JP4744582B2 - Cooker - Google Patents

Cooker Download PDF

Info

Publication number
JP4744582B2
JP4744582B2 JP2008284429A JP2008284429A JP4744582B2 JP 4744582 B2 JP4744582 B2 JP 4744582B2 JP 2008284429 A JP2008284429 A JP 2008284429A JP 2008284429 A JP2008284429 A JP 2008284429A JP 4744582 B2 JP4744582 B2 JP 4744582B2
Authority
JP
Japan
Prior art keywords
temperature
heated
detected
emissivity
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008284429A
Other languages
Japanese (ja)
Other versions
JP2010113901A (en
Inventor
彰 森井
博史 山崎
広康 私市
健一郎 西
滋之 永田
庄太 神谷
和裕 亀岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Home Appliance Co Ltd
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Home Appliance Co Ltd
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Home Appliance Co Ltd, Mitsubishi Electric Corp filed Critical Mitsubishi Electric Home Appliance Co Ltd
Priority to JP2008284429A priority Critical patent/JP4744582B2/en
Publication of JP2010113901A publication Critical patent/JP2010113901A/en
Application granted granted Critical
Publication of JP4744582B2 publication Critical patent/JP4744582B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/06Control, e.g. of temperature, of power
    • H05B6/062Control, e.g. of temperature, of power for cooking plates or the like
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2213/00Aspects relating both to resistive heating and to induction heating, covered by H05B3/00 and H05B6/00
    • H05B2213/07Heating plates with temperature control means

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Induction Heating Cooking Devices (AREA)

Description

本発明は、電磁誘導を利用して加熱調理を行う加熱調理器に関するものである。   The present invention relates to a cooking device that performs cooking using electromagnetic induction.

従来の一般的な加熱調理器では、天板に載置される被加熱物(例えば、鍋など)の温度を検出し、その温度に基づいて加熱手段を制御して被加熱物の温度調節を行い、被加熱物の焦げ付きや生煮えなどを防ぐ等の確実な加熱調理を可能としている。   In a conventional general cooking device, the temperature of an object to be heated (for example, a pan) placed on the top plate is detected, and the temperature of the object to be heated is adjusted by controlling the heating means based on the temperature. It is possible to perform reliable heating cooking such as preventing burning of the heated object and raw cooking.

このような加熱調理器では、被加熱物の温度を正確に検出するための技術が各種提案されている。例えば、被加熱物の材質を検出する材質検出手段と、被加熱物から放射される赤外線量を検出する赤外線温度検出手段とを備え、材質検出手段により検出した被加熱物の材質から被加熱物の放射率を求め、赤外線温度検出手段で検出された被加熱物の赤外線量を前記放射率で補正して被加熱物の温度を推定するようにした誘導加熱調理器がある(例えば、特許文献1,特許文献2参照)。   In such a heating cooker, various techniques for accurately detecting the temperature of the object to be heated have been proposed. For example, a material detecting means for detecting the material of the object to be heated and an infrared temperature detecting means for detecting the amount of infrared rays emitted from the object to be heated are provided, and the object to be heated is detected from the material of the object to be heated detected by the material detecting means. There is an induction heating cooker that calculates the emissivity of the object and estimates the temperature of the object to be heated by correcting the infrared amount of the object to be heated detected by the infrared temperature detecting means with the emissivity (for example, Patent Documents) 1, Patent Document 2).

また、別の温度検出方法を採用した加熱調理器として、天板の下に発光手段と受光手段と赤外線温度検出手段とを配置し、発光手段から天板を介して被加熱物の底面に光を照射し、被加熱物の底面で反射した反射光を天板を介して受光手段で受光し、その受光量から換算された被加熱物の放射率を用いて、赤外線温度検出手段で検出した被加熱物の赤外線量を補正し、温度を推定するようにした加熱調理器がある(例えば、特許文献3参照)。   In addition, as a cooking device employing another temperature detection method, a light emitting means, a light receiving means, and an infrared temperature detecting means are disposed under the top plate, and light is emitted from the light emitting means to the bottom surface of the object to be heated via the top plate. The reflected light reflected from the bottom of the heated object is received by the light receiving means through the top plate, and detected by the infrared temperature detecting means using the emissivity of the heated object converted from the received light amount. There is a cooking device that corrects the amount of infrared rays of the object to be heated and estimates the temperature (see, for example, Patent Document 3).

また更に、別の温度検出方法を採用した加熱調理器として、赤外線量から温度を検知する赤外線温度検出手段で検出した被加熱物の仮想温度上昇速度と、接触式温度検出手段で測定した天板の温度上昇速度との温度上昇速度の割合に対応する放射率のデータベースを備え、温度上昇速度割合を算出してデータベースに基づいて放射率を決定し、この放射率と赤外線温度検出手段で検出した赤外線量とに基づいて被加熱物の温度を算出するようにした加熱調理器がある(例えば、特許文献4参照)。
特許第4120536号公報(第3頁、第4頁、図1) 特開2003−264055号公報(第4頁、図1) 特開平11−225881号公報(第3頁、図1) 特開2007−103085号公報(第7頁、図6)
Furthermore, as a cooking device employing another temperature detection method, the virtual temperature rise rate of the object to be heated detected by the infrared temperature detection means for detecting the temperature from the amount of infrared rays, and the top plate measured by the contact temperature detection means The emissivity database corresponding to the ratio of the temperature rise rate to the temperature rise rate is calculated, the temperature rise rate ratio is calculated, the emissivity is determined based on the database, and the emissivity and infrared temperature detection means detect There is a cooking device that calculates the temperature of an object to be heated based on the amount of infrared rays (see, for example, Patent Document 4).
Japanese Patent No. 4120536 (page 3, page 4, FIG. 1) JP 2003-264055 A (page 4, FIG. 1) Japanese Patent Laid-Open No. 11-225881 (page 3, FIG. 1) JP 2007-103085 A (Page 7, FIG. 6)

特許文献1及び特許文献2の加熱調理器では、被加熱物の材質に応じて放射率を決定し、その放射率に基づいて被加熱物の赤外線量を補正して被加熱物の温度を推定するようにしている。しかしながら、同じ材質であっても、被加熱物の表面状態により被加熱物から放射される赤外線量が異なることから、単に材質に基づいて放射率を一意に決定してしまうと、正確な温度を検出することができない。具体的には、黒体の赤外線放射率1.0を基準としたとき、被加熱物の材質が例えば鏡面仕上げの鉄の場合、放射率は0.21であるが、さびて鏡面状態が失われると0.69となる。このように放射率が異なると、被加熱物の温度自体は変わらなくても被加熱物から放射される赤外線量は変化する。したがって、正確な温度を検出することができず、被加熱物の加熱動作が不安定になるという問題があった。   In the heating cookers of Patent Document 1 and Patent Document 2, the emissivity is determined according to the material of the object to be heated, and the infrared ray amount of the object to be heated is corrected based on the emissivity to estimate the temperature of the object to be heated. Like to do. However, even if the material is the same, the amount of infrared rays emitted from the object to be heated differs depending on the surface state of the object to be heated. It cannot be detected. Specifically, when the black body infrared emissivity of 1.0 is used as a reference, when the material of the object to be heated is, for example, mirror-finished iron, the emissivity is 0.21, but the specular state is lost due to rust. Will be 0.69. When the emissivity is different as described above, the amount of infrared rays emitted from the heated object changes even if the temperature of the heated object does not change. Therefore, there is a problem that an accurate temperature cannot be detected and the heating operation of the object to be heated becomes unstable.

また、特許文献3の加熱調理器では、被加熱物から放射される赤外線量をガラス製の天板を介して検出するようにしているが、天板は低温(約150℃以下)の赤外線をカットする特性を有しているため、約150℃以下の温度を正しく検出することができない。また、発光手段から投光した光を被加熱物で反射させ、その反射光を受光手段で受光するという計測原理上、受光手段に反射光以外の照明等の外乱光が入射するのを避けるように構成する必要がある。したがって、発光手段及び受光手段を天板の下部に配置し、天板の下部から被加熱物の底部(鍋底)に向けて投光し、鍋底からの反射光を受光するようにしている。しかしながら、鍋底が凹んでいる所謂反り鍋の場合、鍋底が平坦なものに比べて反射光が散乱するため、反射光を上手く受光できず、温度を正しく検出できないという問題があった。   Moreover, in the heating cooker of patent document 3, although the amount of infrared rays radiated | emitted from a to-be-heated object is detected through a glass top plate, a top plate is using low temperature (about 150 degrees C or less) infrared rays. Since it has a characteristic of cutting, a temperature of about 150 ° C. or lower cannot be correctly detected. In addition, on the measurement principle that the light projected from the light emitting means is reflected by the object to be heated, and the reflected light is received by the light receiving means, avoid disturbance light such as illumination other than reflected light from entering the light receiving means. Need to be configured. Therefore, the light emitting means and the light receiving means are disposed below the top plate, and light is projected from the bottom of the top plate toward the bottom (pan bottom) of the object to be heated so that the reflected light from the pan bottom is received. However, in the case of a so-called warped pan in which the bottom of the pan is recessed, the reflected light is scattered as compared with a flat pan bottom, so that the reflected light cannot be received well and the temperature cannot be detected correctly.

また、特許文献4の加熱調理器では、放射率決定に際し、接触式温度検出手段の測定結果を利用している。被加熱物が反り鍋の場合、鍋底と天板との間に空間が生じることから鍋の熱が天板に伝わり難く、接触式温度検出手段では精度良く検出できない。したがって、放射率の決定精度が良好とは言えず、その結果、温度検知精度も十分ではないという問題があった。   Moreover, in the heating cooker of patent document 4, when determining emissivity, the measurement result of a contact-type temperature detection means is utilized. When the object to be heated is a warped pan, a space is generated between the bottom of the pan and the top plate, so that the heat of the pan is difficult to be transmitted to the top plate and cannot be detected with high accuracy by the contact temperature detecting means. Therefore, it cannot be said that the emissivity determination accuracy is good, and as a result, the temperature detection accuracy is not sufficient.

本発明はこのような点に鑑みなされたもので、被加熱物の温度を正確に検出して適切な加熱動作を実行することのできる加熱調理器を得ることを目的とする。   This invention is made | formed in view of such a point, and it aims at obtaining the heating cooker which can detect the temperature of a to-be-heated object correctly, and can perform suitable heating operation | movement.

本発明に係る加熱調理器は、被加熱物を載置する天板と、天板の下方に設けられ、被加熱物を加熱する加熱部と、加熱部を駆動する駆動部と、天板よりも上方に配置され、被加熱物から放射される赤外線量に基づいて被加熱物の温度を検出する赤外線温度検出部と、赤外線温度検出部で検出された被加熱物の温度に基づいて駆動部を制御し、加熱部の加熱動作を制御する制御部とを備え、赤外線温度検出部は、天板上に載置される被加熱物の側面、被加熱物と天板との境界部及び天板を含む被検出領域内の複数箇所の温度を検出し、複数箇所の温度のうちの最高温度と所定箇所の検出温度との温度差に応じて被加熱物の放射率を決定し、放射率に基づいて、所定箇所の温度を補正して被加熱物の温度とするものである。   The cooking device according to the present invention includes a top plate on which the object to be heated is placed, a heating unit that is provided below the top plate and heats the object to be heated, a driving unit that drives the heating unit, and a top plate. And an infrared temperature detector that detects the temperature of the object to be heated based on the amount of infrared rays emitted from the object to be heated, and a drive unit based on the temperature of the object to be heated detected by the infrared temperature detector And an infrared temperature detector that controls the side of the object to be heated placed on the top plate, the boundary between the object to be heated and the top plate, and the ceiling. Detect the temperature at multiple locations within the detection area including the plate, determine the emissivity of the object to be heated according to the temperature difference between the maximum temperature of the multiple locations and the detected temperature at the specified location, and emissivity Based on the above, the temperature of the predetermined object is corrected to the temperature of the object to be heated.

本発明によれば、被検出領域内の複数箇所の温度を検出し、複数箇所の温度のうち、最高温度と所定箇所の検出温度との温度差に応じて被加熱物の放射率を決定し、放射率に基づいて、所定箇所の温度を補正して被加熱物の温度とするため、被加熱物の温度を正確に検出することが可能となり、適切な加熱動作を実行することが可能となる。   According to the present invention, the temperature of a plurality of locations in the detection area is detected, and the emissivity of the heated object is determined according to the temperature difference between the maximum temperature and the detection temperature of the predetermined location among the temperatures of the plurality of locations. Since the temperature of the object to be heated is corrected based on the emissivity to obtain the temperature of the object to be heated, the temperature of the object to be heated can be accurately detected, and an appropriate heating operation can be performed. Become.

実施の形態1.
図1は、本発明の実施の形態1に係る加熱調理器の外観を模式的に示す斜視図、図2は、図1の側面断面図である。
加熱調理器の本体11は、本体11の上面に配置され、被加熱物14を載置するための例えばセラミクスなどの耐熱性材料から成る天板12と、本体11の上面の一側に配置されて機器のオン/オフや天板12上に載置される被加熱物14の加熱温度を設定する各操作スイッチ(図示なし)が設けられた操作部13と、機器のオン/オフや設定温度を表示する表示部15とを備えている。また、天板12の直下には天板12上に載置された被加熱物14を加熱するための加熱コイルで構成された加熱部16と、交流電源(図示せず)から供給される商用電力を高周波電力に変換して加熱部16に供給する駆動部17とを備えている。
Embodiment 1 FIG.
FIG. 1 is a perspective view schematically showing the appearance of a heating cooker according to Embodiment 1 of the present invention, and FIG. 2 is a side sectional view of FIG.
The main body 11 of the heating cooker is disposed on the upper surface of the main body 11, and is disposed on one side of the upper surface of the main body 11 and the top plate 12 made of a heat resistant material such as ceramics for placing the object to be heated 14. The operation unit 13 provided with operation switches (not shown) for setting the device on / off and the heating temperature of the object 14 to be heated placed on the top plate 12, and the device on / off and the set temperature Is displayed. Further, immediately below the top plate 12, a heating unit 16 composed of a heating coil for heating an object to be heated 14 placed on the top plate 12, and a commercial supplied from an AC power source (not shown). And a drive unit 17 that converts electric power into high-frequency power and supplies it to the heating unit 16.

加熱調理器は更に、被加熱物14から放射される赤外線量を検出する赤外線検出部19を備えた赤外線温度検出部18と、制御部22とを有している。赤外線検出部19は、天板12の上面を臨むように天板12の上方に配置されており、赤外線温度検出部18は赤外線検出部19で検出した赤外線量を温度検出部20にて温度に換算し、温度データを制御部22に出力する。制御部22は、操作部13から入力設定された運転条件と、赤外線温度検出部18の検出温度とに基づいて駆動部17を制御し、加熱部16の加熱動作を制御する。   The cooking device further includes an infrared temperature detection unit 18 including an infrared detection unit 19 that detects the amount of infrared rays emitted from the object to be heated 14, and a control unit 22. The infrared detection unit 19 is arranged above the top plate 12 so as to face the top surface of the top plate 12, and the infrared temperature detection unit 18 converts the infrared amount detected by the infrared detection unit 19 to a temperature by the temperature detection unit 20. The temperature data is converted and the temperature data is output to the control unit 22. The control unit 22 controls the drive unit 17 based on the operating conditions input and set from the operation unit 13 and the detected temperature of the infrared temperature detection unit 18, and controls the heating operation of the heating unit 16.

次に、赤外線検出部19の構成及び本体11への配置について説明する。図3は、赤外線検出部の受光素子部分の構成を示す図である。図4は、赤外線検出部の配置位置の説明図である。図3に示すように、赤外線検出部19は、例えば縦方向に配列された複数の受光素子1を備えており、ここでは8個配列して構成されている。各受光素子1(1a〜1h)は、被加熱物14から放射される赤外線を受光する。各受光素子1それぞれの受光エリアの角度は例えば5度以内に設定され、天板12上の定位置に被加熱物14を載置した状態で、図4に示すように全受光素子1で被加熱物14の側面(鍋肌部)から鍋底部、更に天板部を受光エリア内に収めることができるように配置されている。   Next, the configuration of the infrared detection unit 19 and the arrangement on the main body 11 will be described. FIG. 3 is a diagram illustrating a configuration of a light receiving element portion of the infrared detection unit. FIG. 4 is an explanatory diagram of an arrangement position of the infrared detection unit. As shown in FIG. 3, the infrared detection unit 19 includes a plurality of light receiving elements 1 arranged in the vertical direction, for example, and is configured by arranging eight light receiving elements 1 here. Each of the light receiving elements 1 (1a to 1h) receives infrared rays emitted from the object to be heated 14. The angle of the light receiving area of each light receiving element 1 is set within 5 degrees, for example, and the object to be heated is placed on all the light receiving elements 1 as shown in FIG. It arrange | positions so that the pan bottom part from the side surface (pot skin part) of the heating thing 14 and also a top plate part can be stored in a light reception area.

図4の例では、受光素子1a〜1cによる受光エリアa〜cで鍋肌部から放射される赤外線を受光し、受光素子1d、1eによる受光エリアd、eで鍋底部から放射される赤外線を受光し、受光素子1f〜1hによる受光エリアf〜hで天板部から放射される赤外線を受光している。被加熱物14の各部と受光エリアa〜hとの対応関係は被加熱物14の大きさによって変化するが、何れにしろ、被加熱物14の側面(鍋肌部)、被加熱物14と天板12との境界部(鍋底部)及び天板12(天板部)を受光エリア(被検出領域)内に収め、その被検出領域内を、上下方向に複数箇所、温度検出できるように各受光素子1が配置されている。各受光素子1のそれぞれで検出された赤外線量は、温度検出部20において以下のステファン・ボルツマンの法則を用いて温度に換算される。   In the example of FIG. 4, the infrared rays radiated from the pot skin are received by the light receiving areas a to c by the light receiving elements 1a to 1c, and the infrared rays radiated from the bottom of the pot are received by the light receiving areas d and e by the light receiving elements 1d and 1e. It receives light and receives infrared rays emitted from the top plate portion in the light receiving areas f to h by the light receiving elements 1 f to 1 h. The correspondence relationship between each part of the object to be heated 14 and the light receiving areas a to h varies depending on the size of the object to be heated 14, but in any case, the side surface of the object to be heated 14 (naked skin part), the object to be heated 14 and The boundary part (pan bottom part) with the top plate 12 and the top plate 12 (top plate part) are accommodated in a light receiving area (detected area) so that temperature can be detected in a plurality of locations in the detected area in the vertical direction. Each light receiving element 1 is arranged. The amount of infrared rays detected by each of the light receiving elements 1 is converted into temperature by the temperature detection unit 20 using the following Stefan-Boltzmann law.

物体からの放射エネルギーMは、以下の(1)式で求められる。   The radiant energy M from the object is obtained by the following equation (1).

Figure 0004744582
Figure 0004744582

これを実際のセンサ出力P(受光素子1が受光した赤外線量)に当てはめると、以下の(2)式となる。   When this is applied to the actual sensor output P (the amount of infrared rays received by the light receiving element 1), the following equation (2) is obtained.

Figure 0004744582
Figure 0004744582

上記(2)式により、以下の(3)式が求められる。   From the above equation (2), the following equation (3) is obtained.

Figure 0004744582
Figure 0004744582

(3)式に、既知の値、すなわち受光素子1自体の温度T0、物体の放射率ε、定数k、センサ出力P(受光素子1が受光した赤外線量)を代入することにより、物体の温度Tが求められる。すなわち、物体の温度Tは、受光素子1自体の温度T0 、物体の放射率εが判れば、赤外線量Pにより求めることができる。 By substituting a known value, that is, the temperature T 0 of the light receiving element 1 itself, the emissivity ε of the object, the constant k, and the sensor output P (the amount of infrared light received by the light receiving element 1) into the equation (3), A temperature T is determined. That is, the temperature T of the object can be obtained from the infrared ray amount P if the temperature T 0 of the light receiving element 1 itself and the emissivity ε of the object are known.

ところで、被加熱物14は、上述したように材質が同じであっても、表面状態によって放射率が異なる。このため、実際の表面状態に見合った放射率を特定することが非常に重要である。そこで、本発明では、赤外線温度検出部18の各受光素子1(1a〜1h)により検出した複数箇所の温度のうちの最高温度と所定箇所の検出温度との温度差に応じて被加熱物14の放射率を決定するようにしている。最高温度と所定箇所の検出温度との温度差から実際の表面状態に見合った放射率を決定することができる原理について以下に説明する。   By the way, even if the to-be-heated material 14 is the same material as above-mentioned, the emissivity changes with surface states. For this reason, it is very important to specify the emissivity suitable for the actual surface state. Therefore, in the present invention, the object to be heated 14 is selected according to the temperature difference between the highest temperature among the temperatures detected by the respective light receiving elements 1 (1a to 1h) of the infrared temperature detector 18 and the detected temperature at a predetermined location. The emissivity is determined. The principle by which the emissivity corresponding to the actual surface state can be determined from the temperature difference between the maximum temperature and the detected temperature at a predetermined location will be described below.

図5は、被加熱物の放射率が小さい場合(鏡面に相当)における、各受光素子1a〜1hによる検出温度を示す図である。図6は、被加熱物の放射率が大きい場合(非鏡面に相当)における、各受光素子1a〜1hによる検出温度を示す図である。   FIG. 5 is a diagram showing detected temperatures by the respective light receiving elements 1a to 1h when the emissivity of the object to be heated is small (corresponding to a mirror surface). FIG. 6 is a diagram illustrating detected temperatures by the respective light receiving elements 1a to 1h when the emissivity of the object to be heated is large (corresponding to a non-mirror surface).

図5に示すように、放射率が小さい場合、鍋肌部や天板部に比べて鍋底部の温度が高く検出されるという特徴がある。この理由について以下に説明する。
放射率εと反射率Rとの間には、ε+R=1の関係が成立する。被加熱物14が例えばステンレス製で表面状態が鏡面の場合、放射率は0.15と低く、逆に反射率は0.85と高い。加熱状態の被加熱物14との接触により天板12へ伝わった熱に対応する赤外線は、被加熱物14の鍋底部へ放射される。そして、その赤外線は反射率の大きい被加熱物14の表面により反射され、受光素子1にて受光される。すなわち、鍋肌部や天板部に対応する受光素子1a〜1c,1f〜1hに関しては、鍋肌部や天板部そのものから放射される赤外線が受光されるが、鍋底部に対応する受光素子1d,1eに関しては、天板部からの赤外線の反射の影響も受けるため、鍋肌部や天板部に対応する受光素子1a〜1c,1f〜1hに比べて多くの赤外線を受光する。よって、放射率が小さい被加熱物14の場合、鍋肌部や天板部に比べて鍋底部の検出温度が高くなり、鍋肌部や天板部との温度差が大きくなるという特徴がある。
As shown in FIG. 5, when the emissivity is small, the temperature at the bottom of the pan is detected higher than that at the pan skin or top plate. The reason for this will be described below.
Between emissivity ε and reflectance R, a relationship of ε + R = 1 is established. When the object to be heated 14 is made of, for example, stainless steel and the surface state is a mirror surface, the emissivity is as low as 0.15, and conversely, the reflectance is as high as 0.85. Infrared rays corresponding to the heat transmitted to the top plate 12 by contact with the heated object 14 to be heated are radiated to the bottom of the heated object 14. The infrared rays are reflected by the surface of the object to be heated 14 having a high reflectivity and are received by the light receiving element 1. That is, regarding the light receiving elements 1a to 1c and 1f to 1h corresponding to the pot skin portion and the top plate portion, infrared rays radiated from the pot skin portion and the top plate portion themselves are received, but the light receiving elements corresponding to the pot bottom portion. Since 1d and 1e are also affected by the reflection of infrared rays from the top plate portion, they receive more infrared rays than the light receiving elements 1a to 1c and 1f to 1h corresponding to the pan skin portion and the top plate portion. Therefore, in the case of the to-be-heated object 14 with a small emissivity, the detection temperature of a pan bottom part becomes high compared with a pan skin part or a top plate part, and the temperature difference with a pan skin part or a top plate part becomes large. .

一方、放射率が大きい非鏡面の被加熱物14の場合、図6に示すように、鍋肌部と鍋底部との間にさほど温度差が無いという特徴がある。   On the other hand, in the case of the non-specular surface heated object 14 having a high emissivity, as shown in FIG. 6, there is a characteristic that there is not much temperature difference between the pot skin part and the pot bottom part.

図7は、放射率が異なる被加熱物を天板上に載置して赤外線温度検出部の各受光素子1で温度検出を行った場合の、最高温度と受光素子1aの検出温度との温度差の時間変化を示す図である。
図7に示すように、放射率が小さい方が温度差Δtが大きくなる。これは、上記図5及び図6の説明からも明らかである。また、加熱時間が短い間は各放射率それぞれの温度差Δt同士の違いは小さいが、ある程度加熱(例えば、200秒)された時点での温度差Δtの違いは顕著となって現れる。
FIG. 7 shows the temperature between the maximum temperature and the detected temperature of the light receiving element 1a when the objects to be heated with different emissivities are placed on the top plate and the temperature is detected by each light receiving element 1 of the infrared temperature detecting unit. It is a figure which shows the time change of a difference.
As shown in FIG. 7, the temperature difference Δt increases as the emissivity decreases. This is also clear from the description of FIG. 5 and FIG. Further, while the heating time is short, the difference between the temperature differences Δt of the respective emissivities is small, but the difference in the temperature difference Δt at the time of heating to some extent (for example, 200 seconds) appears remarkably.

そこで、本実施の形態1では、加熱開始から所定時間経過後の各受光素子1a〜1hの検出温度のうちの最高温度と受光素子1aの検出温度との間の温度差Δtと、放射率とを予めテーブル化しておき、この放射率テーブルを参照して放射率を決定するようにしている。これにより、被加熱物14の表面状態に見合った放射率を決定することができる。なお、温度差Δtを求める際の受光素子1(1a〜1h)の検出温度は、仮放射率「1」を用いて計算したものとする。また、温度差Δtを求めるに際し、受光素子1aの検出温度を用いているが、受光素子1aの検出エリアaの高さ位置は、全受光素子1a〜1hの検出エリアの中で最上部の位置であり、天板12から一番離れた位置となっている。よって、天板12からの熱の影響や、被加熱物14の大きさによらず常に安定して被加熱物14の鍋肌部の温度を検出できることから、温度差Δtの算出、引いては放射率の決定に受光素子1aの検出温度を用いるようにしている。   Therefore, in the first embodiment, the temperature difference Δt between the detected temperature of each of the light receiving elements 1a to 1h after the elapse of a predetermined time from the start of heating and the detected temperature of the light receiving element 1a, the emissivity, and Are tabulated in advance, and the emissivity is determined with reference to the emissivity table. Thereby, the emissivity commensurate with the surface state of the article to be heated 14 can be determined. In addition, the detection temperature of the light receiving element 1 (1a to 1h) at the time of obtaining the temperature difference Δt is calculated using the temporary emissivity “1”. Further, when the temperature difference Δt is obtained, the detection temperature of the light receiving element 1a is used. The height position of the detection area a of the light receiving element 1a is the highest position among the detection areas of all the light receiving elements 1a to 1h. And the farthest position from the top 12. Therefore, the temperature difference Δt can be calculated and subtracted because the temperature of the pot skin portion of the object to be heated 14 can be always stably detected regardless of the influence of the heat from the top plate 12 and the size of the object to be heated 14. The detection temperature of the light receiving element 1a is used for determining the emissivity.

次の表1は放射率テーブルの一例を示している。

Figure 0004744582
Table 1 below shows an example of the emissivity table.
Figure 0004744582

この例では、温度差が9.4℃以上であれば放射率0.2と決定し、0.92以上且つ9.4未満であれば放射率0.3と決定する。   In this example, if the temperature difference is 9.4 ° C. or more, the emissivity is determined to be 0.2, and if the temperature difference is 0.92 or more and less than 9.4, the emissivity is determined to be 0.3.

以上のようにして決定した放射率を用いて被加熱物14の温度を算出する。この際、受光素子1a〜1hのうちの何れかを代表素子として決定し、その決定された代表素子で検出された赤外線量を用いて温度を算出する。ここでは、放射率テーブルを作成するに際し、受光素子1aの検出温度を用いていることから、受光素子1aを代表素子とする。そして、受光素子1aで検出された赤外線量と、決定した放射率とから温度を求め、被加熱物14の温度とする。   The temperature of the article to be heated 14 is calculated using the emissivity determined as described above. At this time, any one of the light receiving elements 1a to 1h is determined as a representative element, and the temperature is calculated using the infrared ray amount detected by the determined representative element. Here, since the detection temperature of the light receiving element 1a is used when creating the emissivity table, the light receiving element 1a is used as a representative element. And temperature is calculated | required from the amount of infrared rays detected with the light receiving element 1a, and the determined emissivity, and it is set as the temperature of the to-be-heated object 14. FIG.

図8は、赤外線温度検出部の具体的な構成と、赤外線温度検出部の温度検出結果に基づいて加熱部を制御するまでに関わる処理部を示すブロック図である。図8において図2と同一部分には同一符号を付す。
赤外線検出部19は、受光素子1に加えて、被検出領域Aから放射される赤外線を集光する集光レンズ30と、スキャン部31と、スキャン部31で選択された出力信号を所定レベルまで増幅する第1の増幅部32と、サーミスタから成る基準温度素子33とを備えている。基準温度素子33で検出された温度は、上記(1)〜(3)式及び後述の(10)式における周囲温度Tsとして利用される。なお、周囲温度Ts は例えば25℃などの固定値を用いるようにしても良い。
FIG. 8 is a block diagram showing a specific configuration of the infrared temperature detection unit and a processing unit involved until the heating unit is controlled based on the temperature detection result of the infrared temperature detection unit. In FIG. 8, the same parts as those in FIG.
In addition to the light receiving element 1, the infrared detection unit 19 collects an infrared ray emitted from the detection area A, a scanning unit 31, and an output signal selected by the scanning unit 31 to a predetermined level. A first amplifying unit 32 for amplifying and a reference temperature element 33 composed of a thermistor are provided. The temperature detected by the reference temperature element 33 is used as the ambient temperature T s in the above expressions (1) to (3) and the expression (10) described later. The ambient temperature T s may be a fixed value such as 25 ° C.

温度検出部20は、具体的にはマイコンで構成されており、所定のタイミングによって各受光素子1に対応したスキャン部31にアドレス信号を出力する信号出力部41と、赤外線温度検出部18の増幅部32からの出力信号を入力し、各受光素子1a〜1hと基準温度素子33の選択/切替を行なうマルチプレクサ部42とを備えている。更に、マルチプレクサ部42からの出力電圧をデジタル信号に変換するA/D変換部43と、A/D変換部43からのデジタル信号を温度データに変換する温度変換部44と、温度変換部44から出力される各温度データに基づいて被加熱物14の温度を算出し、制御部22に出力する温度算出部45とを備えている。   The temperature detection unit 20 is specifically composed of a microcomputer, and a signal output unit 41 that outputs an address signal to the scan unit 31 corresponding to each light receiving element 1 at a predetermined timing, and amplification of the infrared temperature detection unit 18. An output signal from the unit 32 is input, and a multiplexer unit 42 for selecting / switching each of the light receiving elements 1a to 1h and the reference temperature element 33 is provided. Further, from the A / D converter 43 that converts the output voltage from the multiplexer 42 into a digital signal, the temperature converter 44 that converts the digital signal from the A / D converter 43 into temperature data, and the temperature converter 44 A temperature calculation unit 45 that calculates the temperature of the object to be heated 14 based on each output temperature data and outputs the temperature to the control unit 22 is provided.

A/D変換部43には、マルチプレクサ部42を介して各受光素子1a〜1hの出力信号(赤外線量)が増幅部32で増幅されて入力されており、温度変換部44は、受光素子1a〜1hで検出した赤外線量を、上記(3)式に基づき温度データに変換し、各受光素子1a〜1hによる検出温度として温度算出部45に出力する。なお、ここでは放射率を仮放射率「1」として温度データに変換する。温度算出部45は、温度変換部44から入力された各受光素子1a〜1hによる各検出温度のうち、最高温度と、受光素子1aの検出温度と、放射率テーブル45aとに基づいて被加熱物14の放射率を決定する。そして、仮放射率「1」で算出した温度を、新たに決定した放射率に基づき補正し、補正後の温度を被加熱物14の温度として制御部22に出力する。   Output signals (infrared rays) of the respective light receiving elements 1a to 1h are amplified and input to the A / D conversion unit 43 through the multiplexer unit 42, and the temperature conversion unit 44 receives the light receiving element 1a. The amount of infrared rays detected at ˜1h is converted into temperature data based on the above equation (3), and is output to the temperature calculation unit 45 as the detected temperature by each of the light receiving elements 1a-1h. Here, the emissivity is converted into temperature data as the temporary emissivity “1”. The temperature calculation unit 45 is based on the highest temperature, the detection temperature of the light receiving element 1a, and the emissivity table 45a among the detection temperatures detected by the light receiving elements 1a to 1h input from the temperature conversion unit 44. An emissivity of 14 is determined. Then, the temperature calculated with the temporary emissivity “1” is corrected based on the newly determined emissivity, and the corrected temperature is output to the control unit 22 as the temperature of the object to be heated 14.

次に、本実施の形態1に係る誘導加熱調理器における温度検出動作を図9に基づいて説明する。図9は、温度検出処理の流れを示すフローチャートである。
操作部13の操作スイッチがONされると、制御部22は、駆動部17を介して加熱部16を駆動する。加熱部16から発生する磁束により被加熱物14に渦電流が流れ、渦電流により被加熱物14が誘導加熱される。赤外線温度検出部18は、操作スイッチON時から温度検出を開始しており、その検出温度が制御部22に出力されている。この時の温度換算の際には、受光素子1a〜1hで受光した赤外線量うち、例えば最高の赤外線量と仮放射率「1」とを用いる。
Next, the temperature detection operation in the induction heating cooker according to the first embodiment will be described with reference to FIG. FIG. 9 is a flowchart showing the flow of the temperature detection process.
When the operation switch of the operation unit 13 is turned on, the control unit 22 drives the heating unit 16 via the drive unit 17. An eddy current flows through the object to be heated 14 by the magnetic flux generated from the heating unit 16, and the object to be heated 14 is induction-heated by the eddy current. The infrared temperature detection unit 18 starts temperature detection when the operation switch is turned on, and the detected temperature is output to the control unit 22. At the time of temperature conversion at this time, for example, the highest infrared ray amount and the temporary emissivity “1” among the infrared ray amounts received by the light receiving elements 1a to 1h are used.

そして、制御部22は、加熱開始から所定温度分(例えば、20℃)、温度上昇したかをチェックする(S1)。加熱開始直後で被加熱物14が十分加熱されていない場合、被加熱物14の温度と赤外線検出部19自体の温度(基準温度素子33の検出温度)とが同等の温度であるため、赤外線温度検出部18では被加熱物14の温度を正確に検出できない。また、加熱開始直後は、図7に示したように放射率毎の温度差Δtの違いが明確でない。このため、所定温度分の温度上昇を待った後、被加熱物14の温度を算出する。ステップS1の判断では、ここでは赤外線温度検出部18の検出温度を用いているが、他に例えば天板12の下部に接触式温度検出部を設け、接触式温度検出部の検出温度を用いて判断するようにしても良い。   Then, the control unit 22 checks whether the temperature has increased by a predetermined temperature (for example, 20 ° C.) from the start of heating (S1). When the object to be heated 14 is not sufficiently heated immediately after the start of heating, the temperature of the object to be heated 14 and the temperature of the infrared detection unit 19 itself (detection temperature of the reference temperature element 33) are equal to each other. The detection unit 18 cannot accurately detect the temperature of the object 14 to be heated. Further, immediately after the start of heating, as shown in FIG. 7, the difference in temperature difference Δt for each emissivity is not clear. For this reason, after waiting for the temperature rise for a predetermined temperature, the temperature of the object to be heated 14 is calculated. In the determination of step S1, here, the detected temperature of the infrared temperature detecting unit 18 is used. However, for example, a contact type temperature detecting unit is provided below the top plate 12, and the detected temperature of the contact type temperature detecting unit is used. You may make it judge.

そして、被加熱物14の温度が所定温度分、上昇すると、温度算出部45は、温度変換部44から各受光素子1a〜1hの温度データを取得する(S2)。このステップS2の温度データは、仮放射率「1」として計算されたものである。そして、温度算出部45は、各受光素子1a〜1hのうちの最高温度と、受光素子1aの検出温度との温度差Δtを算出し、この温度差Δtに基づいて放射率テーブル45aを参照し、放射率を決定する(S3)。そして、決定した放射率を用いて温度補正を行う(S4)。具体的には、決定した放射率と、受光素子1aで検出した赤外線量とから温度を算出し、これを被加熱物14の温度とする。そして、ステップS4で温度を算出してから所定時間が経過すると(S5)、ステップS2に戻って放射率を設定し直し、新たに設定した放射率で温度を換算する。制御部22は、以上のようにして所定時間毎に更新される被加熱物14の最新の温度に基づいて駆動部17を制御し、加熱部16の加熱動作を制御する。   And if the temperature of the to-be-heated material 14 rises by predetermined temperature, the temperature calculation part 45 will acquire the temperature data of each light receiving element 1a-1h from the temperature conversion part 44 (S2). The temperature data in step S2 is calculated as a temporary emissivity “1”. And the temperature calculation part 45 calculates temperature difference (DELTA) t of the highest temperature of each light receiving element 1a-1h and the detection temperature of the light receiving element 1a, and refers to the emissivity table 45a based on this temperature difference (DELTA) t. The emissivity is determined (S3). Then, temperature correction is performed using the determined emissivity (S4). Specifically, the temperature is calculated from the determined emissivity and the amount of infrared rays detected by the light receiving element 1 a, and this is used as the temperature of the object to be heated 14. When a predetermined time elapses after the temperature is calculated in step S4 (S5), the process returns to step S2, the emissivity is reset, and the temperature is converted with the newly set emissivity. The control unit 22 controls the driving unit 17 based on the latest temperature of the article to be heated 14 updated every predetermined time as described above, and controls the heating operation of the heating unit 16.

以上説明したように、本実施の形態1によれば、次のような効果を有する。
被加熱物14の放射率は、上述したように材質によって一意に決められるものではなく、同じ材質であっても表面状態によって異なる。よって、本例では、各受光素子1a〜1hの検出温度のうちの最高温度と、受光素子1aの検出温度との温度差Δtを算出し、この温度差Δtから実際の表面状態に見合った放射率を特定することができるため、正確な温度検出が可能となる。したがって、正確な温度で調理が可能となり、被調理物の加熱調理を良好に行うことが可能となる。
As described above, the first embodiment has the following effects.
The emissivity of the object to be heated 14 is not uniquely determined by the material as described above, and varies depending on the surface state even if the material is the same. Therefore, in this example, the temperature difference Δt between the maximum temperature of the detection temperatures of the light receiving elements 1a to 1h and the detection temperature of the light receiving element 1a is calculated, and radiation corresponding to the actual surface state is calculated from the temperature difference Δt. Since the rate can be specified, accurate temperature detection is possible. Therefore, cooking can be performed at an accurate temperature, and the cooking object can be cooked well.

また、被加熱物14の側面から放射される赤外線量に基づいて温度検出を行っているため、反り鍋であっても正確に温度検出を行うことができる。   Moreover, since temperature detection is performed based on the amount of infrared rays radiated from the side surface of the object to be heated 14, temperature detection can be accurately performed even with a warped pan.

また、天板12を介して被加熱物14の温度を検出する温度センサの場合、温度検出が可能となるまでに天板12の温度上昇に伴う遅延が生じるが、赤外線温度検出部18ではこのような遅延無く被加熱物14の温度検出が可能である。   Further, in the case of a temperature sensor that detects the temperature of the object to be heated 14 via the top plate 12, a delay occurs due to the temperature rise of the top plate 12 before the temperature can be detected. The temperature of the object to be heated 14 can be detected without such a delay.

また、被加熱物14の正確な温度を検出できるので、温度を見誤ることによる過剰な加熱等を防止でき、省エネルギーをエネルギー消費量の削減が可能となる。   Moreover, since the exact temperature of the to-be-heated object 14 can be detected, the excessive heating by mistaking the temperature etc. can be prevented, and it becomes possible to save energy and to reduce energy consumption.

被加熱物14の放射率は、被加熱物14の温度上昇に伴って変化し、また、調理を進める過程で被加熱物14の表面に汚れが付着する等して変化する場合もある。本実施の形態1では、所定時間毎に放射率を設定し直し、新たに設定した放射率を用いて温度換算を行うようにしているので、調理開始から調理終了に至るまで正確な温度で加熱制御を行うことが可能となる。   The emissivity of the object to be heated 14 changes as the temperature of the object to be heated 14 rises, and there are cases where the emissivity of the object to be heated 14 changes due to dirt adhering to the surface of the object to be heated 14 in the course of cooking. In the first embodiment, the emissivity is reset every predetermined time, and the temperature is converted using the newly set emissivity. Therefore, heating is performed at an accurate temperature from the start of cooking to the end of cooking. Control can be performed.

なお、本実施の形態1では、温度差Δtから放射率を求めるに際し、放射率テーブル45aを用いて行うようにしているが、温度差Δtから放射率を求めるための放射率算出式を予め記憶しておき、この放射率算出式により放射率を求めるようにしてもよい。   In the first embodiment, when the emissivity is obtained from the temperature difference Δt, the emissivity table 45a is used. However, an emissivity calculation formula for obtaining the emissivity from the temperature difference Δt is stored in advance. In addition, the emissivity may be obtained by this emissivity calculation formula.

実施の形態2.
実施の形態2は、各受光素子1a〜1hの検出温度のうちの最高温度と、この最高温度を検出した受光素子の上方にあり天板12による影響が及ばない被加熱物14の側面でかつ前記最高温度を検出した箇所に近い箇所の温度を検出する受光素子の検出温度とを用いて被加熱物14の鍋肌部の放射率を決定するようにしたものである。実施の形態2の加熱調理器は図8に示した実施の形態1の放射率テーブル45aに代えて、所定の放射率算出式によって放射率を求める構成としたものであり、その他は実施の形態1と同様である。以下では、実施の形態2が実施の形態1と異なる部分を中心に説明する。
Embodiment 2. FIG.
The second embodiment is the maximum temperature among the detected temperatures of the respective light receiving elements 1a to 1h, and the side surface of the object to be heated 14 that is above the light receiving element that has detected this maximum temperature and is not affected by the top 12 and The emissivity of the pot skin portion of the article to be heated 14 is determined using the detected temperature of the light receiving element that detects the temperature of the location close to the location where the maximum temperature is detected. The heating cooker of the second embodiment is configured to obtain the emissivity by a predetermined emissivity calculation formula instead of the emissivity table 45a of the first embodiment shown in FIG. Same as 1. In the following, the second embodiment will be described focusing on the differences from the first embodiment.

以下、放射率を決定するための放射率算出式について説明する。図10は、数式の算出手順を説明するための補足図で、以下の説明において適宜参照されたい。なお、図10において、鍋肌部の実際の温度がTa、放射率がεaであり、鍋底部の実際の温度がTb、放射率がεbである。   Hereinafter, an emissivity calculation formula for determining the emissivity will be described. FIG. 10 is a supplementary diagram for explaining the calculation procedure of the mathematical formula, and should be referred to as appropriate in the following description. In FIG. 10, the actual temperature of the pot skin portion is Ta and the emissivity is εa, the actual temperature of the pan bottom portion is Tb, and the emissivity is εb.

物体からの実際の放射エネルギーQは以下の(4)式で計算される。

Figure 0004744582
The actual radiant energy Q from the object is calculated by the following equation (4).
Figure 0004744582

赤外線温度検出部18上では、以下の(5)式として測定温度Tm を求めている。

Figure 0004744582
On the infrared temperature detection unit 18, the measurement temperature Tm is obtained as the following equation (5).
Figure 0004744582

そして、(4)式と(5)式とが等しいとすると、図10の鍋肌部と鍋底部とのそれぞれにおいて以下の(6)及び(7)が成立する。

Figure 0004744582
And if (4) Formula and (5) Formula are equal, the following (6) and (7) will be materialized in each of the pot skin part and pan bottom part of FIG.
Figure 0004744582

以上の(6)式及び(7)式により、次の(8)式及び(9)式が導出される。

Figure 0004744582
The following equations (8) and (9) are derived from the above equations (6) and (7).
Figure 0004744582

そして、被加熱物14の鍋肌部と鍋底部とは場所が近接しているため、実際の鍋肌部の温度Taと鍋底部の温度TbをTa≒Tbとして近似すると、次の(10)式(放射率算出式)を得ることができる。

Figure 0004744582
And since the place of the pot skin part and pan bottom part of the to-be-heated material 14 is close, when the temperature Ta of the actual pot skin part and the temperature Tb of the pan bottom part are approximated as Ta≈Tb, the following (10) A formula (emissivity calculation formula) can be obtained.
Figure 0004744582

なお、周囲温度Tsは赤外線温度検出部18の温度T0 (図8の基準温度素子33によって検出された値)としても良いし、例えば25℃などの固定値としても良い。この(10)の放射率算出式に、各受光素子1a〜1hによる検出温度のうちの最高温度(鍋底部の温度Tb’とみなす)と、その最高温度を検出した受光素子の上方にあり天板12による影響が及ばない被加熱物14の側面でかつ前記最高温度を検出した箇所に近い箇所の温度を検出する受光素子の検出温度(鍋肌部の温度Ta’とみなす)とを代入することにより、鍋肌部の放射率εaを決定する。なお、以下では、各受光素子1a〜1hによる検出温度のうちの最高温度を検出した受光素子を受光素子maxといい、受光素子maxの上方にあり天板12による影響が及ばない被加熱物14の側面でかつ前記最高温度を検出した箇所に近い箇所の温度を検出する受光素子を受光素子truという。 The ambient temperature Ts may be the temperature T 0 of the infrared temperature detection unit 18 (a value detected by the reference temperature element 33 in FIG. 8), or may be a fixed value such as 25 ° C., for example. In the emissivity calculation formula of (10), the maximum temperature (considered as the temperature Tb ′ at the bottom of the pan) among the detected temperatures by the respective light receiving elements 1a to 1h and the light receiving element that has detected the maximum temperature are Substitute the detection temperature of the light receiving element that detects the temperature of the side of the object to be heated 14 that is not affected by the plate 12 and close to the location where the maximum temperature is detected (considered as the temperature Ta ′ of the pot skin portion). Thus, the emissivity εa of the pot skin portion is determined. Hereinafter, the light receiving element that detects the highest temperature among the detected temperatures of the light receiving elements 1a to 1h is referred to as a light receiving element max, and is to be heated 14 that is above the light receiving element max and is not affected by the top plate 12. The light receiving element that detects the temperature at a location near the location where the maximum temperature is detected is called a light receiving device tru.

図11は、本発明の実施の形態2に係る加熱調理器における温度検出処理の流れを示すフローチャートである。
実施の形態2の温度検出処理は、実施の形態1と同様にまず、加熱開始から所定温度分(例えば、20℃)、温度上昇したかをチェックする(S1)。そして、所定温度分上昇すると、温度算出部45は、温度変換部44から各受光素子1a〜1hの温度データを取得するとともに、基準温度素子33の検出値を周囲温度Tsとして取得する(S11)。このステップS11の温度データは、仮放射率「1」として計算されたものである。続いて、各受光素子1a〜1hの温度データの中から、最高温度と、その最高温度を検出した受光素子maxの上方にあり天板12による影響が及ばない被加熱物14の側面でかつ前記最高温度を検出した箇所に近い箇所の温度を検出する受光素子tru の検出温度とを選定し(S12)、これらを上記(10)の放射率算出式に代入して鍋肌部の放射率εaを算出する(S13)。そして、ここで算出した放射率εaを用いて温度補正を行う(S14)。具体的には、算出した放射率εaと受光素子1aで検出した赤外線量とから温度を算出し、これを被加熱物14の温度とする。そして、上記実施の形態1と同様に、温度を算出してから所定時間が経過すると(S5)、ステップS11に戻って放射率を設定し直し、新たに設定した放射率で温度を換算する。制御部22は、以上のようにして所定時間毎に更新される被加熱物14の温度に基づいて駆動部17を制御し、加熱部16の加熱動作を制御する。
FIG. 11: is a flowchart which shows the flow of the temperature detection process in the heating cooker which concerns on Embodiment 2 of this invention.
In the temperature detection process of the second embodiment, as in the first embodiment, first, it is checked whether the temperature has increased by a predetermined temperature (for example, 20 ° C.) from the start of heating (S1). When the temperature rises by a predetermined temperature, the temperature calculation unit 45 acquires the temperature data of each of the light receiving elements 1a to 1h from the temperature conversion unit 44, and acquires the detected value of the reference temperature element 33 as the ambient temperature Ts (S11). . The temperature data in step S11 is calculated as a temporary emissivity “1”. Subsequently, among the temperature data of each of the light receiving elements 1a to 1h, the maximum temperature, the side surface of the object to be heated 14 that is above the light receiving element max that has detected the maximum temperature and is not affected by the top plate 12, and the above-mentioned The detection temperature of the light receiving element tru that detects the temperature near the location where the maximum temperature was detected is selected (S12), and these are substituted into the emissivity calculation formula of (10) above to calculate the emissivity εa of the pot skin portion. Is calculated (S13). Then, temperature correction is performed using the emissivity εa calculated here (S14). Specifically, the temperature is calculated from the calculated emissivity εa and the amount of infrared rays detected by the light receiving element 1 a, and this is set as the temperature of the object to be heated 14. Then, as in the first embodiment, when a predetermined time has elapsed since the temperature was calculated (S5), the process returns to step S11, the emissivity is reset, and the temperature is converted with the newly set emissivity. The control unit 22 controls the driving unit 17 based on the temperature of the object to be heated 14 updated every predetermined time as described above, and controls the heating operation of the heating unit 16.

このように、実施の形態2によれば、各受光素子1a〜1hのうちの受光素子maxと受光素子tru の2箇所の検出温度から直接鍋肌部の放射率εaを算出し、その放射率εaに基づいて温度を求めるようにしたので、現状の表面状態に見合った放射率を決定できる。よって、より正確に温度を検出することが可能となる。   As described above, according to the second embodiment, the emissivity εa of the pot skin portion is directly calculated from the two detected temperatures of the light receiving element max and the light receiving element tru among the light receiving elements 1a to 1h, and the emissivity is calculated. Since the temperature is obtained based on εa, the emissivity corresponding to the current surface state can be determined. Therefore, it becomes possible to detect temperature more accurately.

なお、ステップS14の温度補正において、受光素子1aで検出した赤外線量を用いて被加熱物14の温度を算出しているが、受光素子1aは、上述したように天板12から一番離れた位置を検出エリアとしており、天板12からの熱の影響や、被加熱物14の大きさや形状によらず常に安定して被加熱物14の鍋肌部からの赤外線量を検知できる。したがって、受光素子1aで検出した赤外線量を用いることにより、正確な温度を安定的に得ることができる。なお、ここでは受光素子1aを用いたが、これに限られたものではなく、例えば受光素子tru を用いてもよい。   In the temperature correction in step S14, the temperature of the object to be heated 14 is calculated using the amount of infrared light detected by the light receiving element 1a, but the light receiving element 1a is farthest from the top plate 12 as described above. The position is set as a detection area, and the amount of infrared rays from the pot skin portion of the object to be heated 14 can be detected stably and constantly regardless of the influence of heat from the top plate 12 and the size and shape of the object to be heated 14. Therefore, an accurate temperature can be stably obtained by using the amount of infrared rays detected by the light receiving element 1a. Here, the light receiving element 1a is used. However, the present invention is not limited to this. For example, the light receiving element tru may be used.

ところで、上記実施の形態1及び実施の形態2では、所定時間毎に放射率を更新して温度検出を行うようにしているため、被加熱物14の側面に錆や傷や磨き等の局所的な放射率の違いがあると、放射率が急激に変化する可能性がある。例えば調理中に被加熱物14が動かされるなどして受光素子1の被検出領域内の被加熱物14の位置が鏡面部分から錆部分に変化した場合等が該当する。このように放射率が急激に変化すると、この放射率から求められる温度も急激に変化することになる。このような温度に従って加熱制御を行うと、所望の加熱制御が行えないことから、制御部22は、今回の検出温度と前回の検出温度との温度差が所定の閾値(第1の閾値)以上の場合には、今回の検出温度に基づいた加熱制御は行わず、前回の検出温度に基づいた制御を継続する。これにより、放射率の急激な変化に伴って加熱動作が不安定になるのを防止することができる。   By the way, in Embodiment 1 and Embodiment 2 described above, temperature detection is performed by updating the emissivity every predetermined time, and therefore, the side surface of the object to be heated 14 is locally exposed to rust, scratches, or polishing. If there is a significant difference in emissivity, the emissivity may change rapidly. For example, this corresponds to the case where the position of the object to be heated 14 in the detection area of the light receiving element 1 is changed from the mirror surface portion to the rust portion because the object to be heated 14 is moved during cooking. When the emissivity changes abruptly in this way, the temperature obtained from this emissivity also changes abruptly. If the heating control is performed according to such a temperature, the desired heating control cannot be performed. Therefore, the control unit 22 has a temperature difference between the current detected temperature and the previous detected temperature equal to or greater than a predetermined threshold (first threshold). In this case, the heating control based on the current detected temperature is not performed, and the control based on the previous detected temperature is continued. Thereby, it is possible to prevent the heating operation from becoming unstable due to a rapid change in the emissivity.

実施の形態3.
実施の形態3は、加熱中であるにも関わらず赤外線温度検出部18の検出温度が上昇しない場合、何らかの異常が発生したものと判断して加熱を停止し、使用者へ報知するようにしたものである。
Embodiment 3 FIG.
In the third embodiment, when the detection temperature of the infrared temperature detection unit 18 does not rise despite being heated, it is determined that some abnormality has occurred and the heating is stopped to notify the user. Is.

実施の形態3の加熱調理器の構成は実施の形態1又は実施の形態2と同様である。また、実施の形態3の加熱調理器は、温度検出処理に関しては上記実施の形態1又は実施の形態2と同様であり、以下、実施の形態3の特徴部分の処理を中心に説明する。   The configuration of the heating cooker according to the third embodiment is the same as that of the first or second embodiment. Further, the cooking device of the third embodiment is similar to the first embodiment or the second embodiment with respect to the temperature detection process, and hereinafter, the process of the characteristic part of the third embodiment will be mainly described.

図12は、実施の形態3の特徴部分の処理の流れを示すフローチャートである。なお、以下では、操作部13の操作スイッチがONされて被加熱物14の加熱が開始されており、赤外線温度検出部18では被加熱物14の温度検出が行われているものとする。
制御部22には、赤外線温度検出部18から所定時間毎に出力される検出温度が入力されており(S31)、今回入力された検出温度と前回の検出温度との温度差が予め設定された閾値(第2の閾値)以上か否かをチェックする(S32)。温度差が閾値以上であれば、正常状態であるためステップS31に戻る。一方、温度差が閾値未満の場合、何らかの異常が発生したものと判断して駆動部17に停止信号を出力すると共に、加熱停止した旨を使用者に報知する(S33)。報知方法は任意であるが、表示部15への表示や、音出力などにより行う。
FIG. 12 is a flowchart showing a flow of processing of the characteristic part of the third embodiment. In the following description, it is assumed that the operation switch of the operation unit 13 is turned on and heating of the object to be heated 14 is started, and the infrared temperature detection unit 18 detects the temperature of the object to be heated 14.
The control unit 22 is input with the detection temperature output from the infrared temperature detection unit 18 every predetermined time (S31), and a temperature difference between the detection temperature input this time and the previous detection temperature is preset. It is checked whether or not the threshold (second threshold) is exceeded (S32). If the temperature difference is greater than or equal to the threshold value, the process returns to step S31 because it is normal. On the other hand, when the temperature difference is less than the threshold value, it is determined that some abnormality has occurred and a stop signal is output to the drive unit 17 and the user is notified that the heating has stopped (S33). Although the notification method is arbitrary, it is performed by display on the display unit 15 or sound output.

ここで、異常とは、例えば赤外線検出部19の受光面の前面に汚れが付着したり、障害物が載置された場合等が該当する。この場合、被加熱物14から放射される赤外線が赤外線検出部19に到達せず、被加熱物14の温度を検知できない。よって、このような場合には使用者に報知することで、汚れを拭き取ったり、障害物を除去したり等の対策を促すことができ、正確な温度検出が可能となる。   Here, the abnormality corresponds to, for example, a case where dirt is attached to the front surface of the light receiving surface of the infrared detector 19 or an obstacle is placed. In this case, the infrared rays radiated from the object to be heated 14 do not reach the infrared detection unit 19 and the temperature of the object to be heated 14 cannot be detected. Therefore, in such a case, by notifying the user, measures such as wiping off dirt or removing obstacles can be promoted, and accurate temperature detection becomes possible.

実施の形態4.
加熱調理中に鍋等の被加熱物14が鍋振りされた場合、赤外線温度検出部18の被検出領域から被加熱物14が外れたり復帰したりを繰り返す。この場合、赤外線温度検出部18は被加熱物14の温度を検出したり、天板12の温度を検出したりすることになり、検出温度が大きく変動する。制御部22では、赤外線温度検出部18の検出温度が設定温度に達したときに加熱を停止したり加熱力を弱めたりする加熱制御を行っているが、被加熱物14が被検出領域から外れて天板12の温度を検出した場合、実際の被加熱物14の温度が設定温度に達していなくても、設定温度に比べて高いと判断され、加熱を停止したり加熱力を弱めたりしてしまう場合がある。実施の形態4は、このような鍋振りに伴う誤った加熱制御が行われるのを防止するようにしたものである。
Embodiment 4 FIG.
When the object to be heated 14 such as a pan is shaken during cooking, the object to be heated 14 comes off or returns from the detection area of the infrared temperature detector 18. In this case, the infrared temperature detection unit 18 detects the temperature of the object to be heated 14 or detects the temperature of the top 12, and the detected temperature varies greatly. The control unit 22 performs heating control that stops heating or weakens the heating power when the temperature detected by the infrared temperature detection unit 18 reaches a set temperature, but the object to be heated 14 is out of the detection region. When the temperature of the top plate 12 is detected, even if the actual temperature of the object to be heated 14 does not reach the set temperature, it is determined that the temperature is higher than the set temperature, and the heating is stopped or the heating power is weakened. May end up. In the fourth embodiment, erroneous heating control associated with such pan-shaking is prevented.

実施の形態4の加熱調理器の構成は実施の形態1又は実施の形態2と同様である。また、実施の形態4の加熱調理器は、温度検出処理に関しては上記実施の形態1又は実施の形態2と同様であり、以下、実施の形態4の特徴部分の処理を中心に説明する。   The configuration of the heating cooker according to the fourth embodiment is the same as that of the first or second embodiment. In addition, the cooking device of the fourth embodiment is the same as that of the first embodiment or the second embodiment with respect to the temperature detection process, and will be described below with a focus on the processing of the characteristic part of the fourth embodiment.

図13は、実施の形態4の特徴部分の処理の流れを示すフローチャートである。なお、以下では、操作部13の操作スイッチがONされて被加熱物14の加熱が開始されており、赤外線温度検出部18では被加熱物14の温度検出が行われているものとする。
制御部22には、赤外線温度検出部18から所定時間毎に出力される検出温度が順次入力され、その入力された検出温度に基づいて鍋振りが行われているか否かをチェックしており、鍋振りを検知した場合(S41)、鍋振り検知前の検出温度に基づいた加熱制御を継続する(S42)。すなわち、鍋振り検知中の赤外線温度検出部18の検出温度に基づいた加熱制御は行わない。そして、鍋振りが終了した場合には、通常の制御すなわち赤外線温度検出部18の検出温度に基づいた加熱制御を行う(S43)。なお、鍋振り検知のアルゴリズムとしては、例えば、所定期間内に赤外線温度検出部18から順次入力される検出温度が所定の温度幅以上変動する場合、鍋振りと検知することができる。
FIG. 13 is a flowchart showing the flow of processing of the characteristic part of the fourth embodiment. In the following description, it is assumed that the operation switch of the operation unit 13 is turned on and heating of the object to be heated 14 is started, and the infrared temperature detection unit 18 detects the temperature of the object to be heated 14.
The control unit 22 sequentially receives the detection temperatures output from the infrared temperature detection unit 18 every predetermined time, and checks whether the pan is shaken based on the input detection temperatures. When the pan shake is detected (S41), the heating control based on the detected temperature before the pan shake detection is continued (S42). That is, the heating control based on the detected temperature of the infrared temperature detecting unit 18 during the detection of the pot shake is not performed. Then, when the pan shake is completed, normal control, that is, heating control based on the temperature detected by the infrared temperature detection unit 18 is performed (S43). In addition, as an algorithm for detecting the pot swing, for example, when the detected temperature sequentially input from the infrared temperature detector 18 fluctuates by a predetermined temperature range or more within a predetermined period, it can be detected as a pot swing.

このように制御することにより、鍋振りに伴う誤った加熱制御が行われるのを防止することが可能である。   By controlling in this way, it is possible to prevent erroneous heating control associated with pan shaking.

なお、上記各実施の形態では、赤外線検出部19の受光素子1を、複数の受光素子を直線状に配置した複眼型の構成とした例を示したが、受光素子1を1つとした単眼型の構成とし、これを上下方向に動かすことで複眼型と同様の被検出領域を検出するようにしても良い。   In each of the above embodiments, the light receiving element 1 of the infrared detecting unit 19 is shown as an example of a compound eye type structure in which a plurality of light receiving elements are arranged in a straight line. It is also possible to detect the same detection area as that of the compound eye type by moving this up and down.

本発明の実施の形態1に係る加熱調理器の外観を模式的に示す斜視図である。It is a perspective view which shows typically the external appearance of the heating cooker which concerns on Embodiment 1 of this invention. 図1の側面断面図である。It is side surface sectional drawing of FIG. 図1の赤外線温度検出部の受光素子部分の構成を示す図である。It is a figure which shows the structure of the light receiving element part of the infrared temperature detection part of FIG. 図1の赤外線温度検出部の受光素子の配置位置の説明図である。It is explanatory drawing of the arrangement position of the light receiving element of the infrared temperature detection part of FIG. 放射率が小さい被加熱物(鏡面の被加熱物に相当)の場合における、赤外線温度検出部の各受光素子による検出結果を示す図である。It is a figure which shows the detection result by each light receiving element of an infrared temperature detection part in the case of a to-be-heated object with a small emissivity (equivalent to the to-be-heated object of a mirror surface). 放射率が大きい被加熱物(非鏡面の被加熱物に相当)の場合における、赤外線温度検出部の各受光素子による検出結果を示す図である。It is a figure which shows the detection result by each light receiving element of an infrared temperature detection part in the case of a to-be-heated object with high emissivity (equivalent to a to-be-heated object of a non-specular surface). 図1の赤外線温度検出部の具体的な構成と、赤外線温度検出部の温度検出結果に基づいて加熱手段を制御するまでに関わる処理部を示すブロック図である。It is a block diagram which shows the specific structure of the infrared temperature detection part of FIG. 1, and the process part concerned until it controls a heating means based on the temperature detection result of an infrared temperature detection part. 実施の形態1の温度検出処理の流れを示すフローチャートである。3 is a flowchart illustrating a flow of temperature detection processing according to the first embodiment. 実施の形態2の温度検出処理の流れを示すフローチャートである。6 is a flowchart showing a flow of temperature detection processing according to the second embodiment. 放射率算出式の算出手順を説明するための補足図である。It is a supplementary figure for demonstrating the calculation procedure of an emissivity calculation formula. 本発明の実施の形態2に係る加熱調理器における温度検出処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the temperature detection process in the heating cooker which concerns on Embodiment 2 of this invention. 実施の形態3の特徴部分の処理の流れを示すフローチャートである。12 is a flowchart showing a flow of processing of a characteristic part of the third embodiment. 実施の形態4の特徴部分の処理の流れを示すフローチャートである。10 is a flowchart showing a flow of processing of a characteristic part of the fourth embodiment.

符号の説明Explanation of symbols

1 受光素子、1a〜1h 受光素子、11 本体、12 天板、13 操作部、14 被加熱物、15 表示部、16 加熱部、17 駆動部、18 赤外線温度検出部、19 赤外線検出部、20 温度検出部、21 接触式温度検出部、22 制御部、30 集光レンズ、31 スキャン部、32 増幅部、33 基準温度素子、41 信号出力部、42 マルチプレクサ部、43 A/D変換部、44 温度変換部、45 温度算出部、45a 放射率テーブル。   DESCRIPTION OF SYMBOLS 1 Light receiving element, 1a-1h Light receiving element, 11 Main body, 12 Top plate, 13 Operation part, 14 Object to be heated, 15 Display part, 16 Heating part, 17 Driving part, 18 Infrared temperature detection part, 19 Infrared detection part, 20 Temperature detection unit, 21 Contact temperature detection unit, 22 Control unit, 30 Condensing lens, 31 Scan unit, 32 Amplification unit, 33 Reference temperature element, 41 Signal output unit, 42 Multiplexer unit, 43 A / D conversion unit, 44 Temperature conversion part, 45 Temperature calculation part, 45a Emissivity table.

Claims (11)

被加熱物を載置する天板と、
該天板の下方に設けられ、前記被加熱物を加熱する加熱部と、
該加熱部を駆動する駆動部と、
前記天板よりも上方に配置され、前記被加熱物から放射される赤外線量に基づいて前記被加熱物の温度を検出する赤外線温度検出部と、
該赤外線温度検出部で検出された前記被加熱物の温度に基づいて前記駆動部を制御し、前記加熱部の加熱動作を制御する制御部とを備え、
前記赤外線温度検出部は、前記天板上に載置される被加熱物の側面、前記被加熱物と前記天板との境界部及び天板を含む被検出領域内の複数箇所の温度を検出し、該複数箇所の温度のうちの最高温度と所定箇所の検出温度との温度差に応じて前記被加熱物の放射率を決定し、該放射率に基づいて、前記所定箇所の温度を補正して前記被加熱物の温度とすることを特徴とする加熱調理器。
A top plate on which the object to be heated is placed;
A heating unit provided below the top plate for heating the object to be heated;
A drive unit for driving the heating unit;
An infrared temperature detector that is disposed above the top plate and detects the temperature of the object to be heated based on the amount of infrared rays emitted from the object to be heated;
A control unit that controls the driving unit based on the temperature of the object to be heated detected by the infrared temperature detection unit, and controls a heating operation of the heating unit;
The infrared temperature detection unit detects temperatures of a plurality of locations in a detection area including a side surface of a heated object placed on the top plate, a boundary between the heated object and the top plate, and the top plate. The emissivity of the object to be heated is determined in accordance with a temperature difference between the maximum temperature of the temperatures at the plurality of locations and the detected temperature at the predetermined location, and the temperature at the predetermined location is corrected based on the emissivity. Then, the cooking device is characterized in that the temperature of the article to be heated is set.
前記赤外線温度検出部は、前記複数箇所のそれぞれから放射される赤外線量と仮放射率とから前記複数箇所それぞれの温度を換算して前記最高温度と前記所定箇所の検出温度との温度差を求め、該温度差に応じて放射率を決定し、該放射率と前記所定箇所から放出される赤外線量とから温度を換算し、前記被加熱物の温度とすることを特徴とする請求項1記載の加熱調理器。   The infrared temperature detection unit obtains a temperature difference between the maximum temperature and the detected temperature at the predetermined location by converting the temperature at each of the plurality of locations from the amount of infrared rays radiated from each of the plurality of locations and the provisional emissivity. The emissivity is determined according to the temperature difference, and the temperature is converted from the emissivity and the amount of infrared rays emitted from the predetermined location to obtain the temperature of the object to be heated. Cooking device. 前記赤外線温度検出部は、前記温度差が大きくなるに連れて小さくなるように前記放射率を決定することを特徴とする請求項1又は請求項2記載の加熱調理器。   The heating cooker according to claim 1 or 2, wherein the infrared temperature detection unit determines the emissivity so that the emissivity decreases as the temperature difference increases. 被加熱物を載置する天板と、
該天板の下方に設けられ、前記被加熱物を加熱する加熱部と、
該加熱部を駆動する駆動部と、
前記天板よりも上方に配置され、前記被加熱物から放射される赤外線量に基づいて前記被加熱物の温度を検出する赤外線温度検出部と、
該赤外線温度検出部で検出された前記被加熱物の温度に基づいて前記駆動部を制御し、前記加熱部の加熱動作を制御する制御部とを備え、
前記赤外線温度検出部は、前記天板上に載置される被加熱物の側面、前記被加熱物と前記天板との境界部及び天板を含む被検出領域内を上下方向に複数箇所、温度検出し、該複数箇所の温度のうち、最高温度と該最高温度を検出した箇所の上方にあり前記天板による影響が及ばない前記被加熱物の側面でかつ前記最高温度を検出した箇所に近い箇所の検出温度とを用いて前記被加熱物の放射率を決定し、該放射率に基づいて、前記複数箇所のうちの所定箇所の温度を補正して前記被加熱物の温度とすることを特徴とする加熱調理器。
A top plate on which the object to be heated is placed;
A heating unit provided below the top plate for heating the object to be heated;
A drive unit for driving the heating unit;
An infrared temperature detector that is disposed above the top plate and detects the temperature of the object to be heated based on the amount of infrared rays emitted from the object to be heated;
A control unit that controls the driving unit based on the temperature of the object to be heated detected by the infrared temperature detection unit, and controls a heating operation of the heating unit;
The infrared temperature detection unit is a plurality of locations in the vertical direction in the detection area including the side surface of the object to be heated placed on the top plate, the boundary between the object to be heated and the top plate, and the top plate, Detecting the temperature, among the temperatures of the plurality of locations, above the location where the highest temperature and the highest temperature were detected, on the side of the object to be heated that is not affected by the top plate and at the location where the highest temperature was detected The emissivity of the object to be heated is determined using the detected temperature at a nearby location, and the temperature of the object to be heated is corrected based on the emissivity to correct the temperature at a predetermined location among the plurality of locations. A cooking device characterized by.
前記赤外線温度検出部は、前記複数箇所のそれぞれから放射される赤外線量と仮放射率とから前記複数箇所それぞれの温度を換算して前記最高温度と該最高温度を検出した箇所の上方にあり前記天板による影響が及ばない前記被加熱物の側面でかつ前記最高温度を検出した箇所に近い箇所の検出温度とを求め、これらの温度に基づいて前記放射率を決定し、該放射率と前記所定箇所から放出される赤外線量とから温度を換算し、前記被加熱物の温度とすることを特徴とする請求項4記載の加熱調理器。   The infrared temperature detector is above the location where the highest temperature and the highest temperature are detected by converting the temperature of each of the locations from the amount of infrared rays and provisional emissivity radiated from each of the locations. Obtain the detected temperature of the side of the object to be heated that is not affected by the top plate and the location near the location where the maximum temperature was detected, determine the emissivity based on these temperatures, and determine the emissivity and the The cooking device according to claim 4, wherein the temperature is converted from the amount of infrared rays emitted from a predetermined location to obtain the temperature of the object to be heated. 前記赤外線温度検出部は、前記最高温度と該最高温度を検出した箇所の上方にあり前記天板による影響が及ばない前記被加熱物の側面でかつ前記最高温度を検出した箇所に近い箇所の検出温度とに加えて、更に前記赤外線温度検出部の周囲温度を用いて前記被加熱物の放射率を決定することを特徴とする請求項5記載の加熱調理器。   The infrared temperature detection unit detects the location near the location where the highest temperature is detected and the side of the object to be heated that is above the highest temperature and the location where the highest temperature is detected and is not affected by the top plate. 6. The heating cooker according to claim 5, wherein the emissivity of the object to be heated is further determined using the ambient temperature of the infrared temperature detecting unit in addition to the temperature. 前記赤外線温度検出部は所定時間毎に放射率を決定し直し、新たに決定した放射率に基づいて前記所定箇所の温度を補正し、前記被加熱物の温度とすることを特徴とする請求項1乃至請求項6の何れかに記載の加熱調理器。   The infrared temperature detection unit re-determines the emissivity every predetermined time, corrects the temperature of the predetermined location based on the newly determined emissivity, and sets the temperature of the object to be heated. The cooking device according to any one of claims 1 to 6. 前記制御部は、前記赤外線温度検出部で検出された今回の検出温度と前回の検出温度との温度差が第1の閾値以上の場合、今回の検出温度に基づいた前記駆動部の制御は行わないことを特徴とする請求項7記載の加熱調理器。   When the temperature difference between the current detected temperature detected by the infrared temperature detector and the previous detected temperature is greater than or equal to a first threshold, the controller controls the drive unit based on the current detected temperature. The cooking device according to claim 7, wherein there is no cooking device. 前記制御部は、前記赤外線温度検出部で検出された今回の検出温度と前回の検出温度との温度差が第2の閾値未満の場合、前記駆動部に停止信号を出力して加熱動作を停止すると共に、加熱動作を停止した旨を外部に報知することを特徴とする請求項7記載の加熱調理器。   The control unit outputs a stop signal to the drive unit to stop the heating operation when the temperature difference between the current detection temperature detected by the infrared temperature detection unit and the previous detection temperature is less than a second threshold value. The heating cooker according to claim 7, wherein an outside notification is made that the heating operation is stopped. 前記制御部は、所定期間内に前記赤外線温度検出部で順次検出される検出温度が所定の温度幅以上変動する場合、その変動した検知温度に基づいた前記駆動部の制御は行わず、前記変動が停止した場合、前記赤外線温度検出部の検出温度に基づいた前記駆動部の制御を行うことを特徴とする請求項7記載の加熱調理器。   When the detected temperature sequentially detected by the infrared temperature detector within a predetermined period fluctuates by a predetermined temperature range or more, the controller does not control the driving unit based on the fluctuated detected temperature, and the fluctuation The cooking device according to claim 7, wherein when the operation stops, the drive unit is controlled based on a temperature detected by the infrared temperature detection unit. 前記所定箇所とは、前記複数箇所のうち最上部に位置する箇所であることを特徴とする請求項1乃至請求項10の何れかに記載の加熱調理器。   The cooking device according to any one of claims 1 to 10, wherein the predetermined place is a place located at an uppermost part among the plurality of places.
JP2008284429A 2008-11-05 2008-11-05 Cooker Expired - Fee Related JP4744582B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008284429A JP4744582B2 (en) 2008-11-05 2008-11-05 Cooker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008284429A JP4744582B2 (en) 2008-11-05 2008-11-05 Cooker

Publications (2)

Publication Number Publication Date
JP2010113901A JP2010113901A (en) 2010-05-20
JP4744582B2 true JP4744582B2 (en) 2011-08-10

Family

ID=42302321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008284429A Expired - Fee Related JP4744582B2 (en) 2008-11-05 2008-11-05 Cooker

Country Status (1)

Country Link
JP (1) JP4744582B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5047226B2 (en) * 2009-05-25 2012-10-10 三菱電機株式会社 Cooker
JP5030996B2 (en) * 2009-06-09 2012-09-19 三菱電機株式会社 Induction heating cooker
JP5089728B2 (en) * 2010-05-25 2012-12-05 三菱電機株式会社 Induction heating cooker
US20150373787A1 (en) * 2014-06-23 2015-12-24 Cooktek Induction Systems, Llc Apparatus and method for dual mode temperature sensing
CN111473369B (en) * 2019-01-23 2022-03-15 浙江绍兴苏泊尔生活电器有限公司 Temperature determination method and device and induction cooker

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01178590A (en) * 1987-12-29 1989-07-14 Nkk Corp Detection of carbon adherent to coke oven wall
JP3198628B2 (en) * 1992-07-07 2001-08-13 松下電器産業株式会社 Cordless equipment
JP3924720B2 (en) * 2001-07-13 2007-06-06 三菱電機株式会社 Induction heating cooker
JP2003264055A (en) * 2002-03-08 2003-09-19 Hitachi Hometec Ltd Heating cooker
JP2003347028A (en) * 2002-05-24 2003-12-05 Matsushita Electric Ind Co Ltd Cooking device
JP2006318925A (en) * 2006-07-11 2006-11-24 Mitsubishi Electric Corp Heating cooker
JP2007059412A (en) * 2006-11-06 2007-03-08 Mitsubishi Electric Corp Induction heating cooking device

Also Published As

Publication number Publication date
JP2010113901A (en) 2010-05-20

Similar Documents

Publication Publication Date Title
JP4744582B2 (en) Cooker
JP5253557B2 (en) Induction heating cooker
JP3990116B2 (en) Induction heating cooker
JP2008541988A (en) Cooking apparatus and method for food identification
JP2008140678A (en) Heating cooker
JP5047222B2 (en) Electromagnetic cooker
JP2003264055A (en) Heating cooker
JP4799603B2 (en) Cooker
JP5047226B2 (en) Cooker
JP5089728B2 (en) Induction heating cooker
JP5062013B2 (en) Induction heating cooker
JP4804560B2 (en) Induction heating cooker
JP4687168B2 (en) Induction heating cooker
JP2010170784A (en) Heating cooker
JP4998062B2 (en) Induction heating cooker
JP2004241218A (en) Induction heating cooker
JP2007059412A (en) Induction heating cooking device
JP2006134627A (en) Induction heating cooking device
JP5047225B2 (en) Induction heating cooker
JP4920662B2 (en) Induction heating cooker
JP5979990B2 (en) Induction heating cooker
JP5084785B2 (en) Cooker
JP2010113846A (en) Induction heating cooker
JP4989680B2 (en) Cooker
JPWO2007148404A1 (en) Electromagnetic induction heating device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110510

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4744582

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees