JP4743521B2 - Catalyst for producing hydrogen and method for producing hydrogen - Google Patents

Catalyst for producing hydrogen and method for producing hydrogen Download PDF

Info

Publication number
JP4743521B2
JP4743521B2 JP2006055895A JP2006055895A JP4743521B2 JP 4743521 B2 JP4743521 B2 JP 4743521B2 JP 2006055895 A JP2006055895 A JP 2006055895A JP 2006055895 A JP2006055895 A JP 2006055895A JP 4743521 B2 JP4743521 B2 JP 4743521B2
Authority
JP
Japan
Prior art keywords
hydride
bicyclic aromatic
catalyst
aromatic hydrocarbon
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006055895A
Other languages
Japanese (ja)
Other versions
JP2006272324A (en
Inventor
博幸 中村
基 斉藤
順子 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
JX Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Oil and Energy Corp filed Critical JX Nippon Oil and Energy Corp
Priority to JP2006055895A priority Critical patent/JP4743521B2/en
Publication of JP2006272324A publication Critical patent/JP2006272324A/en
Application granted granted Critical
Publication of JP4743521B2 publication Critical patent/JP4743521B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Description

本発明は、二環芳香族炭化水素の水素化物からなる組成物から高純度水素ガスを効率良く製造することができる触媒及び該触媒を用いる水素の製造方法に関するものである。   The present invention relates to a catalyst capable of efficiently producing high-purity hydrogen gas from a composition comprising a hydride of a bicyclic aromatic hydrocarbon, and a method for producing hydrogen using the catalyst.

近年、環境問題やエネルギー問題から、新しいエネルギー源として水素が有望視されており、例えば水素を直接燃料として用いる水素自動車、あるいは水素を用いる燃料電池などの開発が進められている。燃料電池は小型でも高い発電効率を有しており、加えて騒音や振動も発生しない、さらに廃熱を利用することができるなどの優れた利点を有している。   In recent years, hydrogen has been considered promising as a new energy source due to environmental problems and energy problems. For example, hydrogen automobiles using hydrogen directly as fuel or fuel cells using hydrogen are being developed. The fuel cell is small but has high power generation efficiency. In addition, the fuel cell has excellent advantages such as no noise and vibration, and use of waste heat.

一方、水素をエネルギー源として利用するに当っては、燃料となる水素を安全にかつ安定的に供給することが欠かせない。圧縮水素、液体水素として直接供給する方法、水素吸蔵合金やカーボンナノチューブなどの水素吸蔵材料を利用して水素を貯蔵、供給する方法、メタノールや炭化水素を水蒸気改質して水素を供給する方法など、種々の方法が提案されている。   On the other hand, in using hydrogen as an energy source, it is essential to supply hydrogen as a fuel safely and stably. Direct supply as compressed hydrogen, liquid hydrogen, storage and supply of hydrogen using hydrogen storage materials such as hydrogen storage alloys and carbon nanotubes, supply of hydrogen by steam reforming of methanol and hydrocarbons, etc. Various methods have been proposed.

これらに並ぶ水素の供給方法として、近年、水素吸蔵率が高く、水素吸蔵と水素供給を繰返し行い再利用が可能であるとの理由から、有機ハイドライド(以下、水素化芳香族化合物ともいう。)を、水素を貯蔵、供給する媒体として用いることが注目されている。例えば、特許文献1には、有機ハイドライドを用いた水素製造について開示されているが、この方法では十分な転化率は得られていない。   As hydrogen supply methods that are similar to these, organic hydrides (hereinafter also referred to as hydrogenated aromatic compounds) have been proposed because they have a high hydrogen storage rate and can be reused by repeated storage and supply of hydrogen. Has attracted attention as a medium for storing and supplying hydrogen. For example, Patent Document 1 discloses hydrogen production using an organic hydride, but a sufficient conversion rate is not obtained by this method.

特許文献2には、表面積150m−1以上、細孔容量0.55cm−1以上、平均細孔径が90〜200Åであり、かつ細孔径90〜200Åの範囲の細孔容量が全細孔容量の60%以上を占めるγ−アルミナ担体に酸化亜鉛を担持した担体を600℃以上の高温で10時間以上焼成して結晶構造の大半がスピネル構造となった複合酸化物からなる複合担体に、白金、スズ及び周期律表の第1A族及び第2A族からなる群から選ばれる少なくとも1つのアルカリ性金属が担持され、該アルカリ性金属の担持が前記スズの担持よりも先に行われている触媒を用いて、水素化芳香族化合物を脱水素反応させることにより効率よく水素を製造する方法が示されている。 Patent Document 2 discloses that a pore volume in the range of a surface area of 150 m 2 g −1 or more, a pore volume of 0.55 cm 3 g −1 or more, an average pore diameter of 90 to 200 kg, and a pore diameter of 90 to 200 kg is all. A composite carrier made of a composite oxide in which a carrier in which zinc oxide is supported on a γ-alumina carrier occupying 60% or more of the pore volume is calcined at a high temperature of 600 ° C. or more for 10 hours or more and the crystal structure is mostly a spinel structure. In addition, at least one alkaline metal selected from the group consisting of platinum, tin, and groups 1A and 2A of the periodic table is loaded, and the loading of the alkaline metal is performed prior to the loading of the tin. A method for efficiently producing hydrogen by dehydrogenating a hydrogenated aromatic compound using a catalyst is shown.

しかしながら、水素化芳香族化合物の脱水素反応は吸熱反応であり、外部よりエネルギーの投入が必要となるため、本反応を利用する水素の製造においては、より低温でかつ高い転化率で脱水素反応が進む方法が望まれている。さらに、本反応を利用して水素ステーション等で水素を大量に製造するためには性能に加えて安価な触媒であることが望まれている。
一方、水素化芳香族化合物の脱水素によって水素の製造を行うにあたっては、蒸気圧が低く、1分子あたりに取り込める水素量が多いなど、より安全で、かつ、水素含有量が多い化合物を、水素を貯蔵、供給する媒体として用いることが望まれている。本発明者らは、既に単環芳香族化合物の水素化物を媒体に用いる水素製造用触媒について特許出願しているが(特許文献3参照)、媒体として二環芳香族化合物の水素化物を用いると、さらに蒸気圧が低く、取扱いが安全かつ容易であり、また、保有する水素含有量が多く、より効率的に水素の貯蔵、供給ができるものと期待される。このためには、二環芳香族化合物の水素化物であっても、効率的に脱水素反応を推進できる触媒が必要であり、すなわち、多環芳香族化合物の水素化物の脱水素反応において、より低い反応温度で、高い転化率が得られる脱水素活性の高い触媒が望まれている。
特開2001−110437号公報 特開2004−196638号公報 特願2004−292628号明細書
However, the dehydrogenation reaction of hydrogenated aromatic compounds is an endothermic reaction and requires input of energy from the outside. Therefore, in the production of hydrogen using this reaction, the dehydrogenation reaction is performed at a lower temperature and at a higher conversion rate. A way to go is desired. Furthermore, in order to produce a large amount of hydrogen at a hydrogen station using this reaction, an inexpensive catalyst is desired in addition to performance.
On the other hand, when hydrogen is produced by dehydrogenation of a hydrogenated aromatic compound, a safer and high hydrogen content compound, such as a low vapor pressure and a large amount of hydrogen per molecule, It is desired to be used as a medium for storing and supplying the above. The present inventors have already filed a patent application for a catalyst for producing hydrogen using a hydride of a monocyclic aromatic compound as a medium (see Patent Document 3), but when a hydride of a bicyclic aromatic compound is used as a medium, Furthermore, it is expected that the vapor pressure is low, the handling is safe and easy, and the hydrogen content is large, so that hydrogen can be stored and supplied more efficiently. For this purpose, even a hydride of a bicyclic aromatic compound needs a catalyst that can efficiently promote a dehydrogenation reaction, that is, in the dehydrogenation reaction of a hydride of a polycyclic aromatic compound, A catalyst having a high dehydrogenation activity capable of obtaining a high conversion rate at a low reaction temperature is desired.
JP 2001-110437 A JP 2004-196638 A Japanese Patent Application No. 2004-292628

本発明の目的は、低い反応温度においても高い転化率で効率的に脱水素反応を促進する触媒、及び該触媒を用いる効率の高い水素ガスの製造方法を提供することである。   An object of the present invention is to provide a catalyst that efficiently promotes a dehydrogenation reaction at a high conversion rate even at a low reaction temperature, and a highly efficient method for producing hydrogen gas using the catalyst.

本発明者等は、水素を製造するための媒体として用いる水素化芳香族化合物と脱水素反応の触媒の物性との関係に着目して鋭意検討した結果、二環芳香族炭化水素の水素化物を用いて脱水素反応を行うに際して、特に特定の細孔径、細孔容量を有する触媒を用いることにより水素を効率良く製造できることを見出し、本発明を完成するに至った。   As a result of intensive investigations by paying attention to the relationship between the hydrogenated aromatic compound used as a medium for producing hydrogen and the physical properties of the catalyst for the dehydrogenation reaction, the present inventors have obtained a hydride of a bicyclic aromatic hydrocarbon. When carrying out the dehydrogenation reaction using the catalyst, it has been found that hydrogen can be produced efficiently by using a catalyst having a specific pore diameter and pore volume, and the present invention has been completed.

即ち、本発明は、下記に示す水素製造用触媒、及び該触媒を用いて水素を製造する水素の製造方法に関するものである。
1.白金(Pt)、ルテニウム(Ru)、パラジウム(Pd)、ロジウム(Rh)、スズ(Sn)、レニウム(Re)、及びゲルマニウム(Ge)よりなる群から選択される少なくとも1種の金属を多孔質担体に担持し、平均細孔径が65〜130Åであり、細孔径65〜130Åの範囲の細孔の細孔容量が、0.25cm−1以上であり、及び、全細孔容量の50%以上を占めることを特徴とする、水素を生成する二環芳香族炭化水素の水素化物の脱水素反応に用いる水素製造用触媒。
2.平均細孔径が80〜110Åであり、かつ、細孔径が80〜110Åの範囲の細孔の細孔容量が、0.10cm−1以上であり、及び、全細孔容量の20%以上を占める上記1に記載の水素製造用触媒。
3.多孔質担体が、酸化アルミニウム(Al)及び/又は二酸化ケイ素(SiO)からなる、上記1又は2に記載の水素製造用触媒。
That is, the present invention relates to a hydrogen production catalyst described below and a hydrogen production method for producing hydrogen using the catalyst.
1. Porous at least one metal selected from the group consisting of platinum (Pt), ruthenium (Ru), palladium (Pd), rhodium (Rh), tin (Sn), rhenium (Re), and germanium (Ge) Supported on a carrier, the average pore diameter is 65 to 130 Å, the pore volume of pores in the range of 65 to 130 細孔 is 0.25 cm 3 g −1 or more, and the total pore volume is 50 The catalyst for hydrogen production used for the dehydrogenation reaction of the hydride of the bicyclic aromatic hydrocarbon which produces | generates hydrogen characterized by occupying% or more.
2. The pore volume of the pores having an average pore diameter of 80 to 110 Å and a pore diameter in the range of 80 to 110 で is 0.10 cm 3 g −1 or more, and 20% or more of the total pore volume. 2. The hydrogen production catalyst according to 1 above.
3. 3. The hydrogen production catalyst according to 1 or 2 above, wherein the porous carrier comprises aluminum oxide (Al 2 O 3 ) and / or silicon dioxide (SiO 2 ).

4.二環芳香族炭化水素の水素化物を含む油を上記1〜3のいずれかに記載の触媒と接触させて、水素を製造する水素の製造方法。
5.二環芳香族炭化水素の水素化物を含む油は、炭化水素置換基を1個以上有する二環芳香族炭化水素の水素化物を20質量%以上含有する、上記4に記載の水素の製造方法。
6.二環芳香族炭化水素の水素化物を含む油は、炭化水素置換基を2個以上有する二環芳香族炭化水素の水素化物を20質量%以上含有する、上記4に記載の水素の製造方法。
4). A method for producing hydrogen, wherein hydrogen is produced by bringing an oil containing a hydride of a bicyclic aromatic hydrocarbon into contact with the catalyst according to any one of 1 to 3 above.
5. 5. The method for producing hydrogen according to 4 above, wherein the oil containing a hydride of a bicyclic aromatic hydrocarbon contains 20% by mass or more of a hydride of a bicyclic aromatic hydrocarbon having one or more hydrocarbon substituents.
6). 5. The method for producing hydrogen according to 4 above, wherein the oil containing a hydride of a bicyclic aromatic hydrocarbon contains 20% by mass or more of a hydride of a bicyclic aromatic hydrocarbon having two or more hydrocarbon substituents.

7.二環芳香族炭化水素の水素化物を含む油は、二環芳香族炭化水素の水素化物を70質量%以上含有し、かつ炭化水素置換基を1個以上有する二環芳香族炭化水素の水素化物を60質量%以上含む、上記4に記載の水素の製造方法。
8.二環芳香族炭化水素の水素化物を含む油は、二環芳香族炭化水素の水素化物を70質量%以上含有し、かつ炭化水素置換基を2個以上有する二環芳香族炭化水素の水素化物を20質量%以上含む、上記4に記載の水素の製造方法。
9.炭化水素置換基が、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、及びターシャリーブチル基よりなる群から選ばれる少なくとも1種である、上記4〜8のいずれかに記載の水素の製造方法。
7). Oil containing hydride of bicyclic aromatic hydrocarbon, hydride of bicyclic aromatic hydrocarbon containing 70% by mass or more of hydride of bicyclic aromatic hydrocarbon and having one or more hydrocarbon substituents 5. The method for producing hydrogen according to 4 above, comprising 60% by mass or more.
8). An oil containing a hydride of a bicyclic aromatic hydrocarbon contains 70% by mass or more of a hydride of a bicyclic aromatic hydrocarbon and has two or more hydrocarbon substituents. 5. The method for producing hydrogen according to 4 above, comprising 20% by mass or more.
9. The hydrocarbon substituent is at least one selected from the group consisting of a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, and a tertiary butyl group. Process for producing hydrogen.

本発明の水素製造用触媒を用いることにより、二環芳香族炭化水素の水素化物から、低い反応温度においても転化率と選択率の高い脱水素反応を行うことが可能となり、水素製造におけるエネルギー投入量が節減され、効率的に高純度な水素ガスを製造できるなどの効果を奏する。   By using the hydrogen production catalyst of the present invention, it is possible to carry out a dehydrogenation reaction with a high conversion and selectivity even at a low reaction temperature from a hydride of a bicyclic aromatic hydrocarbon. The amount is reduced, and it is possible to produce high-purity hydrogen gas efficiently.

本発明において、二環芳香族炭化水素の水素化物の脱水素反応に用いる触媒としては、Pt、Ru、Pd、Rh、Sn、Re、及びGeよりなる群から選択される少なくとも1種の金属が担持され、触媒の平均細孔径が65〜130Åの範囲であり、かつ細孔径65〜130Åの範囲の細孔の細孔容量が0.25cm−1以上で、全細孔容量の50%以上を占める触媒を用いる。より好ましくは、細孔径65〜130Åの範囲の細孔の細孔容量が、0.30cm−1以上で全細孔容量の60%以上を占めることが好ましい。
更には、触媒の平均細孔径が80〜110Åであり、かつ細孔径80〜110Åの範囲の細孔の細孔容量が0.10cm−1以上で、全細孔容量の20%以上を占める触媒を用いることが好ましい。
In the present invention, the catalyst used for the dehydrogenation reaction of the bicyclic aromatic hydrocarbon hydride includes at least one metal selected from the group consisting of Pt, Ru, Pd, Rh, Sn, Re, and Ge. The average pore diameter of the supported catalyst is in the range of 65 to 130 Å, and the pore volume of the pore in the range of 65 to 130 細孔 is not less than 0.25 cm 3 g −1 and 50% of the total pore volume. A catalyst occupying the above is used. More preferably, the pore volume of pores having a pore diameter in the range of 65 to 130 mm is 0.30 cm 3 g −1 or more and occupies 60% or more of the total pore volume.
Furthermore, the average pore diameter of the catalyst is 80 to 110 Å, and the pore volume of pores in the range of 80 to 110 細孔 is 0.10 cm 3 g −1 or more, and 20% or more of the total pore volume It is preferred to use an occupied catalyst.

平均細孔径が65Å未満の触媒では、反応対象分子である二環芳香族化合物の拡散が困難になり、脱水素反応性が低下する。平均細孔径が130Å以上を超える触媒では、反応対象となる細孔が必要十分以上に大きくなり、決められた大きさの反応器に充填する際に、反応器に収容できる触媒量が少なくなる、即ち触媒のかさ密度が低下して、触媒容量あたりの性能が低下する。
さらに、細孔径80〜110Åの細孔径では、特に選択的に二環芳香族の水素化物から水素と二環芳香族を生成する脱水素反応が起こり、副反応を抑制して、高い水素純度の水素を製造することが可能となり、好ましい。
また、反応に有効な細孔径の範囲となる65〜130Åの細孔が有する細孔容量が十分でないと、反応対象物が細孔内に取り込まれる量が少なくなり反応性が低下する。また、細孔径65〜130Åの細孔が有する細孔容量が全細孔容量の50%以下では反応に有効な細孔径サイズの反応場を十分に得ることができず、脱水素反応性を高めることができない。
In the case of a catalyst having an average pore diameter of less than 65 mm, it becomes difficult to diffuse the bicyclic aromatic compound that is a reaction target molecule, and the dehydrogenation reactivity decreases. In the case of a catalyst having an average pore diameter of more than 130 mm, the pores to be reacted are larger than necessary, and the amount of catalyst that can be accommodated in the reactor is reduced when filling the reactor of a predetermined size. That is, the bulk density of the catalyst is lowered, and the performance per catalyst capacity is lowered.
Furthermore, with a pore diameter of 80 to 110 mm, a dehydrogenation reaction that selectively generates hydrogen and a bicyclic aromatic from a bicyclic aromatic hydride occurs, and side reactions are suppressed, and high hydrogen purity is achieved. Hydrogen can be produced, which is preferable.
In addition, if the pore volume of the 65 to 130 pores, which is the effective pore diameter range for the reaction, is not sufficient, the amount of the reaction object taken into the pores is reduced and the reactivity is lowered. In addition, when the pore volume of pores having a pore diameter of 65 to 130 mm is 50% or less of the total pore volume, a reaction field having a pore diameter size effective for the reaction cannot be sufficiently obtained, and the dehydrogenation reactivity is improved. I can't.

上記の本発明の効果を確保するために、上記金属の担持率は0.001〜10質量%で担持することが好ましく、より好ましくは0.01〜5質量%である。0.001質量%未満では十分な脱水素反応が得られず、一方10質量%を超えて担持しても、金属の増量に見合う効果が得られない。   In order to secure the effect of the present invention, the metal loading is preferably 0.001 to 10% by mass, and more preferably 0.01 to 5% by mass. If it is less than 0.001% by mass, a sufficient dehydrogenation reaction cannot be obtained. On the other hand, even if it exceeds 10% by mass, an effect commensurate with the increase in the amount of metal cannot be obtained.

また、触媒の担体としては、酸化アルミニウム(Al)及び/又は二酸化ケイ素(SiO)からなる多孔質担体を用いることができる。これらの担体は65〜130Åの範囲に平均細孔径を制御しやすく、かつ反応に有効な細孔径65〜130Åの範囲の細孔の細孔容量を0.25cm−1以上とすることが容易となる。さらには、副反応を促進させる酸点も少なく、かつ担持させる金属粒子を担体表面に安定的に固定させることが可能となる。担体としてAlとSiOは、それぞれ単独で用いてもよいし、適宜の割合で両者を組み合わせて用いてもかまわない。 As the catalyst carrier, a porous carrier made of aluminum oxide (Al 2 O 3 ) and / or silicon dioxide (SiO 2 ) can be used. These carriers can easily control the average pore diameter in the range of 65 to 130 mm, and the pore volume in the range of the pore diameter in the range of 65 to 130 mm effective for the reaction should be 0.25 cm 3 g −1 or more. It becomes easy. Furthermore, there are few acid sites that promote side reactions, and the supported metal particles can be stably fixed to the surface of the carrier. As the carrier, Al 2 O 3 and SiO 2 may be used alone or in combination at an appropriate ratio.

本発明の触媒は、例えば次のようにして製造することができる。原料粉に水及び硝酸を添加して混練する。原料粉としては、ベーマイト粉や、シリカアルミナ粉を用いる。あるいは、ベーマイト粉に無定形のシリカ粉を混練してもよい。混練は、一般に触媒調製に用いられている混練機により行うことができる。混練時間は、通常30〜120分である。   The catalyst of the present invention can be produced, for example, as follows. Water and nitric acid are added to the raw material powder and kneaded. Boehmite powder or silica alumina powder is used as the raw material powder. Alternatively, amorphous silica powder may be kneaded with boehmite powder. Kneading can be performed by a kneader generally used for catalyst preparation. The kneading time is usually 30 to 120 minutes.

得られた混練物を、成形機を用いて、例えば0.5〜5mmの球状、円柱状、円筒状などに成形した後、乾燥する。成形機としては、例えばスクリュー型成形機など、一般に触媒調製に用いられている成形機を用いることができる。乾燥は、通常、常温〜150℃、特には100〜130℃の温度で、例えばオーブン中で乾燥する。次いで、乾燥させた成形物を焼成する。焼成は、350〜800℃で0.5時間以上、好ましくは400〜700℃、更には450〜650℃で0.5〜5時間焼成する。焼成には、例えばロータリーキルンなどの焼成装置を用いることができる。   The obtained kneaded product is formed into a spherical shape, a cylindrical shape, a cylindrical shape or the like of 0.5 to 5 mm using a molding machine, and then dried. As the molding machine, for example, a molding machine generally used for catalyst preparation such as a screw-type molding machine can be used. The drying is usually performed at a temperature of room temperature to 150 ° C., particularly 100 to 130 ° C., for example, in an oven. Next, the dried molded product is fired. Firing is performed at 350 to 800 ° C. for 0.5 hour or longer, preferably 400 to 700 ° C., more preferably 450 to 650 ° C. for 0.5 to 5 hours. For the firing, for example, a firing device such as a rotary kiln can be used.

本発明においては、触媒の平均細孔径を65〜130Åとすることが必要であるが、担体原料粉を混練する際に添加する硝酸の量を制御することにより本発明の特定の平均細孔径を有する触媒を得ることができる。添加する水の量に対する硝酸量を多くするほど、細孔径は小さくなる。硝酸量に対して平均細孔径は1次式で予想される相関関係を示すので、予め、使用する原料粉を用いて硝酸量と平均細孔径との相関を求め、実際に使用する硝酸濃度を決定する。異なる原料粉を用いる場合は、同様にして硝酸量と硝酸濃度を調整すればよい。   In the present invention, the average pore diameter of the catalyst needs to be 65 to 130 mm. However, the specific average pore diameter of the present invention is controlled by controlling the amount of nitric acid added when kneading the carrier raw material powder. The catalyst which has can be obtained. The larger the amount of nitric acid relative to the amount of water added, the smaller the pore size. Since the average pore diameter shows the correlation predicted by the linear equation with respect to the amount of nitric acid, the correlation between the amount of nitric acid and the average pore diameter is obtained in advance using the raw material powder used, and the concentration of nitric acid actually used is determined. decide. When using different raw material powders, the amount of nitric acid and the concentration of nitric acid may be adjusted in the same manner.

上記のようにして得られた担体に、上記の特定の金属を担持する。金属の担持方法は、特に限定されないが、通常、担体の細孔容量と同量の金属の水溶液をスプレーで担体に吹き付けるポアフィリング法で行う。例えば、白金(Pt)を担持する場合、塩化白金酸の水溶液(担持液)を用いる。担体に担持液をポアフィリング法などで含浸し、次いで乾燥した後、焼成することにより触媒が得られる。乾燥は、常温〜150℃、更には100〜130℃の温度において、通常、2時間以上、好ましくは2〜10時間、更には4〜8時間乾燥する。焼成は、乾燥空気流通下、450〜700℃、好ましくは500〜600℃で、0.5〜4時間行なう。   The carrier obtained as described above is loaded with the specific metal. The method for supporting the metal is not particularly limited, but it is usually carried out by a pore filling method in which an aqueous metal solution having the same amount as the pore volume of the carrier is sprayed onto the carrier. For example, when platinum (Pt) is supported, an aqueous solution (supported solution) of chloroplatinic acid is used. A catalyst is obtained by impregnating a carrier with a supporting liquid by a pore filling method or the like, then drying and then firing. The drying is usually performed at a temperature of room temperature to 150 ° C., further 100 to 130 ° C., usually for 2 hours or more, preferably 2 to 10 hours, and further 4 to 8 hours. Firing is performed at 450 to 700 ° C., preferably 500 to 600 ° C. under a flow of dry air for 0.5 to 4 hours.

本発明において、水素を製造するための原料としては、二環芳香族炭化水素の水素化物を含有する油を用いる。二環芳香族炭化水素の水素化物の他に、単環及び3環以上の多環芳香族炭化水素の水素化物あるいは、単環が共有結合で繋がったビフェニル類の水素化物、パラフィン系炭化水素などを含んでいても良いが、水素ガスの製造効率、副反応の発生などの観点から、二環芳香族炭化水素の水素化物を70質量%以上含有する油を用いることが好ましく、更には80質量%以上、特には90質量%以上含有する油を用いることが望ましい。二環芳香族炭化水素の水素化物は、単一の化合物を用いることもでき、2種以上の化合物からなるものであっても良い。また、二環芳香族炭化水素の水素化物としては、炭化水素基の置換基を有するものが好ましく使用でき、炭化水素置換基を1個以上有する化合物が好ましく、更には炭化水素置換基を2個以上有する化合物が好ましい。また、上記の二環芳香族炭化水素の水素化物を含有する油は、炭化水素置換基を1個以上有する、又は、2個以上有する二環芳香族炭化水素の水素化物を少なくとも20%質量以上含有する油が好ましい。   In the present invention, an oil containing a hydride of a bicyclic aromatic hydrocarbon is used as a raw material for producing hydrogen. In addition to hydrides of bicyclic aromatic hydrocarbons, hydrides of monocyclic and polycyclic aromatic hydrocarbons of 3 or more rings, hydrides of biphenyls in which monocycles are covalently linked, paraffinic hydrocarbons, etc. However, from the viewpoint of production efficiency of hydrogen gas, generation of side reactions, etc., it is preferable to use an oil containing 70% by mass or more of a hydride of a bicyclic aromatic hydrocarbon, more preferably 80% by mass. It is desirable to use an oil containing at least 90%, particularly 90% by mass or more. The bicyclic aromatic hydrocarbon hydride may be a single compound or may be composed of two or more compounds. Further, as the bicyclic aromatic hydrocarbon hydride, those having a substituent of a hydrocarbon group can be preferably used, compounds having at least one hydrocarbon substituent are preferred, and further, two hydrocarbon substituents are contained. Compounds having the above are preferred. The oil containing the hydride of the bicyclic aromatic hydrocarbon has at least 20% by mass of hydride of the bicyclic aromatic hydrocarbon having one or more hydrocarbon substituents or having two or more hydrocarbon substituents. The oil it contains is preferred.

さらには、二環芳香族炭化水素の水素化物を含む油において、二環芳香族炭化水素の水素化物を70質量%以上含有し、かつ炭化水素置換基を1個以上有する二環芳香族炭化水素の水素化物を60質量%以上含む油がより好ましく使用できる。あるいは、二環芳香族炭化水素の水素化物を70質量%以上含有し、かつ炭化水素置換基を2個以上有する二環芳香族炭化水素の水素化物を20質量%以上含む油も好ましく使用できる。
上記の本発明による二環芳香族炭化水素の水素化物を含む油を用いることにより、同じ転化率を達成する反応温度を下げることができる。
Furthermore, in the oil containing the hydride of a bicyclic aromatic hydrocarbon, the bicyclic aromatic hydrocarbon which contains 70 mass% or more of hydrides of a bicyclic aromatic hydrocarbon and has one or more hydrocarbon substituents An oil containing 60% by mass or more of the hydride can be more preferably used. Alternatively, an oil containing 70% by mass or more of a bicyclic aromatic hydrocarbon hydride and 20% by mass or more of a bicyclic aromatic hydrocarbon hydride having two or more hydrocarbon substituents can be preferably used.
By using the oil containing the bicyclic aromatic hydrocarbon hydride according to the present invention, the reaction temperature for achieving the same conversion can be lowered.

二環芳香族炭化水素の水素化物は、通常炭素数10〜20のものを用いることができ、炭素数11〜20のものが好ましく、11〜16がより好ましく、11〜14がさらに好ましい。
上記二環芳香族炭化水素の水素化物の炭化水素置換基としては、電子供与性の置換基であることが望ましい。電子供与性の置換基を有することにより、脱水素反応における反応性が高くなる。電子供与性置換基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、あるいはターシャリー(tert)ブチル基を例示することができる。これらの置換基のうち、メチル基、エチル基がより好ましい。なお、二環芳香族炭化水素の水素化物が、複数の置換基を有する場合、複数の置換基は、同一であっても、それぞれ異なるものであってもよい。
As the bicyclic aromatic hydrocarbon hydride, those having 10 to 20 carbon atoms can be used, preferably those having 11 to 20 carbon atoms, more preferably 11 to 16 and even more preferably 11 to 14.
The hydrocarbon substituent of the bicyclic aromatic hydrocarbon hydride is preferably an electron-donating substituent. By having an electron-donating substituent, the reactivity in the dehydrogenation reaction is increased. Examples of the electron donating substituent include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, and a tertiary (tert) butyl group. Of these substituents, a methyl group and an ethyl group are more preferable. In addition, when the bicyclic aromatic hydrocarbon hydride has a plurality of substituents, the plurality of substituents may be the same or different.

本発明において、上記組成物中に含まれる二環芳香族炭化水素の水素化物として、置換基を持たない化合物としてはデカリンを例示でき、また炭化水素置換基が1個の化合物としては、例えば、メチルデカリン、エチルデカリン、プロピルデカリン、イソプロピルデカリン、ブチルデカリン、イソブチルデカリン、tert−ブチルデカリンなどを、炭化水素置換基が2個の化合物としては、ジメチルデカリン、ジエチルデカリン、ジプロピルデカリン、ジイソプロピルデカリン、ジブチルデカリン、ジイソブチルデカリン、ジ−tert−ブチルデカリン、エチルメチルデカリン、メチルプロピルデカリン、ブチルメチルデカリン、エチルプロピルデカリン、ブチルエチルデカリン、ブチルプロピルデカリンなどを、また、炭化水素置換基が3個以上の化合物としては、トリメチルデカリン、テトラメチルデカリン、トリエチルデカリンなどを、例示することができる。   In the present invention, the bicyclic aromatic hydrocarbon hydride contained in the composition can be exemplified by decalin as a compound having no substituent, and as a compound having one hydrocarbon substituent, for example, Methyl decalin, ethyl decalin, propyl decalin, isopropyl decalin, butyl decalin, isobutyl decalin, tert-butyl decalin and the like, and compounds having two hydrocarbon substituents include dimethyl decalin, diethyl decalin, dipropyl decalin, diisopropyl decalin, Dibutyl decalin, diisobutyl decalin, di-tert-butyl decalin, ethyl methyl decalin, methyl propyl decalin, butyl methyl decalin, ethyl propyl decalin, butyl ethyl decalin, butyl propyl decalin, etc., and 3 or more hydrocarbon substituents As the compound, trimethyl decalin, tetramethyl decalin, triethyl decalin and the like, can be exemplified.

本発明に用いる水素製造用の二環芳香族炭化水素の水素化物からなる組成物の製造方法は、上記の二環芳香族炭化水素の水素化物を含むものが得られる製造方法であれば特に限定はされない。例えば、原油を、蒸留、水素化脱硫、水素化精製、接触改質、接触分解、溶剤抽出ないし吸着分離などの周知の石油精製プロセスを適宜組み合わせて処理して得たナフタレン及びアルキルナフタレン(以下、アルキルナフタレン類という。)を水素化することにより、二環芳香族炭化水素の水素化物、すなわちデカリン及び上記に例示したアルキルデカリン類を得ることができる。アルキルナフタレン類の水素化、すなわち芳香族環の核水添を行う水素化反応には、周知の方法を用いることができる。例えば、水素化触媒の存在下に、反応温度50〜400℃、好ましくは80〜350℃、水素分圧0.1〜10MPa、好ましくは0.3〜2MPaの条件で行えばよい。水素化触媒としては、市販又は公知の各種水素化触媒を使用することができ、例えばニッケル系、貴金属系、金属硫化物系の水素化触媒を用いることができる。   The method for producing a composition comprising a hydride of a bicyclic aromatic hydrocarbon for producing hydrogen used in the present invention is particularly limited as long as the method includes a hydride of the above bicyclic aromatic hydrocarbon. Not done. For example, naphthalene and alkylnaphthalene (hereinafter, referred to as crude oil) obtained by appropriately combining known petroleum refining processes such as distillation, hydrodesulfurization, hydrorefining, catalytic reforming, catalytic cracking, solvent extraction or adsorption separation. By hydrogenating alkyl naphthalenes), bicyclic aromatic hydrocarbon hydrides, that is, decalin and the alkyl decalins exemplified above can be obtained. A well-known method can be used for the hydrogenation reaction of hydrogenating an alkylnaphthalene, that is, hydrogenating an aromatic ring. For example, in the presence of a hydrogenation catalyst, the reaction temperature may be 50 to 400 ° C., preferably 80 to 350 ° C., and the hydrogen partial pressure may be 0.1 to 10 MPa, preferably 0.3 to 2 MPa. As the hydrogenation catalyst, various commercially available or known hydrogenation catalysts can be used. For example, nickel-based, noble metal-based, and metal sulfide-based hydrogenation catalysts can be used.

二環芳香族炭化水素の水素化物の脱水素反応を行う際には貴金属触媒を使用することがあるので、水素化物中には、触媒毒となる硫黄分や窒素分をできるだけ含まないものが好ましく、硫黄分、窒素分はともに1質量ppm以下であることが好ましい。
また、水素製造反応における取り扱いを容易にするため、二環芳香族炭化水素の水素化物は、常温で液体、好ましくは流動点が−30℃以下であるものを選択する。
Since a noble metal catalyst may be used in the dehydrogenation reaction of a bicyclic aromatic hydrocarbon hydride, it is preferable that the hydride does not contain as much sulfur and nitrogen as possible as a catalyst poison. The sulfur content and the nitrogen content are both preferably 1 ppm by mass or less.
In order to facilitate handling in the hydrogen production reaction, the bicyclic aromatic hydrocarbon hydride is selected to be liquid at room temperature, preferably having a pour point of −30 ° C. or lower.

本発明において、二環芳香族炭化水素の水素化物の脱水素反応により水素を製造する方法においては、本発明の脱水素反応触媒の存在下、例えば、反応温度100〜450℃、好ましくは200〜400℃、水素分圧0.1〜5MPa、好ましくは0.3〜2MPaの条件で、原料である二環芳香族炭化水素の水素化物を含む組成物(油)と水素を流通することにより実施される。二環芳香族炭化水素の水素化物を原料として用いる脱水素反応において、本発明の触媒を用いることにより、低い反応温度でありながら、高い転化率及び選択率を達成することができる。   In the present invention, in the method for producing hydrogen by dehydrogenation of a hydride of a bicyclic aromatic hydrocarbon, in the presence of the dehydrogenation reaction catalyst of the present invention, for example, a reaction temperature of 100 to 450 ° C., preferably 200 to Conducted by circulating hydrogen and a composition (oil) containing a bicyclic aromatic hydrocarbon hydride as a raw material under the conditions of 400 ° C. and hydrogen partial pressure of 0.1 to 5 MPa, preferably 0.3 to 2 MPa. Is done. In the dehydrogenation reaction using a hydride of a bicyclic aromatic hydrocarbon as a raw material, by using the catalyst of the present invention, high conversion and selectivity can be achieved while the reaction temperature is low.

脱水素反応を行った後、二環芳香族炭化水素(未反応の水素化物を含む)を回収し、水素化反応(芳香族環の核水添反応)を行い対応する水素化物とすることにより、水素製造用の原料、あるいは水素を貯蔵し、供給する媒体として繰り返し利用することができる。したがって、水素供給源で二環芳香族炭化水素を水素化して二環芳香族炭化水素の水素化物を製造して、これを水素消費地に輸送して本発明の水素製造用触媒にて脱水素反応を行って水素を製造し、燃料電池等に水素を供給することができる。また、脱水素反応で生じた二環芳香族炭化水素は、上記のように再び水素供給源に輸送され、そこで水素化して二環芳香族炭化水素の水素化物を製造する。本発明はこのような水素の供給システムにも有用である。   After dehydrogenation reaction, bicyclic aromatic hydrocarbons (including unreacted hydrides) are recovered and hydrogenated (nuclear hydrogenation reaction of aromatic rings) to produce corresponding hydrides. It can be repeatedly used as a raw material for hydrogen production or a medium for storing and supplying hydrogen. Therefore, bicyclic aromatic hydrocarbons are hydrogenated from a hydrogen supply source to produce bicyclic aromatic hydrocarbon hydrides, which are transported to a hydrogen consuming place and dehydrogenated with the hydrogen production catalyst of the present invention. Reaction can be performed to produce hydrogen and supply hydrogen to a fuel cell or the like. In addition, the bicyclic aromatic hydrocarbon generated by the dehydrogenation reaction is transported again to the hydrogen supply source as described above, where it is hydrogenated to produce a bicyclic aromatic hydrocarbon hydride. The present invention is also useful for such a hydrogen supply system.

以下に、実施例に基づいて本発明をより詳細に説明するが、本発明は、係る実施例によって何ら制限されない。   Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to the examples.

なお、転化率、反応速度定数は、それぞれ次のように定義する。
(1)転化率
転化率(%)=100−未反応の原料のGC面積百分率
ここで、GC面積百分率はガスクロマトグラフ(GC)により検出された全ての有機化合物のピーク面積に対する対応する化合物のピーク面積百分率を指す。なお、原料として供される二環芳香族炭化水素の水素化物は、全ての芳香族炭化水素が水素化されているものとした。
(2)反応速度定数
反応速度定数(h−1−1
=液空間速度(h−1)×LN(1/(1−転化率%/100))/触媒重量(g)
The conversion rate and the reaction rate constant are defined as follows.
(1) Conversion Conversion (%) = 100—GC Area Percentage of Unreacted Raw Material Here, the GC area percentage is the peak of the corresponding compound relative to the peak area of all organic compounds detected by gas chromatograph (GC). Refers to area percentage. It should be noted that the bicyclic aromatic hydrocarbon hydride provided as a raw material was such that all aromatic hydrocarbons were hydrogenated.
(2) Reaction rate constant Reaction rate constant (h - 1g- 1 )
= Liquid space velocity (h −1 ) × LN (1 / (1−conversion% / 100)) / catalyst weight (g)

(触媒の調製)
市販のベーマイト粉1000gに水1000gと硝酸35gを加えて、双腕式混練機により、成形前駆体となるドウを作り、スクリュー式成形機で径1mm×長さ3mm程度の円柱状の担体前駆体を得た。得られた担体前駆体を130℃で8時間乾燥後、600℃で回転型焼成機に乾燥空気を4dmmin−1で流通させ焼成を行うことにより担体1を得た。同様に、市販ベーマイト粉1000gに水1000gと硝酸30g、20g、及び10gをそれぞれ加えて、同様に双腕式混練機とスクリュー式成形機で径1mm×長さ3mm程度の円柱状の担体前駆体を得て、130℃で8時間乾燥後に、600℃で回転型焼成機に乾燥空気を4dmmin−1で流通させて焼成を行い、担体2、3、及び4をそれぞれ得た。
さらに、市販のベーマイト粉1000gに水1000gと硝酸30gを加えて、転動造粒機により直径約1.5mmの球状の担体前駆体を得た。得られた担体前駆体を130℃で8時間乾燥後、700℃で回転型焼成機に乾燥空気を4dmmin−1で流通させ焼成を行うことにより担体5を得た。このようにして製造した5種類のAl担体(担体1、担体2、担体3、担体4、及び担体5)それぞれに、塩化白金酸六水和物を用いてPtを0.5質量%となるように含浸法により含浸して、130℃で8時間乾燥後、500℃で30分、乾燥空気を8dmmin−1で流通させて焼成を行い、触媒1〜触媒5を得た。また、小型の実験装置で反応を行う場合には、偏流を抑制して実験精度を上げるためにさらに粉砕、分級した触媒を用いた。
(Preparation of catalyst)
Add 1000 g of water and 35 g of nitric acid to 1000 g of commercially available boehmite powder, make a dough as a molding precursor with a double-arm kneader, and use a screw-type molding machine to form a cylindrical carrier precursor with a diameter of about 1 mm and a length of about 3 mm. Got. The obtained carrier precursor was dried at 130 ° C. for 8 hours, and then dried at 600 ° C. through a rotary calciner at 4 dm 3 min −1 for firing to obtain carrier 1. Similarly, 1000 g of water and 30 g, 20 g, and 10 g of nitric acid are added to 1000 g of commercially available boehmite powder, and a cylindrical carrier precursor having a diameter of about 1 mm and a length of about 3 mm is similarly used with a double-arm kneader and a screw-type molding machine. After drying at 130 ° C. for 8 hours, the dried air was passed through a rotary calciner at 4 dm 3 min −1 at 600 ° C. and calcined to obtain carriers 2, 3, and 4, respectively.
Further, 1000 g of water and 30 g of nitric acid were added to 1000 g of commercially available boehmite powder, and a spherical carrier precursor having a diameter of about 1.5 mm was obtained by a rolling granulator. The obtained carrier precursor was dried at 130 ° C. for 8 hours, and then dried at 700 ° C. through a rotary calciner at 4 dm 3 min −1 for firing to obtain a carrier 5. Each of the five types of Al 2 O 3 carriers (carrier 1, carrier 2, carrier 3, carrier 4, and carrier 5) produced in this way is 0.5 mass of Pt using chloroplatinic acid hexahydrate. The catalyst 1 to the catalyst 5 were obtained by impregnation by an impregnation method so as to be%, dried at 130 ° C. for 8 hours, and then calcined by flowing dry air at 8 dm 3 min −1 for 30 minutes at 500 ° C. . Further, when the reaction was performed with a small experimental apparatus, a catalyst that was further pulverized and classified was used in order to suppress the drift and increase the experimental accuracy.

得られた5種類の触媒について窒素吸着法による細孔径分布測定装置(ASAP2400、マイクロメリテックス社製)を用いて、比表面積、細孔径、細孔容量、細孔分布を求めた。比表面積はBET法、細孔分布はBJH法により計測される20〜600Åの範囲の細孔容量を用いた。求めた細孔径ごとの細孔容量を積算して細孔容量の積算値が50%となる時の細孔径を平均細孔径(D50)と定義した。また、触媒中の白金量は、JIS K 0102に準じた高周波プラズマ分光分析(ICP)法により求めた。細孔物性等が異なる5種類の触媒(触媒1〜触媒5)の物性を表1に示す。このようにして調製された触媒それぞれについて、二環芳香族炭化水素の水素化物の脱水素反応を行い、その性能を評価した。   The specific surface area, pore diameter, pore volume, and pore distribution were determined for the obtained five types of catalysts using a pore size distribution measuring apparatus (ASAP2400, manufactured by Micromeritex Corporation) by a nitrogen adsorption method. The specific surface area was a BET method, and the pore distribution was a pore volume in the range of 20 to 600 mm measured by the BJH method. The pore volume for each pore diameter obtained was integrated and the pore diameter when the integrated value of the pore volume was 50% was defined as the average pore diameter (D50). Further, the amount of platinum in the catalyst was determined by a high frequency plasma spectroscopic analysis (ICP) method according to JIS K 0102. Table 1 shows the physical properties of five kinds of catalysts (catalyst 1 to catalyst 5) having different pore physical properties. Each of the catalysts thus prepared was subjected to a dehydrogenation reaction of a bicyclic aromatic hydrocarbon hydride, and its performance was evaluated.

1−メチルナフタレン:ジメチルナフタレン:1−エチルナフタレン=70:20:10(質量比)の組成からなるアルキルナフタレン混合物から、流通式反応装置に30cmの市販Ni触媒を充填し、2MPa、LHSV=1h−1、H/Oil=900dm/dm、反応温度240℃で水素化し、1−メチルデカリン:ジメチルデカリン:1−エチルデカリン=70:20:10(質量比)の組成からなるアルキルデカリンの混合物Aを得た。該混合物Aの性状を表2に示す。表2において、密度、引火点、及び流動点は、それぞれJIS K 2249、JIS K 2265、及びJIS K 2269に従って測定した。GC蒸留沸点範囲は、JIS K 2254のガスクロマトグラフ法に準じて測定した。硫黄分は、JIS K 2541に準じて測定し、窒素分は、JIS K 2609に準じて測定した。また、平均分子量は、GC質量分析から求めた同定成分とその濃度から計算により求めた。 From an alkylnaphthalene mixture having a composition of 1-methylnaphthalene: dimethylnaphthalene: 1-ethylnaphthalene = 70: 20: 10 (mass ratio), a flow reactor is charged with 30 cm 3 of a commercially available Ni catalyst, and 2 MPa, LHSV = 1h −1 , H 2 / Oil = 900 dm 3 / dm 3 , hydrogenated at a reaction temperature of 240 ° C., alkyl having a composition of 1-methyldecalin: dimethyldecalin: 1-ethyldecalin = 70: 20: 10 (mass ratio) Decalin mixture A was obtained. Properties of the mixture A are shown in Table 2. In Table 2, the density, flash point, and pour point were measured according to JIS K 2249, JIS K 2265, and JIS K 2269, respectively. The GC distillation boiling point range was measured according to the gas chromatographic method of JIS K 2254. The sulfur content was measured according to JIS K2541, and the nitrogen content was measured according to JIS K2609. Moreover, the average molecular weight was calculated | required by calculation from the identification component calculated | required from GC mass spectrometry, and its density | concentration.

上記表1の触媒1を固定床流通式反応装置に10cm充填し、触媒層温度325〜340℃、反応圧力=0.3MPa、液空間速度(LHSV)=2h−1、水素/オイル比(H/Oil)=523dm/dmの条件下でアルキルデカリン混合物Aを脱水素反応し、アルキルナフタレン及び水素の生成反応活性を調べた。反応後8時間経過後の安定状態における2時間平均の触媒層温度及び採取した生成油のガスクロ分析による転化率、及び反応速度定数を求めた。それらの結果を、表3にまとめて示す。なお、水素純度は、発生ガスからドライアイスメタノールトラップを用いて生成油並びに未反応油を分離した後、ガスクロマトグラフでガス組成分析した結果を示すが、全て99.92容量%以上の純度であった。 10 cm 3 of the catalyst 1 of Table 1 above is packed into a fixed bed flow reactor, the catalyst layer temperature is 325 to 340 ° C., the reaction pressure is 0.3 MPa, the liquid space velocity (LHSV) is 2 h −1 , the hydrogen / oil ratio ( The alkyldecalin mixture A was dehydrogenated under the conditions of (H 2 / Oil) = 523 dm 3 / dm 3 , and the reaction for producing alkylnaphthalene and hydrogen was investigated. The catalyst layer temperature averaged for 2 hours in the stable state after 8 hours from the reaction, the conversion rate of the collected product oil by gas chromatography analysis, and the reaction rate constant were determined. The results are summarized in Table 3. The hydrogen purity shows the result of gas composition analysis by gas chromatograph after separating generated oil and unreacted oil from the generated gas using a dry ice methanol trap, and all the purity is 99.92% by volume or more. It was.

アルキルデカリン混合物Aの脱水素反応において、充填する触媒を触媒2とした以外は、前記実施例1に記載した手順と全く同じ手順で行い、前記実施例1と同様にして、転化率、及び反応速度定数を求めた。結果を、実施例1と同様に表3に示す。   In the dehydrogenation reaction of the alkyl decalin mixture A, except that the catalyst to be packed was changed to the catalyst 2, the procedure was exactly the same as the procedure described in Example 1, and the conversion rate and reaction were the same as in Example 1. The rate constant was determined. The results are shown in Table 3 as in Example 1.

触媒3を用いた以外は、前記実施例1と全く同様にしてアルキルデカリン混合物Aの脱水素反応を実施した。結果を、実施例1と同様に表3に示す。   A dehydrogenation reaction of the alkyl decalin mixture A was carried out in exactly the same manner as in Example 1 except that the catalyst 3 was used. The results are shown in Table 3 as in Example 1.

触媒4を用いた以外は、前記実施例1と全く同様にしてアルキルデカリン混合物Aの脱水素反応を実施した。結果を、実施例1と同様に表3に示す。   Except that the catalyst 4 was used, the dehydrogenation reaction of the alkyl decalin mixture A was carried out in exactly the same manner as in Example 1. The results are shown in Table 3 as in Example 1.

実施例1〜4の結果に基づいて、平均細孔径に対する反応転化率を示したのが図1である。本発明において、325℃の反応温度で80%以上の転化率を示す平均細孔径の範囲は65〜130Åであり、90〜100Å付近で最も高い転化率を示し、特に好ましい。また、本システムの経済性を成り立たせるために必要な最低転化率80%を維持させることが、325℃という比較的低い温度で達成することが可能となり、エネルギー効率を高めることができる。細孔径が65Å未満あるいは130Åを超えるものは、本システムの経済性を成り立たせるために必要な最低の転化率を割り込むため、本システムの水素製造用触媒として適さない。   FIG. 1 shows the reaction conversion ratio with respect to the average pore diameter based on the results of Examples 1 to 4. In the present invention, the average pore diameter range showing a conversion rate of 80% or more at a reaction temperature of 325 ° C. is 65 to 130 mm, and the highest conversion rate is shown in the vicinity of 90 to 100 mm, which is particularly preferable. In addition, it is possible to achieve the minimum conversion rate of 80% necessary for realizing the economic efficiency of the present system at a relatively low temperature of 325 ° C., thereby increasing the energy efficiency. Those having a pore diameter of less than 65 mm or more than 130 mm are not suitable as a catalyst for hydrogen production in this system because they impede the minimum conversion rate necessary to achieve the economics of this system.

実施例2及び3で用いた触媒は平均細孔径がそれぞれ84Å及び103Åのものであるが、特に80〜110Åの範囲においては、上記実施例の反応温度325℃において、85%以上の転化率を維持することができ、システムの経済性を増す上でさらに有効である。また、この範囲では、表3に示したように高い純度の水素が得られたことから、副反応によって生じるメタンなどの炭化水素の反応が抑制され、目的とする脱水素反応が選択的に行われたことが推察される。このように高い純度の水素を製造できることは、不純物となる副反応物質の除去などに必要な分離プロセスへの負担が軽減されるため、さらに好ましい。   The catalysts used in Examples 2 and 3 have average pore diameters of 84 mm and 103 mm, respectively. Particularly in the range of 80 to 110 mm, the conversion rate of 85% or more was obtained at the reaction temperature of 325 ° C. in the above examples. It can be maintained and is more effective in increasing the economics of the system. Also, within this range, as shown in Table 3, since high purity hydrogen was obtained, the reaction of hydrocarbons such as methane caused by side reactions was suppressed, and the intended dehydrogenation reaction was selectively performed. It is presumed that It is more preferable that high-purity hydrogen can be produced in this manner because a burden on a separation process necessary for removing a side reaction material as an impurity is reduced.

流通式反応装置の中に10cmの触媒5を充填し、アルキルデカリン混合物Aを、0.3MPa、LHSV=2h−1、H/Oil=525dm/dmの条件下で流した。触媒層温度を徐々に上げていき、生成油の組成がアルキルナフタレン混合物:アルキルデカリン混合物=95:5となる触媒層温度を求めたところ、342℃であった。このとき、実施例1と同様にして出口ガスから求めた発生ガスの水素純度は99.99%であった。 Filled with a catalyst 5 of 10 cm 3 in a flow reactor, the alkyl decalin mixture A, 0.3MPa, LHSV = 2h -1 , was passed under the conditions of H 2 / Oil = 525dm 3 / dm 3. The catalyst layer temperature was gradually raised, and the catalyst layer temperature at which the composition of the product oil was alkylnaphthalene mixture: alkyldecalin mixture = 95: 5 was determined, and it was 342 ° C. At this time, the hydrogen purity of the generated gas obtained from the outlet gas in the same manner as in Example 1 was 99.99%.

ジメチルナフタレン:トリメチルナフタレン:メチルビフェニル:ジメチルビフェニル=42:38:8:12(質量比)の組成からなるアルキルナフタレン混合物から、流通式反応装置に30cmの市販Ni触媒を充填し、2MPa、LHSV=1h−1、H/Oil=1000dm/dm、触媒層温度230℃で水素化し、ジメチルデカリン:トリメチルデカリン:メチルビシクロヘキシル:ジメチルビシクロヘキシル=42:38:8:12(質量比)の組成からなるアルキルデカリン混合物Bを得た。該混合物Bの性状を表2に示す。
流通式反応装置の中に白金アルミナ触媒(触媒5)を10cm(7.44g)充填し、アルキルデカリン混合物Bを、0.3MPa、LHSV=2h−1、H/Oil=525dm/dmの条件下で流した。触媒層温度を徐々に上げていき、生成油の組成がアルキルナフタレン混合物:アルキルデカリン混合物=95:5となる触媒層温度を求めたところ、320℃であった。このとき、実施例1と同様にして出口ガスから求めた発生ガスの水素純度は99.99%であった。
From an alkylnaphthalene mixture having a composition of dimethylnaphthalene: trimethylnaphthalene: methylbiphenyl: dimethylbiphenyl = 42: 38: 8: 12 (mass ratio), 30 cm 3 of a commercially available Ni catalyst was charged into a flow reactor and 2 MPa, LHSV = 1h −1 , H 2 / Oil = 1000 dm 3 / dm 3 , hydrogenated at a catalyst layer temperature of 230 ° C., dimethyldecalin: trimethyldecalin: methylbicyclohexyl: dimethylbicyclohexyl = 42: 38: 8: 12 (mass ratio) An alkyl decalin mixture B having the following composition was obtained. Properties of the mixture B are shown in Table 2.
A platinum-alumina catalyst (catalyst 5) is filled into a flow reactor at 10 cm 3 (7.44 g), and alkyl decalin mixture B is added to 0.3 MPa, LHSV = 2 h −1 , H 2 / Oil = 525 dm 3 / dm. It was run under the condition of 3 . The catalyst layer temperature was gradually increased, and the catalyst layer temperature at which the composition of the product oil was alkylnaphthalene mixture: alkyldecalin mixture = 95: 5 was determined to be 320 ° C. At this time, the hydrogen purity of the generated gas obtained from the outlet gas in the same manner as in Example 1 was 99.99%.

流通式反応装置の中に白金アルミナ触媒(触媒3)を10cm(5.87g)充填し、アルキルデカリン混合物Bを、0.3MPa、LHSV=2h−1、H/Oil=525dm/dmの条件下で流した。触媒層温度を徐々に上げていき、生成油の組成がアルキルナフタレン混合物:アルキルデカリン混合物=95:5となる触媒層温度を求めたところ、322℃であった。このとき、実施例1と同様にして出口ガスから求めた発生ガスの水素純度は99.99%であった。 A platinum-alumina catalyst (catalyst 3) is filled in 10 cm 3 (5.87 g) in the flow reactor, and alkyl decalin mixture B is 0.3 MPa, LHSV = 2 h −1 , H 2 / Oil = 525 dm 3 / dm. It was run under the condition of 3 . The catalyst layer temperature was gradually increased, and the catalyst layer temperature at which the composition of the product oil was alkylnaphthalene mixture: alkyldecalin mixture = 95: 5 was determined, and was 322 ° C. At this time, the hydrogen purity of the generated gas obtained from the outlet gas in the same manner as in Example 1 was 99.99%.

流通式反応装置の中に白金アルミナ触媒(触媒5)を10cm(7.44g)充填し、市販1−メチルデカリンを、0.3MPa、LHSV=2h−1、H/Oil=525dm/dmの条件下で流した。触媒層温度を徐々に上げていき、生成油の組成が1−メチルナフタレン:1−メチルデカリン=95:5となる触媒層温度を求めたところ、350℃であった。このとき、実施例1と同様にして出口ガスから求めた発生ガスの水素純度は99.98%であった。 A platinum-alumina catalyst (catalyst 5) was charged into a flow reactor at 10 cm 3 (7.44 g), and commercially available 1-methyldecalin was added to 0.3 MPa, LHSV = 2h −1 , H 2 / Oil = 525 dm 3 / It was run under the conditions of dm 3 . The catalyst layer temperature was gradually increased, and the catalyst layer temperature at which the composition of the product oil was 1-methylnaphthalene: 1-methyldecalin = 95: 5 was determined. At this time, the hydrogen purity of the generated gas obtained from the outlet gas in the same manner as in Example 1 was 99.98%.

反応温度をパラメータとした平均細孔径と反応転化率の関係を示すグラフである。It is a graph which shows the relationship between the average pore diameter which made reaction temperature the parameter, and reaction conversion rate.

Claims (9)

白金、ルテニウム、パラジウム、ロジウム、スズ、レニウム、及びゲルマニウムよりなる群から選択される少なくとも1種の金属を多孔質担体に担持し、平均細孔径が65〜130Åであり、かつ、細孔径65〜130Åの範囲の細孔の細孔容量が、0.25cm−1以上であり、及び、全細孔容量の50%以上を占めることを特徴とする、二環芳香族炭化水素の水素化物の脱水素反応に用いる水素製造用触媒。 At least one metal selected from the group consisting of platinum, ruthenium, palladium, rhodium, tin, rhenium, and germanium is supported on the porous carrier, the average pore diameter is 65 to 130 mm, and the pore diameter 65 The bicyclic aromatic hydrocarbon hydride is characterized in that the pore volume of pores in the range of 130 mm is 0.25 cm 3 g −1 or more and occupies 50% or more of the total pore volume. Catalyst for producing hydrogen used in the dehydrogenation reaction. 平均細孔径が80〜110Åであり、かつ、細孔径が80〜110Åの範囲の細孔の細孔容量が、0.10cm−1以上であり、及び、全細孔容量の20%以上を占める請求項1に記載の水素製造用触媒。 The pore volume of the pores having an average pore diameter of 80 to 110 Å and a pore diameter in the range of 80 to 110 で is 0.10 cm 3 g −1 or more, and 20% or more of the total pore volume. The catalyst for hydrogen production according to claim 1, wherein: 多孔質担体が、酸化アルミニウム(Al)及び/又は二酸化ケイ素(SiO)からなる、請求項1又は2に記載の水素製造用触媒。 The catalyst for hydrogen production according to claim 1 or 2, wherein the porous carrier is made of aluminum oxide (Al 2 O 3 ) and / or silicon dioxide (SiO 2 ). 二環芳香族炭化水素の水素化物を含む油を請求項1〜3のいずれかに記載の触媒と接触させて、水素を製造することを特徴とする水素の製造方法。   A method for producing hydrogen, wherein hydrogen is produced by contacting an oil containing a hydride of a bicyclic aromatic hydrocarbon with the catalyst according to any one of claims 1 to 3. 二環芳香族炭化水素の水素化物を含む油は、炭化水素置換基を1個以上有する二環芳香族炭化水素の水素化物を20質量%以上含有する、請求項4に記載の水素の製造方法。   5. The method for producing hydrogen according to claim 4, wherein the oil containing a hydride of a bicyclic aromatic hydrocarbon contains 20% by mass or more of a hydride of a bicyclic aromatic hydrocarbon having one or more hydrocarbon substituents. . 二環芳香族炭化水素の水素化物を含む油は、炭化水素置換基を2個以上有する二環芳香族炭化水素の水素化物を20質量%以上含有する、請求項4に記載の水素の製造方法。   5. The method for producing hydrogen according to claim 4, wherein the oil containing a hydride of a bicyclic aromatic hydrocarbon contains 20 mass% or more of a hydride of a bicyclic aromatic hydrocarbon having two or more hydrocarbon substituents. . 二環芳香族炭化水素の水素化物を含む油は、二環芳香族炭化水素の水素化物を70質量%以上含有し、かつ炭化水素置換基を1個以上有する二環芳香族炭化水素の水素化物を60質量%以上含む、請求項4に記載の水素の製造方法。   Oil containing hydride of bicyclic aromatic hydrocarbon, hydride of bicyclic aromatic hydrocarbon containing 70% by mass or more of hydride of bicyclic aromatic hydrocarbon and having one or more hydrocarbon substituents 5. The method for producing hydrogen according to claim 4, comprising 60 mass% or more. 二環芳香族炭化水素の水素化物を含む油は、二環芳香族炭化水素の水素化物を70質量%以上含有し、かつ炭化水素置換基を2個以上有する二環芳香族炭化水素の水素化物を20質量%以上含む、請求項4に記載の水素の製造方法。   An oil containing a hydride of a bicyclic aromatic hydrocarbon contains 70% by mass or more of a hydride of a bicyclic aromatic hydrocarbon and has two or more hydrocarbon substituents. The manufacturing method of hydrogen of Claim 4 which contains 20 mass% or more. 炭化水素置換基が、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、及びターシャリーブチル基よりなる群から選ばれる少なくとも1種である請求項〜8のいずれかに記載の水素の製造方法。 Hydrocarbon substituents, according to any one of a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, and at least one kind of claim 5-8 selected from the group consisting of tertiary butyl group Process for producing hydrogen.
JP2006055895A 2005-03-03 2006-03-02 Catalyst for producing hydrogen and method for producing hydrogen Active JP4743521B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006055895A JP4743521B2 (en) 2005-03-03 2006-03-02 Catalyst for producing hydrogen and method for producing hydrogen

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005058292 2005-03-03
JP2005058292 2005-03-03
JP2006055895A JP4743521B2 (en) 2005-03-03 2006-03-02 Catalyst for producing hydrogen and method for producing hydrogen

Publications (2)

Publication Number Publication Date
JP2006272324A JP2006272324A (en) 2006-10-12
JP4743521B2 true JP4743521B2 (en) 2011-08-10

Family

ID=37207564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006055895A Active JP4743521B2 (en) 2005-03-03 2006-03-02 Catalyst for producing hydrogen and method for producing hydrogen

Country Status (1)

Country Link
JP (1) JP4743521B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2128312A4 (en) 2007-03-19 2016-09-21 Ube Industries Silica-based composite oxide fiber, catalyst fiber comprising the same, and process for producing the same
JP5340681B2 (en) * 2008-09-12 2013-11-13 Jx日鉱日石エネルギー株式会社 Reforming catalyst for hydrogen production suitable for hydrogen production at a low temperature, and hydrogen production method using the catalyst
JP5998276B2 (en) * 2013-04-25 2016-09-28 日産自動車株式会社 Method for producing catalyst, and electrode catalyst layer, membrane electrode assembly and fuel cell using the catalyst
CA2910242C (en) * 2013-04-25 2019-01-22 Nissan Motor Co., Ltd. Catalyst, and electrode catalyst layer, membrane electrode assembly and fuel cell using the catalyst
CN112707784B (en) * 2019-10-24 2023-05-02 中国石油化工股份有限公司 Dehydrogenation method of organic liquid

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001110437A (en) * 1999-10-12 2001-04-20 Kansai Research Institute Hydrogen fuel supply system for fuel cell
JP2003320251A (en) * 2002-02-28 2003-11-11 Osaka Gas Co Ltd Alicyclic compound dehydrogenation catalyst
JP2004033892A (en) * 2002-07-02 2004-02-05 Toyobo Co Ltd Carbon carrier for carrying metal catalyst
JP2004057858A (en) * 2002-07-25 2004-02-26 Kansai Electric Power Co Inc:The Catalyst for manufacturing hydrogen gas and manufacturing method of hydrogen gas
JP2004142965A (en) * 2002-10-22 2004-05-20 Masaru Ichikawa Hydrogen storage/supply system
JP2004196638A (en) * 2002-12-20 2004-07-15 Chiyoda Corp Method of manufacturing hydrogen
JP2005211845A (en) * 2004-01-30 2005-08-11 Chiyoda Corp Dehydrogenation catalyst for hydrogenated aromatic compounds and manufacturing method therefor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001110437A (en) * 1999-10-12 2001-04-20 Kansai Research Institute Hydrogen fuel supply system for fuel cell
JP2003320251A (en) * 2002-02-28 2003-11-11 Osaka Gas Co Ltd Alicyclic compound dehydrogenation catalyst
JP2004033892A (en) * 2002-07-02 2004-02-05 Toyobo Co Ltd Carbon carrier for carrying metal catalyst
JP2004057858A (en) * 2002-07-25 2004-02-26 Kansai Electric Power Co Inc:The Catalyst for manufacturing hydrogen gas and manufacturing method of hydrogen gas
JP2004142965A (en) * 2002-10-22 2004-05-20 Masaru Ichikawa Hydrogen storage/supply system
JP2004196638A (en) * 2002-12-20 2004-07-15 Chiyoda Corp Method of manufacturing hydrogen
JP2005211845A (en) * 2004-01-30 2005-08-11 Chiyoda Corp Dehydrogenation catalyst for hydrogenated aromatic compounds and manufacturing method therefor

Also Published As

Publication number Publication date
JP2006272324A (en) 2006-10-12

Similar Documents

Publication Publication Date Title
JP4907210B2 (en) Hydrogen storage and transport system
Huang et al. Enhanced catalytic activity for methane combustion through in situ water sorption
Carrero et al. Hydrogen production through glycerol steam reforming using Co catalysts supported on SBA-15 doped with Zr, Ce and La
KR101403733B1 (en) Catalyst for steam reformation, hydrogen production apparatus, and fuel cell system
Kim et al. The effect of support and reaction conditions on aqueous phase reforming of polyol over supported Pt–Re bimetallic catalysts
JP4652695B2 (en) Hydrogenated aromatic dehydrogenation catalyst and method for producing the same
JP4743521B2 (en) Catalyst for producing hydrogen and method for producing hydrogen
CN110603096B (en) Preparation method of dehydrogenation catalyst of linear light hydrocarbon with high regeneration efficiency
CN111432930A (en) Process for regenerating a catalyst for the selective conversion of hydrocarbons
JP2005216774A (en) Hydrogen supplying device of fuel cell for working machine
JP5378148B2 (en) Reforming catalyst, reformer, and hydrogen production device
Zhang et al. Synergistic effect between Sn and K promoters on supported platinum catalyst for isobutane dehydrogenation
JP5000202B2 (en) Catalyst for producing hydrogen and method for producing hydrogen
Vu et al. Influence of oxygen mobility over supported Pt Catalysts on combustion temperature of coke generated in propane dehydrogenation
JP5593106B2 (en) Hydrogen production method, hydrogen production apparatus and fuel cell system
CN114585439A (en) Catalyst suitable for hydrocarbon conversion reaction, preparation method and application thereof
WO2014182020A1 (en) Monolith catalyst for carbon dioxide reforming reaction, production method for same, and production method for synthesis gas using same
Pandya et al. Influence of catalyst reduction temperature on autogenous glycerol hydrogenolysis over NiAl catalyst
Jarvis et al. Methane assisted catalyst synthesis and catalytic conversion of oleic acid
WO2018036672A1 (en) Catalytically active compositions of matter
Sun et al. Sintering-resistant Cu/B/Ca/Al2O3 catalysts for durable hydrogenation of sec-butyl acetate to 2-butanol and ethanol
Zhang et al. Direct synthesis of LPG from syngas in a slurry phase
JP5582468B2 (en) Method for hydrogenating aromatic hydrocarbons
JP5614533B2 (en) Aromatic hydrocarbon hydrogenation catalyst and hydrogenation method using the same
JP2002316043A (en) Desulfurizing agent for organic sulfur compound- containing fuel oil and method of manufacturing hydrogen for fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081208

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110427

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110427

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4743521

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250