JP4743746B2 - Powder coating particle and method for producing powder coating - Google Patents

Powder coating particle and method for producing powder coating Download PDF

Info

Publication number
JP4743746B2
JP4743746B2 JP2004265669A JP2004265669A JP4743746B2 JP 4743746 B2 JP4743746 B2 JP 4743746B2 JP 2004265669 A JP2004265669 A JP 2004265669A JP 2004265669 A JP2004265669 A JP 2004265669A JP 4743746 B2 JP4743746 B2 JP 4743746B2
Authority
JP
Japan
Prior art keywords
curing agent
powder coating
coating
resin
coating resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004265669A
Other languages
Japanese (ja)
Other versions
JP2006077210A (en
Inventor
直俊 木下
広行 辻本
清 野城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hosokawa Micron Corp
Original Assignee
Hosokawa Micron Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hosokawa Micron Corp filed Critical Hosokawa Micron Corp
Priority to JP2004265669A priority Critical patent/JP4743746B2/en
Publication of JP2006077210A publication Critical patent/JP2006077210A/en
Application granted granted Critical
Publication of JP4743746B2 publication Critical patent/JP4743746B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Paints Or Removers (AREA)

Description

本発明は、硬化剤と硬化対象の塗料樹脂とを含む粉体塗料粒子、及び、当該粉体塗料粒子からなる粉体塗料の製造方法に関する。   The present invention relates to powder coating particles containing a curing agent and a coating resin to be cured, and a method for producing a powder coating composed of the powder coating particles.

従来の粉体塗料では、予め塗料樹脂と硬化剤を例えば溶融混練法によって十分に混合して粉体塗料原料を作製した後、粉砕機で粉砕して粉体塗料粒子を得ている。しかし、この従来方法では溶融混練時等での加熱によって硬化反応が進行するおそれがあるので、この弊害を緩和するために、硬化剤の反応温度を高めに設計するとか、硬化反応時間を長く設計する等により、溶融混練時等における硬化反応の進行を抑制させる対策をしていた(例えば特許文献1参照)。   In a conventional powder coating, a coating material and a curing agent are sufficiently mixed in advance by, for example, a melt kneading method to prepare a powder coating material, and then pulverized by a pulverizer to obtain powder coating particles. However, in this conventional method, the curing reaction may proceed due to heating during melt kneading, etc., so in order to alleviate this problem, the curing agent is designed to have a higher reaction temperature or a longer curing reaction time. In order to prevent the progress of the curing reaction at the time of melt kneading or the like (see, for example, Patent Document 1).

また、別の粉体塗料の製造方法として、溶融混練された粉体塗料原料を繊維状化した後、粉砕して粉体塗料粒子を製造する方法が提案されている(特許文献2参照)。しかし、この方法においても予め塗料樹脂と硬化剤を溶融混練して粉体塗料原料を作製するので、上記と同様な対策が必要である。   As another method for producing a powder coating material, there has been proposed a method in which a melt-kneaded powder coating material is fibrillated and then pulverized to produce powder coating particles (see Patent Document 2). However, in this method as well, since the powder coating material is prepared by melt-kneading the coating resin and the curing agent in advance, the same measures as described above are necessary.

特開平11−100546号公報Japanese Patent Laid-Open No. 11-100546 特開平8−281643号公報JP-A-8-281634

しかし、従来の粉体塗料の如く、硬化剤の反応温度を高めに設計すると、焼き付け温度が高温になり、また、硬化反応時間を長く設計すると、焼付けに長い時間を要することになり、その結果、焼き付け時のエネルギ消費量が増加し、また、焼き付け作業の効率が低下するという不都合が発生していた。   However, if the curing agent reaction temperature is designed to be high like conventional powder coatings, the baking temperature will be high, and if the curing reaction time is designed to be long, it will take a long time for baking. Inconveniently, the energy consumption during baking increases, and the efficiency of the baking operation decreases.

本発明は、上記実情に鑑みてなされたものであり、その目的は、焼き付けエネルギの低減による省エネや焼き付け時間の短縮による作業効率の向上を実現できる粉体塗料粒子、及び当該粉体塗料粒子の製造に適した粉体塗料の製造方法を提供することにある。   The present invention has been made in view of the above circumstances, and the object thereof is powder coating particles capable of realizing energy saving by reducing baking energy and improvement of working efficiency by shortening baking time, and the powder coating particles. An object of the present invention is to provide a method for producing a powder coating material suitable for production.

上記目的を達成するための本発明に係る粉体塗料粒子の第一特徴構成は、硬化剤が硬化対象の塗料樹脂と未混合の状態であり、かつ、硬化剤と硬化対象の塗料樹脂が芯部から表面に亘って交互に積層されている点にある
すなわち、粉体塗料粒子中に存在する硬化剤と硬化対象の塗料樹脂が混合されていない状態であるので、例えば硬化剤の反応温度を低めに設計し、また硬化反応時間を短く設計しても、保存時等に粉体塗料粒子中で硬化剤と塗料樹脂の硬化反応が進むことが防止される。一方、塗料の焼付け時には、加熱によって溶融軟化した硬化剤と塗料樹脂が混合し合い、硬化剤の反応温度を低くした場合には、低温の焼き付け温度で硬化反応が進み、硬化反応時間を短くした場合には、短時間で硬化反応が完了して塗膜が形成される。
従って、低い硬化反応温度や短い硬化反応時間の設定を可能として、焼き付けエネルギの低減による省エネや焼き付け時間の短縮による作業効率の向上を実現できる粉体塗料粒子が提供される。
The first characteristic configuration of the powder coating particle according to the present invention for achieving the above object is that the curing agent is in an unmixed state with the coating resin to be cured, and the curing agent and the coating resin to be cured are the core. It is in the point laminated | stacked alternately from the part to the surface .
In other words, since the curing agent present in the powder coating particles and the coating resin to be cured are not mixed, for example, the reaction temperature of the curing agent is designed to be low and the curing reaction time is designed to be short. The curing reaction between the curing agent and the coating resin is prevented from proceeding in the powder coating particles during storage. On the other hand, when the paint is baked, the curing agent melted and softened by heating and the coating resin are mixed together, and when the reaction temperature of the curing agent is lowered, the curing reaction proceeds at a low baking temperature and the curing reaction time is shortened. In some cases, the curing reaction is completed in a short time and a coating film is formed.
Therefore, it is possible to set a low curing reaction temperature and a short curing reaction time, and it is possible to provide powder coating particles that can realize energy saving by reducing baking energy and improvement in work efficiency by shortening baking time.

さらに、硬化剤と塗料樹脂が芯部から表面に亘って交互に積層されていることで、硬化剤と塗料樹脂との接する面積が大きくなり、塗料の焼付け時に硬化剤と塗料樹脂が溶融軟化したとき両者が容易に混合し合い、塗料樹脂の硬化反応が迅速に進む。
特に、前記塗料樹脂が芯部に存在し、その周囲に前記硬化剤と前記塗料樹脂が順次積層されている場合には、芯部に最も近い硬化剤の層についても、芯部側と表面側の両方から塗料樹脂によって挟み塗料樹脂との良好な混合を確保することができる。
従って、一層の焼き付けエネルギの低減や焼き付け時間の短縮を実現できる粉体塗料粒子の好適な実施形態が提供される。
Further, by curing agents and coating resins are alternately laminated across the surface from the core, the curing agent and contact area size between the coating resin no longer, curing agent and coating resins when paint baking is melted and softened When they are mixed together, the curing reaction of the coating resin proceeds rapidly.
In particular, when the coating resin is present in the core and the curing agent and the coating resin are sequentially laminated around the core, the curing agent layer closest to the core is also formed on the core side and the surface side. It is possible to ensure good mixing with the coating resin by sandwiching the coating resin from both.
Therefore, a preferred embodiment of the powder coating particle capable of realizing further reduction in baking energy and shortening of baking time is provided.

同第特徴構成は、上記第一の特徴構成において、前記塗料樹脂が前記硬化剤の表面を覆っている点にある。
すなわち、塗料樹脂が硬化剤の表面を覆っているため、硬化剤は粉体塗料粒子の内部に存在することになり、表面に露出していないため、硬化剤が外界と反応して変化するような不都合を避けることができる。
従って、硬化剤と塗料樹脂が芯部から表面に亘って交互に積層されており、しかも硬化剤が一層安定した状態で存在し保存性に優れた粉体塗料粒子の好適な実施形態が提供される。
The second characteristic configuration is that, in the first characteristic configuration, the coating resin covers a surface of the curing agent .
That is, since the coating resin covers the surface of the curing agent , the curing agent is present inside the powder coating particles and is not exposed to the surface, so that the curing agent changes in response to the outside world. Such inconvenience can be avoided.
Therefore, are alternately stacked hardener and coating resin over the surface of the core portion, moreover a curing agent is present in a more stable state, the preferred embodiment of the excellent powder coating particles storability provided Is done.

また本発明に係る粉体塗料粒子の製造方法の第一特徴構成は、硬化剤と塗料樹脂が芯部から表面に亘って交互に積層されている繊維状体を作製する繊維化工程と、前記繊維状体を粉砕して粉体塗料粒子を作製する粒子化工程とを有する点にある。
すなわち、繊維化工程では、硬化剤と塗料樹脂が芯部から表面に亘って交互に積層されている繊維状体を作製し、粒子化工程では、既に繊維状に細く形成された上記繊維状体の粉体塗料原料を粉砕して粉体塗料粒子を作製するので、比較的少ないエネルギで所望の粒度の粉体塗料粒子が得られる。
従って、硬化剤と塗料樹脂が芯部から表面に亘って交互に積層されている粉体塗料粒子の製造に適した製造方法が提供される。
The first characteristic configuration of the method for producing powder coating particles according to the present invention is a fiberizing step for producing a fibrous body in which a curing agent and a coating resin are alternately laminated from the core portion to the surface ; And a particle forming step of pulverizing the fibrous body to produce powder coating particles.
That is, in the fiberization process, to prepare a fibrous body are alternately laminated hardener and coating resin over the surface from the core, the grain Coca step, the fibrous already formed thinner fibrous since by pulverizing the powder coating raw materials in the body to produce the powder coating particles, desired particle size of the powder coating particles are obtained with a relatively small energy formic.
Therefore, manufacturing process suitable for the preparation of the powder coating particles hardener and coating resins are alternately laminated across the surface from the core portion is provided.

同第二特徴構成は、上記第一特徴構成において、前記繊維化工程では、前記硬化剤を押し出す硬化剤用ノズルと、前記塗料樹脂を押し出す塗料樹脂用ノズルとを交互に同心状に配置して、前記硬化剤と前記塗料樹脂が芯部から表面に亘って交互に層状に形成された断面構造の繊維状体を作製する点にある。
すなわち、交互に同心状に配置した硬化剤用ノズルと塗料樹脂用ノズルから、夫々硬化剤と塗料樹脂を押し出すことによって、硬化剤と塗料樹脂が芯部から表面に亘って交互に層状に形成された断面構造の繊維状体が作製される。そして、この繊維体を粉砕することにより、硬化剤と塗料樹脂が芯部から表面に亘って交互に積層された粉体塗料粒子が容易に作製される。
従って、前記第特徴構成の粉体塗料粒子の製造に適した好適な実施形態が提供される。
In the first characteristic configuration, the second characteristic configuration is configured such that, in the fiberizing step, a curing agent nozzle for extruding the curing agent and a coating resin nozzle for extruding the coating resin are alternately arranged concentrically. In addition, a fibrous body having a cross-sectional structure in which the curing agent and the coating resin are alternately formed in layers from the core portion to the surface is produced.
That is, the curing agent and the coating resin are alternately formed in layers from the core portion to the surface by extruding the curing agent and the coating resin from the curing agent nozzle and the coating resin nozzle alternately arranged concentrically. A fibrous body having a cross-sectional structure is produced. And the powder coating particle by which the hardening | curing agent and coating resin were laminated | stacked alternately from the core part over the surface by pulverizing this fiber body is produced easily.
Therefore, good suitable embodiments suitable for the manufacture of the powder coating particles of the first characterizing feature is provided.

本発明に係る粉体塗料粒子及び粉体塗料の製造方法の実施形態について図面に基づいて説明する。   An embodiment of a powder coating particle and a method for producing a powder coating according to the present invention will be described with reference to the drawings.

本発明に係る粉体塗料粒子3は、硬化剤1が硬化対象の塗料樹脂2と未混合の状態で存在する。具体的には、図1に模式的に示すように、硬化剤1と塗料樹脂2が粉体塗料粒子3の芯部から表面に亘って交互に積層されている。図1(イ)には、硬化剤1が芯部に存在し、芯部の周囲(鞘部)に塗料樹脂2が存在する2層構造の例を示し、図1(ロ)には、芯部に塗料樹脂2が存在し、その周囲に硬化剤1が存在し、さらにその周囲に塗料樹脂2が存在する3層構造の例を示すが、図1(イ)において、さらに硬化剤1と塗料樹脂2を交互に積層する3層以上の形態も可能であり、図1(ロ)において、さらに硬化剤1と塗料樹脂2を交互に積層する4層以上の形態も可能である。また、図1(イ)(ロ)のいずれにおいても、塗料樹脂2が粉体塗料粒子3の表面を覆い、硬化剤1は粉体塗料粒子3の表面に露出していない。尚、一般に、塗料樹脂2に対する硬化剤1の混合比は小さい(後述の実施例参照)ので、粉体塗料粒子3中において塗料樹脂2の体積の方が硬化剤1の体積よりも多い。 The powder coating particle 3 according to the present invention is present in a state where the curing agent 1 is not mixed with the coating resin 2 to be cured. Specifically, as schematically shown in FIG. 1, the curing agent 1 and the coating resin 2 are alternately laminated from the core portion of the powder coating particle 3 to the surface. FIG. 1 (a) shows an example of a two-layer structure in which the curing agent 1 is present in the core and the coating resin 2 is present around the core (sheath), and FIG. An example of a three-layer structure in which the coating resin 2 is present in the part, the curing agent 1 is present around the coating resin 2, and the coating resin 2 is present around the coating resin 2 is shown in FIG. Three or more layers in which the coating resin 2 is alternately stacked are possible, and in FIG. 1 (b), four or more layers in which the curing agent 1 and the coating resin 2 are alternately stacked are also possible. 1A and 1B, the coating resin 2 covers the surface of the powder coating particle 3, and the curing agent 1 is not exposed on the surface of the powder coating particle 3. In general, since the mixing ratio of the curing agent 1 to the coating resin 2 is small (see Examples described later), the volume of the coating resin 2 in the powder coating particle 3 is larger than the volume of the curing agent 1.

次に、本発明に係る粉体塗料の製造方法では、硬化剤1が硬化対象の塗料樹脂2と未混合の状態で存在する断面構造の繊維状体4を作製する繊維化工程と、この繊維状体4を粉砕して塗料粒子3を作製する粒子化工程とを有する。   Next, in the method for producing a powder coating material according to the present invention, a fiberizing step for producing a fibrous body 4 having a cross-sectional structure in which the curing agent 1 exists in an unmixed state with the coating resin 2 to be cured, and the fiber A particle forming step of pulverizing the shaped body 4 to produce the paint particles 3.

先ず切断機を用いた粒子化工程について説明すると、図2(イ)に示すように、繊維状体4を切断する繊維切断装置8が、ベルトコンベア11上を搬送される繊維状体4の搬送方向と直交する方向に延びた固定刃9と、複数の切断刃10aが回転軸に取り付けられた回転刃10を有し、図示しないモータによって回転駆動される回転刃10の切断刃10aと固定刃9のエッジ9aとの間に繊維状体4が連続的に供給され、切断刃10aと固定刃エッジ9aとの間で生じる剪断作用によって繊維状体4が順次切断されて、塗料粒子3が連続的に作製される。   First, the particle forming process using a cutting machine will be described. As shown in FIG. 2A, the fiber cutting device 8 for cutting the fibrous body 4 conveys the fibrous body 4 conveyed on the belt conveyor 11. The fixed blade 9 extending in a direction perpendicular to the direction and the rotary blade 10 having a plurality of cutting blades 10a attached to the rotary shaft, and the cutting blade 10a and the fixed blade of the rotary blade 10 driven to rotate by a motor (not shown) 9, the fibrous body 4 is continuously supplied between the edge 9a, the fibrous body 4 is sequentially cut by the shearing action generated between the cutting blade 10a and the fixed blade edge 9a, and the coating particles 3 are continuously formed. Are produced.

図2(ロ)に、繊維状体4の長手方向に沿った縦断面における粉体粒子3の断面を示すが、切断端面で硬化剤1が塗料樹脂2の層で封止された構造が得られる。尚、図2(ロ)には、片方の切断端面のみが封止された構造を示すが、切断条件や樹脂の種類等により、両方の切断端面が封止された構造のものも可能である。ここで、繊維状体4の切断長(塗料粒子3の大きさ)は、繊維状体4の搬送速度と回転刃10の回転速度の比によって調節することができる。   FIG. 2B shows a cross section of the powder particle 3 in a longitudinal section along the longitudinal direction of the fibrous body 4, and a structure in which the curing agent 1 is sealed with a layer of the coating resin 2 at the cut end face is obtained. It is done. 2B shows a structure in which only one cut end face is sealed, but a structure in which both cut end faces are sealed depending on the cutting conditions, the type of resin, and the like is also possible. . Here, the cutting length of the fibrous body 4 (size of the coating particle 3) can be adjusted by the ratio of the conveying speed of the fibrous body 4 and the rotational speed of the rotary blade 10.

前記繊維体工程では、硬化剤1を押し出す硬化剤用ノズル5と、塗料樹脂2を押し出す塗料樹脂用ノズル6とを交互に同心状に配置して、硬化剤1と塗料樹脂2が芯部から表面に亘って交互に層状に形成された断面構造の繊維状体4を作製する。   In the fiber body process, the curing agent nozzle 5 for extruding the curing agent 1 and the coating resin nozzle 6 for extruding the coating resin 2 are alternately arranged concentrically so that the curing agent 1 and the coating resin 2 are disposed from the core. A fibrous body 4 having a cross-sectional structure formed alternately in layers over the surface is produced.

具体的には、図3(イ)に一例を示すように、紡糸機20において、硬化剤用ノズル5の周囲に塗料樹脂用ノズル6を同心状に配置したノズル構造を用いて、図3(ロ)に示すように、芯部に硬化剤1が存在し、芯部の周囲に塗料樹脂2が存在する2層の断面構造の繊維状体4を作製することができる。尚、図3(ロ)は、図3(イ)の矢視位置における繊維状体4の断面を示す。また、図3(ハ)に他のノズル構造の例を示すが、1つの硬化剤用ノズル5及びこれを内外から同心状に挟むように配置した2つの塗料樹脂用ノズル6を用いて、図3(ニ)に示すような3層の断面構造の繊維状体4を作製することができる。尚、図3(イ)又は(ハ)のノズル構造において、さらに、その周囲に硬化剤用ノズル5と塗料樹脂用ノズル6を同心状に追加配置することにより、3層又は4層以上の断面構造の繊維状体4を作製することができる。   Specifically, as shown in FIG. 3 (a), in the spinning machine 20, using a nozzle structure in which paint resin nozzles 6 are arranged concentrically around the curing agent nozzle 5, FIG. As shown in (b), a fibrous body 4 having a two-layer cross-sectional structure in which the curing agent 1 is present in the core and the coating resin 2 is present around the core can be produced. FIG. 3 (B) shows a cross section of the fibrous body 4 at the position indicated by the arrow in FIG. 3 (A). FIG. 3 (c) shows an example of another nozzle structure, which uses one curing agent nozzle 5 and two paint resin nozzles 6 arranged so as to be concentrically sandwiched from inside and outside. A fibrous body 4 having a three-layer cross-sectional structure as shown in 3 (d) can be produced. In addition, in the nozzle structure of FIG. 3 (A) or (C), a cross section of three layers or four layers or more is further provided by additionally arranging a curing agent nozzle 5 and a coating resin nozzle 6 around the nozzle. A fibrous body 4 having a structure can be produced.

上記紡糸機20では、塗料樹脂用ノズル6と硬化剤用ノズル5が垂直下向きに配置され、繊維状体4を下向きに連続的に押し出す。塗料樹脂用ノズル6の上端部から流動性の塗料樹脂が流入し、硬化剤用ノズル5の上端部から流動性の硬化剤が流入している。   In the spinning machine 20, the coating resin nozzle 6 and the curing agent nozzle 5 are arranged vertically downward to continuously extrude the fibrous body 4 downward. A fluid paint resin flows from the upper end of the paint resin nozzle 6 and a fluid hardener flows from the upper end of the hardener nozzle 5.

図4に本発明に係る粉体塗料の製造設備の全体構成図を示す。
前記紡糸機20が横方向に多数並設され、各紡糸機20に対して、硬化剤供給部12aと塗料樹脂供給部12bから夫々硬化剤と塗料樹脂が供給される。各供給部12a,12bは、ペレット状の硬化剤及び塗料樹脂原料を投入可能なホッパとヒータ付のスクリュー式混練機とを備えたエクストルーダ13及びギアポンプ14などで構成され、ギアポンプ14の下流側が分岐管を経由して各紡糸機20に接続されている。
FIG. 4 shows an overall configuration diagram of the powder paint manufacturing facility according to the present invention.
A large number of the spinning machines 20 are arranged in the horizontal direction, and a curing agent and a coating resin are supplied to each spinning machine 20 from a curing agent supply unit 12a and a coating resin supply unit 12b, respectively. Each of the supply units 12a and 12b includes an extruder 13 and a gear pump 14 provided with a hopper capable of feeding pellet-shaped curing agent and paint resin raw material and a screw-type kneader with a heater, and the downstream side of the gear pump 14 branches off. Each spinning machine 20 is connected via a pipe.

各紡糸機20から下方に送り出された多数の繊維状体4はベルトコンベア11上に載置されて図4の左向きに搬送され、搬送途中において室温下に放冷され、適度な粘度を持った略直線状の繊維状体4が横方向に整然と並んだ一層の集合体となって、ベルトコンベア11の左端に配置された繊維切断装置8に到達する。尚、繊維状体4を搬送する手段としては、ベルトコンベアの他に、一定の流速と流れ方向を持った空気流などによる気体搬送手段を用いてもよい。   A large number of fibrous bodies 4 fed downward from each spinning machine 20 are placed on the belt conveyor 11 and conveyed leftward in FIG. 4, and are allowed to cool to room temperature in the middle of conveyance and have an appropriate viscosity. A substantially linear fibrous body 4 is an aggregate of one layer arranged in a lateral direction, and reaches a fiber cutting device 8 disposed at the left end of the belt conveyor 11. As a means for conveying the fibrous body 4, in addition to the belt conveyor, a gas conveying means by an air flow having a constant flow velocity and a flow direction may be used.

また、上記繊維状体4は、図3(ロ)に示すような芯部に硬化剤1の部分が1箇所であるものに限らず、図5に例示するように、塗料樹脂2の領域内に多数の硬化剤1の芯部分を有する断面構造でもよい。尚、図3(ロ)及び図5には、繊維状体4の断面と硬化剤1の部分が共に円形に形成された場合を示すが、円形以外の各種形状、例えば、楕円形、多角形、星形等に形成することができる。   Further, the fibrous body 4 is not limited to the core portion having one portion of the curing agent 1 in the core portion as shown in FIG. 3 (B), and as illustrated in FIG. Alternatively, a cross-sectional structure having a large number of core portions of the curing agent 1 may be used. 3 (b) and FIG. 5 show the case where the cross section of the fibrous body 4 and the portion of the curing agent 1 are both formed in a circle, but various shapes other than a circle, such as an ellipse and a polygon, are shown. It can be formed into a star shape or the like.

次に、粉砕機を用いた粒子化工程の場合について説明すると、この粒子化工程では、前記紡糸機20で作製された繊維状体4を粗粉砕(解砕)したのち、微粉砕して所望の粒度の塗料粒子3を作製する。粉砕機としては、各種粉砕機が使用できるが、本実施形態では、粗粉砕(解砕)用には、ピン型ミル(例えば、ホソカワミクロン(株)製:ファインインパクトミル)を用い、微粉砕用には、分級機内蔵の粉砕装置(例えば、ホソカワミクロン(株)製:ACMパルペライザ)を用いている。   Next, the case of a particle forming process using a pulverizer will be described. In this particle forming process, the fibrous body 4 produced by the spinning machine 20 is coarsely pulverized (pulverized) and then finely pulverized. The coating particle 3 of the particle size is produced. As the pulverizer, various pulverizers can be used. In this embodiment, a pin-type mill (for example, a fine impact mill manufactured by Hosokawa Micron Co., Ltd.) is used for coarse pulverization (pulverization). For example, a pulverizer with a built-in classifier (for example, Hosokawa Micron Co., Ltd .: ACM pulperizer) is used.

上記ピン型ミルは、図6に示すように、固定ディスク41上の固定ピン41aに対して回転ディスク42上の移動ピン42aが微少間隙を維持した状態で相対移動することによって、固定ピン41aと移動ピン42aの間にある粉砕対象物(繊維状体4)に剪断力等の機械的な力を与えて粉砕する。粉砕対象物は固定ディスク41の中央に開口形成した供給口43より粉砕室Cに投入され、回転ディスク42の回転によって遠心力を受けてディスク外周側に分散移動するとともに、上記両ピン41a、42aによって粉砕され、粉砕物はディスク外周部から排出される。   As shown in FIG. 6, the pin type mill moves relative to the fixed pin 41a by moving the moving pin 42a on the rotating disk 42 relative to the fixed pin 41a on the fixed disk 41 while maintaining a minute gap. The object to be crushed (fibrous body 4) between the moving pins 42a is crushed by applying a mechanical force such as a shearing force. The object to be crushed is put into the pulverizing chamber C through a supply port 43 formed in the center of the fixed disk 41, receives a centrifugal force by the rotation of the rotating disk 42, and moves to the outer periphery side of the disk, and both the pins 41a, 42a. And the pulverized material is discharged from the outer periphery of the disk.

上記分級機内蔵の粉砕装置は、図7に示すように、下方に気体導入口21を設け上方に気体及び粉体の排出口22を設けた本体23の内部を筒状部材24によって外側の粉砕室Aと内側の分級室Bとに区分し、粉砕室Aが粉砕部材25を備えた回転体26を内蔵するとともに下方側で前記気体導入口21に連通し、分級室Bが粗粉と微粉を分級して微粉のみを通過させる分級機構30を経由して前記排出口22に連通している。尚、原料(上記ピン型ミルによる粉砕物)は本体23の横側部に設けた投入口28から粉砕室Aに投入する。また、排出口22は外部(上方)に向けて排気されている。上記回転体26は上下軸心周りに回転自在であり、回転体26の外周部に、縦型ハンマータイプの前記粉砕部材25が粉砕室Aの内壁部に装着されたライナ27と間隙を隔てる状態で複数取付けられている。そして、上記原料が粉砕部材25から機械的衝撃力を受けて粉砕される。   As shown in FIG. 7, the pulverizing apparatus with a built-in classifier includes a cylindrical member 24 that pulverizes the inside of a main body 23 provided with a gas inlet 21 on the lower side and a gas and powder outlet 22 on the upper side. It is divided into a chamber A and an inner classification chamber B. The pulverization chamber A has a built-in rotating body 26 having a pulverization member 25 and communicates with the gas inlet 21 on the lower side. Are connected to the discharge port 22 via a classification mechanism 30 that allows only fine powder to pass through. The raw material (the pulverized product by the pin type mill) is charged into the pulverizing chamber A from the charging port 28 provided on the lateral side of the main body 23. Further, the discharge port 22 is exhausted outward (upward). The rotating body 26 is rotatable around the vertical axis, and the vertical hammer type pulverizing member 25 is separated from the liner 27 mounted on the inner wall of the pulverizing chamber A on the outer periphery of the rotating body 26. Several are installed in. The raw material is pulverized by receiving a mechanical impact force from the pulverizing member 25.

上記分級機構30は、上下軸心周りに回転自在な回転体31の外周部に複数の分級用ファン32を立設させた構造であり、粉砕物に作用する分級室Bから前記排出口22に向かう気流の搬送力と回転体31によって付与される遠心力の差によって微粉と粗粉を分離する。即ち、粉砕室Aから分級室Bに流入する粉砕物のうち、気流による搬送力の方が大きく作用する微粉は分級用ファン32を通過して排出口22から排出され、遠心力の方が大きく作用する粗粉は分級用ファン32を通過せずに筒状部材24の下方から粉砕室Aに戻る。   The classification mechanism 30 has a structure in which a plurality of classification fans 32 are erected on the outer peripheral portion of a rotating body 31 that is rotatable around a vertical axis. The classification mechanism B is connected to the discharge port 22 from the classification chamber B that acts on the pulverized material. The fine powder and the coarse powder are separated by the difference between the conveying force of the air flow toward and the centrifugal force applied by the rotating body 31. That is, among the pulverized material flowing into the classification chamber B from the pulverization chamber A, the fine powder having a larger conveying force due to the airflow passes through the classification fan 32 and is discharged from the discharge port 22, and the centrifugal force is larger. The acting coarse powder returns to the crushing chamber A from below the cylindrical member 24 without passing through the classification fan 32.

次に、本発明に係る粉体塗料の実施例について説明する。尚、以下の実施例では、粒子化工程は粉砕機を用いた。   Next, examples of the powder coating material according to the present invention will be described. In the following examples, a pulverizer was used in the particle forming step.

実施例1では、塗料樹脂としてウレタン硬化型ポリエステル樹脂を用い、先ず、従来の混練及び粉砕工程によって粉体塗料を製造した比較例として、高温硬化型の硬化剤を用いたもの(比較例1)と低温硬化型の硬化剤を用いたもの(比較例2)の2つの場合を説明し、本発明として、低温硬化型の硬化剤を用い、溶融粘度の異なる2つのウレタン硬化型ポリエステル樹脂を用いた場合(本発明1、本発明2)を説明する。   In Example 1, a urethane curable polyester resin was used as a coating resin, and first, as a comparative example in which a powder coating was produced by a conventional kneading and pulverizing process, a high-temperature curable curing agent was used (Comparative Example 1). And two cases using a low-temperature curing type curing agent (Comparative Example 2), and two urethane-curing polyester resins having different melt viscosities are used as the present invention. (Invention 1, Invention 2) will be described.

〔比較例1〕
ウレタン硬化型ポリエステル樹脂(ユピカコートGV−150、溶融粘度62dPa・sec at200℃)85重量部、硬化剤(ベスタゴンB1530)15重量部、ビスフェノールA型エポキシ樹脂3重量部、酸化チタン(タイペークCR−90)50重量部、流動調整剤(ポリフローS)0.6重量部、ベンゾイン0.5重量部、硬化触媒0.3重量部を、ヘンシェル型ミキサーで混合した後、2軸押出機で110℃で加熱混練し、厚さ2mm、幅35mmの塗料組成ペレットを作製した。これを、ナイフハンマ型ミル(フェザーミル)で1〜2mm程度の塊状に粉砕した後、前記分級機内蔵型粉砕機(ACMパルペライザ、粉砕ロータ回転周速度100m/sec)で平均径18〜19μm(オンライン型粒度分布測定器EPCSにより測定した)となるよう分級機回転数のみを調整しつつ粉砕した。その結果、体積平均径が約18.4μm、74μm以上の粗大粒子がゼロでかつ3μm以下の微粉粒子が5.01%(マイクロトラックにより確認した)の粒度分布を持つ粉体塗料粒子を得た。そして、この粉体塗料粒子を鉄板(リン酸亜鉛化成処理済み)にコロナガンを用いて静電塗装し、焼付け温度180℃、焼付け時間20分の条件で焼き付け、目視確認で平滑な塗膜の比較用塗板を得た。
[Comparative Example 1]
85 parts by weight of urethane curable polyester resin (Iupica Coat GV-150, melt viscosity 62 dPa · sec at 200 ° C.), 15 parts by weight of curing agent (Vestagon B1530), 3 parts by weight of bisphenol A type epoxy resin, titanium oxide (TYPECR CR-90) 50 parts by weight, 0.6 parts by weight of a flow control agent (Polyflow S), 0.5 parts by weight of benzoin, and 0.3 parts by weight of a curing catalyst were mixed with a Henschel mixer and then heated at 110 ° C. with a twin screw extruder. The mixture was kneaded to produce a coating composition pellet having a thickness of 2 mm and a width of 35 mm. This was pulverized into a lump of about 1 to 2 mm with a knife hammer type mill (feather mill) and then averaged with a classifier built-in type pulverizer (ACM pulverizer, pulverizing rotor rotational peripheral speed 100 m / sec) with an average diameter of 18 to 19 μm ( It was pulverized while adjusting only the speed of the classifier so that it was measured by an on-line type particle size distribution analyzer EPCS). As a result, powder coating particles having a particle size distribution with a volume average diameter of about 18.4 μm, coarse particles of 74 μm or more being zero and fine powder particles of 3 μm or less being 5.01% (confirmed by Microtrac) were obtained. . Then, this powder coating particle is electrostatically coated on a steel plate (having a zinc phosphate conversion treatment) using a corona gun, baked under a baking temperature of 180 ° C. and a baking time of 20 minutes, and a smooth coating comparison is made by visual confirmation. A coated plate was obtained.

〔比較例2〕
硬化剤として、ベスタゴンB1530の替わりに、低温硬化用硬化剤(自社開発品、ブロックイソシアネート系)を用いた以外は比較例1と同じ材料を用いて、ヘンシェル型ミキサーで混合した後、2軸押出機で130℃で加熱混練(平均滞留時間42秒)し、厚さ2mm、幅35mmの塗料組成ペレットを作製した。これを比較例1と同じ条件で、ナイフハンマ型ミル(フェザーミル)と前記分級機内蔵型粉砕機(ACMパルペライザ)により粉砕した。その結果、体積平均径が約18.2μm、74μm以上の粗大粒子がゼロでかつ3μm以下の微粉粒子が5.04%(マイクロトラックにより確認した)の粒度分布を持つ粉体塗料粒子を得た。そして、この粉体塗料粒子を鉄板(リン酸亜鉛化成処理済み)にコロナガンを用いて静電塗装し、焼付け温度150℃、焼付け時間20分の条件で焼き付けた。目視確認で塗膜はゆず肌状であり良好ではなかった。原因として、低温硬化用硬化剤が混練時、粉砕時の熱により、ゲル化が進行したものと推察される。
[Comparative Example 2]
Uses the same materials as in Comparative Example 1 except that a curing agent for low temperature curing (in-house developed product, blocked isocyanate type) was used instead of Vestagon B1530 as a curing agent, and after mixing with a Henschel mixer, twin screw extrusion The mixture was heated and kneaded at 130 ° C. (average residence time 42 seconds) with a machine to prepare coating composition pellets having a thickness of 2 mm and a width of 35 mm. This was pulverized by the knife hammer mill (feather mill) and the classifier built-in pulverizer (ACM pulperizer) under the same conditions as in Comparative Example 1. As a result, powder coating particles having a volume average particle size distribution of about 18.2 μm, coarse particles of 74 μm or more being zero and fine particles of 3 μm or less being 5.04% (confirmed by Microtrac) were obtained. . The powder coating particles were electrostatically coated on an iron plate (having been subjected to zinc phosphate conversion treatment) using a corona gun, and baked under a baking temperature of 150 ° C. and a baking time of 20 minutes. As a result of visual confirmation, the coating film was not good because it was in a skin shape. As a cause, it is assumed that the gelling progressed due to the heat at the time of kneading and pulverizing the curing agent for low temperature curing.

〔本発明1〕
ウレタン硬化型ポリエステル樹脂(ユピカコートGV−150)85重量部、ビスフェノールA型エポキシ樹脂3重量部、酸化チタン(タイペークCR−90)50重量部、流動調整剤(ポリフローS)0.6重量部、ベンゾイン0.5重量部、硬化触媒0.3重量部を、ヘンシェル型ミキサーで混合し、シェル側原料とした。一方、前記低温硬化用硬化剤(自社開発品、ブロックイソシアネート系)をコア側原料とした。そして、上記シェル側原料をシェル側エクストルーダ13で加熱混練し、上記コア側原料をコア側エクストルーダ13で加熱混練しつつ、単位時間当たりシェル側原料139.5重量部対コア側原料15重量部の比で且つ160℃の温度で、前記塗料樹脂用ノズル6と前記硬化剤用ノズル5に夫々定量供給し、平均繊維径15μm、生成速度25m/secとなるように延伸状態を調整しつつ繊維状体4を生成させる。尚、延伸用エアは、30℃の温度の外気をターボブロアで吸引し、温度調整を行なわずそのまま送風して利用した。
[Invention 1]
85 parts by weight of urethane curable polyester resin (Iupica Coat GV-150), 3 parts by weight of bisphenol A type epoxy resin, 50 parts by weight of titanium oxide (Taipeku CR-90), 0.6 parts by weight of flow regulator (Polyflow S), benzoin 0.5 parts by weight and 0.3 parts by weight of the curing catalyst were mixed with a Henschel mixer to obtain a shell-side raw material. On the other hand, the curing agent for low temperature curing (in-house developed product, block isocyanate type) was used as the core side raw material. Then, the shell-side raw material is heated and kneaded by the shell-side extruder 13, and the core-side raw material is heated and kneaded by the core-side extruder 13, while 139.5 parts by weight of the shell-side raw material per unit time is 15 parts by weight of the core-side raw material. In a ratio and at a temperature of 160 ° C., a fixed amount is supplied to the coating resin nozzle 6 and the curing agent nozzle 5 respectively, and the fibrous state is adjusted while adjusting the stretched state so that the average fiber diameter is 15 μm and the production speed is 25 m / sec. A body 4 is generated. The stretching air was used by sucking outside air at a temperature of 30 ° C. with a turbo blower and blowing it without adjusting the temperature.

次に、上記平均繊維径15μm(顕微鏡観察により確認した)の上記繊維状体4を前記ピン型ミルで長さ1〜2mm程度に解砕した後、前記分級機内蔵型粉砕装置(ACMパルペライザ)で平均径18〜19μm(オンライン型粒度分布測定器EPCSによる)となるよう粉砕した。その結果、体積平均径が約18.7μm、74μm以上の粗大粒子がゼロでかつ3μm以下の微粉粒子が0.63%(マイクロトラックによる)の比較例1、2よりもシャープな粒度分布を持つ粉体塗料粒子を得た。尚、得られた粉体塗料粒子の破断面を顕微鏡観察したところ、コア(芯部)の平均径は約4.7μmであった。そして、この粉体塗料粒子を鉄板(リン酸亜鉛化成処理済み)にコロナガンを用いて静電塗装した後、比較例1の焼付け温度(180℃)よりも低温の焼付け温度150℃、焼付け時間20分で焼き付けて、比較例2よりも平滑性に優れ比較例1と同等の塗膜を得た。   Next, after crushing the fibrous body 4 having an average fiber diameter of 15 μm (confirmed by microscopic observation) to a length of about 1 to 2 mm with the pin type mill, the classifier built-in type crusher (ACM pulverizer) Were pulverized so as to have an average diameter of 18 to 19 μm (according to an on-line type particle size distribution analyzer EPCS). As a result, the volume average particle size is about 18.7 μm, coarse particles having a particle size of 74 μm or more are zero, and fine particles having a particle size of 3 μm or less have a sharp particle size distribution as compared with Comparative Examples 1 and 2 of 0.63% (by Microtrac). Powder coating particles were obtained. When the fracture surface of the obtained powder coating particle was observed with a microscope, the average diameter of the core was about 4.7 μm. Then, the powder coating particles are electrostatically coated on an iron plate (having a zinc phosphate conversion treatment) using a corona gun, and then a baking temperature of 150 ° C. lower than the baking temperature of Comparative Example 1 (180 ° C.) and a baking time of 20 The film was baked in minutes to obtain a coating film that was superior in smoothness to Comparative Example 2 and equivalent to Comparative Example 1.

〔本発明2〕
ウレタン硬化型ポリエステル樹脂を、低溶融粘度品(ユピカコートGV−1442、溶融粘度23dPa・sec at200℃)に替えた以外は、本発明1と同じ組成のものをシェル側原料とした。コア側原料は、本発明1と同じ低温硬化用硬化剤(自社開発品、ブロックイソシアネート系)である。そして、これらのシェル側原料とコア側原料を、本発明1と同じ条件で平均繊維径15μmの繊維状体4を生成させ、次に、この繊維状体4を本発明1と同じ条件で粉砕して、体積平均径が約18.4μm、74μm以上の粗大粒子がゼロでかつ3μm以下の微粉粒子が0.66%(マイクロトラックによる)の比較例1、2よりもシャープな粒度分布を持つ粉体塗料粒子を得た。尚、得られた粉体塗料粒子のコア(芯部)の平均径は約4.7μmであった。そして、この粉体塗料粒子を本発明1と同じ条件で静電塗装した後、焼き付け温度150℃、焼付け時間20分で焼き付けて、比較例2よりも平滑性に優れ比較例1と同等の塗膜を得た。
[Invention 2]
A material having the same composition as that of the present invention 1 was used as a shell side raw material except that the urethane curable polyester resin was replaced with a low melt viscosity product (upica coat GV-1442, melt viscosity 23 dPa · sec at 200 ° C.). The core-side raw material is the same low-temperature curing agent (in-house developed product, block isocyanate type) as in the first invention. Then, the shell side raw material and the core side raw material are produced under the same conditions as in the present invention 1 to produce a fibrous body 4 having an average fiber diameter of 15 μm, and then the fibrous body 4 is pulverized under the same conditions as in the present invention 1. The particle size distribution is sharper than those of Comparative Examples 1 and 2 in which the volume average diameter is about 18.4 μm, coarse particles of 74 μm or more are zero, and fine particles of 3 μm or less are 0.66% (by Microtrac). Powder coating particles were obtained. In addition, the average diameter of the core (core part) of the obtained powder coating particle was about 4.7 μm. The powder coating particles were electrostatically coated under the same conditions as in the present invention 1, and then baked at a baking temperature of 150 ° C. and a baking time of 20 minutes. A membrane was obtained.

実施例2では、塗料樹脂としてエポキシ硬化型ポリエステル樹脂を用い、先ず、従来の混練及び粉砕工程によって粉体塗料を製造したもの(比較例3)を説明し、本発明として、低温硬化型の硬化剤を用いもの(本発明3)を説明する。   In Example 2, an epoxy curable polyester resin is used as a coating resin, and first, a powder coating material manufactured by a conventional kneading and pulverization process (Comparative Example 3) will be described. The one using the agent (Invention 3) will be described.

〔比較例3〕
エポキシ硬化型ポリエステル樹脂(ユピカコートGV−230、溶融粘度30dPa・sec at200℃)58重量部、エポキシ樹脂(エピコート1003F)42重量部、酸化チタン(タイペークCR−90)50重量部、流動調整剤(ポリフローS)0.6重量部、ベンゾイン0.5重量部、硬化触媒0.2重量部を、ヘンシェル型ミキサーで混合した後、2軸押出機で120℃で加熱混練し、厚さ2mm、幅35mmの塗料組成ペレットを作製した。これを、ナイフハンマ型ミル(フェザーミル)で1〜2mm程度の塊状に粉砕した後、前記分級機内蔵型粉砕機(ACMパルペライザ、粉砕ロータ回転周速度100m/sec)で平均径20〜22μm(オンライン型粒度分布測定器EPCSによる)となるよう分級機回転数のみを調整しつつ粉砕した。その結果、体積平均径が約20.8μm、74μm以上の粗大粒子が3.7%でかつ3μm以下の微粉粒子が0.13%(マイクロトラックによる)の粒度分布を持つ粉体塗料粒子を得た。そして、この粉体塗料粒子を鉄板(リン酸亜鉛化成処理済み)にコロナガンを用いて静電塗装し、焼付け温度180℃、焼付け時間20分の条件で焼き付け、目視確認で平滑な塗膜を得た。
[Comparative Example 3]
Epoxy curable polyester resin (Iupica Coat GV-230, melt viscosity 30 dPa · sec at 200 ° C.) 58 parts by weight, epoxy resin (Epicoat 1003F) 42 parts by weight, titanium oxide (Typaque CR-90) 50 parts by weight, flow regulator (Polyflow) S) 0.6 parts by weight, 0.5 parts by weight of benzoin, and 0.2 parts by weight of the curing catalyst were mixed with a Henschel mixer and then heat-kneaded with a twin screw extruder at 120 ° C., thickness 2 mm, width 35 mm. A coating composition pellet was prepared. After pulverizing this into a lump of about 1 to 2 mm using a knife hammer type mill (feather mill), an average diameter of 20 to 22 μm (with a classifier built-in type pulverizer (ACM pulverizer, crushing rotor rotational peripheral speed 100 m / sec)). It grind | pulverized adjusting only a classifier rotation speed so that it might become (on-line type particle size distribution analyzer EPCS). As a result, powder coating particles having a particle size distribution in which the volume average diameter is about 20.8 μm, coarse particles having a size of 74 μm or more are 3.7%, and fine particles having a size of 3 μm or less are 0.13% (by microtrack) are obtained. It was. The powder coating particles are electrostatically coated on an iron plate (having a zinc phosphate conversion treatment) using a corona gun, baked under conditions of a baking temperature of 180 ° C. and a baking time of 20 minutes, and a smooth coating film is obtained by visual confirmation. It was.

〔本発明3〕
エポキシ硬化型ポリエステル樹脂(ユピカコートGV−230)58重量部、酸化チタン(タイペークCR−90)25重量部、流動調整剤(ポリフローS)0.3重量部、硬化触媒0.2重量部を、ヘンシェル型ミキサーで混合し、シェル側原料とした。一方、硬化剤としてエポキシ樹脂(エピコート1003)42重量部、酸化チタン(タイペークCR−90)25重量部、流動調整剤(ポリフローS)0.3重量部、ベンゾイン0.5重量部を、ヘンシェル型ミキサーで混合し、コア側原料とした。そして、上記シェル側原料をシェル側エクストルーダ13で加熱混練し、上記コア側原料をコア側エクストルーダ13で加熱混練しつつ、単位時間当たりシェル側原料83.5重量部対コア側原料67.5重量部の比で且つ160℃の温度で、前記塗料樹脂用ノズル6と前記硬化剤用ノズル5に夫々定量供給し、平均繊維径15μm、生成速度25m/secとなるように延伸状態を調整しつつ繊維状体4を生成させる。尚、延伸用エアは、30℃の温度の外気をターボブロアで吸引し、温度調整を行なわずそのまま送風して利用した。
[Invention 3]
58 parts by weight of epoxy curable polyester resin (Iupica Coat GV-230), 25 parts by weight of titanium oxide (Typaque CR-90), 0.3 parts by weight of flow control agent (Polyflow S), 0.2 part by weight of curing catalyst, Henschel The mixture was mixed with a mold mixer to obtain a shell side raw material. On the other hand, 42 parts by weight of an epoxy resin (Epicoat 1003), 25 parts by weight of titanium oxide (Typaque CR-90), 0.3 parts by weight of a flow regulator (Polyflow S), 0.5 parts by weight of benzoin as a curing agent, Henschel type It mixed with the mixer and it was set as the core side raw material. The shell-side raw material is heated and kneaded by the shell-side extruder 13, and the core-side raw material is heated and kneaded by the core-side extruder 13, while 83.5 parts by weight of the shell-side raw material per unit time is 67.5 parts by weight. At a temperature of 160 ° C. at a ratio of the parts, while supplying a fixed amount to the coating resin nozzle 6 and the curing agent nozzle 5 respectively, while adjusting the stretched state so that the average fiber diameter is 15 μm and the production speed is 25 m / sec. A fibrous body 4 is generated. The stretching air was used by sucking outside air at a temperature of 30 ° C. with a turbo blower and blowing it without adjusting the temperature.

次に、上記平均繊維径15μm(顕微鏡観察により確認した)の上記繊維状体4を前記ピン型ミルで長さ1〜2mm程度に解砕した後、前記分級機内蔵型粉砕装置(ACMパルペライザ)で平均径20〜22μm(オンライン型粒度分布測定器EPCSによる)となるよう粉砕した。その結果、体積平均径が約21.5μm、74μm以上の粗大粒子がゼロでかつ3μm以下の微粉粒子が0.64%(マイクロトラックによる)の比較例3よりもシャープな粒度分布を持つ粉体塗料粒子を得た。尚、得られた粉体塗料粒子の破断面を顕微鏡観察したところ、コア(芯部)の平均径は約6.0μmであった。そして、この粉体塗料粒子を鉄板(リン酸亜鉛化成処理済み)にコロナガンを用いて静電塗装した後、比較例3の焼付け温度(180℃)よりも低温の焼付け温度150℃、焼付け時間20分で焼き付けて、比較例3と同等の平滑な塗膜を得た。   Next, after crushing the fibrous body 4 having an average fiber diameter of 15 μm (confirmed by microscopic observation) to a length of about 1 to 2 mm with the pin type mill, the classifier built-in type crusher (ACM pulverizer) Were pulverized so as to have an average diameter of 20 to 22 μm (according to an on-line type particle size distribution analyzer EPCS). As a result, a powder having a sharper particle size distribution than Comparative Example 3 in which the volume average diameter is about 21.5 μm, coarse particles of 74 μm or more are zero, and fine particles of 3 μm or less are 0.64% (by Microtrac). Paint particles were obtained. When the fracture surface of the obtained powder coating particle was observed with a microscope, the average diameter of the core (core part) was about 6.0 μm. Then, the powder coating particles are electrostatically coated on an iron plate (having a zinc phosphate conversion treatment) using a corona gun, and then a baking temperature 150 ° C. lower than the baking temperature (180 ° C.) of Comparative Example 3 and a baking time 20 A smooth coating film equivalent to that of Comparative Example 3 was obtained.

本発明に係る粉体塗料粒子及び粉体塗料の製造方法は、硬化剤と硬化対象の塗料樹脂とを含む熱硬化型の粉体塗料粒子に広く適用できる。   The powder coating particles and the method for producing a powder coating according to the present invention can be widely applied to thermosetting powder coating particles including a curing agent and a coating resin to be cured.

本発明に係る粉体塗料粒子の構造例を示す模式図Schematic diagram showing a structural example of powder coating particles according to the present invention 繊維状体の切断状態を示す断面図と塗料粒子の断面図Sectional view showing cut state of fibrous body and sectional view of paint particles 紡糸機の要部断面図と繊維状体の断面図Cross section of the main part of the spinning machine and cross section of the fibrous body 本発明に係る粉体塗料粒子を製造する製造設備の全体構成図Overall configuration diagram of a production facility for producing powder coating particles according to the present invention 別実施形態の繊維状体の断面図Sectional drawing of the fibrous body of another embodiment 本発明に係る粉体塗料粒子の製造に用いる粉砕装置の構成図Configuration diagram of a pulverizer used for producing powder coating particles according to the present invention 本発明に係る粉体塗料粒子の製造に用いる粉砕装置の構成図Configuration diagram of a pulverizer used for producing powder coating particles according to the present invention

符号の説明Explanation of symbols

1 硬化剤
2 塗料樹脂
3 粉体塗料粒子
4 繊維状体
5 硬化剤用ノズル
6 塗料樹脂用ノズル
8 繊維切断装置
9 固定刃
9a エッジ
10 回転刃
10a 切断刃
11 ベルトコンベア
12a 硬化剤供給部
12b 塗料樹脂供給部
13 エクストルーダ13
14 ギアポンプ
20 紡糸機
21 気体導入口
22 排出口
23 本体
24 筒状部材
25 粉砕部材
26 回転体
27 ライナ
28 投入口
30 分級機構
31 回転体
32 分級用ファン
41 固定ディスク
41a 固定ピン
42 回転ディスク
42a 移動ピン
43 供給口
A 粉砕室
B 分級室
C 粉砕室
DESCRIPTION OF SYMBOLS 1 Hardener 2 Paint resin 3 Powder coating particle 4 Fibrous material 5 Hardener nozzle 6 Paint resin nozzle 8 Fiber cutting device 9 Fixed blade 9a Edge 10 Rotary blade 10a Cutting blade 11 Belt conveyor 12a Hardener supply part 12b Paint Resin supply unit 13 Extruder 13
DESCRIPTION OF SYMBOLS 14 Gear pump 20 Spinner 21 Gas introduction port 22 Discharge port 23 Main body 24 Cylindrical member 25 Crushing member 26 Rotating body 27 Liner 28 Input port 30 Classification mechanism 31 Rotating body 32 Classification fan 41 Fixed disk 41a Fixed pin 42 Rotating disk 42a Movement Pin 43 Supply port A Crushing chamber B Classification chamber C Crushing chamber

Claims (4)

硬化剤と硬化対象の塗料樹脂とが芯部から表面に亘って交互に積層されている粉体塗料粒子。Powder coating particles in which a curing agent and a coating resin to be cured are alternately laminated from the core portion to the surface. 前記塗料樹脂が前記硬化剤の表面を覆っている請求項1記載の粉体塗料粒子。The powder coating particle according to claim 1, wherein the coating resin covers a surface of the curing agent. 前記硬化剤と前記塗料樹脂が芯部から表面に亘って交互に積層されている繊維状体を作製する繊維化工程と、前記繊維状体を粉砕して粉体塗料粒子を作製する粒子化工程とを有する請求項1又は2記載の粉体塗料粒子の製造方法。A fiberizing step for producing a fibrous body in which the curing agent and the coating resin are alternately laminated from the core to the surface, and a granulating step for producing powder coating particles by pulverizing the fibrous body. The method for producing powder coating particles according to claim 1 or 2, wherein: 前記繊維化工程では、前記硬化剤を押し出す硬化剤用ノズルと、前記塗料樹脂を押し出す塗料樹脂用ノズルとを交互に同心状に配置して、前記硬化剤と前記塗料樹脂が芯部から表面にわたって層状に形成された断面構造の繊維状体を作製する請求項3に記載の粉体塗料粒子の製造方法。In the fiberizing step, a curing agent nozzle for extruding the curing agent and a coating resin nozzle for extruding the coating resin are alternately arranged concentrically so that the curing agent and the coating resin extend from the core to the surface. The manufacturing method of the powder coating material particle of Claim 3 which produces the fibrous body of the cross-sectional structure formed in the layer form.
JP2004265669A 2004-09-13 2004-09-13 Powder coating particle and method for producing powder coating Expired - Fee Related JP4743746B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004265669A JP4743746B2 (en) 2004-09-13 2004-09-13 Powder coating particle and method for producing powder coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004265669A JP4743746B2 (en) 2004-09-13 2004-09-13 Powder coating particle and method for producing powder coating

Publications (2)

Publication Number Publication Date
JP2006077210A JP2006077210A (en) 2006-03-23
JP4743746B2 true JP4743746B2 (en) 2011-08-10

Family

ID=36156927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004265669A Expired - Fee Related JP4743746B2 (en) 2004-09-13 2004-09-13 Powder coating particle and method for producing powder coating

Country Status (1)

Country Link
JP (1) JP4743746B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4895089B2 (en) * 2005-11-30 2012-03-14 ホソカワミクロン株式会社 Method for producing powder coating

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000063705A (en) * 1998-08-18 2000-02-29 Kansai Paint Co Ltd Thermosetting powder coating material
JP2003512479A (en) * 1999-05-19 2003-04-02 ビー・エイ・エス・エフ、コーポレーション Powder slurry coating composition
JP2003119427A (en) * 2001-10-17 2003-04-23 Hosokawa Micron Corp Method for producing powder coating material
JP2005272723A (en) * 2004-03-25 2005-10-06 Nippon Paint Co Ltd Powder coating and method for producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000063705A (en) * 1998-08-18 2000-02-29 Kansai Paint Co Ltd Thermosetting powder coating material
JP2003512479A (en) * 1999-05-19 2003-04-02 ビー・エイ・エス・エフ、コーポレーション Powder slurry coating composition
JP2003119427A (en) * 2001-10-17 2003-04-23 Hosokawa Micron Corp Method for producing powder coating material
JP2005272723A (en) * 2004-03-25 2005-10-06 Nippon Paint Co Ltd Powder coating and method for producing the same

Also Published As

Publication number Publication date
JP2006077210A (en) 2006-03-23

Similar Documents

Publication Publication Date Title
US5942170A (en) Process of and apparatus for preparing thermosetting polymer pellets
KR900005175B1 (en) Particulate material treating apparatus
JP4891574B2 (en) Crusher and powder manufacturing method using the crusher
JPH06500580A (en) Powder coating composition and method for producing the same
CN103480463A (en) Centrifugation type separation mesh-free material and bead separation medium stirring mill
CN104258929B (en) A kind of milling equipment
CN110193893A (en) The preparation method of polymer matrix spherical powder
CN112221622A (en) High-performance bead mill
CN204816676U (en) Flour mill
CN108569843A (en) A kind of device and method producing flakey material with mineral melt
JP4743746B2 (en) Powder coating particle and method for producing powder coating
CN1042013C (en) Method for manufacturing thermoplastic synthetic resin impalpabale powder and apparatus for the same
JP2007270043A (en) Powdered coating particle and method for producing the same
JP4363298B2 (en) Toner production method
CN211303228U (en) Vertical shaft shearing crusher
CN102363333B (en) Equipment for producing inorganic matter fine particle-coated plastic particles
US6631861B1 (en) Grinding device for resin composition
JP4895089B2 (en) Method for producing powder coating
JP4522244B2 (en) Particle production equipment
JP4108876B2 (en) Method and apparatus for extrusion molding of hollow resin molded plate
JP3625256B2 (en) Resin composition milling equipment
JP4363297B2 (en) Toner manufacturing method and manufacturing apparatus
CN220198006U (en) Granulator for dry powder preparation of ceramics
JP2009262003A5 (en)
JP4569302B2 (en) Manufacturing method and manufacturing apparatus for resin molding material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070816

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110506

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110506

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees