JP4363297B2 - Toner manufacturing method and manufacturing apparatus - Google Patents

Toner manufacturing method and manufacturing apparatus Download PDF

Info

Publication number
JP4363297B2
JP4363297B2 JP2004290948A JP2004290948A JP4363297B2 JP 4363297 B2 JP4363297 B2 JP 4363297B2 JP 2004290948 A JP2004290948 A JP 2004290948A JP 2004290948 A JP2004290948 A JP 2004290948A JP 4363297 B2 JP4363297 B2 JP 4363297B2
Authority
JP
Japan
Prior art keywords
toner
melt
mixing
mixed
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004290948A
Other languages
Japanese (ja)
Other versions
JP2006106235A (en
Inventor
直俊 木下
清 野城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hosokawa Micron Corp
Original Assignee
Hosokawa Micron Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hosokawa Micron Corp filed Critical Hosokawa Micron Corp
Priority to JP2004290948A priority Critical patent/JP4363297B2/en
Publication of JP2006106235A publication Critical patent/JP2006106235A/en
Application granted granted Critical
Publication of JP4363297B2 publication Critical patent/JP4363297B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、複数の成分が溶融混合されたトナー原料からトナー粒子を作製するトナーの製造方法、及び、当該トナーの製造方法を実施するためのトナーの製造装置に関する。  The present invention relates to a toner production method for producing toner particles from a toner raw material in which a plurality of components are melt-mixed, and a toner production apparatus for carrying out the toner production method.

トナーの製造方法として、一般的に、溶融混練機等を用いて、先ずバインダ樹脂、着色剤(顔料、染料)、ワックス等の複数の成分からなるトナー原料を各成分が均一に分散するように溶融混合させ、その後冷却されたトナー原料の混合物を機械的な粉砕手段を用い、粗粉砕及び微粉砕により所望の粒度のトナー粒子に粉砕する方法が実施されている。
この従来のトナー製造方法において、溶融混合物が混練機外に吐き出された後、比較的短い時間(例えば、5秒〜10秒)のうちにワックスの融点よりも低い温度での圧延冷却を開始させることにより、溶融混合物中のワックスが冷却過程で再凝集して分散径が大きくなることを防止する技術が提案されている(特許文献1参照)。
As a toner production method, generally, using a melt kneader or the like, first, a toner raw material composed of a plurality of components such as a binder resin, a colorant (pigment, dye), and a wax is dispersed uniformly. A method in which a mixture of melted and then cooled toner raw materials is pulverized into toner particles having a desired particle size by coarse pulverization and fine pulverization using mechanical pulverization means.
In this conventional toner manufacturing method, after the molten mixture is discharged out of the kneader, rolling cooling is started at a temperature lower than the melting point of the wax within a relatively short time (for example, 5 seconds to 10 seconds). Thus, a technique for preventing the wax in the molten mixture from re-aggregating in the cooling process and increasing the dispersion diameter has been proposed (see Patent Document 1).

特開2001−142248号公報JP 2001-142248 A

特許文献1に記載のトナーの製造方法によれば、溶融混合物におけるワックスの凝集をある程度抑制する効果は期待できるが、溶融混合の終了(混練機出口)から冷却開始までに最少でも5秒の時間差があること、及び、圧延冷却では溶融混合物の細部(圧延物の内部)に冷却作用が及びにくいことから、必ずしも十分な再凝集防止効果が得られない可能性がある。  According to the toner production method described in Patent Document 1, an effect of suppressing the aggregation of wax in the molten mixture to some extent can be expected, but a time difference of at least 5 seconds from the end of the melt mixing (kneader exit) to the start of cooling. In addition, there is a possibility that a sufficient re-aggregation preventing effect cannot always be obtained due to the fact that the cooling action does not easily reach the details of the molten mixture (inside the rolled product) by rolling cooling.

本発明は、上記実情に鑑みてなされたものであり、その目的は、溶融混合されたトナー原料の各成分の再凝集を有効に防止して、トナー原料の各成分が均一に分散されたトナー粒子を製造することができるトナーの製造方法、及び、該製造方法に適したトナーの製造装置を提供することにある。  The present invention has been made in view of the above circumstances, and an object of the present invention is to effectively prevent re-aggregation of each component of the melt-mixed toner material, and toner in which each component of the toner material is uniformly dispersed It is an object of the present invention to provide a toner manufacturing method capable of manufacturing particles and a toner manufacturing apparatus suitable for the manufacturing method.

上記目的を達成するための本発明に係るトナーの製造方法の第一特徴構成は、複数の成分からなるトナー原料を溶融混合する溶融混合工程と、前記溶融混合工程で得られた前記トナー原料の溶融混合物をノズルから押し出して繊維状に形成するとともに冷却する繊維化冷却工程と、前記繊維化冷却工程で繊維状化及び冷却された繊維状物を粉砕してトナー粒子を作製する粉砕工程とを有するトナーの製造方法であって、前記トナー原料を混練機 により溶融混練した後、前記繊維化冷却工程の前に静止型ミキサ及び該静止型ミキサの出 口から分岐した多段の分配流路を有する流路構造体によって溶融混合する点にある。In order to achieve the above object, a first characteristic configuration of a toner production method according to the present invention includes a melt mixing step of melting and mixing a toner raw material comprising a plurality of components, and the toner raw material obtained in the melt mixing step. and fiberizing the cooling step of cooling and forming into fibers by extruding the molten mixture through a nozzle, and milling the fibrous reduction and cooled fibrous material in the fiberizing cooling step and a milling step of making toner particles a method of manufacturing a toner having, was melt-kneaded by a kneader said toner material comprises a multi-stage distribution channel of branching from static mixer and exit of the static mixer prior to the fiberizing cooling step It is in the point of melting and mixing by the channel structure .

すなわち、溶融混合工程において複数の成分からなるトナー原料の各成分が均一に分散するように溶融混合された後、繊維化冷却工程において上記トナー原料の溶融混合物が 維状化されるとともに冷却されるためトナー原料の各成分の再凝集が防止され、均一な分散状態を維持した繊維状物が得られる。そして、この繊維状物を粉砕工程において粉砕することにより、各成分が均一に分散された所望の粒度のトナー粒子が作製される。
従って、溶融混合されたトナー原料の各成分の再凝集を有効に防止して、トナー原料の各成分が均一に分散されたトナー粒子を製造することができるトナーの製造方法が提供される。
That is cooled with after being melt-mixed so that each component of the toner material are uniformly dispersed composed of a plurality of components, the molten mixture of the toner material in the fiber of the cooling step is fiber 維状 of the melt-mixing step Therefore , re-aggregation of each component of the toner raw material is prevented, and a fibrous material maintaining a uniform dispersed state can be obtained. Then, the fibrous material is pulverized in the pulverization step, thereby producing toner particles having a desired particle size in which the respective components are uniformly dispersed.
Accordingly, there is provided a toner manufacturing method capable of effectively preventing reaggregation of each component of the melted and mixed toner material and manufacturing toner particles in which each component of the toner material is uniformly dispersed.

かつ、前記繊維化冷却工程において、前記トナー原料の溶融混合物はノズルから押し出 されて繊維状に形成された後、冷却される。
すなわち、前記繊維化冷却工程において前記トナー原料の溶融混合物はノズルによっ て押し出されて繊維状に形成された後、冷却されることで連続的に効率良く繊維状化することができ、粉砕工程では、長い繊維状物を切断作用等により粉砕するので、粉砕効率が高くなる。
従って、好適なトナーの製造方法が提供される。
And, in the fiberizing cooling step, the molten mixture of the toner raw material after being formed is pushed out from the nozzle into fibers, it is cooled.
That is, in the fibers of the cooling process, the molten mixture of the toner raw material after being formed is pushed by the nozzle into fibers, continuous can be efficiently fibrous reduction in Rukoto it is cooled, pulverized In the process, since the long fibrous material is pulverized by cutting action or the like, the pulverization efficiency is increased.
Accordingly, a suitable toner manufacturing method is provided.

さらに、前記溶融混合工程において、前記トナー原料を混練機により溶融混練した後、Furthermore, in the melt mixing step, after the toner raw material is melt-kneaded by a kneader, 前記繊維化冷却工程の前に静止型ミキサ及び該静止型ミキサの出口から分岐した多段の分Prior to the fiber cooling step, the stationary mixer and the multistage branch branched from the outlet of the stationary mixer 配流路を有する流路構造体によって溶融混合する。Melting and mixing is performed by a channel structure having a distribution channel.
すなわち、複数の成分からなるトナー原料は、先ず混練機において強い力を受けて十分In other words, a toner material composed of a plurality of components is first subjected to a strong force in a kneading machine に溶融混練された後、混練機の後段で繊維化冷却工程の前段に位置した静止型ミキサ及びAnd a stationary mixer located after the kneading machine and before the fiber cooling process, 該静止型ミキサの出口から分岐した多段の分配流路を有する流路構造体において混合作用Mixing action in a channel structure having multistage distribution channels branched from the outlet of the static mixer を受けてから繊維化冷却工程に送られるので、混練機によって得られるトナー原料の溶融And then sent to the fiber cooling process, so that the toner raw material obtained by the kneader is melted. 混合物を静止型ミキサ及び該静止型ミキサの出口から分岐した多段の分配流路を有する流A flow having a multistage distribution flow path for branching the mixture from the stationary mixer and the outlet of the stationary mixer 路構造体によって良好な溶融混合状態を維持しつつ繊維化冷却工程に送ることができる。The road structure can be sent to the fiber cooling process while maintaining a good melt-mixed state.
従って、トナー原料の各成分が均一に分散されたトナー粒子の製造に一層適したトナーTherefore, a toner more suitable for producing toner particles in which each component of the toner raw material is uniformly dispersed の製造方法が提供される。A manufacturing method is provided.

削除Delete

削除Delete

削除Delete

削除Delete

削除Delete

同第特徴構成は、上記第一特徴構成に加えて前記溶融混合工程において、前記トナ ー原料のうちの所定成分を除いた各成分を前記混練機で溶融混合した後、当該混合物に対 して前記トナー原料の所定成分を前記静止型ミキサ又は前記多段の分配流路を有する流路 構造体で溶融混合させる点にある。
すなわち、複数の成分からなるトナー原料のうち所定成分を除いた各成分を混練機で溶融混合させた後で当該トナー原料の所定成分を加えて静止型ミキサ又は多段の分配流路を 有する流路構造体で溶融混合するので、例えば、長時間の溶融混合によって特性が変化もしくは劣化するような成分については、後混合により溶融混合の時間を短くして、特性の変化や劣化を抑制することができ、また、短時間で他の成分と溶融混合するような成分については、後混合により不要な混合エネルギーの消費を抑えることができる。
従って、トナー原料の各成分の特性に合わせて溶融混合工程における各成分の投入構成を適切に設定できるトナーの製造方法が提供される。
The Second characterizing feature, in addition to the first Ichitoku Cho構formed in the melt-mixing step, after the components excluding the predetermined component of the toner over the raw material was melt mixed in the kneader, the mixture pair to certain predetermined components of the toner material to a point to be melt mixed in the flow channel structure having a distribution channel of the static mixer or the multi-stage.
That is, a flow path having a static mixer or a multistage distribution flow path after melted and mixed with a kneader each component excluding a predetermined component from a toner raw material composed of a plurality of components and adding the predetermined component of the toner raw material Because it is melt-mixed in the structure , for example, for components whose characteristics change or deteriorate due to long-term melt-mixing, it is possible to shorten the melt-mixing time by post-mixing to suppress changes in characteristics and deterioration. For components that can be melt mixed with other components in a short time, unnecessary mixing energy consumption can be suppressed by post-mixing.
Therefore, a toner manufacturing method is provided in which the input configuration of each component in the melt mixing process can be appropriately set in accordance with the characteristics of each component of the toner raw material.

本発明に係るトナーの製造方法及び製造装置の実施形態について、図面に基づいて説明する。  Embodiments of a toner manufacturing method and a manufacturing apparatus according to the present invention will be described with reference to the drawings.

本発明のトナーの製造方法は、図1に示すように、バインダ樹脂、着色剤、ワックス等の複数の成分からなるトナー原料を溶融混合する溶融混合工程と、溶融混合工程で得られたトナー原料の溶融混合物を繊維状化するとともに冷却する繊維化冷却工程と、繊維化冷却工程で繊維状化及び冷却された繊維状物を粉砕してトナー粒子を作製する粉砕工程とを有する。そして、上記繊維化冷却工程では、トナー原料の溶融混合物を繊維状に形成するとともに、当該繊維状物に冷風を吹き付けて冷却する。尚、上記粉砕工程では、実際には分級機能を備えた粉砕機等を用いて粉砕物を分級し、所望の粒度のトナー粒子を得るようにしている。また、上記のように繊維状物を粉砕して作製されるトナー粒子は柱状(円柱状など)に形成されるので、粉砕工程の前や後に、適宜流動性向上剤等を外添する外添処理や球形化処理等を施す。As shown in FIG. 1, the toner production method of the present invention comprises a melt mixing step of melting and mixing a toner material composed of a plurality of components such as a binder resin, a colorant, and a wax, and a toner material obtained in the melt mixing step. and a grinding step of producing toner particles by the molten mixture was pulverized and fiberizing step of cooling while fibrous reduction, fibrous reduction in fiberization cooling step and the cooled fibrous material. Then, in the above fiberizing cooling step, Rutotomoni forming form a melt mixture of toner material into fibers, cooled by blowing cold air to the fibrous material. In the above pulverization step, the pulverized product is actually classified using a pulverizer having a classification function to obtain toner particles having a desired particle size. Further, since the toner particles prepared by pulverizing the fibrous material as described above are formed in a columnar shape (such as a columnar shape), an external additive appropriately adding a fluidity improver or the like before or after the pulverization step. Processing, spheroidization, etc. are performed.

次に、本発明のトナー製造装置は、図2に示すように、上記複数の成分からなるトナー原料を溶融混合する溶融混合部10と、前記トナー原料の溶融混合物を繊維状化する繊維化部20と、繊維状化された前記繊維状物を冷却する冷却部30と、前記繊維状物を粉砕する粉砕部40とを備えている。
そして、図1のトナーの製造方法と対応させると、上記溶融混合部10によって、溶融混合工程が実行され、上記繊維化部20と冷却部30によって、繊維化冷却工程が実行され、上記粉砕部40によって粉砕工程が実行される。
Next, the toner production apparatus of the present invention, as shown in FIG. 2, a melt mixing unit 10 for melt-mixing the toner materials composed of a plurality of components, fiberization unit for fibrous the molten mixture of the toner materials 20, and a cooling unit 30 for cooling the fibrous material that is fibrous reduction, and a crushing section 40 for crushing the fibrous material.
Then, when the correspondence with the manufacturing method of the toner 1, by the melt mixing unit 10, the melt mixing process is performed by the fiberizing unit 20 and the cooling unit 30, fiberization cooling step is performed, the grinding zone By 40, the grinding step is executed.

具体的には、混合装置(例えば、ホソカワミクロン(株)製サイクロミックス)9、ホッパ1A付で内部に回転スクリュー15を有する一軸型エクストルー1、静止型ミキサ2、静止型ミキサ2の出口から分岐した多段の分配流路3Aを有する流路構造体3などが設けられ、一軸型エクストルー1の出口と静止型ミキサ2の入口の間にはモータ5で駆動されるギアポンプ4が配置されている。なお、分配流路3Aの最終段の各流路出口に対応させて、押出し用のノズル6が複数並置されて設けられている。また、一軸型エクストルー1、ギアポンプ4、静止型ミキサ2、流路構造体3には、図示は省略するが、トナー原料をバインダ樹脂の融点以上の高温、例えば130℃〜240℃程度に加熱して低粘度にするためのヒータを備えている。Specifically, it branched mixing apparatus (e.g., Hosokawa Micron Co. Cyclomix) 9, a single shaft Ekusutoru da 1 having a rotating screw 15 therein dated hopper 1A, static mixer 2, the outlet of the static mixer 2 and such flow path structure 3 having a multi-stage distribution channel 3A is provided with, between the inlet of the static mixer 2 and the outlet of the single shaft Ekusutoru da 1 are arranged a gear pump 4 driven by a motor 5 . Note that a plurality of extrusion nozzles 6 are provided side by side so as to correspond to the respective channel outlets in the final stage of the distribution channel 3A. Moreover, single shaft Ekusutoru Da 1, a gear pump 4, the static mixer 2, the flow path structure 3 is not shown, heating the toner material temperature higher than the melting point of the binder resin, for example, about 130 ° C. to 240 ° C. And a heater for reducing the viscosity.

上記装置において、前記トナー原料は、ホッパ1Aから一軸型エクストルー1内に投入されると、ヒータによって加熱されて溶融状態となり混合されながら出口側に送られる。一軸型エクストルー1から送り出されたトナー原料の溶融混合物は、ギアポンプ4で圧力及び押し出し量を調整された後、静止型ミキサ2内の流路と多段の分配流路3Aを通流する間に混合が促進され、トナー原料の各成分が均一に細かく分散した状態になる。そして、複数のノズル6から下向きに繊維状に押し出されるとともに図示しない延伸用エアー吹き出し装置から吹き出す熱風によって延伸された繊維状物が、送風機7から冷風を吹き付けられて冷却される。なお、下方に落下した繊維状物は受け容器8内に回収され、所定量ごとに粉砕機40に投入されて粉砕処理される。In the above apparatus, the toner materials, once introduced from the hopper 1A to the single shaft Ekusutoru Da 1, is fed to the outlet side while being mixed becomes a molten state is heated by the heater. Melt mixture of toner material fed from the single shaft Ekusutoru Da 1, after being adjusted pressure and an extrusion rate of a gear pump 4, a flow path and a multi-stage distribution channel 3A in static mixer 2 during the flowing Mixing is promoted, and each component of the toner raw material is uniformly and finely dispersed. The fibrous material which is oriented by hot air blown from drawing air blowoff device (not shown) for with extruded into fibers downwardly from a plurality of nozzles 6 is cooled from the blower 7 is blown cold air. Incidentally, fiber維状product that has fallen down is collected in the receiving vessel 8, it is pulverized is put into pulverizer 40 for each predetermined amount.

尚、上記静止型ミキサ2は、公知の静止型ミキサを使用することができ、具体的には、図2に示すように、螺旋状の流路を形成するように捩られた曲面を有する羽根体14が、トナー原料の流れ方向に沿って隣接するもの同士で螺旋の捩れ角度を反転させながら複数個(図2の例では3個)設けられた構造である。  As the static mixer 2, a known static mixer can be used. Specifically, as shown in FIG. 2, a blade having a curved surface twisted so as to form a spiral flow path. A plurality of bodies 14 (three in the example shown in FIG. 2) are provided while adjacent to each other along the flow direction of the toner material while reversing the twist angle of the spiral.

以上より、溶融混合部10が、一軸型エクストルー1、静止型ミキサ2及び流路構造体3によって構成される。また、繊維化部20が、前記トナー原料の溶融混合物を押し出して繊維状に形成する前記ノズル6と延伸用エアー吹き出し装置によって構成され、冷却部30が、冷風を吹き付ける上記送風機7で構成される。さらに、粉砕機40が粉砕部40に対応する。即ち、溶融混合部10が、可動式の混練部材(具体的には、回転スクリュー15)によって前記トナー原料を混練する混練機としての一軸型エクストルー1と、当該混練機(一軸型エクストルー1)の後段でかつ前記繊維化部20の前段に位置した静止型ミキ2とを備えている。Thus, melt mixing unit 10 is constituted by a single shaft Ekusutoru Da 1, static mixers 2 and the flow path structure 3. Further, the fiberizing unit 20 is configured by the nozzle 6 that extrudes the molten mixture of the toner raw material to form a fiber and the drawing air blowing device, and the cooling unit 30 is configured by the blower 7 that blows cold air. . Further, the pulverizer 40 corresponds to the pulverization unit 40. That is, the melt-mixing unit 10 (specifically, rotating screw 15) movable mixing member with single shaft Ekusutoru da 1 as kneader for kneading the toner materials by the kneading machine (single shaft Ekusutoru da 1 and a subsequent stage) and a static mixer for 2 located in front of the fiberizing unit 20.

上記粉砕機40は、例えば、ホソカワミクロン(株)製ACMパルペライザで構成される。具体的には、図3に示すように、下方に気体導入口41を設け上方に気体及び粉体の排出口42を設けた本体43の内部を筒状部材44によって外側の粉砕室Aと内側の分級室Bとに区分し、粉砕室Aが粉砕部材45を備えた回転体45Aを内蔵するとともに下方側で前記気体導入口41に連通し、分級室Bが粗粉と微粉を分級して微粉のみを通過させる分級機構46を経由して前記排出口42に連通している。尚、原料(トナー原料の繊維状物)は本体43の横側部に設けた投入口43Aから粉砕室Aに投入する。また、排出口42は図示しないバグフィルタ内蔵の集塵機を通して外部に向けて吸引排気されている。上記回転体45Aは上下軸心周りに回転自在であり、回転体45Aの外周部に、縦型ハンマータイプの前記粉砕部材45が粉砕室Aの内壁部に装着されたライナ47と間隙を隔てる状態で複数取付けられている。そして、上記粉砕室Aにおいて原料が粉砕部材45から機械的衝撃力を受けて粉砕される。  The pulverizer 40 is composed of an ACM pulverizer manufactured by Hosokawa Micron Corporation, for example. Specifically, as shown in FIG. 3, the inside of a main body 43 provided with a gas inlet 41 on the lower side and a gas and powder outlet 42 on the upper side is connected to the outer grinding chamber A and the inner side by a cylindrical member 44. The pulverizing chamber A contains a rotating body 45A provided with a pulverizing member 45 and communicates with the gas inlet 41 on the lower side, and the classifying chamber B classifies coarse powder and fine powder. It communicates with the discharge port 42 via a classification mechanism 46 that allows only fine powder to pass through. The raw material (the fibrous material of the toner raw material) is fed into the pulverizing chamber A through a charging port 43A provided on the lateral side of the main body 43. The discharge port 42 is sucked and exhausted to the outside through a dust collector with a bag filter (not shown). The rotating body 45A is rotatable about the vertical axis, and the vertical hammer type pulverizing member 45 is separated from the liner 47 mounted on the inner wall of the pulverizing chamber A on the outer periphery of the rotating body 45A. Several are installed in. In the crushing chamber A, the raw material is crushed by receiving a mechanical impact force from the crushing member 45.

上記分級機構46は、上下軸心周りに回転自在な回転体48の外周部に複数の分級羽根49を立設させた構造であり、粉砕物に作用する分級室Bから排出口42に向かう気流の搬送力と回転体48によって付与される遠心力の差によって微粉と粗粉を分離する。即ち、粉砕室Aから分級室Bに流入した粉砕物のうち、気流による搬送力の方が大きく作用する微粉は分級羽根49を通過して排出口42から排出され、遠心力の方が大きく作用する粗粉は分級羽根49を通過せずに筒状部材44の下方から粉砕室Aに戻る。  The classifying mechanism 46 has a structure in which a plurality of classifying blades 49 are erected on the outer peripheral portion of a rotating body 48 that is rotatable around a vertical axis, and an air flow from the classifying chamber B acting on the pulverized material toward the discharge port 42. The fine powder and the coarse powder are separated by the difference between the conveying force and the centrifugal force applied by the rotating body 48. That is, among the pulverized material flowing into the classification chamber B from the pulverization chamber A, the fine powder having a greater conveying force due to the airflow passes through the classification blade 49 and is discharged from the discharge port 42, and the centrifugal force has a larger effect. The coarse powder to be returned returns to the crushing chamber A from below the cylindrical member 44 without passing through the classification blade 49.

図4に、トナー粒子12中においてワックス粒子11が良好に分散されてワックス粒子11の分散径が小さい状態(イ)と、ワックス粒子11が再凝集して分散性が悪くなり、ワックス粒子11の分散径が大きくなった状態(ロ)の例を模式的に示す。そして、ワックス粒子11の分散性が悪いトナー粒子12は、ワックス粒子部分で割れ易いため、現像剤としての耐久性が劣る不利がある。  FIG. 4 shows that the wax particles 11 are well dispersed in the toner particles 12 and the dispersion diameter of the wax particles 11 is small (A), and the wax particles 11 are re-agglomerated to deteriorate the dispersibility. An example of a state (B) in which the dispersion diameter is increased is schematically shown. The toner particles 12 having a low dispersibility of the wax particles 11 are liable to break at the wax particle portion, and thus have a disadvantage that the durability as a developer is inferior.

図5は、トナー粒子中における顔料の分散性が良い場合と分散性が悪い場合とで、トナー粒子の光透過率特性が違ってくることを示すデータの一例である。分散性が良好な場合は透過率が高くなるのに対し、分散性が不良の場合は透過率が低くなる。特にカラー用トナーの場合には、各色のトナーが転写材上に層状に重なって状態で形成されるので、トナーの透過率が低いと下側の層の色が上方に現れず、カラー画像として良好な色再現範囲が得られない不都合が生じる。  FIG. 5 is an example of data indicating that the light transmittance characteristics of the toner particles differ depending on whether the dispersibility of the pigment in the toner particles is good or not. When the dispersibility is good, the transmittance is high, whereas when the dispersibility is poor, the transmittance is low. In particular, in the case of color toners, toner of each color is formed in a layered state on the transfer material. Therefore, when the toner transmittance is low, the color of the lower layer does not appear upward, and a color image is obtained. There arises a disadvantage that a good color reproduction range cannot be obtained.

削除
〔別実施形態〕
Delete (another embodiment)

上記実施形態では、繊維化冷却工程や冷却部30においてトナー原料の繊維状物を冷却する手段として、冷風を吹き付ける送風機7で構成したが、ノズル6から押し出すときの押出し速度が非常に高速である(例えば、40m/sec)ので、上記のような送風機を設けなくても、押出した周囲の温度条件を常温又は低温条件に維持することによって冷却させることも可能である。In the above embodiment, the fiberizing cooling step and the cooling section 30, as a means for cooling the fibrous material of the toner material, is constituted by a blower 7 for blowing cold air, the extrusion speed is very fast when extruding from the nozzle 6 Since there is some (for example, 40 m / sec), it is also possible to cool by maintaining the temperature condition of the extruded surroundings at a normal temperature or a low temperature condition without providing a blower as described above.

上記実施形態では、粉砕工程や粉砕部40において、上記繊維状物をいったん容器8に一定量回収してから、粉砕機40に投入するように構成したが、繊維状物を連続的に粉砕機40に投入するように構成することも可能である。In the above embodiment, in the pulverization step and the pulverization unit 40, the fibrous material is once collected in the container 8 and then charged into the pulverizer 40. However , the fibrous material is continuously pulverized. It is also possible to configure so that it is charged to 40.

上記実施形態では、溶融混合部10を、トナー原料の各成分を最初から一緒に溶融混合するよう構成したが、トナー原料のうちの所定成分を除いた各成分を溶融混合した後、当該混合物に対して前記トナー原料の所定成分を溶融混合させるよう構成してもよい。ここで、後で混合する成分としては、バインダ樹脂以外のワックス、顔料・染料等の着色剤、荷電制御剤、シリカ等の粉砕助剤など適宜選択することができる。
溶融混合部10で上記所定成分を後混合する位置は、混練機(一軸型エクストルー1)の出口箇所から静止型ミキ2の入口箇所までの範囲、静止型ミキ2の内部流路、静止型ミキ2の出口箇所から流路構造体3の入口箇所までの範囲、流路構造体3の内部流路3Aにおいて任意の位置に設定できる。図6には、ワックスを除いたトナー原料の各成分を一軸型エクストルー1で溶融混合した後、ワックスを静止型ミキ2の入口箇所から混合する例を示している。図6中、16はワックス用の溶融装置、17はワックス用のギアポンプである。
In the above embodiment, the melt mixing unit 10 is configured to melt and mix the components of the toner raw material together from the beginning. However, after melt mixing the components of the toner raw material excluding the predetermined components, the mixture is added to the mixture. On the other hand, a predetermined component of the toner raw material may be melted and mixed. Here, as components to be mixed later, waxes other than the binder resin, colorants such as pigments and dyes, charge control agents, and grinding aids such as silica can be appropriately selected.
Position of mixing post the predetermined component in the melt mixing unit 10, kneader range from the exit point to the entrance point of the static mixer Sa 2 (single shaft Ekusutoru Da 1), the internal flow path of the static mixer support 2, range from the exit point of the static mixer support 2 to the inlet portion of the flow path structure 3, in internal channel 3A of the flow path structure 3 can be set at an arbitrary position. 6, after the melt mixing the components of toner material excluding the wax single shaft Ekusutoru da 1 shows an example of mixing the wax from the inlet portion of the static mixer Sa 2. In FIG. 6, 16 is a melting apparatus for wax, and 17 is a gear pump for wax.

なお、溶融混合工程や溶融混合部10において使用される溶融混合用の装置は上記実施形態で用いた装置に限らず、各種の装置が使用できる。  In addition, the apparatus for melt mixing used in the melt mixing process or the melt mixing unit 10 is not limited to the apparatus used in the above embodiment, and various apparatuses can be used.

次に、本発明に係るトナーの製造方法の実施例について、カラー用の4色のトナー(ブラック、シアン、マゼンタ、イエロー)を例にして説明する。  Next, an example of a toner manufacturing method according to the present invention will be described by taking four color toners (black, cyan, magenta, yellow) as an example.

(ブラックトナー)
ポリエステル樹脂(Tg:64℃、流出開始温度(島津製作所製フローテスタにより測定、以下同様):119℃)100重量部、カーボンブラック10重量部、サリチル酸亜鉛塩3重量部、及びカルナウバワックス5重量部を、前記混合装置9で予備混合した後、一軸型エクストルー1に供給して溶融し、ギアポンプ4で圧力調整した後(ギアポンプ後段で約4.2MPa)、温度150℃の溶融状態で静止型ミキサ2に押し出し供給した。そして、静止型ミキサ2での溶融混合を経て、孔径300μmのノズル6から押し出しつつ熱風により線径5.0μmとなるように延伸したのち冷却して、微粒子前駆体繊維を得た。尚、このときの繊維の生成速度は、押し出し量と繊維径から約40m/secと算出された。
(Black toner)
100 parts by weight of a polyester resin (Tg: 64 ° C., outflow start temperature (measured by a flow tester manufactured by Shimadzu Corporation, hereinafter the same): 119 ° C.), 10 parts by weight of carbon black, 3 parts by weight of zinc salicylate, and 5 parts by weight of carnauba wax the parts, after pre-mixed in the mixing device 9, and melted by supplying a single shaft Ekusutoru da 1, after pressure regulation by the gear pump 4 (about 4.2MPa a gear pump below), still in the melt temperature 0.99 ° C. The extrusion was supplied to the mold mixer 2. Then, after being melt-mixed in the static mixer 2, it was stretched to a wire diameter of 5.0 μm with hot air while being extruded from a nozzle 6 having a pore diameter of 300 μm, and then cooled to obtain fine particle precursor fibers. The fiber generation rate at this time was calculated to be about 40 m / sec from the extrusion amount and the fiber diameter.

さらに、上記微粒子前駆体繊維を、前記分級機内蔵型粉砕機(ACMパルペライザ)で粉砕及び分級処理し、その結果、体積平均径6.4μm、個数平均径5.3μmで、体積基準における12μm以上の粒子の割合が1.4%、16μm以上の粒子の割合が0%、個数基準における5μm未満の微粉粒子の割合が11.2%の粒度分布のトナー用粒子を得た。  Further, the fine particle precursor fiber was pulverized and classified by the classifier built-in type pulverizer (ACM pulverizer). As a result, the volume average diameter was 6.4 μm, the number average diameter was 5.3 μm, and the volume standard was 12 μm or more. Toner particles having a particle size distribution of 1.4%, a particle size of 16 μm or more of 0%, and a fine particle size of less than 5 μm on the number basis was 11.2%.

次いで、上記トナー用粒子100重量部、ステアリン酸亜鉛(平均粒子径0.3μm)0.02重量部、シリカ(比表面積から算出した粒子径12nm)0.75重量部、及びシリカ(比表面積から算出した粒子径30nm)0.75重量部を、圧縮剪断型混合機(例えば、ホソカワミクロン(株)製メカノフュージョン、以下同様)により攪拌混合して、ブラック現像剤を得た。  Next, 100 parts by weight of the toner particles, 0.02 parts by weight of zinc stearate (average particle diameter 0.3 μm), 0.75 parts by weight of silica (particle diameter 12 nm calculated from the specific surface area), and silica (from the specific surface area). A black developer was obtained by stirring and mixing 0.75 parts by weight of a calculated particle diameter of 30 nm using a compression shear mixer (for example, Mechanofusion manufactured by Hosokawa Micron Corporation, the same applies hereinafter).

(シアントナー)
ポリエステル樹脂(Tg:64℃、流出開始温度:119℃)100重量部、銅フタロシアニン系顔料5重量部、レシチン3重量部、及びカルナウバワックス5重量部を、実施例1と同様の条件で混合、溶融、ノズルからの押し出し等の工程を経て、線径5.0μmの微粒子前駆体繊維を得た。さらに、この微粒子前駆体繊維を、実施例1と同様に前記分級機内蔵型粉砕機で粉砕して、体積平均径6.5μm、個数平均径5.6μmで、体積基準における12μm以上の粒子の割合が1.5%、16μm以上の粒子の割合が0%、個数基準における5μm未満の微粉粒子の割合が10.2%の粒度分布のトナー用粒子を得た。次いで、上記トナー用粒子に対して、実施例1と同じ条件で、ステアリン酸亜鉛及びシリカを混合して、前記圧縮剪断型混合機により攪拌混合して、シアン現像剤を得た。
(Cyan toner)
100 parts by weight of a polyester resin (Tg: 64 ° C., outflow start temperature: 119 ° C.), 5 parts by weight of copper phthalocyanine pigment, 3 parts by weight of lecithin, and 5 parts by weight of carnauba wax are mixed under the same conditions as in Example 1. Through a process such as melting, extrusion from a nozzle, etc., a fine particle precursor fiber having a wire diameter of 5.0 μm was obtained. Further, this fine particle precursor fiber was pulverized by the above-mentioned classifier built-in type pulverizer in the same manner as in Example 1 to obtain particles having a volume average diameter of 6.5 μm, a number average diameter of 5.6 μm, and 12 μm or more on a volume basis. Toner particles having a particle size distribution with a ratio of 1.5%, a ratio of particles of 16 μm or more of 0%, and a ratio of fine powder particles of less than 5 μm based on the number of 10.2% were obtained. Next, zinc stearate and silica were mixed with the toner particles under the same conditions as in Example 1, and the mixture was stirred and mixed by the compression shear mixer to obtain a cyan developer.

(マゼンタトナー)
ポリエステル樹脂(Tg:64℃、流出開始温度:119℃)100重量部、キナクリドン系顔料5重量部、レシチン3重量部、及びカルナウバワックス5重量部を、実施例1と同様の条件で混合、溶融、ノズルからの押し出し等の工程を経て、線径5.0μmの微粒子前駆体繊維を得た。さらに、この微粒子前駆体繊維を、実施例1と同様に前記分級機内蔵型粉砕機で粉砕して、体積平均径6.5μm、個数平均径5.5μmで、体積基準における12μm以上の粒子の割合が1.4%、16μm以上の粒子の割合が0%、個数基準における5μm未満の微粉粒子の割合が10.4%の粒度分布のトナー用粒子を得た。次いで、上記トナー用粒子に対して、実施例1と同じ条件で、ステアリン酸亜鉛及びシリカを混合して、前記圧縮剪断型混合機により攪拌混合して、マゼンタ現像剤を得た。
(Magenta toner)
100 parts by weight of a polyester resin (Tg: 64 ° C., outflow start temperature: 119 ° C.), 5 parts by weight of a quinacridone pigment, 3 parts by weight of lecithin, and 5 parts by weight of carnauba wax are mixed under the same conditions as in Example 1. Through steps such as melting and extrusion from a nozzle, fine particle precursor fibers having a wire diameter of 5.0 μm were obtained. Further, this fine particle precursor fiber was pulverized by the above-mentioned classifier built-in type pulverizer in the same manner as in Example 1 to obtain particles having a volume average diameter of 6.5 μm, a number average diameter of 5.5 μm, and 12 μm or more on a volume basis. Toner particles having a particle size distribution of 1.4%, a ratio of particles of 16 μm or more of 0%, and a ratio of fine powder particles of less than 5 μm based on the number of 10.4% were obtained. Next, zinc stearate and silica were mixed with the toner particles under the same conditions as in Example 1 and stirred and mixed with the compression shear mixer to obtain a magenta developer.

(イエロートナー)
ポリエステル樹脂(Tg:64℃、流出開始温度:119℃)100重量部、ジスアゾ系顔料5重量部、レシチン3重量部、及びカルナウバワックス5重量部を、実施例1と同様の条件で混合、溶融、ノズルからの押し出し等の工程を経て、線径5.0μmの微粒子前駆体繊維を得た。さらに、この微粒子前駆体繊維を、実施例1と同様に前記分級機内蔵型粉砕機で粉砕して、体積平均径6.6μm、個数平均径5.7μmで、体積基準における12μm以上の粒子の割合が1.6%、16μm以上の粒子の割合が0%、個数基準における5μm未満の微粉粒子の割合が9.4%の粒度分布のトナー用粒子を得た。次いで、上記トナー用粒子に対して、実施例1と同じ条件で、ステアリン酸亜鉛及びシリカを混合して、前記圧縮剪断型混合機により攪拌混合して、イエロー現像剤を得た。
(Yellow toner)
100 parts by weight of a polyester resin (Tg: 64 ° C., outflow start temperature: 119 ° C.), 5 parts by weight of a disazo pigment, 3 parts by weight of lecithin, and 5 parts by weight of carnauba wax are mixed under the same conditions as in Example 1. Through steps such as melting and extrusion from a nozzle, fine particle precursor fibers having a wire diameter of 5.0 μm were obtained. Further, this fine particle precursor fiber was pulverized by the above-mentioned classifier built-in type pulverizer in the same manner as in Example 1 to obtain particles having a volume average diameter of 6.6 μm, a number average diameter of 5.7 μm, and 12 μm or more on a volume basis. Toner particles having a particle size distribution of 1.6%, a ratio of particles of 16 μm or more being 0%, and a ratio of fine powder particles of less than 5 μm based on the number of 9.4% were obtained. Next, zinc stearate and silica were mixed with the toner particles under the same conditions as in Example 1 and stirred and mixed with the compression shear mixer to obtain a yellow developer.

次に、上記のようにして得た各色の現像剤粒子における原料の分散状態を観察した。例えば、シアンの現像剤粒子について、金属コーティングを施してから、エポキシ樹脂に包埋し、切断した後、切断面を四酸化ルテニウムで染色し、さらに超箔切片を作製して現像剤粒子断面の試験サンプルとした。この超箔切片をTEMにより観察すると、シアン顔料は均一に分散しており、大きなシアン顔料の粒は観察されなかった。また、カルナウバワックスは、約0.3μm程度の粒に微分散していること確認できた。その他の色の現像剤粒子についても、同様に、顔料、ワックスの良好な分散が確認できた。  Next, the dispersion state of the raw materials in the developer particles of each color obtained as described above was observed. For example, for cyan developer particles, after metal coating, embedding in epoxy resin and cutting, the cut surface is dyed with ruthenium tetroxide, and an ultra-foil slice is prepared to produce a cross-section of the developer particles. A test sample was obtained. When this super foil section was observed with a TEM, the cyan pigment was uniformly dispersed and no large cyan pigment particles were observed. Moreover, it was confirmed that the carnauba wax was finely dispersed in about 0.3 μm grains. Similarly, good dispersion of pigments and waxes could be confirmed for the developer particles of other colors.

最後に、上記のようにして得た4色の現像剤粒子について、画像装置(セイコーエプソン株式会社製プリンタLP−7000C)を用いて画像評価を行った。その結果、得られた画像は、画像濃度が高く安定しており、濃淡コントロール(階調)も良好で、かつ、解像度が高くシャープであった。また、地汚れや転写時のちり(飛点)等もなかった。尚、このことから、TEMでは観察できなかったが、荷電制御剤(サリチル酸亜鉛、レシチン)の分散が良好であったことが裏付けられる。
また、耐久試験(例えば、1万枚画像出し条件)を行ったときの帯電量の変化について、4色の各現像剤とも初期帯電量(通常、20〜30μC/g)に対して±7.5μC/g程度の範囲内に収まっており、帯電安定性についても良好な結果を得ている。
Finally, the four color developer particles obtained as described above were subjected to image evaluation using an image device (printer LP-7000C manufactured by Seiko Epson Corporation). As a result, the obtained image had a high and stable image density, a good density control (gradation), a high resolution, and a sharp image. Moreover, there were no background stains or dust at the time of transfer. In addition, although this was not able to be observed with TEM, this confirms that the dispersion of the charge control agent (zinc salicylate, lecithin) was good.
In addition, with respect to changes in the charge amount when a durability test (for example, 10,000 sheet image output conditions) is performed, each of the four color developers is ± 7.% relative to the initial charge amount (usually 20 to 30 μC / g). It is within the range of about 5 μC / g, and good results are obtained with respect to charging stability.

本発明に係るトナーの製造方法及び製造装置は、トナー成分の均一化の要求が大きい例えばカラー用、高画質用などの現像トナーの製造に広く適用できる。  The toner production method and production apparatus according to the present invention can be widely applied to the production of developing toners, for example, for color and high image quality, which require a large amount of toner components.

本発明に係るトナーの製造方法の工程図Process diagram of toner production method according to the present invention 本発明に係るトナーの製造装置を示す全体構成図1 is an overall configuration diagram showing a toner manufacturing apparatus according to the present invention. 粉砕機の構造を示す断面図Sectional view showing the structure of the crusher トナー粒子中の成分の分散状態を示す断面模式図Cross-sectional schematic diagram showing the dispersion state of components in toner particles トナー成分の分散状態の相違によるトナー特性の一例を示すグラフThe graph which shows an example of the toner characteristic by the difference in the dispersion state of a toner component 本発明に係る別実施形態のトナーの製造装置を示す全体構成図FIG. 3 is an overall configuration diagram illustrating a toner manufacturing apparatus according to another embodiment of the present invention.

1 一軸型エクストルー
2 静止型ミキ
3 流路構造体
3A 流路
4 ギアポンプ
5 モータ
6 ノズル
7 送風機
8 容器
9 混合装置
10 溶融混合部
11 ワックス粒子
12 トナー粒子
14 羽根体
15 混練部材
16 溶融装置
17 ギアポンプ
20 繊維化部
30 冷却部
40 粉砕部(粉砕機)
41 気体導入口
42 排出口
43 本体
44 筒状部材
45 粉砕部材
45A 回転体
46 分級機構
47 ライナ
48 回転体
49 分級羽根
1 single shaft Ekusutoru da 2 static mixer Sa 3 flow path structure 3A passage 4 gear pump 5 motor 6 nozzle 7 blower 8 containers 9 mixer 10 melt mixing unit 11 wax particles 12 Toner particles 14 sail body 15 kneading member 16 melter 17 gear pump 20 fiberizing unit 30 cooling unit 40 crushing section (crusher)
41 Gas introduction port 42 Discharge port 43 Main body 44 Cylindrical member 45 Grinding member 45A Rotating body 46 Classification mechanism 47 Liner 48 Rotating body 49 Classification blade

Claims (2)

複数の成分からなるトナー原料を溶融混合する溶融混合工程と、
前記溶融混合工程で得られた前記トナー原料の溶融混合物をノズルから押し出して繊維 状に形成するとともに冷却する繊維化冷却工程と、
前記繊維化冷却工程で繊維状化及び冷却された繊維状物を粉砕してトナー粒子を作製する粉砕工程とを有するトナーの製造方法であって、
前記溶融混合工程が、前記トナー原料を混練機により溶融混練した後、前記繊維化冷却 工程の前に静止型ミキサ及び該静止型ミキサの出口から分岐した多段の分配流路を有する 流路構造体によって溶融混合することを特徴とするトナーの製造方法。
A melt mixing step of melt-mixing a toner material composed of a plurality of components;
And fiberizing the cooling step of cooling and forming into fibers shape extruding molten mixture of the toner material obtained by the melt-mixing step from the nozzle,
A method for manufacturing a toner and a pulverization step of producing toner particles by pulverizing fibrous reduction and cooled fibrous material in the fiberizing cooling step,
After the melt mixing step, the toner raw material is melt kneaded by a kneader, and before the fiber cooling step, a flow channel structure having a stationary mixer and a multistage distribution channel branched from the outlet of the stationary mixer And a toner production method characterized by melting and mixing.
前記溶融混合工程において、前記トナー原料のうちの所定成分を除いた各成分を前記混In the melt mixing step, each component excluding a predetermined component of the toner raw material is mixed with the mixture. 練機で溶融混合した後、当該溶融混合物に対して前記トナー原料の所定成分を前記静止型After being melt-mixed by a kneader, the predetermined component of the toner raw material is added to the static mixture in the melt ミキサ又は前記多段の分配流路を有する流路構造体で溶融混合させることを特徴とする請The mixture is melt-mixed by a mixer or a channel structure having the multistage distribution channel. 求項1に記載のトナーの製造方法。The toner production method according to claim 1.
JP2004290948A 2004-10-04 2004-10-04 Toner manufacturing method and manufacturing apparatus Expired - Fee Related JP4363297B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004290948A JP4363297B2 (en) 2004-10-04 2004-10-04 Toner manufacturing method and manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004290948A JP4363297B2 (en) 2004-10-04 2004-10-04 Toner manufacturing method and manufacturing apparatus

Publications (2)

Publication Number Publication Date
JP2006106235A JP2006106235A (en) 2006-04-20
JP4363297B2 true JP4363297B2 (en) 2009-11-11

Family

ID=36376069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004290948A Expired - Fee Related JP4363297B2 (en) 2004-10-04 2004-10-04 Toner manufacturing method and manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP4363297B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1898265B1 (en) 2006-09-11 2014-07-23 Ricoh Company, Ltd. Apparatus for producing toner precursor, and method for producing a fibrous toner precursor and apparatus for producing toner
JP5181611B2 (en) * 2006-11-10 2013-04-10 株式会社リコー Resin particle manufacturing apparatus and resin particle manufacturing method
EP1920825B1 (en) 2006-11-10 2018-01-03 Ricoh Company, Ltd. Apparatus and method for manufacturing particulate resin
JP4955453B2 (en) * 2007-05-18 2012-06-20 花王株式会社 Toner production method

Also Published As

Publication number Publication date
JP2006106235A (en) 2006-04-20

Similar Documents

Publication Publication Date Title
JP6021349B2 (en) Heat treatment apparatus and toner manufacturing method
JP3101416B2 (en) Collision type airflow pulverizer and method for producing toner for electrostatic image development
JP4363297B2 (en) Toner manufacturing method and manufacturing apparatus
JP4363298B2 (en) Toner production method
JP4522244B2 (en) Particle production equipment
JP3478963B2 (en) Full-color electrophotographic toner and method for producing the same
JP2001259451A (en) Pulverizing device and powdery product manufacturing system
JP4268331B2 (en) Toner production method
JP2006285198A (en) Toner particle, apparatus for manufacturing toner particle, and method for manufacturing toner particle
JP2007270043A (en) Powdered coating particle and method for producing the same
JP2677685B2 (en) Continuous toner manufacturing method
EP0605169B1 (en) Method for producing toner for electrostatic development
JP5163010B2 (en) Method for producing resin fine particles
JP4505406B2 (en) Method for producing toner for electrophotography
JP4955453B2 (en) Toner production method
JP2993624B2 (en) Method for manufacturing color toner
JP2002253983A (en) Production process of powder product
JP2004073918A (en) Manufacturing method of toner
JP3861978B2 (en) Toner production method
JP3801458B2 (en) Toner production method
JP3456010B2 (en) Manufacturing method of toner
JPH08314191A (en) Production of electrostatic charge image developing toner
JP2005148106A (en) Method for manufacturing toner for electrophotographic recording
JP2006106226A (en) Method for manufacturing toner
JP2022025737A (en) Method for manufacturing toner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070816

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090625

TRDD Decision of grant or rejection written
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090625

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090722

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090729

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090810

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees