延板を製造し、表3No.27に示す溶体化処理を施し
た。さらに、表9に示す条件で巻取り、速やかに熱処理
を施し、これらの合金板の析出状態を観察し、機械的性
質、プレス成形性および耐食性を実施例1と同様に評価
し、表10に示した。表10に示す通り、本発明では溶
体化処理条件を本発明範囲内で示す条件で行うことによ
り、析出物が粒界を占める割合が小さく、その結果伸び
および曲げ性に優れ、高い成形性を有しかつBH性およ
び耐食性に優れた合金板が得られた。
(Example 5)
Table 3N shows the hot-rolled alloy sheets within the range specified in the present invention of A4.
o. No. 27 was subjected to intermediate annealing to produce a cold-rolled sheet having a thickness of 1 mm. A solution treatment shown in FIG. 27 was performed. Further, it was wound up under the conditions shown in Table 9 and immediately subjected to heat treatment. The precipitation state of these alloy sheets was observed, and the mechanical properties, press formability and corrosion resistance were evaluated in the same manner as in Example 1. Indicated. As shown in Table 10, in the present invention, by performing the solution treatment under the conditions shown in the range of the present invention, the ratio of the precipitate occupying the grain boundary is small, and as a result, the elongation and bendability are excellent, and the high formability is improved. An alloy plate having excellent BH properties and corrosion resistance was obtained.

【0047】[0047]

【表9】 [Table 9]

【0048】[0048]

【表10】 [Table 10]

【0049】一方、比較例の内、No.54の場合は熱
処理温度が本発明で規定した温度より低いため、クラス
ターを生じてBH性が低下、No.55の場合は熱処理
温度が本発明で規定した温度より高いため、GPゾーン
を生じて耐力が上昇し、曲げ性が低下した。また、N
o.56の場合は熱処理時間が短いために、GPゾーン
の析出が不十分でクラスターを生じ、BH性が低下して
いる。一方、No.57の場合は熱処理時間が長すぎる
ため、GPゾーンを生じて耐力が上昇し、曲げ性が低下
している。
On the other hand, among the comparative examples, no. In the case of No. 54, since the heat treatment temperature was lower than the temperature specified in the present invention, clusters were generated and the BH property was reduced. In the case of No. 55, since the heat treatment temperature was higher than the temperature specified in the present invention, a GP zone was generated, the proof stress increased, and the bendability decreased. Also, N
o. In the case of No. 56, since the heat treatment time was short, the precipitation of the GP zone was insufficient, clusters were formed, and the BH property was lowered. On the other hand, No. In the case of No. 57, since the heat treatment time is too long, a GP zone is generated, the proof stress increases, and the bendability decreases.

【0050】(実施例6)実施例1と同様に製造したA
4の本発明で規定した範囲内の合金熱延板に表3No.
27に示す条件の中間焼鈍を施して厚さ1mmの冷延板
を製造した。さらに、表3No.27に示す溶体化処理
を施した後、表7製造番号42に示す条件で巻取って室
温近傍まで冷却し、表11に示す復元処理を施した。そ
の後、実施例1と同様にこれらの析出状態を観察し、機
械的性質、プレス成形性および耐食性を評価し、表12
に示した。表に示す通り、本発明では溶体化処理条件を
本発明範囲内で示す条件で行うことにより、析出物が粒
界を占める割合が小さく、その結果伸びおよび曲げ性に
優れ、高い成形性を有しかつBH性および耐食性に優れ
た合金板が得られた。
Example 6 A manufactured in the same manner as in Example 1
No. 4 in Table 3 No. 4 was added to the hot-rolled alloy sheet within the range specified in the present invention.
Intermediate annealing under the conditions shown in No. 27 was performed to produce a cold-rolled sheet having a thickness of 1 mm. Further, Table 3 No. After performing the solution treatment shown in Table 27, the film was wound under the conditions shown in Table 7 production number 42, cooled to near room temperature, and subjected to a restoration treatment shown in Table 11. Thereafter, the precipitation state was observed in the same manner as in Example 1, and the mechanical properties, press formability, and corrosion resistance were evaluated.
It was shown to. As shown in the table, in the present invention, by performing the solution treatment under the conditions shown in the range of the present invention, the ratio of the precipitate occupying the grain boundary is small, and as a result, the precipitate has excellent elongation and bendability, and has high formability. Thus, an alloy plate excellent in BH property and corrosion resistance was obtained.

【0051】[0051]

【表11】 [Table 11]

【0052】[0052]

【表12】 [Table 12]

【0053】一方、比較例の内、No.62の場合は熱
処理温度が本発明で規定した温度より低いため、クラス
ターが溶解せずにGPゾーンが生成し、耐力が上昇して
成形性および曲げ性が低下した。一方、No.63の場
合は熱処理温度が本発明で規定した温度より高いため、
耐力が上昇し、成形性および曲げ性が低下した。また、
No.64の場合は熱処理時間が長すぎるために、GP
ゾーンを生じて耐力が上昇し、曲げ性が低下している。
On the other hand, among the comparative examples, In the case of No. 62, since the heat treatment temperature was lower than the temperature specified in the present invention, the GP zone was generated without dissolving the cluster, the proof stress was increased, and the formability and the bendability were reduced. On the other hand, No. In the case of 63, since the heat treatment temperature is higher than the temperature specified in the present invention,
The yield strength increased, and the formability and bendability decreased. Also,
No. In the case of 64, the heat treatment time is too long.
Zones are generated, the proof stress increases, and the bendability decreases.

【0054】(実施例7)実施例1と同様に製造した、
A4の本発明で規定した範囲内の合金熱延板に表3N
o.27に示す条件の中間焼鈍を施して厚さ1mmの冷
延板を製造した。さらに表3No.27に示す溶体化処
理を施した後、表7No.42に示す条件で巻取って室
温近傍まで冷却し、表11No.60に示す条件で復元
処理を施した。その後、表13に示す条件で巻取って室
温近傍まで冷却し、実施例1と同様にこれらの析出状態
を観察し、機械的性質、プレス成形性および耐食性を評
価し、表14に示した。表に示す通り、本発明では溶体
化処理条件を本発明範囲内で示す条件で行うことによ
り、析出物が粒界を占める割合が小さく、その結果伸び
および曲げ性に優れ、高い成形性を有しかつBH性およ
び耐食性に優れた合金板が得られた。
(Example 7)
Table 3N shows the hot-rolled alloy sheets within the range specified in the present invention for A4.
o. Intermediate annealing under the conditions shown in No. 27 was performed to produce a cold-rolled sheet having a thickness of 1 mm. Further, in Table 3 No. After performing the solution treatment shown in FIG. 42, and was cooled to around room temperature. The restoration process was performed under the conditions shown in FIG. Thereafter, it was wound up under the conditions shown in Table 13 and cooled to around room temperature. The precipitation state was observed in the same manner as in Example 1, and the mechanical properties, press formability and corrosion resistance were evaluated. As shown in the table, in the present invention, by performing the solution treatment under the conditions shown in the range of the present invention, the ratio of the precipitate occupying the grain boundary is small, and as a result, the precipitate has excellent elongation and bendability, and has high formability. Thus, an alloy plate excellent in BH property and corrosion resistance was obtained.

【0055】[0055]

【表13】 [Table 13]

【0056】[0056]

【表14】 [Table 14]

【0057】一方、比較例の内、No.69の場合は巻
取り温度が本発明で規定した温度より低いため、冷却中
にクラスターを生じ、本発明に比べてBH性が低い。一
方、No.70の場合は巻取り温度が本発明で規定した
温度より高いため、冷却中にGPゾーンを生じて耐力が
上昇し、曲げ性が低下した。また、No.71の場合は
巻取り後の冷却速度が速すぎるためにクラスターを生
じ、本発明に比べてBH性が低下している。一方、N
o.72の場合は巻取り後の冷却速度が遅すぎるため、
耐力が上昇し、曲げ性が低下している。
On the other hand, among the comparative examples, no. In the case of 69, since the winding temperature is lower than the temperature specified in the present invention, clusters are formed during cooling, and the BH property is lower than in the present invention. On the other hand, No. In the case of 70, since the winding temperature was higher than the temperature specified in the present invention, a GP zone was generated during cooling, the proof stress increased, and the bendability decreased. In addition, No. In the case of 71, the cooling rate after winding was too high, clusters were formed, and the BH property was lower than that of the present invention. On the other hand, N
o. In the case of 72, the cooling rate after winding is too slow,
The proof stress increases and the bendability decreases.

【0058】[0058]

【発明の効果】以上のように、本発明によれば、成形性
および耐食性に優れた高BH性を有する成形加工用アル
ミニウム合金板を提供できる。
As described above, according to the present invention, it is possible to provide an aluminum alloy sheet for forming and processing having high BH property and excellent in formability and corrosion resistance.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22F 1/00 623 C22F 1/00 623 630 630K 640 640A 684 684C 691 691B 691C 692 692A 692B ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme court ゛ (Reference) C22F 1/00 623 C22F 1/00 623 630 630K 640 640A 684 684C 691 691B 691C 692 692A 692B

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 Mg:0.1〜0.65%、 Si:0.4〜2%、 Cu:0.8〜1.4%、 Mg+Cu:0.9〜1.5%を含有し、 Zn:0.03〜1.5%、 Mn:0.03〜0.2%、 Cr:0.03〜0.2%、 Zr:0.03〜0.15%、 V :0.03〜0.15%、 Fe:0.03〜0.3%、 Ti:0.005〜0.1% のうちの1種または2種以上を、さらに含有し、残部は
Al及び不可避的不純物からなるAl合金であって、結
晶粒界上のCuを含有する析出物の最大径が0.5μm
以下で、かつ、その結晶粒界面に占める割合が5%以下
であり、さらに、粒内に0.2μm以上の最大径を有す
る晶析出物が、100μm2 当たり20個未満であるこ
とを特徴とする耐食性および成形性に優れたAl−Mg
−Si−Cu系合金板。
1. Mg: 0.1 to 0.65%, Si: 0.4 to 2%, Cu: 0.8 to 1.4%, Mg + Cu: 0.9 to 1.5% by weight% Zn: 0.03 to 1.5%, Mn: 0.03 to 0.2%, Cr: 0.03 to 0.2%, Zr: 0.03 to 0.15%, V: 0.03 to 0.15%, Fe: 0.03 to 0.3%, Ti: 0.005 to 0.1%, one or more of which are further contained, with the balance being Al and inevitable Alloy containing chemical impurities, and the maximum diameter of a precipitate containing Cu on a crystal grain boundary is 0.5 μm
And less than 5% of the crystal grain interface, and the number of crystal precipitates having a maximum diameter of 0.2 μm or more in the grains is less than 20 per 100 μm 2. Al-Mg with excellent corrosion resistance and moldability
-Si-Cu alloy plate.
【請求項2】 請求項1に記載のAl−Mg−Si−C
u系合金板の製造方法であって、冷間圧延後の溶体化処
理を520℃以上で5分以下とし、溶体化処理後の冷却
を溶体化温度〜200℃の温度域の冷却速度を15℃/
sec超とすることを特徴とする耐食性および成形性に
優れたAl−Mg−Si−Cu系合金板の製造方法。
2. The Al-Mg-Si-C according to claim 1,
A method for producing a u-based alloy sheet, wherein the solution treatment after cold rolling is performed at 520 ° C. or more and 5 minutes or less, and the cooling after the solution treatment is performed at a cooling rate of 15 ° C. to 200 ° C. ° C /
A method for producing an Al-Mg-Si-Cu-based alloy sheet having excellent corrosion resistance and formability, characterized in that the time is longer than sec.
【請求項3】 請求項1に記載のAl−Mg−Si−C
u系合金板の製造方法であって、熱間圧延後に250℃
以上450℃未満で0.5〜4時間の保持を施すことを
特徴とするAl−Mg−Si−Cu系合金板の製造方
法。
3. The Al-Mg-Si-C according to claim 1,
A method for producing a u-based alloy sheet, comprising:
A method for producing an Al-Mg-Si-Cu-based alloy sheet, wherein the holding is performed at a temperature lower than 450 ° C for 0.5 to 4 hours.
【請求項4】 請求項1に記載のAl−Mg−Si−C
u系合金板の製造方法であって、冷間圧延後の溶体化処
理を520℃以上で5分以下とし、溶体化処理後の冷却
を溶体化温度〜200℃の温度域の冷却速度を15℃/
sec超とし、40〜100℃で巻取った後、0.1〜
10℃/hの冷却速度で冷却することを特徴とする耐食
性および成形性に優れたAl−Mg−Si−Cu系合金
板の製造方法。
4. The Al-Mg-Si-C according to claim 1,
A method for producing a u-based alloy sheet, wherein the solution treatment after cold rolling is performed at 520 ° C. or more and 5 minutes or less, and the cooling after the solution treatment is performed at a cooling rate of 15 ° C. to 200 ° C. ° C /
sec, and after winding at 40-100 ° C, 0.1-
A method for producing an Al-Mg-Si-Cu alloy sheet having excellent corrosion resistance and formability, characterized by cooling at a cooling rate of 10 ° C / h.
【請求項5】 請求項1に記載のAl−Mg−Si−C
u系合金板の製造方法であって、冷間圧延後の溶体化処
理を520℃以上で5分以下とし、溶体化処理後の冷却
を溶体化温度〜200℃の温度域の冷却速度を15℃/
sec超とし、40〜100℃で巻取った後、40〜1
00℃で0.5〜50時間保持することを特徴とする耐
食性および成形性に優れたAl−Mg−Si−Cu系合
金板の製造方法。
5. The Al-Mg-Si-C according to claim 1,
A method for producing a u-based alloy sheet, wherein the solution treatment after cold rolling is performed at 520 ° C. or more and 5 minutes or less, and the cooling after the solution treatment is performed at a cooling rate of 15 ° C. to 200 ° C. ° C /
sec, and after winding at 40-100 ° C, 40-1
A method for producing an Al-Mg-Si-Cu-based alloy sheet having excellent corrosion resistance and formability, which is maintained at 00C for 0.5 to 50 hours.
【請求項6】 請求項1に記載のAl−Mg−Si−C
u系合金板の製造方法であって、冷間圧延後の溶体化処
理を520℃以上で5分以下とし、溶体化処理後の冷却
を溶体化温度〜200℃の温度域の冷却速度を15℃/
sec超とし、40〜100℃で巻取った後、0.1〜
10℃/hの冷却速度で冷却し、さらに130〜280
℃に加熱して0超〜30分保持することを特徴とする耐
食性および成形性に優れたAl−Mg−Si−Cu系合
金板の製造方法。
6. The Al-Mg-Si-C according to claim 1,
A method for producing a u-based alloy sheet, wherein the solution treatment after cold rolling is performed at 520 ° C. or more and 5 minutes or less, and the cooling after the solution treatment is performed at a cooling rate of 15 ° C. to 200 ° C. ° C /
sec, and after winding at 40-100 ° C, 0.1-
Cool at a cooling rate of 10 ° C./h,
A method for producing an Al-Mg-Si-Cu alloy sheet excellent in corrosion resistance and formability, characterized in that the sheet is heated to 0C and held for more than 0 to 30 minutes.
【請求項7】 請求項1に記載のAl−Mg−Si−C
u系合金板を製造方法であって、冷間圧延後の溶体化処
理を520℃以上で5分以下とし、溶体化処理後の冷却
を溶体化温度〜200℃の温度域の冷却速度を15℃/
sec超とし、40〜100℃で巻取った後、0.1〜
10℃/hの冷却速度で冷却し、さらに130〜280
℃に加熱して0超〜30分保時した後、40〜100℃
まで冷却して巻取り、0.1〜10℃/hの冷却速度で
冷却することを特徴とする耐食性および成形性に優れた
Al−Mg−Si−Cu系合金板の製造方法。
7. The Al-Mg-Si-C according to claim 1,
A method for producing a u-based alloy sheet, wherein the solution treatment after cold rolling is performed at a temperature of 520 ° C. or more and 5 minutes or less, and the cooling after the solution treatment is performed at a cooling rate of 15 ° C. to 200 ° C. ° C /
sec, and after winding at 40-100 ° C, 0.1-
Cool at a cooling rate of 10 ° C./h,
After heating to 0 ° C and keeping for more than 0 to 30 minutes, 40 to 100 ° C
A method for producing an Al-Mg-Si-Cu alloy sheet excellent in corrosion resistance and formability, wherein the sheet is cooled and wound up, and cooled at a cooling rate of 0.1 to 10 ° C / h.
JP2000034464A 1999-05-06 2000-02-14 Al-Mg-Si-Cu ALLOY SHEET EXCELLENT IN CORROSION RESISTANCE AND FORMABILITY, AND ITS MANUFACTURE Withdrawn JP2001020027A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000034464A JP2001020027A (en) 1999-05-06 2000-02-14 Al-Mg-Si-Cu ALLOY SHEET EXCELLENT IN CORROSION RESISTANCE AND FORMABILITY, AND ITS MANUFACTURE

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP12541399 1999-05-06
JP11-125413 1999-05-06
JP2000034464A JP2001020027A (en) 1999-05-06 2000-02-14 Al-Mg-Si-Cu ALLOY SHEET EXCELLENT IN CORROSION RESISTANCE AND FORMABILITY, AND ITS MANUFACTURE

Publications (1)

Publication Number Publication Date
JP2001020027A true JP2001020027A (en) 2001-01-23

Family

ID=26461859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000034464A Withdrawn JP2001020027A (en) 1999-05-06 2000-02-14 Al-Mg-Si-Cu ALLOY SHEET EXCELLENT IN CORROSION RESISTANCE AND FORMABILITY, AND ITS MANUFACTURE

Country Status (1)

Country Link
JP (1) JP2001020027A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001295008A (en) * 2000-04-13 2001-10-26 Nissan Motor Co Ltd Aluminum alloy sheet excellent in filiform erosion resistance and its producing method
JP2003105471A (en) * 2001-09-28 2003-04-09 Sumitomo Light Metal Ind Ltd Aluminum alloy sheet, and production method therefor
JP2003105472A (en) * 2001-09-28 2003-04-09 Sumitomo Light Metal Ind Ltd Aluminum alloy sheet, and production method therefor
JP2004124175A (en) * 2002-10-02 2004-04-22 Furukawa Sky Kk Method for manufacturing 6000 system alloy plate for forming excellent in formability, baking hardenability, and springback characteristic
JP2008297630A (en) * 2001-05-03 2008-12-11 Novelis Inc Process for making aluminum alloy having excellent bendability
JP2013185218A (en) * 2012-03-08 2013-09-19 Kobe Steel Ltd Aluminum alloy sheet excellent in baking finish hardenability
KR101950595B1 (en) * 2017-08-22 2019-02-20 현대제철 주식회사 Aluminium alloy and methods of fabricating the same
WO2019089736A1 (en) 2017-10-31 2019-05-09 Arconic Inc. Improved aluminum alloys, and methods for producing the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001295008A (en) * 2000-04-13 2001-10-26 Nissan Motor Co Ltd Aluminum alloy sheet excellent in filiform erosion resistance and its producing method
JP2008297630A (en) * 2001-05-03 2008-12-11 Novelis Inc Process for making aluminum alloy having excellent bendability
JP2003105471A (en) * 2001-09-28 2003-04-09 Sumitomo Light Metal Ind Ltd Aluminum alloy sheet, and production method therefor
JP2003105472A (en) * 2001-09-28 2003-04-09 Sumitomo Light Metal Ind Ltd Aluminum alloy sheet, and production method therefor
JP2004124175A (en) * 2002-10-02 2004-04-22 Furukawa Sky Kk Method for manufacturing 6000 system alloy plate for forming excellent in formability, baking hardenability, and springback characteristic
JP2013185218A (en) * 2012-03-08 2013-09-19 Kobe Steel Ltd Aluminum alloy sheet excellent in baking finish hardenability
KR101950595B1 (en) * 2017-08-22 2019-02-20 현대제철 주식회사 Aluminium alloy and methods of fabricating the same
WO2019089736A1 (en) 2017-10-31 2019-05-09 Arconic Inc. Improved aluminum alloys, and methods for producing the same
EP3704279A4 (en) * 2017-10-31 2021-03-10 Howmet Aerospace Inc. Improved aluminum alloys, and methods for producing the same
US11608551B2 (en) 2017-10-31 2023-03-21 Howmet Aerospace Inc. Aluminum alloys, and methods for producing the same

Similar Documents

Publication Publication Date Title
JP5371173B2 (en) Manufacturing method of high strength aluminum alloy fin material
JP4901757B2 (en) Aluminum alloy plate and manufacturing method thereof
JP4725019B2 (en) Aluminum alloy fin material for heat exchanger, manufacturing method thereof, and heat exchanger provided with aluminum alloy fin material
WO2009122869A1 (en) Cu-Ni-Si-Co COPPER ALLOY FOR ELECTRONIC MATERIAL AND PROCESS FOR PRODUCING THE SAME
JP6022882B2 (en) High strength aluminum alloy extruded material and manufacturing method thereof
WO2011036804A1 (en) Cu-Ni-Si-Co COPPER ALLOY FOR ELECTRONIC MATERIAL AND PROCESS FOR PRODUCING SAME
JP5113318B2 (en) Aluminum alloy plate for forming and method for producing the same
JP2008024964A (en) High-strength aluminum alloy sheet and producing method therefor
EP0480402B1 (en) Process for manufacturing aluminium alloy material with excellent formability, shape fixability and bake hardenability
JP4634249B2 (en) Aluminum alloy plate for forming and method for producing the same
JP5195837B2 (en) Aluminum alloy fin material for heat exchanger
JPH11310841A (en) Aluminum alloy extruded shape excellent in fatigue strength, and its production
JPH0931616A (en) Aluminum-magnesium-silicon alloy sheet excellent in formability and its production
JP2008025006A (en) Aluminum alloy sheet having excellent stress corrosion cracking resistance
JP3849095B2 (en) Aluminum alloy plate for forming and method for producing the same
JP3845312B2 (en) Aluminum alloy plate for forming and method for producing the same
JP2001020027A (en) Al-Mg-Si-Cu ALLOY SHEET EXCELLENT IN CORROSION RESISTANCE AND FORMABILITY, AND ITS MANUFACTURE
JP3734317B2 (en) Method for producing Al-Mg-Si alloy plate
JP2003239052A (en) Method for producing aluminum foil base material and method for producing aluminum foil
JP2004027253A (en) Aluminum alloy sheet for molding, and method of producing the same
JP6581347B2 (en) Method for producing aluminum alloy plate
JP2008231475A (en) Aluminum alloy sheet for forming workpiece, and producing method therefor
JP5166702B2 (en) 6000 series aluminum extrudate excellent in paint bake hardenability and method for producing the same
JP2001032031A (en) Aluminum alloy sheet for structural material, excellent in stress corrosion cracking resistance
JP2005139530A (en) Method of producing aluminum alloy sheet for forming

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070501