JP4739462B1 - Si-based alloy negative electrode material with excellent conductivity - Google Patents

Si-based alloy negative electrode material with excellent conductivity Download PDF

Info

Publication number
JP4739462B1
JP4739462B1 JP2010229261A JP2010229261A JP4739462B1 JP 4739462 B1 JP4739462 B1 JP 4739462B1 JP 2010229261 A JP2010229261 A JP 2010229261A JP 2010229261 A JP2010229261 A JP 2010229261A JP 4739462 B1 JP4739462 B1 JP 4739462B1
Authority
JP
Japan
Prior art keywords
phase
negative electrode
sicu
lithium
electrode material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010229261A
Other languages
Japanese (ja)
Other versions
JP2012038699A (en
Inventor
友紀 廣野
勝 柳本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2010229261A priority Critical patent/JP4739462B1/en
Application granted granted Critical
Publication of JP4739462B1 publication Critical patent/JP4739462B1/en
Publication of JP2012038699A publication Critical patent/JP2012038699A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

【課題】リチウムイオン2次電池やハイブリットキャパシタなど、充放電時にリチウムイオンの移動を伴う蓄電デバイスのSi系合金負極材料を提供する。
【解決手段】Si相とSiとCuとの金属間化合物であるSixCuy合金からなるSixCuy相の複合相からなる粉体であり、かつSixCuy相の組成がx<yであることを特徴とする導電性に優れるSi系合金負極材料。上記SixCuy合金である金属間化合物の組成がSiCu3であることを特徴とする導電性に優れるSi系合金負極材料。
【選択図】図1
The present invention provides a Si-based alloy negative electrode material for an electricity storage device such as a lithium ion secondary battery and a hybrid capacitor that accompanies the movement of lithium ions during charging and discharging.
A conductive material comprising a composite phase of a SixCuy phase composed of a SixCuy alloy which is an intermetallic compound of Si phase and Si and Cu, and the composition of the SixCuy phase is x <y. Si-based alloy negative electrode material with excellent properties. A Si-based alloy negative electrode material having excellent electrical conductivity, wherein the composition of the intermetallic compound which is the SixCuy alloy is SiCu 3 .
[Selection] Figure 1

Description

本発明は、リチウムイオン2次電池やハイブリットキャパシタなど、充放電時にリチウムイオンの移動を伴う蓄電デバイスの導電性に優れるSi系合金負極材料に関するものである。   The present invention relates to a Si-based alloy negative electrode material that is excellent in electrical conductivity of an electricity storage device that moves lithium ions during charge and discharge, such as a lithium ion secondary battery and a hybrid capacitor.

近年、携帯機器の普及に伴い、リチウムイオン電池を中心とした高性能2次電池の開発が盛んに行われている。さらには自動車用や家庭用定置用蓄電デバイスとしてリチウムイオン2次電池やその反応機構を負極に適用したハイブリットキャパシタの開発も盛んになっている。それらの蓄電デバイスの負極材料としては、リチウムイオンを吸蔵・放出することができる、天然黒鉛や人造黒鉛、コークスなどの炭素質材料が用いられている。   In recent years, with the widespread use of portable devices, development of high-performance secondary batteries centered on lithium ion batteries has been actively conducted. Furthermore, lithium-ion secondary batteries as hybrid electric storage devices for automobiles and home use and hybrid capacitors in which the reaction mechanism is applied to the negative electrode are also actively developed. As a negative electrode material for these electricity storage devices, carbonaceous materials such as natural graphite, artificial graphite, and coke that can occlude and release lithium ions are used.

しかし、炭素質材料はリチウムイオンをC面間に挿入するため、負極に用いた際の理論容量は372mAh/gが限界であり、高容量化を目的とした炭素質材料に代わる新規材料の探索が盛んに行われている。   However, because carbonaceous materials insert lithium ions between the C-planes, the theoretical capacity when used for the negative electrode is limited to 372 mAh / g, and the search for new materials to replace carbonaceous materials for the purpose of increasing capacity is required. Has been actively conducted.

一方、炭素質材料に代わる材料として、Siが注目されている。その理由は、SiはLi22Si5 で表される化合物を形成して大量のリチウムを吸蔵することができるため、炭素質材料を使用した場合に比較して負極の容量を大幅に増大でき、結果としてリチウムイオン2次電池やハイブリットキャパシタの蓄電容量を増大することができる可能性を持っているためである。 On the other hand, Si has attracted attention as a material that can replace carbonaceous materials. The reason is that since Si can form a compound represented by Li 22 Si 5 and occlude a large amount of lithium, the capacity of the negative electrode can be greatly increased compared to the case where a carbonaceous material is used, As a result, there is a possibility that the storage capacity of the lithium ion secondary battery or the hybrid capacitor can be increased.

しかし、Siを単独で負極材として使用した場合には、充電時にリチウムと合金化する際の膨張、放電時にリチウムと脱合金化する際の収縮の繰返しによってSi相が微粉化され、使用中に電極基板からSi相が脱落したりSi相間の電気伝導性が取れなくなる等の不具合が生じるために蓄電デバイスとしての寿命が極めて短いといった課題があった。   However, when Si is used alone as a negative electrode material, the Si phase is pulverized by repeated expansion during alloying with lithium during charging and contraction during dealloying with lithium during discharging. There has been a problem that the life of the electricity storage device is extremely short due to problems such as the Si phase dropping off from the electrode substrate and the lack of electrical conductivity between the Si phases.

また、Siは炭素質材料や金属系材料に比べて電気伝導性が悪く、充放電に伴う電子の効率的な移動が制限されているため、負極材としては炭素質材料など導電性を補う材料と組合せて使用されるが、その場合でも特に初期の充放電や高効率での充放電特性も課題となっている。   In addition, Si has poor electrical conductivity compared to carbonaceous materials and metal-based materials, and the efficient movement of electrons associated with charge / discharge is limited. Therefore, as a negative electrode material, a material that supplements conductivity, such as a carbonaceous material. However, even in that case, initial charge / discharge characteristics and charge / discharge characteristics with high efficiency are also problems.

このようなSi相を負極として利用する際の欠点を解決する方法として、Siなどの親リチウム相の少なくとも一部をSiと遷移金属に代表される金属との金属間化合物で包囲した材料やその製造方法が提案されている。その一つとして、例えば、特開2001−297757号公報(特許文献1)や特開平10−312804号公報(特許文献2)などが知られている。   As a method for solving the drawbacks when using such a Si phase as a negative electrode, a material in which at least a part of a parent lithium phase such as Si is surrounded by an intermetallic compound of Si and a metal typified by a transition metal, or the like Manufacturing methods have been proposed. For example, Japanese Patent Laid-Open No. 2001-297757 (Patent Document 1) and Japanese Patent Laid-Open No. 10-31804 (Patent Document 2) are known.

また、別の解決方法として、Si相を含む活物質の相をリチウムと合金化しないCuなどの導電性材料で被覆した電極やその製造方法が提案されている。例えば、特開2004−228059号公報(特許文献3)や特開2005−44672号公報(特許文献4)などが知られている。
特開2001−297757号公報 特開平10−312804号公報 特開2004−228059号公報 特開2005−44672号公報
As another solution, an electrode in which a phase of an active material containing a Si phase is coated with a conductive material such as Cu that does not alloy with lithium, and a method for manufacturing the same have been proposed. For example, Japanese Unexamined Patent Application Publication No. 2004-228059 (Patent Document 3) and Japanese Unexamined Patent Application Publication No. 2005-44672 (Patent Document 4) are known.
JP 2001-297757 A JP 10-31804 A JP 2004-228059 A JP 2005-44672 A

しかしながら、上述した活物質の相をCuなどの導電性材料で被覆する方法では、Si相を含む活物質を電極に形成する工程の前または後にめっきなどの方法で被覆する必要があり、また、被覆膜厚の制御など工業的に手間がかかるという問題がある。   However, in the above-described method of coating the active material phase with a conductive material such as Cu, it is necessary to coat the active material containing the Si phase with a method such as plating before or after the step of forming the active material on the electrode. There is a problem that it takes time and labor from the industrial point of view, such as controlling the coating thickness.

また、Siなどの親リチウム相の少なくとも一部を金属間化合物で包囲した材料は溶融後の凝固プロセス中に親リチウム相と金属間化合物が形成されるため、工業的に好ましいプロセスといえるが、提案されている元素の組合せではSi相と平衡する殆どの金属間化合物は電気伝導性に劣るSiリッチな化合物になるためCuめっきに比べて、特に、初期の充放電特性や高効率での充放電特性に劣る欠点があった。また、これまでの提案ではそれらの課題を解決できるような電気伝導性に優れた金属間化合物の組成に関するものはない。   In addition, a material in which at least a part of a parent lithium phase such as Si is surrounded by an intermetallic compound is an industrially preferable process because a parent lithium phase and an intermetallic compound are formed during a solidification process after melting. In the proposed combination of elements, most of the intermetallic compounds that are in equilibrium with the Si phase become Si-rich compounds that are inferior in electrical conductivity. There was a drawback of poor discharge characteristics. In addition, there is no proposal related to the composition of an intermetallic compound excellent in electrical conductivity that can solve these problems.

上述のような問題を解消するために、発明者らは鋭意開発を進めた結果、Si相を包囲する金属間化合物として、Si相との多くの金属間化合物のなかでもCu元素との金属間化合物が特に電気伝導性に優れたSiCu3 を形成することと、Si相とSiCu3 合金からなる複合相とすることで、Siの大きな放電容量を活かし、かつSi本来の低い導電性を導電性に優れたSiCu3 が補う効果によって、放電容量とサイクル寿命のいずれも良好であることを見出し発明に至った。その発明の要旨は、
(1)Si相とSiとCuとの金属間化合物であるSixCuy合金がSiCu 3 の複合相からなる粉体であって、Si相を構成するSiの1部をC,Ge,Sn,Pb,AlおよびPからなる群から選ばれた1種または2種以上の元素で置換したSiを主とするSi相であり、該Siを主相とするSi相の平均粒径を10μm以下とし、該Si相の少なくとも1部をSiCu 3 相で取り囲んでなることにより、初期放電容量が1000mAh/g以上で、100サイクル目の放電容量が372mAh/g以上であることを特徴とする導電性に優れたSi系合金負極材料にある。
In order to solve the above-mentioned problems, the inventors have made extensive developments. As a result, the intermetallic compound surrounding the Si phase is a metal intermetallic compound with Cu element among many intermetallic compounds with the Si phase. The compound forms SiCu 3 with excellent electrical conductivity and a composite phase composed of Si phase and SiCu 3 alloy, making use of the large discharge capacity of Si and making the inherent low conductivity of Si conductive. the superior SiCu 3 supplements effect, leading to see out the invention that it is better neither of the discharge capacity and cycle life. The gist of the invention is
(1) A SixCuy alloy, which is an intermetallic compound of Si phase and Si and Cu, is a powder composed of a composite phase of SiCu 3 phase, and a part of Si constituting the Si phase is C, Ge, Sn, Pb. , Si and mainly Si substituted with one or more elements selected from the group consisting of Al and P, the average particle size of the Si phase mainly Si is 10 μm or less, By having at least a part of the Si phase surrounded by a SiCu 3 phase, the initial discharge capacity is 1000 mAh / g or more, and the discharge capacity at the 100th cycle is 372 mAh / g or more. Si-based alloy negative electrode material.

以上述べたように、本発明による電気伝導性に優れたSiCu3 を使用することによりSiの導電性を補い、良好なサイクル寿命を示す負極材料を確実に得ることができ、放電容量とサイクル寿命のいずれも良好で、2次負極材料の提供を可能とする優れた効果を奏するものである。 As described above, by using SiCu 3 having excellent electrical conductivity according to the present invention, it is possible to supplement the conductivity of Si, and to reliably obtain a negative electrode material having a good cycle life, and to have a discharge capacity and a cycle life. All of these are good and exhibit an excellent effect of enabling the provision of a secondary negative electrode material.

以下、本発明について図面に従って詳細に説明する。
図1は、Si−Cu二元系の状態図を示す。この図に示すように、Si−Cu合金溶融物を冷却すると液相線温度(例えば、Si:64原子%−Cu:36原子%の場合は1200℃)に達した時に初晶としてSiが析出し始める。この初晶は液体急冷法やアトマイズ法のように冷却速度が大きければ粒状晶として析出し、温度が固相線温度(802℃)に達するとSiとSiCu3 の共晶反応が起こり凝固が完了する。このように、Siリッチ側の状態図ではSi相とSiCu3 相との共晶反応であり、Si相をSiCu3 相が取り囲む組織になる。
The present invention will be described in detail below with reference to the drawings.
FIG. 1 shows a phase diagram of the Si—Cu binary system. As shown in this figure, when the Si—Cu alloy melt is cooled, Si is precipitated as the primary crystal when the liquidus temperature is reached (eg, 1200 ° C. in the case of Si: 64 atomic% —Cu: 36 atomic%). Begin to. This primary crystal precipitates as a granular crystal if the cooling rate is high as in the liquid quenching method or the atomizing method, and when the temperature reaches the solidus temperature (802 ° C.), a eutectic reaction between Si and SiCu 3 occurs and solidification is completed. To do. Thus, in the phase diagram on the Si rich side, it is a eutectic reaction between the Si phase and the SiCu 3 phase, and the Si phase surrounds the SiCu 3 phase.

一方、Cu以外とSiとを合金化させる元素の組合せとして、例えばFe−Si、Ni−Si、Mn−Si、Co−Si、Cr−Si、Si−W、Mo−Si、Nb−Si、Si−Ti、Si−V等が考えられる。しかし、これらは、いずれもFeSi2 、NiSi2 、CoSi2 、CrSi2 、WSi2 、MoSi2 、MnSi2 、NbSi2 、TiSi2 、VSi2 と金属元素よりもSiリッチな組成が残ることになる。 On the other hand, as a combination of elements that alloy Si other than Cu, for example, Fe-Si, Ni-Si, Mn-Si, Co-Si, Cr-Si, Si-W, Mo-Si, Nb-Si, Si -Ti, Si-V, etc. are conceivable. However, it will both FeSi 2, NiSi 2, CoSi 2 , CrSi 2, WSi 2, MoSi 2, MnSi 2, NbSi 2, TiSi 2, VSi 2 and the Si-rich composition remains than metal elements .

上記のSiと遷移元素との組合せで唯一Cuが金属リッチな化合物(SiCu3 )としてSi相と平衡する。このCuリッチな化合物(SiCu3 )の抵抗値を調べると、SiCu3 :16.3×10-4Ω・m、同様に、FeSi2 :1000×10-4Ω・m、NiSi2 :50×10-4Ω・m、CoSi2 :18×10-4Ω・mとSiCu3 が他のシリサイド化合物に比べて抵抗値の低いことが分かる。 The combination of Si and the transition element described above equilibrates with the Si phase as the only Cu-rich compound (SiCu 3 ). When the resistance value of this Cu-rich compound (SiCu 3 ) is examined, it is found that SiCu 3 : 16.3 × 10 −4 Ω · m, similarly FeSi 2 : 1000 × 10 −4 Ω · m, NiSi 2 : 50 × It can be seen that 10 −4 Ω · m, CoSi 2 : 18 × 10 −4 Ω · m and SiCu 3 have lower resistance values than other silicide compounds.

SiCu3 の抵抗値が最も低かった要因は二つあり、一つ目はSiCu3 が他のシリサイド化合物に比べて金属リッチな組成であることである。二つ目として、原料の遷移金属元素に注目すると、Cu:1.73×10-4Ω・m、Fe:10×10-4Ω・m、Ni:11.8×10-4Ω・m、Co:9.71×10-4Ω・m、と単体Cuは他の遷移金属元素と比較しても極めて抵抗値が低く、Siと最も抵抗値が低くなる遷移金属の組合せであったことである。 There are two factors that have the lowest resistance value of SiCu 3 , and the first is that SiCu 3 has a metal-rich composition compared to other silicide compounds. Secondly, when focusing on the transition metal element of the raw material, Cu: 1.73 × 10 −4 Ω · m, Fe: 10 × 10 −4 Ω · m, Ni: 11.8 × 10 −4 Ω · m , Co: 9.71 × 10 −4 Ω · m, and simple substance Cu had a very low resistance value compared to other transition metal elements, and was a combination of Si and the transition metal having the lowest resistance value It is.

上述のことからも分かるように、遷移金属シリサイド化合物の中で最も低い抵抗値をとるSiと遷移金属元素の組合せはSiとCuである。これは遷移金属シリサイド化合物の原料である単体Cuが他の単体遷移金属元素と比較しても極めて抵抗値が低く、かつSi相とSiとの遷移金属元素の組合せでは決して得られないSiとCu元素との金属リッチな化合物相(SixCuy(x<y))、例えば、SiCu3 相の形成が可能であることからである。このように最も抵抗値が低いことから、SiCu3 は上記したSiリッチな金属間化合物(FeSi2 、NiSi2 、CoSi2 、CrSi2 、WSi2 、MoSi2 、MnSi2 、NbSi2 、TiSi2 、VSi2 )よりも高い電気伝導性を示すことが分かる。 As can be seen from the above, the combination of Si and transition metal element having the lowest resistance value among the transition metal silicide compounds is Si and Cu. This is because Si and Cu, which are raw materials of transition metal silicide compounds, have extremely low resistance values compared to other single transition metal elements, and can never be obtained by a combination of transition metal elements of Si phase and Si. This is because a metal-rich compound phase with the element (SixCuy (x <y)), for example, a SiCu 3 phase can be formed. Thus, since the resistance value is the lowest, SiCu 3 is an Si-rich intermetallic compound (FeSi 2 , NiSi 2 , CoSi 2 , CrSi 2 , WSi 2 , MoSi 2 , MnSi 2 , NbSi 2 , TiSi 2 , It can be seen that the electric conductivity is higher than that of VSi 2 ).

上記のことより、Siとの遷移金属元素との組合せで唯一CuだけがSi相と金属リッチな化合物(SiCu3 )相を共晶反応により析出することが分かり、かつこのSiCu3 はSi−Cu二元系状態図からSiリッチな組成(例えば、Si:64原子%−Cu:36原子%)においてはSi相をSiCu3 相が取り囲む組織になっていることも分かっている。このことによりSiと他の遷移金属元素との組合せをはるかに上回る電気伝導性を持つSiCu3 相をSi相の回りに析出させることで、SiCu3 相がSiの乏しい電気伝導性を補う役割を果してくれる。 From the above, it can be seen that only Cu in the combination of Si and the transition metal element precipitates the Si phase and the metal-rich compound (SiCu 3 ) phase by eutectic reaction, and this SiCu 3 is Si—Cu. It is also known from the binary phase diagram that in a Si-rich composition (for example, Si: 64 atom% -Cu: 36 atom%), the Si phase surrounds the SiCu 3 phase. This allows the SiCu 3 phase to precipitate around the Si phase, which has a much higher electrical conductivity than the combination of Si and other transition metal elements, so that the SiCu 3 phase plays a role in supplementing the poor electrical conductivity of Si. He will do it.

さらに、SiCu3 相はリチウムと合金化しないことにより、SiCu3 相自身は充電(負極にリチウムが入る)−放電(負極からリチウムが出ていく)が繰り返されても体積膨張・収縮はせず、それどころかSiCu3 相はSiに比べて硬度が低いためSiとリチウムとの反応により生じるSiの大きな体積膨張・収縮の変化による応力を緩和する相とも成り得る。 Furthermore, since the SiCu 3 phase is not alloyed with lithium, the SiCu 3 phase itself does not expand or contract even if it is repeatedly charged (lithium enters the negative electrode) -discharge (lithium comes out from the negative electrode). On the contrary, since the SiCu 3 phase has a lower hardness than Si, it can also be a phase that relieves stress due to a large volume expansion / contraction change of Si caused by the reaction between Si and lithium.

また、Siは主相であり、Liと可逆的に化合・隔離することができる1または2以上の元素から構成される相の群である。このような元素である、C,Ge,Sn,Pb,AlおよびPからなる群から選ばれた1種または2種以上の元素を、Siの一部として置換しても良く、これら元素が置換型の固溶体をなすとき、その組成比は特に限定しないが、C,Ge,Sn,Pb,Al,Pの割合はこれらをMとすると、Siを1とした場合、Siに置換するMの合計は0.5未満が好ましい。   Si is a main phase, and is a group of phases composed of one or more elements that can be reversibly combined and sequestered with Li. One or more elements selected from the group consisting of C, Ge, Sn, Pb, Al and P, which are such elements, may be substituted as part of Si, and these elements may be substituted. When forming a solid solution of a mold, the composition ratio is not particularly limited, but the ratio of C, Ge, Sn, Pb, Al, P is M, where these are M, and when Si is 1, the total of M substituted for Si Is preferably less than 0.5.

さらに、Siと金属間化合物を形成するCuとの合金であるSixCuy合金において、SixCuy相の組成がx<yであることが必要である。例えば、FeSi2 では、Feリッチとはならない。Fe元素とSiとの合金では、Siリッチな化合物相を形成してしまうことから、電気伝導性が劣り、かつ、充放電の繰り返しで生じるSiの微細化によるSi相間の電気伝導性の低下防止を十分に発揮させることができないため、SixCuy相の組成がx<yであることにした。好ましくはx=1、y=3とする。 Further, in the SixCuy alloy, which is an alloy of Si and Cu that forms an intermetallic compound, the composition of the SixCuy phase needs to be x <y. For example, FeSi 2 does not become Fe rich. Since an alloy of Fe element and Si forms a Si-rich compound phase, the electrical conductivity is inferior, and the electrical conductivity between Si phases is prevented from being lowered due to the refinement of Si caused by repeated charge and discharge. Therefore, the composition of the SixCuy phase is set to x <y. Preferably, x = 1 and y = 3.

また、Si相またはSiを主相とするSi相の平均粒径としては、10μm以下、好ましくは5μm以下とする。これは平均粒径が大きければサイクル寿命が低下するからである。Siとリチウムの反応は電解液の接触部で起こる。最大粒径が10μmを超える大きなSi粒子では、初期充電反応の間にリチウムとの反応が電解液の接触するSi粒子表層部のみの反応に止まり、電解液が染み込むまでに時間がかかるリチウムとSi内部の反応が行なわれなくなってしまう。   Further, the average particle diameter of the Si phase or Si phase having Si as the main phase is 10 μm or less, preferably 5 μm or less. This is because if the average particle size is large, the cycle life is reduced. The reaction between Si and lithium occurs at the contact portion of the electrolyte. For large Si particles having a maximum particle size exceeding 10 μm, the reaction with lithium during the initial charging reaction stops only at the surface part of the Si particle in contact with the electrolytic solution, and it takes time until the electrolytic solution penetrates. The internal reaction will not be performed.

そして、初期のSiへのリチウムの挿入反応により起こるSi表面と内部の体積膨張・収縮差により生じる応力に耐え切れなくなり、表層Siが割れ、そのSiが集電体から剥離したり、集電性がとれない電気的に孤立したSiアイランドになってしまうことで次のサイクルからそれらのSiが利用できなくなってしまう。また、その時、割れ方によっては未反応のSiを含んだまま集電体から剥離したり、集電のとれない電気的に孤立した状態になってしまう恐れもある。さらに、表層のSiがなくなり、新たな未反応Si面が出てくることで上記の現象の繰り返しになり、初期数サイクルのうちに容量が急激に低下してしまう。   And, it becomes impossible to withstand the stress caused by the volume expansion / contraction difference between the Si surface and the internal volume caused by the insertion reaction of lithium into the initial Si, the surface layer Si cracks, and the Si peels off from the current collector, By becoming an electrically isolated Si island that cannot be removed, those Si cannot be used from the next cycle. At that time, depending on the cracking method, there is a risk of peeling from the current collector while containing unreacted Si or becoming an electrically isolated state where current cannot be collected. Furthermore, when the surface Si disappears and a new unreacted Si surface appears, the above phenomenon is repeated, and the capacity rapidly decreases in the initial few cycles.

上記のことから、Siの平均粒径が大きいと、初期充電反応の間にリチウムとの反応が電解液の接触するSi粒子表層部のみの反応に止まってしまうことが分かっている。そこで、Si粒子を微粒子にし、反応するSiの比表面積を大きくすることであらかじめ電解液が接触するSi表面積を増やす対策を行なう。これにより、初期のリチウムとSiの反応率を増やし、未反応Siがなくなる粒子サイズまで微細相とし、Siが集電体から剥離したり、集電性がとれない電気的に孤立したSiアイランドを防ぎ、上述したSiの剥離・電気的孤立現象の繰り返しによる初期数サイクルの容量の急激な低下を改善する。したがって、その上限を10μmとした。粒径の下限値は小さい程好ましい。   From the above, it has been found that when the average particle size of Si is large, the reaction with lithium stops during the initial charge reaction only in the surface layer portion of the Si particle in contact with the electrolyte. Therefore, measures are taken in advance to increase the Si surface area with which the electrolytic solution comes into contact by making Si particles fine particles and increasing the specific surface area of the reacting Si. This increases the initial reaction rate between lithium and Si, makes it a fine phase up to a particle size where there is no unreacted Si, and removes Si from the current collector or electrically isolated Si islands that cannot collect current. This prevents a sudden drop in the capacity of the initial few cycles due to the repetition of the above-described Si peeling and electrical isolation phenomenon. Therefore, the upper limit is set to 10 μm. The smaller the lower limit of the particle size, the better.

図2は、Si−Cu合金粉末の断面SEM画像を示す。この図に示すように、黒色の部分が埋め込み樹脂1、灰色の部分がSi相2、白色の部分がSiCu3 相3である。特に中央のSi−Cu粒子に注目すると、粒子内部のA部分では灰色のSi相2が白色のSiCu3 相に取り囲まれた状態になっている。しかし、粒子表面部分のB部分では灰色のSi相2が粒子表面に剥ぎ出しになっている様子がわかる。このように、Si相の少なくとも1部がSixCuy相で取り囲んでいることにある。 FIG. 2 shows a cross-sectional SEM image of the Si—Cu alloy powder. As shown in this figure, the black portion is the embedded resin 1, the gray portion is the Si phase 2, and the white portion is the SiCu 3 phase 3. In particular, when attention is paid to the central Si—Cu particle, the gray Si phase 2 is surrounded by the white SiCu 3 phase in the portion A inside the particle. However, it can be seen that in the portion B of the particle surface portion, the gray Si phase 2 is exposed on the particle surface. Thus, at least a part of the Si phase is surrounded by the SixCuy phase.

以下、本発明について実施例により具体的に説明する。
表1に示す組成の負極材料の鱗片状粉末を、以下に述べるようにして液体急冷法とメカニカルミリングにより作製した。所定組成の原料を底部に細孔を設けた石英管内に入れ、Ar雰囲気中で高周波溶解して溶湯を形成し、この溶湯を回転する銅ロール表面に出湯後、銅ロールにより急冷効果により急冷リボンを作製した。その後、作製リボンをジルコニアポット容器内にジルコニアボールとともにAr雰囲気中にて密閉し、メカニカルミリングにより粉末化した。得られた負極材料の負極性能を評価するため、各負極材料の粉末を平均粒径を10μm以下に分級して負極を作製した。上記負極の単極での電極性能を評価するために、対極にリチウム金属を用いた、いわゆる二極式コイン型セルを用いた。
Hereinafter, the present invention will be specifically described with reference to examples.
A flaky powder of a negative electrode material having the composition shown in Table 1 was prepared by a liquid quenching method and mechanical milling as described below. A raw material having a predetermined composition is placed in a quartz tube having pores at the bottom, melted at a high frequency in an Ar atmosphere to form a molten metal, and after the molten metal is discharged onto the surface of a rotating copper roll, the ribbon is quenched by a rapid cooling effect by the copper roll Was made. Thereafter, the produced ribbon was sealed in a zirconia pot container together with zirconia balls in an Ar atmosphere, and powdered by mechanical milling. In order to evaluate the negative electrode performance of the obtained negative electrode material, the powder of each negative electrode material was classified into an average particle size of 10 μm or less to prepare a negative electrode. In order to evaluate the electrode performance of the negative electrode as a single electrode, a so-called bipolar coin-type cell using lithium metal as a counter electrode was used.

まず、負極活物質(Si−Cuなど)・導電材(アセチレンブラック)・結着材(ポリフッ化ビニリデン)を電子天秤で秤量し、分散液(N−メチルピロリドン)と共に混合スラリー状態とした後、集電体(Cu箔)上に均一に塗布した。塗布後、真空乾燥機で減圧乾燥し溶媒を蒸発させた後、コインセルにあった形状に打ち抜いた。対極のリチウムも同様に金属リチウム箔をコインセルにあった形状に打ち抜いた。   First, a negative electrode active material (such as Si-Cu), a conductive material (acetylene black), a binder (polyvinylidene fluoride) is weighed with an electronic balance, and mixed with a dispersion (N-methylpyrrolidone). It apply | coated uniformly on the electrical power collector (Cu foil). After coating, the solvent was evaporated by drying under reduced pressure with a vacuum dryer, and then punched into a shape suitable for a coin cell. Similarly, lithium for the counter electrode was punched into a shape suitable for the coin cell.

リチウムイオン電池に使用する電解液(エチレンカーボネートとジメチルカーボネートの3:7混合溶媒を用い、支持電解質にはLiPF6 (六フッ化リン酸リチウム)を用い、電解液に対して1モル溶解した)は露点管理された不活性雰囲気中で取り扱う必要があるため、セルの組立ては全て不活性雰囲気のグローブボックス内で行った。セパレータはコインセルにあった形状に切り抜いた後、セパレータ内に電解液を十分浸透させるために、減圧下で数時間電解液中に保持した。その後、前工程で打ち抜いた負極・セパレータ・対極リチウムの順に組合せ、電池内部を電解液で十分満たした形で構築した。 Electrolytic solution used for lithium ion batteries (3: 7 mixed solvent of ethylene carbonate and dimethyl carbonate was used, LiPF 6 (lithium hexafluorophosphate) was used as the supporting electrolyte, and 1 mol was dissolved in the electrolytic solution) Since the cell must be handled in an inert atmosphere with dew point control, the cells were all assembled in an inert atmosphere glove box. The separator was cut out into a shape suitable for a coin cell, and then held in the electrolyte for several hours under reduced pressure in order to sufficiently permeate the electrolyte into the separator. Thereafter, the negative electrode, separator, and counter electrode lithium punched in the previous process were combined in this order, and the battery was fully filled with the electrolyte.

充電容量、放電容量の測定として、上記二極式セルを用い、温度25℃、充電は0.50mA/cm2 の電流密度で、金属リチウム極と同等の電位(0V)になるまで行い、同じ電流値(0.50mA/cm2 )で放電を1.5Vまで行い、この充電−放電を1サイクルとした。このときの1サイクル目の充電容量を初期容量値として評価した。この評価で得られた放電容量、すなわち負極が放出するリチウム量が負極の質量当たり1000mAh/g以上(これを体積当たりに換算すると約4000mAh/cm3 以上)を合格とした。 The measurement of charge capacity and discharge capacity was performed using the above-mentioned bipolar cell, at a temperature of 25 ° C., and charged at a current density of 0.50 mA / cm 2 until the same potential (0 V) as that of the metal lithium electrode. Discharge was performed up to 1.5 V at a current value (0.50 mA / cm 2 ), and this charge-discharge was taken as one cycle. The charge capacity at the first cycle at this time was evaluated as the initial capacity value. The discharge capacity obtained by this evaluation, that is, the amount of lithium released from the negative electrode was 1000 mAh / g or more per mass of the negative electrode (about 4000 mAh / cm 3 or more when converted to volume), and passed.

また、サイクル寿命として、上記1サイクル目の放電容量を測定すると共に、その負極材料を用いた負極の放電容量とし、100サイクル目の放電容量を測定して、サイクル寿命の目安とした。この評価で得られた100サイクル目の放電容量(負極が放出するリチウム量)が現状のグラファイト電極の理論放電容量である372mAh/g以上、すなわち約867mAh/cm3 以上を合格とした。こうして得られた1サイクル目の放電容量と100サイクル目の放電容量の結果を表2に示す。 Further, as the cycle life, the discharge capacity of the first cycle was measured, and the discharge capacity of the negative electrode using the negative electrode material was measured. The discharge capacity of the 100th cycle was measured, and used as a measure of the cycle life. The discharge capacity at the 100th cycle (the amount of lithium released from the negative electrode) obtained by this evaluation was 372 mAh / g or higher, which is the theoretical discharge capacity of the current graphite electrode, that is, about 867 mAh / cm 3 or higher. Table 2 shows the results of the discharge capacity at the first cycle and the discharge capacity at the 100th cycle thus obtained.

Figure 0004739462
Figure 0004739462

Figure 0004739462
Figure 0004739462

本発明例No.1〜は1サイクル目の放電容量が1000mAh/g以上、すなわち約4000mAh/cm3 以上を示し、電池負極として合格である。また、100サイクル後の放電容量は現状のグラファイト電極の容量である372mAh/g以上、すなわち約867mAh/cm3 を上回る値を示したことからサイクル寿命評価においても合格である。同じ組成であっても比較例No.10においては、Si相サイズの平均粒径が10μmを超えているため100サイクル後の放電容量が小さくなり、本発明の条件を満たさない。 Invention Example No. 1 to 8 show discharge capacities of the first cycle of 1000 mAh / g or more, that is, about 4000 mAh / cm 3 or more, and are acceptable as battery negative electrodes. Further, the discharge capacity after 100 cycles showed a value exceeding 372 mAh / g which is the capacity of the current graphite electrode, that is, a value exceeding about 867 mAh / cm 3 . Even with the same composition, Comparative Example No. In Nos . 9 and 10 , since the average particle size of the Si phase size exceeds 10 μm, the discharge capacity after 100 cycles is small, and the conditions of the present invention are not satisfied.

比較例No.11〜20は、遷移金属シリサイト相(NiSi2 、FeSi2 、MnSi2 、CoSi2 、CrSi2 、WSi2 、MoSi2 、NbSi2 、TiSi2 、VSi2 )が遷移金属元素(Ni、Fe、Mn、Co、Cr、W、Mo、Nb、Ti、V)に比較して、Siリッチのために電気伝導性が劣るため、初期の放電特性が悪い。同様に100サイクル後の放電容量も悪い。 Comparative Example No. 11-20, transition metal silicide phase (NiSi 2, FeSi 2, MnSi 2, CoSi 2, CrSi 2, WSi 2, MoSi 2, NbSi 2, TiSi 2, VSi 2) transition metal elements (Ni, Fe, Compared with Mn, Co, Cr, W, Mo, Nb, Ti, and V), the electrical discharge is inferior because of Si-rich, so the initial discharge characteristics are poor. Similarly, the discharge capacity after 100 cycles is also bad.

比較例No.11〜20は、いずれもSiリッチな金属間化合物組成であることから、本発明例のようなSiCu3 と比較して電気伝導性が低く、充放電によるSiとLiの反応効率が悪く、Si相間の電気伝導性の低下を招き、充放電寿命も劣る。これに対し、本発明例No.1〜は、いずれも本発明の条件を満足することから、高い電気伝導性をもち、かつリチウムと反応しないことにより充放電時のSiとLiの反応によるSiの体積膨張・収縮の応力を緩和する相となると共に、充放電の繰り返しで生じるSiの微細化によるSi相間の電気伝導性の低下も防止でき、充放電寿命を向上させることができるものである。 Comparative Example No. Since 11 to 20 are all Si-rich intermetallic compound compositions, the electrical conductivity is low compared to SiCu 3 as in the present invention example, the reaction efficiency of Si and Li due to charge and discharge is poor, and Si The electrical conductivity between phases is lowered, and the charge / discharge life is also inferior. On the other hand, the present invention example No. Nos. 1 to 8 satisfy the conditions of the present invention, so that they have high electrical conductivity and do not react with lithium, so that the volume expansion / contraction stress of Si due to the reaction between Si and Li during charge / discharge can be reduced. While becoming a phase which eases, the electrical conductivity fall between Si phases by the refinement | miniaturization of Si which arises by repetition of charging / discharging can also be prevented, and a charging / discharging lifetime can be improved.

以上のように、金属リッチな化合物相はSi金属間化合物の中でも非常に高い熱伝導性を示すため、合金溶湯から凝固する際の熱伝導性に優れており初晶のSi相の成長を抑えて微細にすることができる。また、SiCu3 相は電気伝導性に優れており、相乗効果で充放電容量や充放電寿命ともに向上する極めて優れた効果を奏するものである。 As described above, the metal-rich compound phase exhibits extremely high thermal conductivity among Si intermetallic compounds, so it has excellent thermal conductivity when solidified from molten alloy and suppresses the growth of the primary Si phase. Can be made fine. Further, the SiCu 3 phase is excellent in electrical conductivity, and exhibits a very excellent effect of improving both the charge / discharge capacity and the charge / discharge life due to a synergistic effect.

Si−Cu二元系の状態図を示す図である。It is a figure which shows the phase diagram of Si-Cu binary system. Si−Cu合金粉末の断面SEM画像を示す図である。It is a figure which shows the cross-sectional SEM image of Si-Cu alloy powder.

1 埋め込み樹脂
2 Si相
3 SiCu3



特許出願人 山陽特殊製鋼株式会社
代理人 弁理士 椎 名 彊
1 Embedded resin 2 Si phase 3 SiCu 3 phase



Patent applicant Sanyo Special Steel Co., Ltd.
Attorney: Attorney Shiina

Claims (1)

Si相とSiとCuとの金属間化合物であるSixCuy合金がSiCu 3 の複合相からなる粉体であって、Si相を構成するSiの1部をC,Ge,Sn,Pb,AlおよびPからなる群から選ばれた1種または2種以上の元素で置換したSiを主とするSi相であり、該Siを主相とするSi相の平均粒径を10μm以下とし、該Si相の少なくとも1部をSiCu 3 相で取り囲んでなることにより、初期放電容量が1000mAh/g以上で、100サイクル目の放電容量が372mAh/g以上であることを特徴とする導電性に優れたSi系合金負極材料。 An Si x Cuy alloy, which is an intermetallic compound of Si phase and Si and Cu, is a powder composed of a composite phase of SiCu 3 phase, and a part of Si constituting the Si phase is C, Ge, Sn, Pb, Al and Si phase mainly comprising Si substituted with one or more elements selected from the group consisting of P, wherein the Si phase having Si as the main phase has an average particle size of 10 μm or less, and the Si phase for at least 1 part in that it surrounds at SiCu 3-phase, the initial discharge capacity is 1000 mAh / g or more, Si system excellent in conductivity, wherein the discharge capacity at the 100th cycle is 372 mAh / g or more Alloy negative electrode material.
JP2010229261A 2010-07-16 2010-10-12 Si-based alloy negative electrode material with excellent conductivity Expired - Fee Related JP4739462B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010229261A JP4739462B1 (en) 2010-07-16 2010-10-12 Si-based alloy negative electrode material with excellent conductivity

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010161224 2010-07-16
JP2010161224 2010-07-16
JP2010229261A JP4739462B1 (en) 2010-07-16 2010-10-12 Si-based alloy negative electrode material with excellent conductivity

Publications (2)

Publication Number Publication Date
JP4739462B1 true JP4739462B1 (en) 2011-08-03
JP2012038699A JP2012038699A (en) 2012-02-23

Family

ID=44541358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010229261A Expired - Fee Related JP4739462B1 (en) 2010-07-16 2010-10-12 Si-based alloy negative electrode material with excellent conductivity

Country Status (1)

Country Link
JP (1) JP4739462B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012070306A1 (en) * 2010-11-26 2012-05-31 日産自動車株式会社 Si alloy-containing negative electrode active material for electrical devices
JP2013122905A (en) * 2011-11-10 2013-06-20 Sanyo Special Steel Co Ltd Scale-like silicon-based alloy negative electrode material
JP2013125743A (en) * 2011-12-13 2013-06-24 Samsung Sdi Co Ltd Negative electrode active material and secondary battery including the same
WO2013115223A1 (en) * 2012-02-01 2013-08-08 山陽特殊製鋼株式会社 Si-BASED-ALLOY ANODE MATERIAL
CN104347859A (en) * 2013-08-08 2015-02-11 Mk电子株式会社 Negative active material for secondary battery and method of manufacturing the same
CN114695864A (en) * 2022-04-25 2022-07-01 安徽工业大学 Preparation method of phosphorus-doped silicon-copper alloy negative electrode material of lithium ion battery

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5766445B2 (en) * 2011-01-17 2015-08-19 山陽特殊製鋼株式会社 Si alloy powder for negative electrode of lithium ion secondary battery and manufacturing method thereof
JP6076772B2 (en) * 2013-02-19 2017-02-08 山陽特殊製鋼株式会社 Si-based alloy negative electrode material for power storage device and electrode using the same
JP2014157827A (en) * 2014-04-10 2014-08-28 Furukawa Electric Co Ltd:The Negative electrode for nonaqueous electrolytic secondary battery use and nonaqueous electrolytic secondary battery arranged by use thereof
US11011742B2 (en) * 2019-06-10 2021-05-18 GM Global Technology Operations LLC Silicon embedded copper anodes and battery cells incorporating the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004228059A (en) * 2002-11-29 2004-08-12 Mitsui Mining & Smelting Co Ltd Negative electrode for lithium secondary battery, method of manufacturing the same, and lithium secondary battery
JP2004362895A (en) * 2003-06-03 2004-12-24 Sony Corp Negative electrode material, and battery using it
JP2007149685A (en) * 2005-11-29 2007-06-14 Samsung Sdi Co Ltd Anode active material for lithium secondary battery and lithium secondary battery containing the same
JP2010135336A (en) * 2003-03-26 2010-06-17 Canon Inc Electrode material for lithium secondary battery, electrode structure having this electrode material, and secondary battery having this electrode structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004228059A (en) * 2002-11-29 2004-08-12 Mitsui Mining & Smelting Co Ltd Negative electrode for lithium secondary battery, method of manufacturing the same, and lithium secondary battery
JP2010135336A (en) * 2003-03-26 2010-06-17 Canon Inc Electrode material for lithium secondary battery, electrode structure having this electrode material, and secondary battery having this electrode structure
JP2004362895A (en) * 2003-06-03 2004-12-24 Sony Corp Negative electrode material, and battery using it
JP2007149685A (en) * 2005-11-29 2007-06-14 Samsung Sdi Co Ltd Anode active material for lithium secondary battery and lithium secondary battery containing the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101383980B1 (en) * 2010-11-26 2014-04-10 닛산 지도우샤 가부시키가이샤 Si alloy-containing negative electrode active material for electrical devices
JP2012114043A (en) * 2010-11-26 2012-06-14 Nissan Motor Co Ltd Si ALLOY NEGATIVE ELECTRODE ACTIVE MATERIAL FOR ELECTRIC DEVICE
WO2012070306A1 (en) * 2010-11-26 2012-05-31 日産自動車株式会社 Si alloy-containing negative electrode active material for electrical devices
US9093706B2 (en) 2010-11-26 2015-07-28 Nissan Motor Co., Ltd. Si alloy-containing negative electrode active material for electrical devices
JP2013122905A (en) * 2011-11-10 2013-06-20 Sanyo Special Steel Co Ltd Scale-like silicon-based alloy negative electrode material
JP2013125743A (en) * 2011-12-13 2013-06-24 Samsung Sdi Co Ltd Negative electrode active material and secondary battery including the same
US9373839B2 (en) 2011-12-13 2016-06-21 Samsung Sdi Co., Ltd. Negative electrode active material and secondary battery including the same
JP2013179033A (en) * 2012-02-01 2013-09-09 Sanyo Special Steel Co Ltd Silicon-based alloy negative electrode material
WO2013115223A1 (en) * 2012-02-01 2013-08-08 山陽特殊製鋼株式会社 Si-BASED-ALLOY ANODE MATERIAL
US9508990B2 (en) 2012-02-01 2016-11-29 Sanyo Special Steel Co., Ltd. Si-based-alloy anode material
CN104347859A (en) * 2013-08-08 2015-02-11 Mk电子株式会社 Negative active material for secondary battery and method of manufacturing the same
CN114695864A (en) * 2022-04-25 2022-07-01 安徽工业大学 Preparation method of phosphorus-doped silicon-copper alloy negative electrode material of lithium ion battery
CN114695864B (en) * 2022-04-25 2023-09-08 安徽工业大学 Preparation method of phosphorus-doped silicon-copper alloy negative electrode material of lithium ion battery

Also Published As

Publication number Publication date
JP2012038699A (en) 2012-02-23

Similar Documents

Publication Publication Date Title
JP6322362B2 (en) Si alloy negative electrode material
JP4739462B1 (en) Si-based alloy negative electrode material with excellent conductivity
JP4865105B1 (en) Si alloy negative electrode material
JP6374678B2 (en) Negative electrode materials for electricity storage devices
JP6371504B2 (en) Si-based alloy negative electrode material for power storage device and electrode using the same
WO2012008540A1 (en) Silicon-alloy negative-electrode material exhibiting high electrical conductivity and manufacturing method therefor
JP2007149604A (en) Negative electrode for lithium secondary battery and lithium secondary battery
JP6076772B2 (en) Si-based alloy negative electrode material for power storage device and electrode using the same
JP2008091328A (en) Lithium secondary cell and its manufacturing method
JPH10294112A (en) Lithium secondary battery
JP4368139B2 (en) Anode material for non-aqueous electrolyte secondary battery
WO2016043061A1 (en) Si-BASED ALLOY NEGATIVE ELECTRODE MATERIAL FOR ELECTRICITY STORAGE DEVICES AND ELECTRODE USING SAME
JP2013122905A (en) Scale-like silicon-based alloy negative electrode material
JP2012529747A (en) Thin film alloy electrode
JP2013171812A (en) METHOD FOR MANUFACTURING Si-BASED ALLOY NEGATIVE ELECTRODE
JP6371635B2 (en) Si-based alloy negative electrode material for power storage device and electrode using the same
WO2018193864A1 (en) Negative electrode material for power storage device
JP2015090847A (en) Powder for negative electrode of power storage device
JP2014038832A (en) Material for negative electrode of electric power storage device
JP6630632B2 (en) Anode materials for power storage devices
JP6470806B2 (en) Powder for negative electrode of electricity storage device
WO2018180212A1 (en) Negative electrode material for storage device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110426

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110427

R150 Certificate of patent or registration of utility model

Ref document number: 4739462

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees