JP4743223B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP4743223B2
JP4743223B2 JP2008116477A JP2008116477A JP4743223B2 JP 4743223 B2 JP4743223 B2 JP 4743223B2 JP 2008116477 A JP2008116477 A JP 2008116477A JP 2008116477 A JP2008116477 A JP 2008116477A JP 4743223 B2 JP4743223 B2 JP 4743223B2
Authority
JP
Japan
Prior art keywords
temperature
heat exchanger
indoor
humidity
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008116477A
Other languages
Japanese (ja)
Other versions
JP2008232617A (en
Inventor
文雄 松岡
正樹 豊島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008116477A priority Critical patent/JP4743223B2/en
Publication of JP2008232617A publication Critical patent/JP2008232617A/en
Application granted granted Critical
Publication of JP4743223B2 publication Critical patent/JP4743223B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Other Air-Conditioning Systems (AREA)
  • Air Conditioning Control Device (AREA)

Description

本発明は温度と湿度の両者を制御目標とする空気調和装置に関するものである。   The present invention relates to an air conditioner that has both temperature and humidity as control targets.

従来、ルームエアコンなどの冷凍サイクル応用空気調和装置については、能力制御及び制御信号が室内空気の温度と温度目標値の偏差に応じて実施されるものや、例えば特開平6−241534号公報に示されるように、ドライ運転時に、室内温度と設定温度との偏差、室内湿度と設定湿度との偏差に応じてファジー制御ルールに従って室外ファンの風量および圧縮機の容量を制御するものが示されている。   2. Description of the Related Art Conventionally, with respect to refrigeration cycle applied air conditioners such as room air conditioners, capacity control and control signals are implemented according to the deviation between the temperature of room air and a temperature target value. As shown in the figure, during dry operation, the air flow rate of the outdoor fan and the capacity of the compressor are controlled according to the fuzzy control rule according to the deviation between the room temperature and the set temperature, and the deviation between the room humidity and the set humidity. .

上記のような従来の空気調和装置では、室内空気の温度と温度目標値の偏差に応じて制御する場合は、人間の快適性にとって重要な要素である湿度という要因が考慮されず、快適性の向上が図れないという課題があった。   In the conventional air conditioner as described above, when the control is performed according to the deviation between the temperature of the indoor air and the temperature target value, the factor of humidity, which is an important factor for human comfort, is not considered, and the comfort of There was a problem that improvement could not be achieved.

この発明は、上記のような課題を解決するためになされたもので、人間の快適性にとって、温度と湿度の両者が重要であることに着目し、両目標値を同時に満足する運転制御方法を考案し、暖房ぎみ除湿を可能とし、室内気温が低い条件においても快適な室内温湿度環境を実現することができる空気調和装置を得るものである。   The present invention has been made to solve the above-described problems, and pays attention to the fact that both temperature and humidity are important for human comfort, and an operation control method that satisfies both target values at the same time. The present invention provides an air-conditioning apparatus that can be dehumidified by heating and can realize a comfortable indoor temperature and humidity environment even under conditions where the room temperature is low.

この発明に係る空気調和装置においては、冷媒を高温高圧に圧縮する圧縮機、この圧縮機からの冷媒を凝縮液化する室外熱交換器、この室外熱交換器による冷媒を断熱膨張させ中圧二相冷媒とする室外絞り機構、前記室外熱交換器に設けられた室外熱交換器用送風機を有する室外機と、この室外機からの冷媒を中圧二相冷媒から中圧の液冷媒に凝縮させ、室内空気に放熱する第1の室内熱交換器、この第1の室内熱交換器からの冷媒を断熱膨張させ低圧二相冷媒とする室内絞り機構、この室内絞り機構から低圧二相冷媒を流入し蒸発ガス化させ、室内の空気を冷却除湿し、冷媒を前記圧縮機へ帰す第2の室内熱交換器、室内の温湿度を検出する温湿度検出手段、室内の温湿度を設定する温湿度設定手段を有する室内機とを備える空気調和装置において、前記圧縮機と前記室外熱交換器との間と前記室外熱交換器と前記第1の室内熱交換器との間に開閉自在の吐出バイパス弁を有する配管が設けられたものである。 In the air conditioner according to the present invention, a compressor that compresses the refrigerant to a high temperature and a high pressure, an outdoor heat exchanger that condenses and liquefies the refrigerant from the compressor, and a medium pressure two-phase by adiabatic expansion of the refrigerant by the outdoor heat exchanger. An outdoor throttle mechanism as a refrigerant, an outdoor unit having a fan for an outdoor heat exchanger provided in the outdoor heat exchanger, and the refrigerant from the outdoor unit is condensed from a medium-pressure two-phase refrigerant to a medium-pressure liquid refrigerant, A first indoor heat exchanger that radiates heat to the air, an indoor throttle mechanism that adiabatically expands the refrigerant from the first indoor heat exchanger to form a low-pressure two-phase refrigerant, and a low-pressure two-phase refrigerant that flows from the indoor throttle mechanism to evaporate A second indoor heat exchanger that gasifies, cools and dehumidifies indoor air, and returns the refrigerant to the compressor; temperature / humidity detection means for detecting indoor temperature / humidity; temperature / humidity setting means for setting indoor temperature / humidity Air conditioner provided with indoor unit having And a pipe having a discharge bypass valve that can be opened and closed is provided between the compressor and the outdoor heat exchanger and between the outdoor heat exchanger and the first indoor heat exchanger. .

また、前記室外熱交換器用送風機の回転数を前記室外機の電子部品を冷却するに要する回転数以下には下げないものである。 In addition, the rotational speed of the outdoor heat exchanger fan is not reduced below the rotational speed required for cooling the electronic components of the outdoor unit.

さらに、前記第2の室内熱交換器への配管の温度を検出する室内熱交換器配管温度センサーを備え、この室内熱交換器配管温度センサーにより検出される前記第2の室内熱交換器への配管の温度による冷凍サイクル蒸発温度の設定値を、機器側顕熱比を低減する所定の温度以上にするものである。 Furthermore, an indoor heat exchanger piping temperature sensor for detecting the temperature of the piping to the second indoor heat exchanger is provided, and the second indoor heat exchanger detected by the indoor heat exchanger piping temperature sensor is provided. The set value of the refrigeration cycle evaporation temperature according to the temperature of the pipe is set to be equal to or higher than a predetermined temperature for reducing the equipment-side sensible heat ratio.

この発明は、以上説明したように構成されているので、以下に示すような効果を奏する。   Since the present invention is configured as described above, the following effects can be obtained.

冷媒を高温高圧に圧縮する圧縮機、この圧縮機からの冷媒を凝縮液化する室外熱交換器、この室外熱交換器による冷媒を断熱膨張させ中圧二相冷媒とする室外絞り機構、前記室外熱交換器に設けられた室外熱交換器用送風機を有する室外機と、この室外機からの冷媒を中圧二相冷媒から中圧の液冷媒に凝縮させ、室内空気に放熱する第1の室内熱交換器、この第1の室内熱交換器からの冷媒を断熱膨張させ低圧二相冷媒とする室内絞り機構、この室内絞り機構から低圧二相冷媒を流入し蒸発ガス化させ、室内の空気を冷却除湿し、冷媒を前記圧縮機へ帰す第2の室内熱交換器、室内の温湿度を検出する温湿度検出手段、室内の温湿度を設定する温湿度設定手段を有する室内機とを備える空気調和装置において、前記圧縮機と前記室外熱交換器との間と前記室外熱交換器と前記第1の室内熱交換器との間に開閉自在の吐出バイパス弁を有する配管が設けられたので、暖房ぎみ除湿を可能とし、室内気温が低い条件においても快適な室内温湿度環境を実現することができる。 A compressor that compresses the refrigerant to a high temperature and a high pressure; an outdoor heat exchanger that condenses and liquefies the refrigerant from the compressor; an outdoor throttle mechanism that adiabatically expands the refrigerant by the outdoor heat exchanger to form a medium-pressure two-phase refrigerant; and the outdoor heat An outdoor unit having an outdoor heat exchanger fan provided in the exchanger, and a first indoor heat exchange for condensing refrigerant from the outdoor unit from medium-pressure two-phase refrigerant to medium-pressure liquid refrigerant and radiating heat to indoor air , An indoor throttle mechanism that adiabatically expands the refrigerant from the first indoor heat exchanger to form a low-pressure two-phase refrigerant, the low-pressure two-phase refrigerant flows from the indoor throttle mechanism to evaporate, and the indoor air is cooled and dehumidified. And an indoor unit having a second indoor heat exchanger for returning the refrigerant to the compressor, a temperature / humidity detecting means for detecting the temperature / humidity in the room, and a temperature / humidity setting means for setting the temperature / humidity in the room. In the compressor and the outdoor heat exchanger Since a pipe having a discharge bypass valve that can be freely opened and closed is provided between the outdoor heat exchanger and the first indoor heat exchanger, heating dehumidification is possible, and the room temperature is low. A comfortable indoor temperature and humidity environment can be realized.

また、前記室外熱交換器用送風機の回転数を前記室外機の電子部品を冷却するに要する回転数以下には下げないので、室外機にある電子機器の冷却が実行でき、電子機器の性能劣化を防止できる。   In addition, since the rotation speed of the outdoor heat exchanger fan is not reduced below the rotation speed required for cooling the electronic components of the outdoor unit, the electronic device in the outdoor unit can be cooled, and the performance of the electronic device is deteriorated. Can be prevented.

さらに、前記第2の室内熱交換器への配管の温度を検出する室内熱交換器配管温度センサーを備え、この室内熱交換器配管温度センサーにより検出される前記第2の室内熱交換器への配管の温度による冷凍サイクル蒸発温度の設定値を、機器側顕熱比を低減する所定の温度以上にするので、顕熱比の低減を確保できる。   Furthermore, an indoor heat exchanger piping temperature sensor for detecting the temperature of the piping to the second indoor heat exchanger is provided, and the second indoor heat exchanger detected by the indoor heat exchanger piping temperature sensor is provided. Since the set value of the refrigeration cycle evaporation temperature according to the temperature of the pipe is set to be equal to or higher than a predetermined temperature for reducing the equipment-side sensible heat ratio, a reduction in the sensible heat ratio can be ensured.

実施の形態1.
図1はこの発明の実施の形態1を示す空気調和装置の冷媒回路図であり、図2はこの空気調和装置における空気線図上の動作点を示す図である。
図において、9は空気調和装置の室外機であり、1は圧縮機、2は圧縮機1の回転速度を可変とするインバータ、3は室外機9を制御する室外マイコン、4は四方弁、5は室外熱交換器、6は室外熱交換器用送風機、7は室外熱交換器用送風機6の回転数可変なモーター、8は室外絞り機構である。
Embodiment 1 FIG.
1 is a refrigerant circuit diagram of an air-conditioning apparatus showing Embodiment 1 of the present invention, and FIG. 2 is a diagram showing operating points on an air diagram of the air-conditioning apparatus.
In the figure, 9 is an outdoor unit of the air conditioner, 1 is a compressor, 2 is an inverter that makes the rotational speed of the compressor 1 variable, 3 is an outdoor microcomputer that controls the outdoor unit 9, 4 is a four-way valve, 5 Is an outdoor heat exchanger, 6 is an outdoor heat exchanger blower, 7 is a motor with a variable number of rotations of the outdoor heat exchanger blower 6, and 8 is an outdoor throttle mechanism.

14は空気調和装置の室内機であり、10は室内熱交換器、11は室内熱交換器用送風機、12は室内機14を制御する室内マイコン、13はリモコン、15は室内熱交換器10の吸込空気温度を検出する室内温度センサー、16は室内熱交換器10の吸込空気湿度を検出する室内湿度センサー、17はリモコン13により設定された設定温度、18はリモコン13により設定された設定湿度である。
なお、リモコン13は湿球温度設定手段を示し、温度設定手段により設定温度17を定め、湿度設定手段により設定湿度18を定める。
14 is an indoor unit of an air conditioner, 10 is an indoor heat exchanger, 11 is a blower for an indoor heat exchanger, 12 is an indoor microcomputer that controls the indoor unit 14, 13 is a remote controller, and 15 is a suction of the indoor heat exchanger 10 An indoor temperature sensor for detecting the air temperature, 16 is an indoor humidity sensor for detecting the intake air humidity of the indoor heat exchanger 10, 17 is a set temperature set by the remote controller 13, and 18 is a set humidity set by the remote controller 13. .
The remote controller 13 indicates wet bulb temperature setting means, and the set temperature 17 is determined by the temperature setting means, and the set humidity 18 is determined by the humidity setting means.

次に、動作について説明する。
冷媒の流れと各構成機器の動作について説明する。
まず、圧縮機1で圧縮された高温高圧のガス冷媒は、冷房運転時は図1中実線のように流れ、四方弁4を経由して、室外熱交換器5で凝縮液化し、室外絞り機構8で断熱膨張して低圧の気液二相冷媒となり、室内熱交換器10に至る。室内熱交換器10で冷媒は蒸発ガス化して、室内空気を冷却除湿して、自身は四方弁4を経由して再び圧縮機1に循環吸入される。
Next, the operation will be described.
The flow of the refrigerant and the operation of each component device will be described.
First, the high-temperature and high-pressure gas refrigerant compressed by the compressor 1 flows as indicated by a solid line in FIG. 1 during the cooling operation, condenses and liquefies by the outdoor heat exchanger 5 via the four-way valve 4, and the outdoor throttle mechanism 8 adiabatically expands to become a low-pressure gas-liquid two-phase refrigerant and reaches the indoor heat exchanger 10. The refrigerant is evaporated and gasified in the indoor heat exchanger 10, the indoor air is cooled and dehumidified, and the refrigerant is circulated and sucked into the compressor 1 again via the four-way valve 4.

次にインバータ2により、空気調和負荷に応じて圧縮機1の回転速度を可変にする制御方法について図2に基づいて説明する。
まず、図2は横軸方向に乾球温度TDB[℃]、縦軸方向に絶対湿度X[kg/kg´]、斜め方向に湿球温度TWB[℃]、エンタルピーI[kcal/kg]をそれぞれ示す。0は設定値(目標値)を示し、リモコン13の設定温度17と設定湿度18により決定される。一方、室内温度と室内湿度(図2中のi)は、室内温度センサー15と室内湿度センサー16の各検出値により決定される。
Next, a control method for changing the rotational speed of the compressor 1 according to the air-conditioning load by the inverter 2 will be described with reference to FIG.
First, FIG. 2 shows the dry bulb temperature T DB [° C.] in the horizontal axis direction, the absolute humidity X [kg / kg ′] in the vertical axis direction, the wet bulb temperature T WB [° C.] in the diagonal direction, and the enthalpy I [kcal / kg]. ] Respectively. 0 indicates a set value (target value), which is determined by the set temperature 17 and set humidity 18 of the remote controller 13. On the other hand, the room temperature and the room humidity (i in FIG. 2) are determined by the detected values of the room temperature sensor 15 and the room humidity sensor 16.

そこで、空気調和負荷Q[kcal/h]は一般に次式で表される。
Q=Ga・(Ii−Io) ・・・・・(1)
Ga:室内熱交換器用送風機11の風量[kg/h]
Ii:室内空気エンタルピー[kcal/kg]
Io:設定空気エンタルピー[kcal/kg]
従って、空気調和負荷Qは設定空気と室内空気のエンタルピー差(Ii−Io)に比例する。
Therefore, the air conditioning load Q [kcal / h] is generally expressed by the following equation.
Q = Ga. (Ii-Io) (1)
Ga: Air volume [kg / h] of blower 11 for indoor heat exchanger
Ii: Indoor air enthalpy [kcal / kg]
Io: Set air enthalpy [kcal / kg]
Therefore, the air conditioning load Q is proportional to the enthalpy difference (Ii−Io) between the set air and the room air.

ここで、図2中、湿球温度TWB[℃]とエンタルピーI[kcal/kg]が略比例しており、設定空気と室内空気のエンタルピー(Ii−Io)は、設定空気と室内空気の湿球温度差(TiWB−ToWB)に比例するのと等価である。よって、室内空気負荷を湿球温度差で代替することが可能である。
そこで、室内温度センサー15と室内湿度センサー16の室内温度と室内湿度から図2により室内空気の湿球温度TiWBを検出し、リモコン13の設定温度17と設定湿度18から図2により設定空気の湿球温度ToWBを決定し、空気調和負荷Q=Ga・(TiWB−ToWB)・a(aは比例定数)に基づき、圧縮機1の回転速度をインバータ2により可変制御し、空調運転を行う。
よって、通常冷房運転時には湿球温度を制御目標とすることにより、空気調和負荷に応じた最適運転が可能となる。
Here, in FIG. 2, the wet bulb temperature T WB [° C.] and the enthalpy I [kcal / kg] are substantially proportional, and the enthalpy (Ii−Io) of the set air and the room air is the difference between the set air and the room air. It is equivalent to being proportional to the wet bulb temperature difference (T iWB −T oWB ). Therefore, the indoor air load can be replaced with a wet bulb temperature difference.
Therefore, the wet bulb temperature TiWB of the room air is detected from the room temperature and room humidity of the room temperature sensor 15 and the room humidity sensor 16 with reference to FIG. Wet bulb temperature ToWB is determined, and based on air-conditioning load Q = Ga · ( TiWB - ToWB ) · a (a is a proportional constant), the rotation speed of compressor 1 is variably controlled by inverter 2, and air conditioning operation I do.
Therefore, by setting the wet bulb temperature as a control target during the normal cooling operation, the optimum operation according to the air conditioning load can be performed.

実施の形態2.
図3はこの発明の実施の形態2を示す空気調和装置の再熱除湿運転時の冷媒回路図、図4はこの空気調和装置の再熱除湿運転を示すモリエル線図、図5はこの空気調和装置の再熱除湿運転モード時の室内空気の状態を示す空気線図である。
Embodiment 2. FIG.
3 is a refrigerant circuit diagram at the time of reheat dehumidification operation of the air-conditioning apparatus according to Embodiment 2 of the present invention, FIG. 4 is a Mollier diagram showing the reheat dehumidification operation of this air-conditioning apparatus, and FIG. It is an air line figure which shows the state of the room air at the time of the reheat dehumidification operation mode of an apparatus.

図において、上記実施形態と同一又は相当部分には同一符号を付け、説明を省略する。24は第1室内熱交換器、19は第1室内熱交換器24へ至る配管温度を検出する配管温度センサーCT、21は再熱除湿用電磁弁、22は室内絞り機構、23は第2室内熱交換器、20は第2室内熱交換器23へ至る配管温度を検出する配管温度センサーETである。   In the figure, the same reference numerals are given to the same or corresponding parts as in the above embodiment, and the description is omitted. 24 is a first indoor heat exchanger, 19 is a pipe temperature sensor CT that detects the temperature of the pipe reaching the first indoor heat exchanger 24, 21 is a reheat dehumidifying solenoid valve, 22 is an indoor throttle mechanism, and 23 is a second indoor A heat exchanger 20 is a pipe temperature sensor ET that detects the pipe temperature reaching the second indoor heat exchanger 23.

次に、動作について説明する。
まず、冷房運転モードの冷媒の流れと各構成機器の動作について説明する。
圧縮機1を出た高温高圧のガス冷媒は四方弁4を経由して、室外熱交換器5で凝縮液化し、室外絞り機構8で断熱膨張し、低圧ニ相冷媒となって室内機14に至る。
この冷房運転モード時には、再熱除湿用電磁弁21は全開となっており、第1室内熱交換器24で一部蒸発し、低圧ニ相冷媒はそのまま再熱除湿用電磁弁21を通過して、さらに第2室内熱交換器23にて蒸発ガス化することにより、第1室内熱交換器24と第2室内熱交換器23の両熱交換器が蒸発器として機能し、通常の冷房運転モードとなる。その後、冷媒は四方弁4を経由して圧縮機1に帰る。
Next, the operation will be described.
First, the flow of the refrigerant in the cooling operation mode and the operation of each component device will be described.
The high-temperature and high-pressure gas refrigerant leaving the compressor 1 is condensed and liquefied by the outdoor heat exchanger 5 via the four-way valve 4 and adiabatically expanded by the outdoor throttle mechanism 8 to become a low-pressure two-phase refrigerant in the indoor unit 14. It reaches.
In this cooling operation mode, the reheat dehumidification solenoid valve 21 is fully open, partially evaporates in the first indoor heat exchanger 24, and the low-pressure two-phase refrigerant passes through the reheat dehumidification solenoid valve 21 as it is. Further, by evaporating gas in the second indoor heat exchanger 23, both heat exchangers of the first indoor heat exchanger 24 and the second indoor heat exchanger 23 function as an evaporator, and a normal cooling operation mode is performed. It becomes. Thereafter, the refrigerant returns to the compressor 1 via the four-way valve 4.

次に、再熱除湿運転モードの冷媒の流れと各構成機器の動作について図4に基づいて説明する。
圧縮機1を出た高温高圧のガス冷媒1は四方弁4を経由して、室外熱交換器5で外気に放熱し、冷媒自身は凝縮し2、室外絞り機構8で断熱膨張し中圧ニ相冷媒3となる。室内に入った中圧ニ相冷媒3は、第1室内熱交換器24で再び室内空気に放熱し、冷媒自身は中圧の液冷媒4に凝縮する。
Next, the flow of the refrigerant in the reheat dehumidifying operation mode and the operation of each component device will be described with reference to FIG.
The high-temperature and high-pressure gas refrigerant 1 exiting the compressor 1 is radiated to the outside air by the outdoor heat exchanger 5 via the four-way valve 4, the refrigerant itself is condensed 2, and is adiabatically expanded by the outdoor throttle mechanism 8 to be a medium-pressure Phase refrigerant 3 is obtained. The medium-pressure two-phase refrigerant 3 that has entered the room again radiates heat to the room air in the first indoor heat exchanger 24, and the refrigerant itself condenses into a medium-pressure liquid refrigerant 4.

この中圧液冷媒4は、再熱除湿用電磁弁21を閉にすることにより、室内絞り機構22を通過する。これにより、再び断熱膨張して低圧ニ相冷媒5となり、第2室内熱交換器23へ流入し、室内の空気を冷却除湿し、冷媒自身は蒸発ガス化6して再び四方弁4を経由して圧縮機1に帰る。
この時、室内空気は第1室内熱交換器24を通過する空気は加熱され、第2室内熱交換器23を通過する空気は冷却・除湿されて、室内に吹き出される。
The intermediate-pressure liquid refrigerant 4 passes through the indoor throttle mechanism 22 by closing the reheat dehumidifying electromagnetic valve 21. As a result, it adiabatically expands again to become the low-pressure two-phase refrigerant 5, flows into the second indoor heat exchanger 23, cools and dehumidifies the indoor air, and the refrigerant itself evaporates 6 to pass through the four-way valve 4 again. Return to the compressor 1.
At this time, the air passing through the first indoor heat exchanger 24 is heated, and the air passing through the second indoor heat exchanger 23 is cooled and dehumidified and blown out into the room.

次に、図5に基づいて負荷の顕熱比SHFの制御について説明する。
まず、図5は湿り空気線図を示し、横軸に乾球温度TDB[℃]、縦軸に絶対湿度X[kg/kg´]をそれぞれ示すとともに、顕熱比SHFも示す。lは飽和線である。室内吸込空気をI、その空気の温度をTi、湿度φiとする。
なお、説明を簡単にするために室内熱交換器を通過する総風量は第1室内熱交換器24側と第2室内熱交換器23側と同一風量とする。
Next, the control of the sensible heat ratio SHF of the load will be described based on FIG.
First, FIG. 5 shows a wet air diagram, in which the horizontal axis indicates the dry bulb temperature T DB [° C.], the vertical axis indicates the absolute humidity X [kg / kg ′], and the sensible heat ratio SHF. l is a saturation line. The indoor intake air is I, the temperature of the air is Ti, and the humidity φi.
In order to simplify the explanation, the total air volume passing through the indoor heat exchanger is the same as that on the first indoor heat exchanger 24 side and the second indoor heat exchanger 23 side.

再熱除湿運転モードの場合には、第1室内熱交換器24を通過する室内空気は、図4の凝縮温度CTによって加熱され、図5のベクトルIQへと加熱される。一方、第2室内熱交換器23を通過する室内空気は図4の蒸発温度ETによって、図5のベクトルIPへと冷却・除湿される。結局、図5に示すようにベクトルIQ+ベクトルIP=ベクトルIRとなり、室内熱交換器を出た風は合流してベクトルIRとなる。   In the case of the reheat dehumidifying operation mode, the room air passing through the first indoor heat exchanger 24 is heated by the condensation temperature CT in FIG. 4 and heated to the vector IQ in FIG. On the other hand, the indoor air passing through the second indoor heat exchanger 23 is cooled and dehumidified to the vector IP in FIG. 5 by the evaporation temperature ET in FIG. Eventually, as shown in FIG. 5, vector IQ + vector IP = vector IR, and the winds exiting the indoor heat exchanger merge to become vector IR.

図5にはSHFを示しており(SHF=顕熱/(顕熱+潜熱))、ベクトルIRではSHFが小さくなる。すなわち、温度を下げないで湿度をとることが可能となる。さらに、積極的にベクトルIQの加熱量を大きくすれば、ベクトルIRが図面の右方向に移動し、SHF<0、つまり、暖めながら除湿することも可能になる。よって、この凝縮温度CTを制御することで、SHFを所望の値に近づけることが可能になる。   FIG. 5 shows SHF (SHF = sensible heat / (sensible heat + latent heat)), and the SHF becomes small in the vector IR. That is, it becomes possible to take humidity without lowering the temperature. Furthermore, if the heating amount of the vector IQ is positively increased, the vector IR moves to the right in the drawing, and SHF <0, that is, it is possible to dehumidify while warming. Therefore, by controlling the condensation temperature CT, SHF can be brought close to a desired value.

一方、冷房運転モードの場合には、加熱すなわちベクトルIQを作り出すことが出来ないため、SHFはベクトルIP(=ベクトルIR)に等しくなる。このため、冷房SHFには下限値が生じることになり、蒸発温度ETに依存する。   On the other hand, in the cooling operation mode, since heating, that is, the vector IQ cannot be generated, SHF is equal to the vector IP (= vector IR). For this reason, a lower limit value is generated in the cooling SHF and depends on the evaporation temperature ET.

また、冷房運転モードと、再熱除湿運転モードの比較をした場合には、SHFの範囲を広くとることができるという点で再熱除湿運転モードの方が広い温湿度範囲に適応可能であるが、冷房運転に比べ蒸発器伝熱面積が減少するために冷房除湿能力が低下し、冷房運転と同等の除湿能力を得るためには圧縮機運転周波数を上昇させる必要がある。このため、消費電力は冷房運転に比べて増加する傾向となる。
従って、冷房運転モードのSHF範囲で運転が可能な場合には、SHFを運転目標とした冷房運転を実行することにより除湿運転時の消費電力量を低減し、省エネ化を図ることが可能となる。
なお、冷房、再熱除湿の最適切替運転制御方法については、実施の形態4において後述する。
Further, when the cooling operation mode and the reheat dehumidification operation mode are compared, the reheat dehumidification operation mode can be applied to a wider temperature and humidity range in that the SHF range can be widened. As compared with the cooling operation, the evaporator heat transfer area is reduced, so that the cooling / dehumidifying ability is lowered. In order to obtain the same dehumidifying ability as the cooling operation, it is necessary to increase the compressor operating frequency. For this reason, power consumption tends to increase compared to cooling operation.
Therefore, when the operation can be performed in the SHF range of the cooling operation mode, it is possible to reduce the power consumption during the dehumidifying operation by executing the cooling operation with the SHF as an operation target, thereby achieving energy saving. .
The optimum switching operation control method for cooling and reheat dehumidification will be described later in a fourth embodiment.

次に、SHFの可変動作について説明する。
図6はこの発明の実施の形態2を示す空気調和装置の室外熱交換器用送風機のファン回転数N0[rpm]に対する、室外熱交換器5内の冷媒凝縮温度OTと、第1室内熱交換器24内の冷媒の再凝縮温度CTの変化を示す図、図7はこの空気調和装置のSHFを変化させる原理図である。
Next, the variable operation of SHF will be described.
FIG. 6 shows the refrigerant condensing temperature OT in the outdoor heat exchanger 5 and the first indoor heat exchange with respect to the fan rotational speed N 0 [rpm] of the blower for the outdoor heat exchanger of the air-conditioning apparatus according to Embodiment 2 of the present invention. The figure which shows the change of the recondensation temperature CT of the refrigerant | coolant in the container 24, FIG. 7 is a principle figure which changes SHF of this air conditioning apparatus.

図6は横軸に室外熱交換器用送風機6の回転数N0、縦軸に室外熱交換器5内の冷媒凝縮温度OTと、第1室内熱交換器24内の冷媒の再凝縮温度CTを示す。図6では室外熱交換器用送風機6の回転数N0[rpm]を落とすことによって、第1室内熱交換器24内の冷媒凝縮温度CTが上昇することを示している。すなわち、室外熱交換器用送風機6の回転数をN1[rpm]からN2[rpm]に低下させることにより、第1室内熱交換器24の凝縮温度はCT1からCT2に上昇する。これにより、空気線図上では図7に示すように、室内熱交換器出口の合流空気はベクトルIR1からベクトルIR2へとなり、SHFが小さくすることができ、温度を下げずに湿度のみとる運転ができる。 6, the horizontal axis represents the rotational speed N 0 of the outdoor heat exchanger blower 6, the vertical axis represents the refrigerant condensing temperature OT in the outdoor heat exchanger 5, and the refrigerant recondensing temperature CT in the first indoor heat exchanger 24. Show. FIG. 6 shows that the refrigerant condensing temperature CT in the first indoor heat exchanger 24 is increased by decreasing the rotational speed N 0 [rpm] of the outdoor heat exchanger blower 6. That is, by reducing the rotational speed of the outdoor heat exchanger blower 6 from N 1 [rpm] to N 2 [rpm], the condensation temperature of the first indoor heat exchanger 24 increases from CT1 to CT2. As a result, on the air diagram, as shown in FIG. 7, the combined air at the outlet of the indoor heat exchanger is changed from the vector IR1 to the vector IR2, the SHF can be reduced, and only the humidity can be operated without lowering the temperature. it can.

次に、上記SHFの可変動作による具体的な制御アルゴリズムについて説明する。
図8はこの発明の実施の形態2を示す空気調和装置の制御フローチャートである。まず、ステップS1では、リモコン13による設定温度17の値Tsと湿度の設定湿度18の値Xsを読み込む。ステップS2では、除湿運転中の室内吸込空気温度センサー15による温度値Tiと室内吸込空気湿度センサー16による湿度値Xiを検出する。
Next, a specific control algorithm based on the variable operation of the SHF will be described.
FIG. 8 is a control flowchart of the air-conditioning apparatus according to Embodiment 2 of the present invention. First, in step S1, the value Ts of the set temperature 17 and the value Xs of the set humidity 18 by the remote controller 13 are read. In step S2, the temperature value Ti by the indoor intake air temperature sensor 15 and the humidity value Xi by the indoor intake air humidity sensor 16 during the dehumidifying operation are detected.

ステップS3では、除湿運転中の第1室内熱交換器24の配管温度センサー19による凝縮温度値CTと、第2室内熱交換器23の入口配管温度センサー20による蒸発温度値ETを読み込む。ステップS4では、目標SHF*の値を設定温湿度S(Ts,Xs)と室内吸込み空気温湿度I(Ti,Xi)により求める。
求める式は、
SHF=Cp(Ti−Ts)/(Cp(Ti−Ts)+Cv(Xi−Xs))
を使用する。
ここでCp(Ti−Ts)は顕熱を、Cv(Xi−Xs)は潜熱をそれぞれ示す。Cp:[kcal/kg´・℃]は乾き空気の定圧比熱、Cv:[kcal/kg]は湿り空気の潜熱を示す。Xiの単位は[kg/kg´]である。
In step S3, the condensation temperature value CT by the pipe temperature sensor 19 of the first indoor heat exchanger 24 and the evaporation temperature value ET by the inlet pipe temperature sensor 20 of the second indoor heat exchanger 23 are read during the dehumidifying operation. In step S4, the value of the target SHF * is obtained from the set temperature / humidity S (Ts, Xs) and the indoor intake air temperature / humidity I (Ti, Xi).
The formula to find is
SHF = Cp (Ti−Ts) / (Cp (Ti−Ts) + Cv (Xi−Xs))
Is used.
Here, Cp (Ti-Ts) indicates sensible heat, and Cv (Xi-Xs) indicates latent heat. Cp: [kcal / kg ′ · ° C.] is the constant-pressure specific heat of dry air, and Cv: [kcal / kg] is the latent heat of wet air. The unit of Xi is [kg / kg ′].

ステップS5では、除湿運転中の現状SHFを、吸い込み空気I(Ti,Xi)と凝縮温度CTと蒸発温度ETに基づいて図5より求める。ステップS6では、目標とするSHF*と運転中のSHFとの比較し、現状SHFが目標SHF*より大の場合は、ステップS7に進み、凝縮温度値CTを上げるために室外熱交換器用送風機6の回転数N0[rpm]を下げる。逆に現状SHFが目標SHF*より小の場合はステップ8に進み、凝縮温度値CTを下げるために室外熱交換器用送風機6の回転数N0[rpm]を上げる。その後、ステップS1へ戻る。 In step S5, the current SHF during the dehumidifying operation is obtained from FIG. 5 based on the intake air I (Ti, Xi), the condensation temperature CT, and the evaporation temperature ET. In step S6, the target SHF * and the operating SHF are compared. If the current SHF is larger than the target SHF *, the process proceeds to step S7, and the blower 6 for the outdoor heat exchanger is used to increase the condensation temperature value CT. Rotational speed N 0 [rpm] is decreased. On the other hand, when the current SHF is smaller than the target SHF *, the process proceeds to step 8, and the rotational speed N 0 [rpm] of the outdoor heat exchanger blower 6 is increased in order to lower the condensation temperature value CT. Then, it returns to step S1.

なお、室外熱交換器用送風機6から風は、インバータ2へも送られ、運転によるインバータ2内の発熱による基板他の電子部品の温度上昇を防止する。このため、室外熱交換器用送風機6の回転数N0の可変時には、インバータ2内の基板他の電子部品を冷やすために要する回転数以下に下げず、少なくとも電子部品の温度上昇を防止する回転数N0以上を維持するように、室外マイコン3によりモーター7を制御する。 Note that the wind from the outdoor heat exchanger blower 6 is also sent to the inverter 2 to prevent the temperature of the board and other electronic components from rising due to heat generated in the inverter 2 during operation. For this reason, when the rotational speed N 0 of the outdoor heat exchanger blower 6 is variable, the rotational speed at least prevents the temperature of the electronic component from being increased and does not decrease below the rotational speed required to cool the board and other electronic components in the inverter 2. The motor 7 is controlled by the outdoor microcomputer 3 so as to maintain N 0 or more.

以上のように制御することにより、室内の温湿度の目標設定値に対して、SHFを制御目標にできるので、高温多湿でも梅雨時の低温多湿時でも、除湿量が自由に制御でき快適性の向上が図れる。   By controlling as described above, SHF can be set as a control target for the indoor temperature / humidity target set value, so that the amount of dehumidification can be controlled freely regardless of whether it is hot or humid or cold and humid during the rainy season. Improvement can be achieved.

実施の形態3.
図9はこの発明の実施の形態3を示す空気調和装置の吐出バイパス再熱除湿運転時の冷媒回路図、図10はこの空気調和装置の吐出バイパス再熱除湿運転を示すモリエル線図である。図において、上記実施形態と同一又は相当部分には同一符号を付け、説明を省略する。25は室外マイコン3により制御される吐出バイパス弁25である。
Embodiment 3 FIG.
FIG. 9 is a refrigerant circuit diagram at the time of discharge bypass reheat dehumidification operation of the air-conditioning apparatus according to Embodiment 3 of the present invention, and FIG. 10 is a Mollier diagram showing the discharge bypass reheat dehumidification operation of this air-conditioning apparatus. In the figure, the same reference numerals are given to the same or corresponding parts as in the above embodiment, and the description is omitted. A discharge bypass valve 25 is controlled by the outdoor microcomputer 3.

次に、動作について説明する。
再熱除湿運転モードの冷媒の流れと各構成機器の動作状態について説明する。
圧縮機1を出た高温高圧のガス冷媒1は吐出バイパス弁25を経由して、第1室内熱交換器24で室内空気に放熱し、冷媒自身は凝縮液化し2、室内絞り機構22で断熱膨張し、低圧ニ相冷媒3となって第2室内熱交換器23へ流入し、室内の空気を冷却除湿し、冷媒自身は蒸発ガス化4して再び四方弁を経由して圧縮機1に帰る。この時、室内空気は第1室内熱交換器24を通過する空気は加熱され、第2室内熱交換器23を通過する空気は冷却・除湿されて、室内に吹き出される。
Next, the operation will be described.
The refrigerant flow in the reheat dehumidifying operation mode and the operating state of each component device will be described.
The high-temperature and high-pressure gas refrigerant 1 exiting the compressor 1 radiates heat to the indoor air by the first indoor heat exchanger 24 via the discharge bypass valve 25, and the refrigerant itself is condensed and liquefied 2, and is insulated by the indoor throttle mechanism 22. The refrigerant expands and becomes a low-pressure two-phase refrigerant 3 and flows into the second indoor heat exchanger 23, cools and dehumidifies the indoor air, and the refrigerant itself is evaporated and gasified 4 to the compressor 1 again via the four-way valve. Go home. At this time, the air passing through the first indoor heat exchanger 24 is heated, and the air passing through the second indoor heat exchanger 23 is cooled and dehumidified and blown out into the room.

ここで、本実施の形態3と前記実施の形態2との差異について説明する。実施の形態2では、第1室内熱交換器24の凝縮温度CTは、室外熱交換器5における放熱を経て1段膨張を行った後の温度となるため、1段目の膨張以前の凝縮温度と比較して低めとなる。一方、本実施の形態3では、圧縮機1から吐出された高温高圧のガス冷媒が第1室内熱交換器24へ直接流入し凝縮を行うため、凝縮温度CTを高くすることが可能となる。   Here, a difference between the third embodiment and the second embodiment will be described. In the second embodiment, the condensation temperature CT of the first indoor heat exchanger 24 becomes the temperature after performing the first stage expansion through the heat radiation in the outdoor heat exchanger 5, and thus the condensation temperature before the first stage expansion. It becomes lower than. On the other hand, in the third embodiment, the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 directly flows into the first indoor heat exchanger 24 and condenses, so that the condensation temperature CT can be increased.

このため、本実施の形態3では実施の形態2に比べ、凝縮温度CTの高温化が可能となり、図5においてはベクトルIQを大きくできるため、SHFをさらに小さくすることができる。すなわち、実施の形態2よりも、より積極的にベクトルIQの加熱量を大きくし、強力に暖めながら除湿することが可能になる。
よって、本実施の形態3では、凝縮温度CTをさらに高温化制御することにより暖房ぎみ除湿を可能とし、室内気温が低い条件においても快適な室内温湿度環境を実現することができる。
For this reason, in this Embodiment 3, compared with Embodiment 2, the condensation temperature CT can be increased, and in FIG. 5, the vector IQ can be increased, so that the SHF can be further reduced. That is, the heating amount of the vector IQ can be increased more positively than in the second embodiment, and dehumidification can be performed while strongly heating.
Therefore, in the third embodiment, by further increasing the condensation temperature CT, it is possible to perform dehumidification by heating, and it is possible to realize a comfortable indoor temperature / humidity environment even under conditions where the indoor air temperature is low.

実施の形態4.
この実施の形態4では、上記実施の形態1、2、3を用いて、最適運転モードを検索するアルゴリズムについて説明する。
図11はこの発明の実施の形態4を示す空気調和装置の空気線図上の運転ゾーン分布を示す図、図12はこの空気調和装置のゾーン別運転モード判定方法のフローチャートである。なお、空気調和装置の冷媒回路図は、図9を用いる。
Embodiment 4 FIG.
In the fourth embodiment, an algorithm for searching for the optimum operation mode will be described using the first, second, and third embodiments.
FIG. 11 is a diagram showing the operation zone distribution on the air diagram of the air-conditioning apparatus according to Embodiment 4 of the present invention, and FIG. 12 is a flowchart of the zone-specific operation mode determination method of the air-conditioning apparatus. In addition, FIG. 9 is used for the refrigerant circuit diagram of the air conditioner.

次に、動作について説明する。
まず、運転ゾーン判定法を図11に基づいて説明する。図11は横軸方向に乾球温度TDB[℃]、縦軸方向に絶対湿度X[kg/kg´]、斜め方向に湿球温度TWB[℃]を示し、lは飽和線を示す。空気線図上、室内温湿度iが目標温湿度Oに対してどの位置に存在するかにより、選択すべき最適運転モードをゾーンに分けて示す。さらに、ETminは冷凍サイクル蒸発温度の設定最低値であり、ゾーンはETminと目標温湿度Oを結ぶ直線と、目標絶対湿度φo、目標湿球温度TOWB+α、TOWB−βの線によって分けられる。なお、α、βは、任意の設定値であり、空気調和装置の特性に合わせて設定可能であり、例えばα=2℃、β=1℃と設定できる。
Next, the operation will be described.
First, the operation zone determination method will be described with reference to FIG. FIG. 11 shows the dry bulb temperature T DB [° C.] in the horizontal axis direction, the absolute humidity X [kg / kg ′] in the vertical axis direction, the wet bulb temperature T WB [° C.] in the diagonal direction, and l indicates a saturation line. . On the air diagram, the optimum operation mode to be selected is shown divided into zones depending on where the room temperature / humidity i is located with respect to the target temperature / humidity O. Further, ETmin is a minimum setting value of the refrigeration cycle evaporation temperature, and the zone is divided by a straight line connecting ETmin and the target temperature / humidity O, and a line of target absolute humidity φo, target wet bulb temperature T OWB + α, and T OWB −β. . Α and β are arbitrary set values, which can be set in accordance with the characteristics of the air conditioner. For example, α = 2 ° C. and β = 1 ° C. can be set.

ここで、冷凍サイクルETの極端な低下は空気調和装置の入力増大(性能悪化)を招くため、冷凍サイクル蒸発温度の設定最低値ETminは不要に低過ぎない範囲内で設定する必要がある。これは、空気線図上、飽和線lは低温領域になるに従い、傾きが徐々に水平に近づく特性を有するため、冷凍サイクルETを極端に低下させてもSHFが低下しなくなり、ET低下(入力増加)に見合ったSHFの低減が見込めなくなるためである。このため、例えば目標温湿度24℃、湿球温度18.6℃(相対湿度60%)の条件では、ETmin=5℃程度に設定する必要がある。   Here, since an extreme decrease in the refrigeration cycle ET leads to an increase in input (performance deterioration) of the air conditioner, it is necessary to set the set minimum value ETmin of the refrigeration cycle evaporation temperature within a range that is not unnecessarily too low. This is because, on the air diagram, the saturation line l has a characteristic that the slope gradually becomes horizontal as the temperature decreases, so even if the refrigeration cycle ET is extremely reduced, the SHF does not decrease and the ET decreases (input This is because the reduction of SHF commensurate with the increase) cannot be expected. For this reason, for example, under conditions of a target temperature and humidity of 24 ° C. and a wet bulb temperature of 18.6 ° C. (relative humidity of 60%), it is necessary to set ETmin = about 5 ° C.

次に、各ゾーンでの動作に図12に基づいて説明する。
まず、ステップS11で、室内吸込空気温度センサー15による温度値Tiと室内吸込空気湿度センサー16による湿度値Xiを検出し、室内吸込み室内温湿度i(Ti,Xi)がどのゾーンに存在するかを検出する。
そこで、室内温湿度iがAゾーンに存在する場合には、ステップS12へ進む。Aゾーンは通常冷房運転モード実行領域であり、冷房運転を実行する。空気調和装置の冷媒回路図は、吐出バイパス弁25を全閉、再熱除湿用電磁弁21を全開し、図1の冷媒回路図と等価な冷媒回路を構成する。そこで、空気調和装置の制御は、実施の形態1に示すように、湿球温度差を制御信号に用いる。
Aゾーンでは、室内湿球温度iと目標湿球温度TOWBとの差が大きく(空気調和負荷大)、再熱除湿運転よりも消費電力量の少ない冷房運転による、室内空気調和負荷(顕熱負荷、潜熱負荷とも)除去効率の高い運転を目的とする。
Next, the operation in each zone will be described with reference to FIG.
First, in step S11, the temperature value Ti by the indoor intake air temperature sensor 15 and the humidity value Xi by the indoor intake air humidity sensor 16 are detected, and in which zone the indoor intake indoor temperature / humidity i (Ti, Xi) exists. To detect.
Therefore, if the indoor temperature / humidity i exists in the A zone, the process proceeds to step S12. The A zone is a normal cooling operation mode execution region, and the cooling operation is executed. In the refrigerant circuit diagram of the air conditioner, the discharge bypass valve 25 is fully closed and the reheat dehumidifying electromagnetic valve 21 is fully opened to constitute a refrigerant circuit equivalent to the refrigerant circuit diagram of FIG. Therefore, the control of the air conditioner uses the wet bulb temperature difference as a control signal as shown in the first embodiment.
In the A zone, the difference between the indoor wet bulb temperature i and the target wet bulb temperature T OWB is large (large air-conditioning load), and the indoor air-conditioning load (sensible heat) due to the cooling operation with less power consumption than the reheat dehumidifying operation. The purpose is to operate with high removal efficiency (both load and latent heat load).

また、ステップS11で、室内温湿度iがBゾーンに存在する場合には、ステップS13へ進む。Bゾーンは、Aゾーンと同様に冷房運転モード実行領域であるが、室内温湿度iがETminと目標温湿度Oを結ぶ直線よりも低湿側にあるため、室内温湿度iを目標温湿度Oに近づけるためには、ET>ETminとし(ステップS14)、冷凍サイクルの蒸発温度ETを適切に制御する(ステップS15)。ETは、室内ファン回転数と圧縮機運転周波数を変化させることにより制御可能である。なお、空気調和装置の冷媒回路図は、上記Aゾーンの冷媒回路図と同じである。   If the room temperature / humidity i exists in the B zone in step S11, the process proceeds to step S13. The B zone is a cooling operation mode execution region as in the A zone, but the indoor temperature / humidity i is on the lower humidity side than the straight line connecting the ETmin and the target temperature / humidity O. In order to make it closer, ET> ETmin is set (step S14), and the evaporation temperature ET of the refrigeration cycle is appropriately controlled (step S15). The ET can be controlled by changing the indoor fan rotation speed and the compressor operating frequency. The refrigerant circuit diagram of the air conditioner is the same as the refrigerant circuit diagram of the A zone.

さらに、ステップS11で、室内温湿度iがCゾーンに存在する場合には、ステップS13へ進む。Cゾーンは再熱除湿運転モード実行領域である。この領域では、実施の形態2、3に示すように冷凍サイクル凝縮温度CT、蒸発温度ETを同時に制御することにより、目標温湿度Oへ向けた運転が可能となる。なお、除湿能力を最大限に発揮するために蒸発温度ETは極力小さい値で運転を実行したいが、ET≧ETminの範囲で運転を行う必要があるため、CゾーンではET=ETminにて運転を実行する(ステップS16)。また、Cゾーンの範囲内でも凝縮温度CTを特に高温にしたい場合には実施の形態3の吐出バイパス再熱除湿方式を用い、冷媒回路図は吐出バイパス弁25を全開、再熱除湿用電磁弁21を全閉した構成である。一方、そこまで高温の凝縮温度CTを必要としない場合には実施の形態2の室外送風機回転数制御にて対応し(ステップS17)、冷媒回路図は吐出バイパス弁25を全閉し、図3の冷媒回路図と等価な構成である。   Furthermore, if the room temperature / humidity i exists in the C zone in step S11, the process proceeds to step S13. The C zone is a reheat dehumidifying operation mode execution region. In this region, the operation toward the target temperature and humidity O is possible by simultaneously controlling the refrigeration cycle condensation temperature CT and the evaporation temperature ET as shown in the second and third embodiments. In order to maximize the dehumidifying capacity, it is necessary to operate with the evaporation temperature ET as small as possible, but it is necessary to operate in the range of ET ≧ ETmin. Execute (step S16). Further, when it is desired to make the condensation temperature CT particularly high even within the range of the C zone, the discharge bypass reheat dehumidification method of the third embodiment is used. In the refrigerant circuit diagram, the discharge bypass valve 25 is fully opened and the reheat dehumidification solenoid valve is used. In this configuration, 21 is fully closed. On the other hand, when the high-temperature condensation temperature CT is not required, this is handled by the outdoor fan rotation speed control of the second embodiment (step S17), and the refrigerant circuit diagram fully closes the discharge bypass valve 25. FIG. This is an equivalent configuration to the refrigerant circuit diagram.

以上のように、室内温湿度iの条件に応じて、A、B、Cのゾーン分けをすることにより、Aゾーンでは、空気調和負荷除去主体の運転を行い、そして、空気調和負荷が小さくなり、B、Cゾーンに入った場合には目標温湿度Oへ近づけるためのSHF制御運転を実行することが可能となり、効率良く室内目標温湿度の実現が可能となる。   As described above, A, B, and C are divided into zones according to the conditions of the indoor temperature and humidity i, so that the air conditioning load removal main operation is performed in the A zone, and the air conditioning load is reduced. When entering the zones B, C, it is possible to execute the SHF control operation for approaching the target temperature / humidity O, and the indoor target temperature / humidity can be realized efficiently.

なお、この実施の形態4では、室内温湿度と目標温湿度との差に基づき室外送風機回転数制御も行うものを示したが、同一ゾーン内での運転時間が所定値を超えた時、室内湿球温度と湿球設定値との差が小さくなるような圧縮機1の回転速度に変えて圧縮機1を運転し、室内湿球温度と湿球設定値の差を制御目標ゾーン内に制御するようにしてもよい。つまり、オフセット防止のため、圧縮機1の回転速度を上げる。   In the fourth embodiment, although the outdoor fan rotation speed control is also performed based on the difference between the indoor temperature and humidity and the target temperature and humidity, when the operating time in the same zone exceeds a predetermined value, The compressor 1 is operated by changing the rotation speed of the compressor 1 so that the difference between the wet bulb temperature and the wet bulb set value becomes small, and the difference between the indoor wet bulb temperature and the wet bulb set value is controlled within the control target zone. You may make it do. That is, the rotational speed of the compressor 1 is increased to prevent offset.

この発明の実施の形態1を示す空気調和装置の冷媒回路図である。It is a refrigerant circuit figure of the air conditioning apparatus which shows Embodiment 1 of this invention. この発明の実施の形態1を示す空気調和装置の空気線図上の動作点を示す図である。It is a figure which shows the operating point on the air diagram of the air conditioning apparatus which shows Embodiment 1 of this invention. この発明の実施の形態2を示す空気調和装置の冷媒回路図である。It is a refrigerant circuit figure of the air conditioning apparatus which shows Embodiment 2 of this invention. この発明の実施の形態2を示す空気調和装置の再熱除湿運転を示すモリエル線図である。It is a Mollier diagram which shows the reheat dehumidification driving | operation of the air conditioning apparatus which shows Embodiment 2 of this invention. この発明の実施の形態2を示す空気調和装置の再熱除湿運転モード時の室内空気の状態を示す空気線図である。It is an air line figure which shows the state of the room air at the time of the reheat dehumidification operation mode of the air conditioning apparatus which shows Embodiment 2 of this invention. この発明の実施の形態2を示す空気調和装置の室外熱交換器用送風機回転数に対する凝縮温度特性を示す図である。It is a figure which shows the condensation temperature characteristic with respect to the fan rotation speed for outdoor heat exchangers of the air conditioning apparatus which shows Embodiment 2 of this invention. この発明の実施の形態2を示す空気調和装置のSHFを変化させる原理図である。It is a principle figure which changes SHF of the air conditioning apparatus which shows Embodiment 2 of this invention. この発明の実施の形態2を示す空気調和装置の制御フローチャートである。It is a control flowchart of the air conditioning apparatus which shows Embodiment 2 of this invention. この発明の実施の形態3を示す空気調和装置の冷媒回路図である。It is a refrigerant circuit figure of the air conditioning apparatus which shows Embodiment 3 of this invention. この発明の実施の形態3を示す空気調和装置の吐出バイパス再熱除湿運転を示すモリエル線図である。It is a Mollier diagram which shows the discharge bypass reheat dehumidification operation of the air conditioning apparatus which shows Embodiment 3 of this invention. この発明の実施の形態4を示す空気調和装置の空気線図上の運転ゾーン分布を示す図である。It is a figure which shows the operation zone distribution on the air diagram of the air conditioning apparatus which shows Embodiment 4 of this invention. この発明の実施の形態4を示す空気調和装置のゾーン別運転モード判定方法のフロチャートである。It is a flowchart of the operation mode determination method according to zone of the air conditioning apparatus which shows Embodiment 4 of this invention.

符号の説明Explanation of symbols

1 圧縮機、 2 インバーター、 3 室外マイコン、 4 四方弁、 5 室外熱交換器、 6 室外熱交換器用送風機、 7 室外機熱交換器用送風機モーター、 8 室外絞り機構、 9 室外機、 10 室内熱交換器、 11 室内熱交換器用送風機、 12 室内マイコン、 13 リモコン、 14 室内機、 15 室内吸込空気温度センサー、 16 室内吸込空気湿度センサー、 17 設定温度、 18 設定湿度、 19 第1室内熱交換器配管温度センサー、 20 第2室内熱交換器配管温度センサー、 21 再熱除湿用電磁弁、 22 室内絞り機構、 23 第2室内熱交換器、 24 第1室内熱交換器、 25 吐出バイパス弁。   DESCRIPTION OF SYMBOLS 1 Compressor, 2 Inverter, 3 Outdoor microcomputer, 4 Four way valve, 5 Outdoor heat exchanger, 6 Fan for outdoor heat exchanger, 7 Fan motor for outdoor heat exchanger, 8 Outdoor throttle mechanism, 9 Outdoor unit, 10 Indoor heat exchange 11 Indoor blower for indoor heat exchanger, 12 Indoor microcomputer, 13 Remote controller, 14 Indoor unit, 15 Indoor intake air temperature sensor, 16 Indoor intake air humidity sensor, 17 Set temperature, 18 Set humidity, 19 First indoor heat exchanger piping Temperature sensor, 20 second indoor heat exchanger piping temperature sensor, 21 reheat dehumidifying solenoid valve, 22 indoor throttling mechanism, 23 second indoor heat exchanger, 24 first indoor heat exchanger, 25 discharge bypass valve.

Claims (3)

冷媒を高温高圧に圧縮する圧縮機、この圧縮機からの冷媒を凝縮液化する室外熱交換器、この室外熱交換器による冷媒を断熱膨張させ中圧二相冷媒とする室外絞り機構、前記室外熱交換器に設けられた室外熱交換器用送風機を有する室外機と、
この室外機からの冷媒を中圧二相冷媒から中圧の液冷媒に凝縮させ、室内空気に放熱する第1の室内熱交換器、この第1の室内熱交換器からの冷媒を断熱膨張させ低圧二相冷媒とする室内絞り機構、この室内絞り機構から低圧二相冷媒を流入し蒸発ガス化させ、室内の空気を冷却除湿し、冷媒を前記圧縮機へ帰す第2の室内熱交換器、室内の温湿度を検出する温湿度検出手段、室内の温湿度を設定する温湿度設定手段を有する室内機とを備える空気調和装置において、
前記圧縮機と前記室外熱交換器との間と前記室外熱交換器と前記第1の室内熱交換器との間に開閉自在の吐出バイパス弁を有する配管が設けられ
前記温湿度検出手段による室内の温湿度と前記温湿度設定手段による温湿度設定値とから目標顕熱比を求め、前記室内の温湿度と前記第1の室内熱交換器の凝縮温度と前記第2の室内熱交換器の蒸発温度から現状顕熱比を求め、前記圧縮機の回転速度および前記室外熱交換器用送風機の回転数を変更して前記現状顕熱比と前記目標顕熱比とを一致するように制御する制御手段を備えたことを特徴とする空気調和装置。
A compressor that compresses the refrigerant to a high temperature and a high pressure; an outdoor heat exchanger that condenses and liquefies the refrigerant from the compressor; an outdoor throttle mechanism that adiabatically expands the refrigerant by the outdoor heat exchanger to form a medium-pressure two-phase refrigerant; and the outdoor heat An outdoor unit having an outdoor heat exchanger fan provided in the exchanger;
A refrigerant from the outdoor unit is condensed from a medium-pressure two-phase refrigerant to a medium-pressure liquid refrigerant, and a first indoor heat exchanger that radiates heat to indoor air is adiabatically expanded from the first indoor heat exchanger. An indoor throttling mechanism that is a low-pressure two-phase refrigerant, a second indoor heat exchanger that flows the low-pressure two-phase refrigerant from the indoor throttling mechanism into evaporative gas, cools and dehumidifies indoor air, and returns the refrigerant to the compressor; In an air conditioner comprising a temperature and humidity detection means for detecting indoor temperature and humidity, and an indoor unit having a temperature and humidity setting means for setting indoor temperature and humidity,
A pipe having a discharge bypass valve that is openable and closable is provided between the compressor and the outdoor heat exchanger and between the outdoor heat exchanger and the first indoor heat exchanger ,
A target sensible heat ratio is obtained from the indoor temperature / humidity detected by the temperature / humidity detecting means and the temperature / humidity setting value determined by the temperature / humidity setting means, and the indoor temperature / humidity, the condensation temperature of the first indoor heat exchanger, and the first The present sensible heat ratio is obtained from the evaporation temperature of the indoor heat exchanger 2 and the rotational speed of the compressor and the rotational speed of the blower for the outdoor heat exchanger are changed to obtain the present sensible heat ratio and the target sensible heat ratio. An air conditioner comprising control means for controlling to match .
前記室外熱交換器用送風機の回転数を前記室外機の電子部品を冷却するに要する回転数以下には下げないことを特徴とする請求項1記載の空気調和装置。 2. The air conditioner according to claim 1, wherein the rotational speed of the outdoor heat exchanger blower is not lowered below the rotational speed required for cooling electronic components of the outdoor unit. 前記第2の室内熱交換器への配管の温度を検出する室内熱交換器配管温度センサーを備え、この室内熱交換器配管温度センサーにより検出される前記第2の室内熱交換器への配管の温度による冷凍サイクル蒸発温度の設定値を、機器側顕熱比を低減する所定の温度以上にすることを特徴とする請求項1から請求項2のいずれかに記載の空気調和装置。 An indoor heat exchanger pipe temperature sensor for detecting the temperature of the pipe to the second indoor heat exchanger is provided, and the pipe to the second indoor heat exchanger is detected by the indoor heat exchanger pipe temperature sensor. The air conditioning apparatus according to any one of claims 1 to 2, wherein a set value of the refrigeration cycle evaporation temperature according to temperature is set to be equal to or higher than a predetermined temperature for reducing the equipment-side sensible heat ratio.
JP2008116477A 2008-04-26 2008-04-26 Air conditioner Expired - Fee Related JP4743223B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008116477A JP4743223B2 (en) 2008-04-26 2008-04-26 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008116477A JP4743223B2 (en) 2008-04-26 2008-04-26 Air conditioner

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006141385A Division JP4187008B2 (en) 2006-05-22 2006-05-22 Air conditioner

Publications (2)

Publication Number Publication Date
JP2008232617A JP2008232617A (en) 2008-10-02
JP4743223B2 true JP4743223B2 (en) 2011-08-10

Family

ID=39905615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008116477A Expired - Fee Related JP4743223B2 (en) 2008-04-26 2008-04-26 Air conditioner

Country Status (1)

Country Link
JP (1) JP4743223B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100957623B1 (en) 2009-10-30 2010-05-13 한국전력공사 Ac loss measurement device of high temperature superconductor
JP6659853B2 (en) * 2016-08-25 2020-03-04 三菱電機株式会社 Air conditioner, air conditioning method and program
JP7412608B2 (en) * 2021-01-27 2024-01-12 三菱電機株式会社 refrigeration system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0658594A (en) * 1992-08-07 1994-03-01 Hitachi Ltd Air conditioner
JPH07294059A (en) * 1994-04-28 1995-11-10 Sanyo Electric Co Ltd Air conditioner
JPH07332795A (en) * 1994-06-02 1995-12-22 Matsushita Seiko Co Ltd Multiroom type air-conditioning system
JPH11304285A (en) * 1998-04-17 1999-11-05 Hitachi Ltd Air conditioner
JP2006266677A (en) * 2006-05-22 2006-10-05 Mitsubishi Electric Corp Air conditioner

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0658594A (en) * 1992-08-07 1994-03-01 Hitachi Ltd Air conditioner
JPH07294059A (en) * 1994-04-28 1995-11-10 Sanyo Electric Co Ltd Air conditioner
JPH07332795A (en) * 1994-06-02 1995-12-22 Matsushita Seiko Co Ltd Multiroom type air-conditioning system
JPH11304285A (en) * 1998-04-17 1999-11-05 Hitachi Ltd Air conditioner
JP2006266677A (en) * 2006-05-22 2006-10-05 Mitsubishi Electric Corp Air conditioner

Also Published As

Publication number Publication date
JP2008232617A (en) 2008-10-02

Similar Documents

Publication Publication Date Title
JP4864109B2 (en) Air conditioning apparatus and control method thereof
US10955160B2 (en) Air conditioner including a plurality of utilization units connected in parallel to a heat source unit
JP2004218853A (en) Air conditioner
JP5046895B2 (en) Air conditioner and operation control method thereof
JP6401015B2 (en) Air conditioner
CN104220816B (en) Air conditioner
JP2002081767A (en) Air conditioner
JP2006284175A (en) Air conditioning device
WO2019116599A1 (en) Air-conditioning device and air-conditioning system
JP2008224210A (en) Air conditioner and operation control method of air conditioner
JP2005076933A (en) Refrigeration cycle system
JP4187008B2 (en) Air conditioner
JP2000274879A (en) Air conditioner
CN112377986A (en) Air conditioner and control method thereof
JP3852553B2 (en) Air conditioner
JP4743223B2 (en) Air conditioner
JP5868552B1 (en) External air conditioner
CN110709648B (en) Air conditioner
JP4258117B2 (en) Air conditioner
JP3855623B2 (en) Air conditioner
JP4969271B2 (en) Air conditioner
JP2021014947A (en) Air conditioner and air conditioning system
JP4039100B2 (en) Air conditioner
JP6660873B2 (en) Heat pump type temperature controller
JP7462830B2 (en) Air Conditioning Equipment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110425

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4743223

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees