JP4738430B2 - Wiring board manufacturing method - Google Patents

Wiring board manufacturing method Download PDF

Info

Publication number
JP4738430B2
JP4738430B2 JP2008075412A JP2008075412A JP4738430B2 JP 4738430 B2 JP4738430 B2 JP 4738430B2 JP 2008075412 A JP2008075412 A JP 2008075412A JP 2008075412 A JP2008075412 A JP 2008075412A JP 4738430 B2 JP4738430 B2 JP 4738430B2
Authority
JP
Japan
Prior art keywords
wiring conductor
wiring
insulating
conductor
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008075412A
Other languages
Japanese (ja)
Other versions
JP2008235910A (en
Inventor
征一 高見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2008075412A priority Critical patent/JP4738430B2/en
Publication of JP2008235910A publication Critical patent/JP2008235910A/en
Application granted granted Critical
Publication of JP4738430B2 publication Critical patent/JP4738430B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1517Multilayer substrate
    • H01L2924/15172Fan-out arrangement of the internal vias
    • H01L2924/15174Fan-out arrangement of the internal vias in different layers of the multilayer substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Description

本発明は、半導体集積回路素子等の半導体素子を搭載するための配線基板の製造方法に関するものである。   The present invention relates to a method of manufacturing a wiring board for mounting a semiconductor element such as a semiconductor integrated circuit element.

一般に、現在の電子機器は、移動体通信機器に代表されるように小型化、薄型化、軽量化が要求されており、このような電子機器に使用される半導体素子を搭載するための配線基板にも小型化、薄型化、多端子化が求められている。そして、それを実現するために、配線基板における信号導体等を含む配線導体の幅を細くするとともに配線導体同士の間隔を狭くし、さらには配線導体層と絶縁層とを多層に積層して配線することにより配線基板の高密度配線化が図られている。   In general, current electronic devices are required to be reduced in size, thickness, and weight as represented by mobile communication devices, and wiring boards for mounting semiconductor elements used in such electronic devices are required. In addition, downsizing, thinning, and multi-terminal are required. In order to achieve this, the width of the wiring conductor including the signal conductor in the wiring board is narrowed and the interval between the wiring conductors is narrowed. Further, the wiring conductor layer and the insulating layer are laminated in multiple layers. By doing so, the wiring board is made high-density wiring.

このような高密度配線の配線基板として、耐熱性繊維基材に熱硬化性樹脂を含浸させた絶縁層を複数積層して成る絶縁基板の表面および絶縁層間に金属箔から成る配線導体が配設されて成る配線基板が知られている。あるいは、このように表面および絶縁層間に金属箔から成る配線導体が配設された絶縁基板の上下面にさらに熱硬化性樹脂から成る樹脂層とめっき金属層から成る配線導体とが交互に積層されて成る配線基板が知られている。   As a wiring board for such high-density wiring, a wiring conductor made of metal foil is disposed between the surface of the insulating substrate formed by laminating a plurality of insulating layers impregnated with a thermosetting resin on a heat-resistant fiber base and between the insulating layers. There is known a wiring board formed as described above. Alternatively, a resin layer made of a thermosetting resin and a wiring conductor made of a plated metal layer are alternately laminated on the upper and lower surfaces of the insulating substrate in which the wiring conductor made of metal foil is disposed between the surface and the insulating layer in this way. There is a known wiring board.

なお、上記の配線基板に使用される絶縁基板は、一般的にはガラス繊維基材にエポキシ樹脂を含浸させて熱硬化させた硬化済の複数の絶縁層をガラス繊維基材に未硬化のエポキシ樹脂を含浸させて成る接着層を介して積層するとともに接着層のエポキシ樹脂を熱硬化させることにより製作されている。また、絶縁基板の内部および表面に配設された金属箔から成る配線導体は、絶縁層の上下面に予め銅箔を貼着しておくとともにその銅箔を配線パターン状にエッチングすることにより形成されており、各絶縁層の表面から銅箔の厚み分突出した状態で配設されている。そのため、絶縁基板の絶縁層の間に配設された配線導体の間に接着層が充分に充填されずに隙間が生じてしまい、その隙間に湿気が浸入し配線導体間の電気的な絶縁性が低下してしまうという問題点があった。また、絶縁層の表面と配線導体の表面との高さの相違により絶縁基板の表面が凹凸状態になってしまい、その上に樹脂層とめっき金属層から成る配線導体とを交互に積層させた場合には、めっき金属層による微細な配線導体を良好に形成することが困難であった。   Insulating substrates used for the above-mentioned wiring boards are generally made of uncured epoxy on glass fiber base material, which is made of a plurality of cured insulating layers obtained by impregnating a glass fiber base material with an epoxy resin and thermosetting it. It is manufactured by laminating via an adhesive layer impregnated with resin and thermosetting the epoxy resin of the adhesive layer. In addition, wiring conductors made of metal foil disposed inside and on the surface of the insulating substrate are formed by pasting copper foil on the upper and lower surfaces of the insulating layer and etching the copper foil into a wiring pattern. It is arranged in a state protruding from the surface of each insulating layer by the thickness of the copper foil. For this reason, the adhesive layer is not sufficiently filled between the wiring conductors disposed between the insulating layers of the insulating substrate, resulting in gaps, and moisture enters the gaps to electrically insulate the wiring conductors. There was a problem that would decrease. In addition, the surface of the insulating substrate becomes uneven due to the difference in height between the surface of the insulating layer and the surface of the wiring conductor, and the wiring conductor composed of the resin layer and the plated metal layer is alternately laminated thereon. In this case, it was difficult to satisfactorily form a fine wiring conductor using a plated metal layer.

そこで、このような問題点を解決するために、耐熱性樹脂から成る転写フィルムの表面に予め配線パターン状に形成された金属箔から成る配線導体を、未硬化の熱硬化樹脂を含有する絶縁シートの表面に圧接して埋入させた後、転写フィルムを除去することによって配線導体が転写された未硬化の絶縁層を複数枚作成し、これらを積層圧着後、一括して熱硬化させる一括硬化によって絶縁基板を製作するとともに絶縁基板の表面および絶縁層間に金属箔から成る配線導体を配設する方法が提案されている。   Therefore, in order to solve such problems, an insulating sheet containing an uncured thermosetting resin is used as a wiring conductor made of a metal foil previously formed in a wiring pattern on the surface of a transfer film made of a heat resistant resin. After being pressed and embedded in the surface of the wire, the transfer film is removed to create a plurality of uncured insulating layers onto which the wiring conductor has been transferred. A method for manufacturing an insulating substrate and arranging a wiring conductor made of metal foil between the surface of the insulating substrate and an insulating layer has been proposed.

この方法によれば、転写時に金属箔から成る配線導体を未硬化状態の絶縁層にその表面と配線導体の表面とが略同一面となるように埋入することができるので、絶縁基板における絶縁層と配線導体との間に隙間が生じることがないとともに、絶縁基板の表面に配線導体に起因する凹凸が形成されることがない。したがって、絶縁基板に配設された配線導体間に湿気が侵入することによる電気的な絶縁性の低下がないとともに、絶縁基板上に樹脂層とめっき金属層から成る配線導体とを積層した場合には、めっき金属層による微細な配線導体を良好に形成することができる。   According to this method, the wiring conductor made of the metal foil can be embedded in the uncured insulating layer so that the surface thereof and the surface of the wiring conductor are substantially flush with each other at the time of transfer. There is no gap between the layer and the wiring conductor, and no irregularities due to the wiring conductor are formed on the surface of the insulating substrate. Therefore, there is no reduction in electrical insulation due to moisture entering between the wiring conductors arranged on the insulating substrate, and when a wiring conductor composed of a resin layer and a plated metal layer is laminated on the insulating substrate. Can satisfactorily form a fine wiring conductor with a plated metal layer.

ところで、このような配線基板において絶縁基板の表面や絶縁層間に配設される配線導体として用いられる金属箔は、一般的には表面が平滑な電着ドラムの表面に電解めっき法によって金属膜を析出させる方法により成形された電解金属箔が用いられる。そして電解金属箔の一方の面は金属めっきの粒成長によって算術平均粗さが1〜2μmの凹凸のついたマット面と呼ばれる粗面となり、他方の面は算術平均粗さが0.1〜0.3μmのドラム表面に対応したシャイニー面と呼ばれる微粗面となる。また、転写フィルムに対しては微粗面側が接着されており、金属箔の絶縁層に埋入される側の主面は、凹凸のついた粗面となっている。なお、金属箔は、配線パターン状にエッチング処理されるため、その側面は算術平均粗さが0.05〜0.1μmのエッチング面となっている。
特許第3037662号公報
By the way, in such a wiring board, a metal foil used as a wiring conductor disposed on the surface of an insulating substrate or between insulating layers generally has a metal film formed by electrolytic plating on the surface of an electrodeposition drum having a smooth surface. An electrolytic metal foil formed by the method of precipitation is used. One surface of the electrolytic metal foil becomes a rough surface called an uneven mat surface having an arithmetic average roughness of 1 to 2 μm by the grain growth of metal plating, and the other surface has an arithmetic average roughness of 0.1 to 0. It becomes a fine rough surface called a shiny surface corresponding to a 3 μm drum surface. Moreover, the fine rough surface side is adhere | attached with respect to the transfer film, and the main surface by which the side embedded in the insulating layer of metal foil is a rough surface with an unevenness | corrugation. Since the metal foil is etched into a wiring pattern, the side surface is an etched surface having an arithmetic average roughness of 0.05 to 0.1 μm.
Japanese Patent No. 3037662

しかしながら、上記の方法により複数の絶縁層が積層された絶縁基板を得るとともに絶縁基板の表面および絶縁層間に金属箔から成る配線導体を配設した場合、配線導体の絶縁層に埋入された側の主面は凹凸のついた粗面となっているので絶縁層との接着強度が大きいが、他方の主面は微粗面となっているため、この微粗面に積層される他の絶縁層との接着強度が極端に小さく、そのため配線基板に半導体素子を実装するための熱や半導体素子が作動時に発生する熱が加えられると、配線導体の微粗面と絶縁層との間に隙間が生じ、その隙間を起点とするクラックが発生して周囲の配線導体を切断してしまうという問題点があった。   However, when an insulating substrate in which a plurality of insulating layers are laminated is obtained by the above method and a wiring conductor made of a metal foil is disposed between the surface of the insulating substrate and the insulating layer, the side embedded in the insulating layer of the wiring conductor The main surface of this is a rough surface with irregularities, so the adhesive strength with the insulating layer is large, but the other main surface is a fine rough surface, so other insulating layers laminated on this fine rough surface When the heat for mounting the semiconductor element on the wiring board or the heat generated during operation of the semiconductor element is applied, there is a gap between the fine rough surface of the wiring conductor and the insulating layer. There is a problem that a crack starting from the gap is generated and the surrounding wiring conductor is cut.

そこで、転写フィルムに対して金属箔の粗面側を接着するとともにこれを配線パターン状にエッチングした後、金属箔の露出面を酸処理して化学的に粗化することにより配線導体の全ての面を粗面とした後に絶縁シートに転写することが提案されている。しかしながら、絶縁基板の表面に配設された配線導体においては、凹凸の大きな粗面が露出することになるので、これに半導体素子の電極や外部電気回路基板の配線導体を接続させると、配線導体と半導体素子や外部電気回路基板との良好な接続が困難となってしまう。また、絶縁基板の表面に樹脂層とめっき金属層から成る配線導体とを積層した場合には、絶縁基板の表面の金属箔から成る配線導体とめっき金属層から成る配線導体との良好な接続が困難となってしまう。   Therefore, after bonding the rough surface side of the metal foil to the transfer film and etching it into a wiring pattern, the exposed surface of the metal foil is chemically treated to chemically roughen all the wiring conductors. It has been proposed to transfer the surface to an insulating sheet after making the surface rough. However, in the wiring conductor disposed on the surface of the insulating substrate, a rough surface with large irregularities is exposed. Therefore, when the electrode of the semiconductor element or the wiring conductor of the external electric circuit board is connected to this, the wiring conductor And a good connection between the semiconductor element and the external electric circuit board become difficult. In addition, when a wiring conductor made of a resin layer and a plated metal layer is laminated on the surface of the insulating substrate, a good connection between the wiring conductor made of the metal foil on the surface of the insulating substrate and the wiring conductor made of the plated metal layer is achieved. It becomes difficult.

本発明は、かかる従来技術の問題点に鑑み完成されたものであり、その目的は、配線基板に半導体素子を実装する際の熱や半導体素子が作動時に発生する熱が加えられても配線導体と絶縁層との間に剥離が生じず、しかも絶縁基板の表面の金属箔から成る配線導体に半導体素子や外部電気回路基板の配線導体が接続される場合には、半導体素子や外部電気回路基板との電気的な接続信頼性に優れる配線基板の製造方法を提供することにあり、絶縁基板の表面に樹脂層とめっき金属層から成る配線導体とが積層されている場合には銅箔から成る配線導体とめっき導体から成る配線導体との電気的な接続信頼性に優れる配線基板の製造方法を提供することにある。   The present invention has been completed in view of the problems of the prior art, and the object of the present invention is to provide a wiring conductor even when heat is generated when a semiconductor element is mounted on a wiring board or when the semiconductor element is activated. When the wiring conductor of the semiconductor element or the external electric circuit board is connected to the wiring conductor made of the metal foil on the surface of the insulating substrate, there is no separation between the semiconductor element and the external electric circuit board. And a wiring board manufacturing method excellent in electrical connection reliability. When a wiring layer made of a resin layer and a plated metal layer is laminated on the surface of an insulating board, the wiring board is made of copper foil. An object of the present invention is to provide a method of manufacturing a wiring board that has excellent electrical connection reliability between a wiring conductor and a wiring conductor made of a plating conductor.

本発明の配線基板の製造方法は、絶縁層が積層されて成る絶縁基板と、該絶縁基板の表面に配設された第1の配線導体と、前記絶縁層の層間に配設された第2の配線導体とを具備する配線基板の製造方法であって、一方面が粗面であり、他方面が前記粗面よりも算術平均粗さの小さい微粗面である電解金属箔を複数準備する工程と、前記複数の金属箔のうちの一部の金属箔の前記微粗面に転写フィルムを貼着して前記第1の配線導体用転写フィルムを形成する工程と、前記複数の金属箔のうちの他の金属箔の前記粗面に転写フィルムを貼着して前記第2の配線導体用転写フィルムを形成する工程と、前記第1の配線導体用転写フィルムおよび前記第2の配線導体用転写フィルムの前記金属箔をそれぞれパターン加工して第1の配線導体および第2の配線導体を形成した後、露出した前記第1の配線導体および前記第2の配線導体の表面を粗化する工程と、前記絶縁層を複数準備する工程と、前記複数の絶縁層のうちの一部の絶縁層に前記第1の配線導体用転写フィルムの前記第1の配線導体を埋入させた後、前記一部の絶縁層から前記転写フィルムを剥離して、前記第1の配線導体を前記一部の絶縁層に転写する工程と、前記複数の絶縁層のうちの他の絶縁層に前記第2の配線導体用転写フィルムの前記第2の配線導体を埋入させた後、前記他の絶縁層から前記転写フィルムを剥離して、前記第2の配線導体を前記他の絶縁層に転写する工程と、前記第1の配線導体が最外層となり、前記第2の配線導体が内層となるように、前記複数の絶縁層を積層する工程とを具備することを特徴とする。 The method of manufacturing a wiring board according to the present invention includes an insulating substrate in which insulating layers are laminated, a first wiring conductor disposed on the surface of the insulating substrate, and a second disposed between the insulating layers. A plurality of electrolytic metal foils having one surface that is a rough surface and the other surface that is a fine rough surface having an arithmetic average roughness smaller than that of the rough surface. A step of forming a transfer film for the first wiring conductor by attaching a transfer film to the finely rough surface of a part of the metal foils of the plurality of metal foils; A step of attaching a transfer film to the rough surface of the other metal foil to form the second wiring conductor transfer film, the first wiring conductor transfer film, and the second wiring conductor; first wiring conductors and the metal foil of the transfer film is patterned, respectively After forming the second wiring conductor, comprising the steps of roughening the exposed first wiring conductor and the surface of the second wiring conductor, comprising the steps of a plurality preparing the insulating layer, of the plurality of insulating layers After the first wiring conductor of the first wiring conductor transfer film is embedded in a part of the insulating layer, the transfer film is peeled off from the part of the insulating layer, and the first wiring After transferring the conductor to the part of the insulating layer, and embedding the second wiring conductor of the second wiring conductor transfer film in another insulating layer of the plurality of insulating layers; Peeling the transfer film from the other insulating layer, transferring the second wiring conductor to the other insulating layer, the first wiring conductor being an outermost layer, and the second wiring conductor being as the inner layer, especially by including a step of laminating the plurality of insulation layers To.

本発明の配線基板の製造方法において好ましくは、前記絶縁基板の表面に、前記第1の配線導体の一部を露出させる開口部を有する樹脂層を積層する工程をさらに具備することを特徴とする。   Preferably, the method for manufacturing a wiring board according to the present invention further includes a step of laminating a resin layer having an opening exposing a part of the first wiring conductor on the surface of the insulating substrate. .

本発明の配線基板の製造方法において好ましくは、前記第1の配線導体の前記開口部から露出する面をエッチングして平滑化する工程をさらに具備することを特徴とする。   Preferably, the method for manufacturing a wiring board according to the present invention further includes a step of etching and smoothing a surface exposed from the opening of the first wiring conductor.

本発明の配線基板の製造方法によれば、粗面および側面の凹凸と絶縁層の熱硬化性樹脂とが噛みあって最表層の絶縁層に強固に密着するとともに、絶縁基板の表面に露出する側の主面が微粗面となるので大きな凹凸が形成されず、そのため配線導体と半導体素子や外部電気回路基板とを良好に接続することができる。また、絶縁層の間に配設された第2の配線導体は、微粗面および側面が化学的に粗化されているとともに該粗化された微粗面側が絶縁層に埋入されていることから、その全面が粗化面となり、全面に形成された凹凸と絶縁層の熱硬化性樹脂とが噛みあって樹脂層と強固に密着し、絶縁層との間に剥離が発生することはない。   According to the method for manufacturing a wiring substrate of the present invention, the rough surface and the unevenness of the side surface and the thermosetting resin of the insulating layer are engaged with each other and firmly adhered to the outermost insulating layer and exposed to the surface of the insulating substrate. Since the main surface on the side is a rough surface, large unevenness is not formed, and therefore, the wiring conductor and the semiconductor element or the external electric circuit board can be satisfactorily connected. Further, the second wiring conductor disposed between the insulating layers has a finely roughened surface and side surfaces chemically roughened, and the roughened roughened surface side is embedded in the insulating layer. Therefore, the entire surface becomes a roughened surface, and the unevenness formed on the entire surface and the thermosetting resin of the insulating layer are engaged with each other and firmly adhered to the resin layer, and peeling between the insulating layer is generated. Absent.

次に、本発明を添付の図面に基づいて詳細に説明する。図1は、本発明の製造方法によって得られる配線基板の第1の形態例を示す断面図であり、図2はその要部拡大断面図である。これらの図において、1は絶縁層、2は絶縁基板、3aは絶縁基板2の表面に配設された金属箔から成る第1の配線導体、3bは絶縁層1の間に配設された金属箔から成る第2の配線導体、4は貫通導体であり、複数の絶縁層1が積層一体化されることにより絶縁基板2が形成され、この絶縁基板2の表面に第1の配線導体3aおよび絶縁層1の間に第2の配線導体3bが配設されるとともに上下の配線導体3a、3bが絶縁層1を貫通して設けられた貫通導体4により電気的に接続されることにより第1の形態例の配線基板が構成されている。なお、本例の配線基板においては、絶縁基板2の上下面に第1の配線導体3aの一部を露出させるようにしてソルダーレジストとして機能する樹脂層5を被着させた例を示している。   Next, the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a cross-sectional view showing a first embodiment of a wiring board obtained by the manufacturing method of the present invention, and FIG. 2 is an enlarged cross-sectional view of an essential part thereof. In these drawings, 1 is an insulating layer, 2 is an insulating substrate, 3a is a first wiring conductor made of a metal foil disposed on the surface of the insulating substrate 2, and 3b is a metal disposed between the insulating layers 1. A second wiring conductor 4 made of foil is a through conductor, and an insulating substrate 2 is formed by laminating and integrating a plurality of insulating layers 1, and the first wiring conductor 3a and the first wiring conductor 3a are formed on the surface of the insulating substrate 2. The second wiring conductor 3b is disposed between the insulating layers 1 and the upper and lower wiring conductors 3a and 3b are electrically connected by the through conductors 4 provided through the insulating layer 1 to form the first. The wiring board of the embodiment is configured. In the wiring board of this example, an example is shown in which the resin layer 5 functioning as a solder resist is deposited on the upper and lower surfaces of the insulating substrate 2 so as to expose a part of the first wiring conductor 3a. .

絶縁基板2を構成する各絶縁層1は、アラミド繊維やガラス繊維等の耐熱性繊維の不織布または織布から成る耐熱性繊維基材に熱硬化性樹脂を含浸させて成り、それぞれが金属箔から成る第1の配線導体3aや第2の配線導体3bを支持するとともに上下に位置する第1配線導体3aと第2の配線導体3bとの間および第2の配線導体3b同士の間における電気的な絶縁性を保持する機能を有する。このような絶縁層1は、耐熱性繊維基材に未硬化の熱硬化性樹脂組成物を含浸させた厚みが50〜150μm程度の絶縁シートに種々の加工を施した後、そのような絶縁シートを複数枚積層するとともに熱硬化させることにより互いに一体化されている。   Each insulating layer 1 constituting the insulating substrate 2 is formed by impregnating a heat-resistant fiber base material made of a heat-resistant fiber non-woven fabric or woven fabric such as aramid fiber or glass fiber with a thermosetting resin, each of which is made of a metal foil. The first wiring conductor 3a and the second wiring conductor 3b are supported, and the electrical connection between the first wiring conductor 3a and the second wiring conductor 3b that are positioned above and below, and between the second wiring conductors 3b. It has a function of maintaining a good insulating property. Such an insulating layer 1 is obtained by applying various processing to an insulating sheet having a thickness of about 50 to 150 μm obtained by impregnating a heat-resistant fiber base material with an uncured thermosetting resin composition, These are integrated with each other by laminating a plurality of layers and thermosetting them.

なお、絶縁層1を形成するための絶縁シートは、アラミド繊維やガラス繊維等の耐熱性繊維の不織布または織布を、熱硬化性樹脂、架橋剤、エラストマーおよび適当な溶剤を混合してなる液状の熱硬化性樹脂組成物に浸漬することによって、あるいはこの組成物をアラミド繊維やガラス繊維等の耐熱性繊維の不織布または織布に塗布し含浸させることによって製作される。耐熱性繊維基材が織布から成る場合、その織り方は特に制限されず、一般的には平織、綾織、朱子織等の織布が用いられる。このような耐熱性繊維基材の含有率は、熱硬化性樹脂100質量部に対して50〜130質量部が好ましい。耐熱性繊維基材の含有率が熱硬化性樹脂100質量部に対して50質量部より少ないと、絶縁層1の硬化時に熱硬化性樹脂が流動し、第1の配線導体3aや第2の配線導体3bが歪んでしまい易くなる傾向があり、130質量部より多いと耐熱性繊維基材に熱硬化性樹脂を良好に含浸できなくなる傾向にある。従って、耐熱性繊維基材の含有率は、熱硬化性樹脂100質量部に対して、50〜150質量部が好ましい。   The insulating sheet for forming the insulating layer 1 is a liquid obtained by mixing a non-woven fabric or woven fabric of heat-resistant fibers such as aramid fibers and glass fibers with a thermosetting resin, a cross-linking agent, an elastomer and an appropriate solvent. It is manufactured by immersing in the thermosetting resin composition of the above, or by applying and impregnating this composition to a nonwoven fabric or woven fabric of heat-resistant fibers such as aramid fibers and glass fibers. When the heat resistant fiber base material is composed of a woven fabric, the weaving method is not particularly limited, and generally a woven fabric such as plain weave, twill weave, satin weave, or the like is used. As for the content rate of such a heat resistant fiber base material, 50-130 mass parts is preferable with respect to 100 mass parts of thermosetting resins. When the content rate of the heat-resistant fiber base is less than 50 parts by mass with respect to 100 parts by mass of the thermosetting resin, the thermosetting resin flows when the insulating layer 1 is cured, and the first wiring conductor 3a and the second wiring conductor 3a. The wiring conductor 3b tends to be distorted, and if it exceeds 130 parts by mass, the heat-resistant fiber base tends to be unable to be satisfactorily impregnated with the thermosetting resin. Therefore, the content of the heat resistant fiber base material is preferably 50 to 150 parts by mass with respect to 100 parts by mass of the thermosetting resin.

絶縁シートを構成する熱硬化性樹脂組成物に含有される熱硬化性樹脂としては、アリル変性ポリフェニレンエーテル樹脂やエポキシ樹脂、変性ポリオレフィン樹脂等が用いられる。この熱硬化性樹脂の分子量は、後述する第1および第2の配線導体3a、3bの転写が行ないやすいように、10000〜500000の範囲であることが好ましい。   As the thermosetting resin contained in the thermosetting resin composition constituting the insulating sheet, an allyl-modified polyphenylene ether resin, an epoxy resin, a modified polyolefin resin, or the like is used. The molecular weight of the thermosetting resin is preferably in the range of 10,000 to 500,000 so that the first and second wiring conductors 3a and 3b described later can be easily transferred.

また、架橋剤としては、トリアリルイソシアヌレート等のトリアジン化合物が用いられる。架橋剤の含有率は、熱硬化性樹脂100質量部に対して、1〜10質量部であることが好ましい。架橋剤の含有率が熱硬化性樹脂100質量部に対して1質量部より少ないと、絶縁層1の架橋密度が上がらずに絶縁基板2が吸湿し易くなる傾向があり、10質量部より多いと絶縁層1が脆くなる傾向にある。したがって、架橋剤の含有率は熱硬化性樹脂100質量部に対して1〜10質量部であることが好ましい。   As the crosslinking agent, a triazine compound such as triallyl isocyanurate is used. It is preferable that the content rate of a crosslinking agent is 1-10 mass parts with respect to 100 mass parts of thermosetting resins. When the content of the cross-linking agent is less than 1 part by mass with respect to 100 parts by mass of the thermosetting resin, the insulating substrate 1 tends to absorb moisture without increasing the cross-linking density of the insulating layer 1, and more than 10 parts by mass. And the insulating layer 1 tends to become brittle. Therefore, it is preferable that the content rate of a crosslinking agent is 1-10 mass parts with respect to 100 mass parts of thermosetting resins.

さらに、エラストマーとしては、スチレン−エチレン−ブチレン−スチレン(SEBS)やスチレン−エチレン−プロピレン−スチレン(SEPS)等の熱可塑性エラストマーが用いられる。エラストマーの含有率は熱硬化性樹脂100質量部に対して、10〜40質量部が好ましい。エラストマーの含有率が熱硬化性樹脂100質量部に対して10質量部より少ないと絶縁層1が脆くなる傾向にあり、40質量部を超えると絶縁層1の剛性が低くなる傾向にある。したがって、エラストマーの含有率は熱硬化性樹脂100質量部に対して10〜40質量部が好ましい。   Furthermore, thermoplastic elastomers such as styrene-ethylene-butylene-styrene (SEBS) and styrene-ethylene-propylene-styrene (SEPS) are used as the elastomer. As for the content rate of an elastomer, 10-40 mass parts is preferable with respect to 100 mass parts of thermosetting resins. When the elastomer content is less than 10 parts by mass with respect to 100 parts by mass of the thermosetting resin, the insulating layer 1 tends to be brittle, and when it exceeds 40 parts by mass, the rigidity of the insulating layer 1 tends to be low. Therefore, the content of the elastomer is preferably 10 to 40 parts by mass with respect to 100 parts by mass of the thermosetting resin.

絶縁基板2の表面に配設された第1の配線導体3aおよび各絶縁層1の間に配設された第2の配線導体3bは、それぞれ厚みが5〜50μm程度の銅やアルミニウム、銀等の金属箔から成り、配線基板に搭載される半導体素子の各電極を外部電気回路基板の配線導体に電気的に接続する導電路の一部として機能する。これらの配線導体3a、3bは、幅が20〜200μm程度の信号用導体や広面積の接地または電源用導体を含んでおり、一般的には絶縁基板2の表面において微細な高密度配線が施されている。そして、例えば絶縁基板2の上面に配設された第1の配線導体3aの一部が半導体素子6の電極に半田バンプ7aを介して電気的に接続される半導体素子接続パッドを形成しているとともに絶縁基板2の下面に配設された第1の配線導体3aの一部が外部電気回路基板の配線導体に半田バンプ7bを介して電気的に接続される外部接続パッドを形成している。   The first wiring conductor 3a disposed on the surface of the insulating substrate 2 and the second wiring conductor 3b disposed between the insulating layers 1 are each made of copper, aluminum, silver or the like having a thickness of about 5 to 50 μm. Each of the electrodes of the semiconductor element mounted on the wiring board functions as a part of a conductive path that electrically connects to the wiring conductor of the external electric circuit board. These wiring conductors 3 a and 3 b include a signal conductor having a width of about 20 to 200 μm and a large-area ground or power supply conductor. Generally, fine high-density wiring is applied on the surface of the insulating substrate 2. Has been. For example, a part of the first wiring conductor 3 a disposed on the upper surface of the insulating substrate 2 forms a semiconductor element connection pad that is electrically connected to the electrode of the semiconductor element 6 via the solder bump 7 a. In addition, a part of the first wiring conductor 3a disposed on the lower surface of the insulating substrate 2 forms an external connection pad that is electrically connected to the wiring conductor of the external electric circuit board via the solder bumps 7b.

このような配線導体3a、3bは、マット面と呼ばれる粗面およびシャイニー面と呼ばれる微粗面を有する電解金属箔をポリエチレンテレフタレート等の耐熱性樹脂から成る転写フィルム上に接着剤を介して剥離可能に貼着するとともにエッチングにより所定の配線パターンにパターン加工した後、そのパターン加工された金属箔の露出面を化学的に粗化して転写フィルム上に配線導体3aや3bを形成し、次にこの転写フィルム上の配線導体3aや3bを絶縁層1用の絶縁シートの表面に熱プレスを用いて熱圧着して埋入させておき、それを絶縁シートとともに積層することにより絶縁基板2の表面や絶縁層1の間に配設される。   Such wiring conductors 3a and 3b can peel an electrolytic metal foil having a rough surface called a mat surface and a fine rough surface called a shiny surface on a transfer film made of a heat-resistant resin such as polyethylene terephthalate via an adhesive. Then, after patterning into a predetermined wiring pattern by etching, the exposed surface of the patterned metal foil is chemically roughened to form wiring conductors 3a and 3b on the transfer film. The wiring conductors 3a and 3b on the transfer film are embedded in the surface of the insulating sheet for the insulating layer 1 by thermocompression using a hot press, and laminated with the insulating sheet, Arranged between the insulating layers 1.

なお、この第1の形態例においては、絶縁基板2の表面に配設された第1の配線導体3aは、金属箔の微粗面を転写フィルム上に貼着して製作されており、その粗面および側面が化学的に粗化されているとともに粗面側が絶縁層1の表面に埋入されている。他方、絶縁層1の間に配設された第2の配線導体3bは、金属箔の粗面を転写フィルム上に貼着して製作されており、微粗面および側面が化学的に粗化されているとともに微粗面側が絶縁層1の表面に埋入されている。そして、この第1の形態例においてはこのことが重要である。   In the first embodiment, the first wiring conductor 3a disposed on the surface of the insulating substrate 2 is manufactured by sticking a fine rough surface of a metal foil on a transfer film. The rough surface and side surfaces are chemically roughened, and the rough surface side is embedded in the surface of the insulating layer 1. On the other hand, the 2nd wiring conductor 3b arrange | positioned between the insulating layers 1 is manufactured by sticking the rough surface of metal foil on a transfer film, and a fine rough surface and a side surface are chemically roughened. The fine rough surface side is embedded in the surface of the insulating layer 1. This is important in the first embodiment.

絶縁基板2の表面に配設された第1の配線導体3aは、粗面および側面が化学的に粗化されているとともに粗面側が絶縁層1の表面に埋入されていることから、化学的に粗化された粗面および側面の凹凸と絶縁層1の熱硬化性樹脂とが噛み合って絶縁層1に強固に密着するとともに、絶縁基板2の表面に露出する面が微粗面となるので露出面に大きな凹凸が形成されることはない。したがって、第1の配線導体3aと半導体素子6や外部電気回路基板とを良好に接続することができる。   The first wiring conductor 3a disposed on the surface of the insulating substrate 2 has a rough surface and side surfaces that are chemically roughened, and the rough surface side is embedded in the surface of the insulating layer 1. The roughened rough surface and the irregularities on the side surface and the thermosetting resin of the insulating layer 1 mesh with each other and firmly adhere to the insulating layer 1, and the surface exposed to the surface of the insulating substrate 2 becomes a fine rough surface. Therefore, large unevenness is not formed on the exposed surface. Therefore, it is possible to satisfactorily connect the first wiring conductor 3a to the semiconductor element 6 and the external electric circuit board.

また、絶縁層1の間に配設された第2の配線導体3bは、微粗面および側面が化学的に粗化されているとともに微粗面側が絶縁層1の表面に埋入されていることから、第2の配線導体3bが埋入された側の絶縁層1の熱硬化性樹脂と配線導体3bの化学的に粗化された微粗面および側面の凹凸と噛み合って強固に密着するとともに反対側の粗面の凹凸とこれに接する絶縁層1の熱硬化性樹脂とが噛み合って上下の絶縁層1に強固に密着する。   Further, the second wiring conductor 3b disposed between the insulating layers 1 has a finely roughened surface and side surfaces chemically roughened, and the finely roughened surface side is embedded in the surface of the insulating layer 1. For this reason, the thermosetting resin of the insulating layer 1 on the side where the second wiring conductor 3b is embedded and the finely roughened surface of the wiring conductor 3b and the unevenness of the side surface mesh with each other and firmly adhere to each other. At the same time, the unevenness of the rough surface on the opposite side and the thermosetting resin of the insulating layer 1 in contact therewith are engaged and firmly adhered to the upper and lower insulating layers 1.

したがって、第1の形態例の配線基板によれば、半導体素子6を実装する際の熱や半導体素子6が作動時に発生する熱が加えられても、配線導体3aや3bと絶縁層1との間に剥離が発生することはなく、また半導体素子6や外部電気回路基板との電気的な接続信頼性に優れる配線基板を提供することができる。   Therefore, according to the wiring board of the first embodiment, even if heat is generated when the semiconductor element 6 is mounted or heat generated when the semiconductor element 6 is activated, the wiring conductors 3a and 3b and the insulating layer 1 It is possible to provide a wiring board that does not cause separation between them and that has excellent electrical connection reliability with the semiconductor element 6 and the external electric circuit board.

なお、絶縁基板2の表面に配設された第1の配線導体3aは、化学的に粗化された粗面面の算術平均粗さが1μm未満であると、絶縁層1との密着力が弱いものとなり、配線導体3aに半導体素子6や外部電気回路基板を接続する際等に応力が加えられると、絶縁基板2から剥離してしまう危険性が大きくなり、他方、2μmを超えると、配線導体3aを形成する際に微細な配線パターンを良好に形成することが困難になる。したがって、絶縁基板2の表面に配設された第1の配線導体3aの、化学的に粗化された粗面の算術平均粗さは1〜2μmであることが好ましい。   The first wiring conductor 3a disposed on the surface of the insulating substrate 2 has an adhesive force with the insulating layer 1 when the arithmetic mean roughness of the chemically roughened rough surface is less than 1 μm. If it becomes weak and stress is applied when connecting the semiconductor element 6 or external electric circuit board to the wiring conductor 3a, the risk of peeling off from the insulating substrate 2 increases. When forming the conductor 3a, it becomes difficult to form a fine wiring pattern satisfactorily. Therefore, the arithmetic mean roughness of the chemically roughened rough surface of the first wiring conductor 3a disposed on the surface of the insulating substrate 2 is preferably 1 to 2 μm.

さらに、絶縁基板2の表面に配設された第1の配線導体3aは、その化学的に粗化された側面の算術平均粗さが0.3μm未満であると、側面と絶縁層1との接合力が弱いものとなる傾向にあり、0.7μmを越えると、第1の配線導体3aを形成す際に微細な配線パターンを良好に形成することが困難になる。したがって、絶縁基板2の表面に配設された第1の配線導体3aは、その粗化された側面の算術平均粗さが0.3〜0.7μmであることが好ましい。   Further, the first wiring conductor 3a disposed on the surface of the insulating substrate 2 has a side surface and the insulating layer 1 having an arithmetic average roughness of the chemically roughened side surface of less than 0.3 μm. The bonding force tends to be weak, and if it exceeds 0.7 μm, it is difficult to satisfactorily form a fine wiring pattern when forming the first wiring conductor 3a. Therefore, it is preferable that the arithmetic average roughness of the roughened side surface of the first wiring conductor 3a disposed on the surface of the insulating substrate 2 is 0.3 to 0.7 μm.

さらに、絶縁層1の間に配設された第2の配線導体3bは、その化学的に粗化された微粗面および側面の算術平均粗さが0.3μm未満であると、絶縁層1との密着力が小さく、絶縁層1との間で剥離してしまう危険性が大きくなり、0.7μmを超えると、配線導体3bを形成する際に微細な配線パターンを形成することが困難となる。したがって、絶縁層1の間に配設された第2の配線導体3bは、その化学的に粗化された微粗面および側面の算術平均粗さが0.3〜0.7μmであることが好ましい。また、絶縁層1の間に配設された第2の配線導体3bは、その粗面の算術平均粗さが1μm未満であると、絶縁層1との密着力が小さく、絶縁層1との間で剥離してしまう危険性が大きくなり、2μmを超えると、第2の配線導体3bを形成する際に微細な配線パターンを形成することが困難となる。したがって、絶縁層1の間に配設された第2の配線導体3bは、その粗面の算術平均粗さが1〜2μmであることが好ましい。   Further, the second wiring conductor 3b disposed between the insulating layers 1 has a chemically rough surface and an arithmetic average roughness of the side surface of less than 0.3 μm. The adhesion between the insulating layer 1 and the insulating layer 1 increases, and when the thickness exceeds 0.7 μm, it is difficult to form a fine wiring pattern when forming the wiring conductor 3b. Become. Therefore, the second wiring conductor 3b disposed between the insulating layers 1 has an arithmetic average roughness of 0.3 to 0.7 μm on the chemically roughened fine surface and side surface. preferable. In addition, the second wiring conductor 3b disposed between the insulating layers 1 has a small adhesive force with the insulating layer 1 when the arithmetic average roughness of the rough surface is less than 1 μm, When the thickness exceeds 2 μm, it is difficult to form a fine wiring pattern when forming the second wiring conductor 3b. Therefore, it is preferable that the arithmetic mean roughness of the rough surface of the second wiring conductor 3b disposed between the insulating layers 1 is 1 to 2 μm.

また、絶縁層1を貫通して設けられた貫通導体4は、例えば、錫70〜90質量%と銀とビスマスと銅とから成る合金粉末および熱硬化性樹脂を含有する導電性材料から成り、貫通導体4に含有される合金粉末同士が互いに接触するとともに合金粉末と配線導体3aや3bを構成する銅箔とが接触することにより第1の配線導体3aと第2の配線導体3bとの間や第2の配線導体3b同士の間を電気的に接続する。   Further, the through conductor 4 provided through the insulating layer 1 is made of, for example, an electrically conductive material containing an alloy powder composed of 70 to 90% by mass of tin, silver, bismuth, and copper and a thermosetting resin. Between the first wiring conductor 3a and the second wiring conductor 3b, the alloy powders contained in the through conductor 4 are in contact with each other and the alloy powder is in contact with the copper foil constituting the wiring conductors 3a and 3b. And the second wiring conductors 3b are electrically connected.

この貫通導体4は、配線導体3aや3b用の銅箔が埋入される前の絶縁層1用の絶縁シートにレーザ加工により直径が30〜200μm程度の貫通孔を穿孔しておくとともに、その貫通孔内に錫70〜90質量%と銀とビスマスと銅とから成る合金粉末および未硬化の熱硬化性樹脂を含有する金属ペーストを充填しておき、その金属ペーストを絶縁層1用の絶縁シートとともに熱硬化させることにより形成される。   The through conductor 4 has a through hole having a diameter of about 30 to 200 μm drilled by laser processing on the insulating sheet for the insulating layer 1 before the copper foil for the wiring conductors 3a and 3b is embedded. A metal paste containing an alloy powder composed of 70 to 90% by mass of tin, silver, bismuth and copper and an uncured thermosetting resin is filled in the through hole, and the metal paste is insulated for the insulating layer 1. It is formed by thermosetting together with the sheet.

なお、貫通導体4を形成する導電性材料における金属粉末の含有量は80〜95質量%が好ましい。金属粉末の含有量が80質量%より少ないと導電性材料における金属粉末同士の良好な接触が妨げられて貫通導体4の電気抵抗が上昇してしまう傾向があり、95質量%を超えると導電性材料用の金属ペーストの粘度が高くなり、貫通孔内への良好な充填が妨げられてしまう傾向にある。したがって、貫通導体4を形成する導電性材料における金属粉末の含有量は80〜95質量%が好ましい。   In addition, as for content of the metal powder in the electroconductive material which forms the penetration conductor 4, 80-95 mass% is preferable. If the content of the metal powder is less than 80% by mass, good contact between the metal powders in the conductive material tends to be hindered and the electrical resistance of the through conductor 4 tends to increase. There is a tendency that the viscosity of the metal paste for the material is increased and good filling into the through-hole is hindered. Therefore, the content of the metal powder in the conductive material forming the through conductor 4 is preferably 80 to 95% by mass.

また、貫通導体4用の導電性材料に含有される金属粉末は、錫と銀とビスマスと銅とを含有する合金から成り、錫を70〜90質量%含有することが好ましい。さらに、金属粉末の平均粒径は5〜10μmが好ましい。平均粒径が5μmより小さいと導電性材料用の金属ペーストの粘度が高くなり、貫通孔内への良好な充填が妨げられてしまう傾向があり、10μmより大きいと金属粉末が高密度充填されずに貫通導体4の電気抵抗が高くなってしまう傾向がある。したがって、貫通導体4用の導電性材料に含有される金属粉末の平均粒径は5〜10μmが好ましい。   The metal powder contained in the conductive material for the through conductor 4 is made of an alloy containing tin, silver, bismuth, and copper, and preferably contains 70 to 90% by mass of tin. Furthermore, the average particle size of the metal powder is preferably 5 to 10 μm. If the average particle size is less than 5 μm, the viscosity of the metal paste for the conductive material tends to be high, and there is a tendency to prevent good filling into the through-holes. In particular, the electrical resistance of the through conductor 4 tends to increase. Therefore, the average particle diameter of the metal powder contained in the conductive material for the through conductor 4 is preferably 5 to 10 μm.

また、貫通導体4の熱硬化性樹脂は、トリアリルシアヌレートやトリアリルイソシアヌレート、トリスエポキシプロピルイソシアヌレート、トリス(2−ヒドロキシエチル)イソシアヌレート等のトリアジン系熱硬化性樹脂が好ましい。   The thermosetting resin of the through conductor 4 is preferably a triazine-based thermosetting resin such as triallyl cyanurate, triallyl isocyanurate, trisepoxypropyl isocyanurate, or tris (2-hydroxyethyl) isocyanurate.

さらに、絶縁基板2の上下面には第1の配線導体3aの一部として形成された半導体素子接続パッドや外部接続パッドの中央部を露出させる開口部を有する樹脂層5が積層されている。樹脂層5は、エポキシ樹脂等の熱硬化性樹脂から成り、半導体接続パッド同士や外部接続パッド同士が半田バンプ7aや7bにより互いに電気的に短絡するのを防止するためのソルダーレジストとして機能し、感光性を有する未硬化の熱硬化性樹脂のシートを絶縁基板2の上下面に貼着するとともに露光および現像した後、紫外線および熱硬化させることによって形成される。なお、絶縁基板2の表面に樹脂層5が積層されている場合、第1の配線導体3aは樹脂層5と接する面が算術平均粗さで0.3〜0.7μmとなるように化学的に粗化された微粗面であることが好ましい。第1の配線導体3aの樹脂層5と接する面が算術平均粗さ0.3〜0.7μmとなるように化学的に粗化された微粗面であると、化学的に粗化された微粗面の凹凸と樹脂層5の樹脂とが噛み合って樹脂層5とこれに接する第1の配線導体3aとが強固に密着する。また、樹脂層5の開口部から露出する第1の配線導体3aの表面は、ニッケルや金等のめっき金属層または鉛−錫合金や錫−銀合金等の半田が被着されており、それにより半田バンプ7aや7bとの接合性が良好となっている。なお、このように第1の配線導体3aの表面にめっき金属層や半田が被着されている場合、第1の配線導体3aのめっき金属層や半田が被着された表面が算術平均粗さ0.05〜0.1μmとなるようにマイクロエッチングにより平滑化されていることが好ましい。第1の配線導体3aのめっき金属層や半田が被着された表面が算術平均粗さ0.05〜0.1μmとなるようにマイクロエッチングにより平滑化されていることにより、第1の配線導体3aとめっき金属層や半田とが強固に密着する。   Further, a resin layer 5 having an opening for exposing a central portion of a semiconductor element connection pad or an external connection pad formed as a part of the first wiring conductor 3 a is laminated on the upper and lower surfaces of the insulating substrate 2. The resin layer 5 is made of a thermosetting resin such as an epoxy resin, and functions as a solder resist for preventing the semiconductor connection pads and the external connection pads from being electrically short-circuited by the solder bumps 7a and 7b. A sheet of uncured thermosetting resin having photosensitivity is attached to the upper and lower surfaces of the insulating substrate 2, exposed and developed, and then ultraviolet light and heat cured. In addition, when the resin layer 5 is laminated | stacked on the surface of the insulated substrate 2, the surface where the 1st wiring conductor 3a is in contact with the resin layer 5 is chemically 0.3-0.7 micrometer so that arithmetic mean roughness may be 0.3-0.7 micrometer. The surface is preferably a finely roughened surface. When the surface of the first wiring conductor 3a that is in contact with the resin layer 5 is a finely roughened surface that is chemically roughened so as to have an arithmetic average roughness of 0.3 to 0.7 μm, it is chemically roughened. The unevenness of the fine surface and the resin of the resin layer 5 mesh with each other, and the resin layer 5 and the first wiring conductor 3a in contact with the resin layer 5 are firmly adhered. The surface of the first wiring conductor 3a exposed from the opening of the resin layer 5 is coated with a plated metal layer such as nickel or gold or solder such as a lead-tin alloy or tin-silver alloy. As a result, the bondability with the solder bumps 7a and 7b is good. When the plated metal layer or solder is applied to the surface of the first wiring conductor 3a in this way, the surface of the first wiring conductor 3a to which the plated metal layer or solder is applied is arithmetic average roughness. It is preferably smoothed by microetching so as to be 0.05 to 0.1 μm. The surface of the first wiring conductor 3a on which the plated metal layer or the solder is applied is smoothed by microetching so that the arithmetic average roughness is 0.05 to 0.1 μm. 3a and the plating metal layer and solder adhere firmly.

そして、この例の配線基板は、樹脂層5から露出した半導体素子接続パッドに半導体素子6の電極を半田バンプ7aを介して電気的に接続することによって半導体装置となり、この半導体装置における外部接続パッドを半田バンプ7bを介して外部電気回路基板の配線導体に電気的に接続することによって、外部電気回路基板に実装されることとなる。   The wiring board of this example becomes a semiconductor device by electrically connecting the electrodes of the semiconductor element 6 to the semiconductor element connection pads exposed from the resin layer 5 through the solder bumps 7a, and the external connection pads in this semiconductor device. Is electrically connected to the wiring conductor of the external electric circuit board via the solder bumps 7b, so that it is mounted on the external electric circuit board.

なお、このような配線基板は、以下に述べる方法により製作される。まず、金属箔は、例えば金属箔が銅箔である場合、銅イオンを含有する電解液に浸漬した電着ドラム(カソード体)と鉛容器(アノード体)との間に、電流密度が数10〜数100A/dm2の電流を通電して電着ドラム表面に10〜30μm程度の銅箔を析出させ、その後、電着ドラム表面から銅箔を剥離する。このとき、電着ドラム側の面は電着ドラムの表面に対応した算術平均粗さが0.1〜0.3μmのシャイニー面と呼ばれる微粗面となり、反対側の面は銅の結晶が析出するに伴ってこぶ状に成長して形成される算術平均粗さが1〜2μmのマット面と呼ばれる粗面となっている。   Such a wiring board is manufactured by the method described below. First, for example, when the metal foil is a copper foil, the metal foil has a current density of several tens between the electrodeposition drum (cathode body) immersed in an electrolytic solution containing copper ions and the lead container (anode body). A current of ˜100 A / dm 2 is applied to deposit a copper foil of about 10 to 30 μm on the surface of the electrodeposition drum, and then the copper foil is peeled from the surface of the electrodeposition drum. At this time, the surface on the electrodeposition drum side becomes a fine rough surface called a shiny surface having an arithmetic average roughness of 0.1 to 0.3 μm corresponding to the surface of the electrodeposition drum, and copper crystals are precipitated on the opposite surface. As a result, the arithmetic average roughness formed by growing in a hump shape is a rough surface called a mat surface having a thickness of 1 to 2 μm.

次に、厚みが20〜50μm程度のポリエチレンテレフタレート等の耐熱性樹脂から成る転写フィルムの片面に接着剤を介して上記の銅箔を貼着する。このとき、絶縁基板2の表面に配設する第1の配線導体3a用の銅箔は、その微粗面側を転写フィルム側にして貼着し、絶縁層1の間に配設する第2の配線導体3b用の銅箔は、その粗面側を転写フィルム側にして貼着する。   Next, the copper foil is attached to one side of a transfer film made of a heat resistant resin such as polyethylene terephthalate having a thickness of about 20 to 50 μm via an adhesive. At this time, the copper foil for the first wiring conductor 3 a disposed on the surface of the insulating substrate 2 is attached with the fine rough surface side thereof being the transfer film side, and is disposed between the insulating layers 1. The copper foil for the wiring conductor 3b is adhered with the rough surface side set to the transfer film side.

次に、転写フィルムに貼着した銅箔上に耐エッチング樹脂を被着するとともにこの耐エッチング樹脂を露光および現像して銅箔を配線導体3aや3bの配線パターン状に被覆する耐エッチング樹脂層を形成し、しかる後、これを塩化第二鉄溶液中に浸漬して銅箔の露出部をエッチング除去した後、耐エッチング樹脂層を剥離して転写フィルム上に配線導体3aや3bを形成する。その後、配線導体3aや3bの露出表面を酸処理により化学的に粗化する。このとき、絶縁基板2の表面に配設する第1の配線導体3aは、露出する粗面の算術平均粗さが1〜2μmであるとともに露出する側面の算術平均粗さが0.3〜0.7μmとなるように粗化する。他方、絶縁層1の間に配設する第2の配線導体3bは、露出する微粗面および側面の算術平均粗さが0.3〜0.7μmとなるように粗化する。なお、この粗化処理は、塩酸や硫酸、硝酸、酢酸、蟻酸などの酸処理による化学的な薬品処理によって多数の尖頭状を有する突起を施すことができるが、特に酸溶液を配線導体3aや3bに噴霧することが望ましい。   Next, an etching resistant resin is applied onto the copper foil adhered to the transfer film, and the etching resistant resin is exposed and developed to coat the copper foil in the wiring pattern of the wiring conductors 3a and 3b. After that, this is immersed in a ferric chloride solution to remove the exposed portion of the copper foil by etching, and then the etching-resistant resin layer is peeled off to form the wiring conductors 3a and 3b on the transfer film. . Thereafter, the exposed surfaces of the wiring conductors 3a and 3b are chemically roughened by acid treatment. At this time, the first wiring conductor 3a disposed on the surface of the insulating substrate 2 has an arithmetic average roughness of the exposed rough surface of 1 to 2 μm and an arithmetic average roughness of the exposed side surface of 0.3 to 0. Roughen to 7 μm. On the other hand, the 2nd wiring conductor 3b arrange | positioned between the insulating layers 1 is roughened so that the arithmetic mean roughness of the exposed fine rough surface and side surface may be 0.3-0.7 micrometer. In this roughening treatment, many protrusions having a pointed shape can be formed by chemical chemical treatment such as hydrochloric acid, sulfuric acid, nitric acid, acetic acid, and formic acid. In particular, an acid solution is used for the wiring conductor 3a. It is desirable to spray on 3b.

次に、耐熱性繊維基材に未硬化の熱硬化性樹脂組成物を含浸させて成る絶縁層1用の絶縁シートを複数枚準備するとともにこれらの絶縁シートにレーザ光の照射により貫通導体4を形成するための貫通孔を穿孔する。このような貫通孔は、絶縁シートの表面に保護フィルムを貼着するとともにその上から炭酸ガスレーザやYAGレーザ等のレーザ光を照射することにより形成される。   Next, a plurality of insulating sheets for the insulating layer 1 formed by impregnating a heat-resistant fiber base material with an uncured thermosetting resin composition are prepared, and the through conductors 4 are applied to these insulating sheets by laser light irradiation. A through-hole for forming is drilled. Such a through-hole is formed by sticking a protective film on the surface of the insulating sheet and irradiating a laser beam such as a carbon dioxide laser or a YAG laser from above.

次に、絶縁層1用の絶縁シートに形成した貫通孔内に導電性粉末と未硬化の熱硬化性樹脂とから成る金属ペーストを充填する。貫通孔への金属ペーストの充填は、スクリーン印刷法により行なわれ、印刷用のマスクとしては貫通孔に対応する孔を有するメタルマスクや貫通孔を形成する際に貼着した保護フィルムそのものを用いることができる。   Next, a metal paste made of conductive powder and uncured thermosetting resin is filled into the through holes formed in the insulating sheet for the insulating layer 1. Filling the through hole with metal paste is performed by screen printing, and as a mask for printing, use a metal mask having a hole corresponding to the through hole or a protective film itself attached when forming the through hole. Can do.

次に、絶縁層1用の絶縁シートから保護フィルムを剥離した後、転写フィルム上に形成した配線導体3aや3bと貫通孔内の金属ペーストとが接触するようにして絶縁シートの表面に配線導体3aや3bを熱プレスを用いて熱圧着して埋入させた後、絶縁シートから転写フィルムを剥離して配線導体3aや3bを転写する。熱圧着は、熱プレス機を用いて温度が100〜150℃、圧力が0.5〜5MPaの条件で数分間加圧することにより行なわれる。このとき、絶縁基板2の表面に配設される第1の配線導体3aは、化学的に粗化された粗面側が絶縁シートに埋入され、微粗面が表面に露出する。また、絶縁層1の間に配設される第2の配線導体3bは、化学的に粗化された微粗面側が絶縁シートに埋入され、粗面が表面に露出する。   Next, after peeling off the protective film from the insulating sheet for the insulating layer 1, the wiring conductors 3a and 3b formed on the transfer film and the metal paste in the through hole are in contact with the wiring conductor on the surface of the insulating sheet. After 3a and 3b are thermocompression-bonded and embedded using a hot press, the transfer film is peeled off from the insulating sheet to transfer the wiring conductors 3a and 3b. Thermocompression bonding is performed by applying pressure for several minutes using a hot press machine under conditions of a temperature of 100 to 150 ° C. and a pressure of 0.5 to 5 MPa. At this time, as for the 1st wiring conductor 3a arrange | positioned on the surface of the insulated substrate 2, the rough surface side chemically chemically roughened is embedded in an insulating sheet, and a fine rough surface is exposed to the surface. In addition, the second wiring conductor 3b disposed between the insulating layers 1 has a chemically roughened fine rough surface side embedded in an insulating sheet, and the rough surface is exposed on the surface.

なお、熱圧着は加熱に先行して加圧のみを行なう方が良い。加熱を先に行なうと、熱によって転写フィルムが伸び、配線導体3aや3bと貫通導体4との正確な位置合わせが困難となる傾向がある。したがって、熱圧着は加熱に先行して加圧のみを行なうことが好ましい。   In thermocompression bonding, it is better to perform only pressurization prior to heating. If the heating is performed first, the transfer film is stretched by heat, and accurate alignment between the wiring conductors 3a and 3b and the through conductor 4 tends to be difficult. Therefore, it is preferable to perform only the pressurization prior to the heating in the thermocompression bonding.

また、絶縁層1用の絶縁シートはロール状の連続体ではなく、1枚ずつカットされて供給されることが望ましい。これは通常、配線導体3aや3bがロール状の連続体で供給されるため、絶縁シートを動かして細かな位置の調整を行ない、配線導体3aや3bとの位置合わせを行なった方が、位置合わせ機構がコンパクトになるためである。なお、配線導体3aや3bと絶縁シートとの位置合わせは画像認識装置により、光学的に行なうことができるが、その他、様々な公知の方法も使用しても良い。   Further, it is desirable that the insulating sheet for the insulating layer 1 is supplied in a state of being cut one by one, not a roll-like continuous body. This is because the wiring conductors 3a and 3b are usually supplied in a roll-like continuum, so that the position of the wiring conductors 3a and 3b is adjusted by moving the insulating sheet and adjusting the position finely. This is because the alignment mechanism becomes compact. The alignment between the wiring conductors 3a and 3b and the insulating sheet can be optically performed by an image recognition device, but various other known methods may also be used.

最後に、配線導体3aや3bが転写された絶縁シートの複数枚を、各絶縁シートに転写された配線導体3aと3bとの間や3b同士の間が貫通孔に充填した金属ペーストで接続されるようにして積層するとともに、それらを加熱加圧して絶縁シートおよび金属ペースト中の熱硬化性樹脂を熱硬化させる。これにより、複数の絶縁層1が積層された絶縁基板2の表面に、化学的に粗化された粗面および側面が埋入された第1の配線導体3aが配設されているとともに絶縁層1の間に微粗面および側面が化学的に粗化された第2の配線導体3bが配設された本発明を実施するための第1の形態例に示した配線基板が得られる。なお、積層体の加熱処理にあたっては、積層体をフッ素系樹脂などから成る離型性シートで上下から1〜5MPaの圧力で挟みこみ、それを150〜240℃の温度で熱処理して、絶縁シートおよび金属ペースト中の熱硬化性樹脂を熱硬化させることが好ましい。   Finally, a plurality of insulating sheets to which the wiring conductors 3a and 3b are transferred are connected with a metal paste between the wiring conductors 3a and 3b transferred to each insulating sheet and between 3b with a through-hole filled. In addition, the thermosetting resin in the insulating sheet and the metal paste is thermoset by heating and pressurizing them. As a result, the first wiring conductor 3a in which the chemically roughened rough surface and the side surface are embedded is disposed on the surface of the insulating substrate 2 on which the plurality of insulating layers 1 are laminated, and the insulating layer. Thus, the wiring board shown in the first embodiment for carrying out the present invention in which the second wiring conductor 3b whose surface is chemically roughened between the finely roughened surface and the side surface 1 is provided. In addition, in the heat treatment of the laminate, the laminate is sandwiched between 1 and 5 MPa from above and below with a releasable sheet made of a fluororesin or the like, and heat-treated at a temperature of 150 to 240 ° C. It is preferable to thermoset the thermosetting resin in the metal paste.

次に、本発明の製造方法によって得られる配線基板の第2の形態例を図3および図4を基にして説明する。これらの図において、11は絶縁層、12は絶縁基板、13aは絶縁基板12の表面に配設された金属箔から成る第1の配線導体、13bは絶縁層11の間に配設された金属箔から成る第2の配線導体、14は貫通導体、15は樹脂層、16はめっき金属層から成る第3の配線導体であり、複数の絶縁層11が積層一体化されることにより絶縁基板12が形成され、この絶縁基板12の表面に第1の配線導体13aおよび絶縁層11の間に第2の配線導体13bが配設されているとともに上下の配線導体13a、13bが絶縁層11を貫通して設けられた貫通導体14により電気的に接続されており、さらに絶縁基板12の表面に樹脂層15およびめっき金属層から成る第3の配線導体16が積層されることにより本発明を実施するための第2の形態例の配線基板が構成されている。なお、本例では最表層の樹脂層15の表面に耐半田樹脂層17を被着させた例を示している。   Next, a second embodiment of the wiring board obtained by the manufacturing method of the present invention will be described with reference to FIGS. In these drawings, 11 is an insulating layer, 12 is an insulating substrate, 13a is a first wiring conductor made of a metal foil disposed on the surface of the insulating substrate 12, and 13b is a metal disposed between the insulating layers 11. A second wiring conductor made of foil, 14 is a through conductor, 15 is a resin layer, 16 is a third wiring conductor made of a plated metal layer, and a plurality of insulating layers 11 are laminated and integrated to form an insulating substrate 12. The second wiring conductor 13b is disposed between the first wiring conductor 13a and the insulating layer 11 on the surface of the insulating substrate 12, and the upper and lower wiring conductors 13a and 13b penetrate the insulating layer 11. The third wiring conductor 16 made of the resin layer 15 and the plated metal layer is laminated on the surface of the insulating substrate 12 and the present invention is carried out. For the first Wiring board of embodiment is constituted. In this example, the solder resistant resin layer 17 is attached to the surface of the outermost resin layer 15.

絶縁基板12を構成する各絶縁層11は、前述した第1の形態例における絶縁層1と同様の材料および方法により形成されており、それぞれが金属箔から成る第1の配線導体13aや第2の配線導体13bを支持するとともに上下に位置する第1の配線導体13aと第2の配線導体13bとの間および第2の配線導体13b同士間の電気的な絶縁性を保持する機能を有する。   Each insulating layer 11 constituting the insulating substrate 12 is formed by the same material and method as the insulating layer 1 in the first embodiment described above, and each of the first wiring conductor 13a and the second wiring conductor 13a each made of a metal foil. The wiring conductor 13b is supported and has a function of maintaining electrical insulation between the first wiring conductor 13a and the second wiring conductor 13b positioned above and below and between the second wiring conductors 13b.

絶縁基板12の表面に配設された第1の配線導体13aおよび絶縁層11の間に配設された第2の配線導体13bは、それぞれが前述した第1の形態例における第1の配線導体3a、第2の配線導体3bと同様の材料および方法により形成されており、配線基板に搭載される半導体素子18の各電極を外部電気回路基板の配線導体に電気的に接続する導電路の一部として機能する。これらの配線導体13a、13bは、幅が20〜200μm程度の信号用導体や広面積の接地または電源用導体を含んでおり、一般的には絶縁基板12の表面において微細な高密度配線が施されている。   The first wiring conductor 13a disposed on the surface of the insulating substrate 12 and the second wiring conductor 13b disposed between the insulating layers 11 are each the first wiring conductor in the first embodiment described above. 3a, a conductive path formed of the same material and method as the second wiring conductor 3b and electrically connecting each electrode of the semiconductor element 18 mounted on the wiring board to the wiring conductor of the external electric circuit board. It functions as a part. These wiring conductors 13a and 13b include a signal conductor having a width of about 20 to 200 μm and a large-area ground or power supply conductor. Generally, fine high-density wiring is applied on the surface of the insulating substrate 12. Has been.

なお、この第2の形態例においては、絶縁基板12の表面に配設された第1の配線導体13aは、金属箔の微粗面を転写フィルム上に貼着して製作されており、その粗面および側面が化学的に粗化されているとともに粗面側が最表層の絶縁層11の表面に埋入されている。他方、絶縁層11の間に配設された第2の配線導体13bは、金属箔の粗面を転写フィルム上に貼着して製作されており、微粗面および側面が化学的に粗化されているとともに微粗面側が絶縁層11の表面に埋入されている。そして、この第2の形態例においてはこのことが重要である。   In the second embodiment, the first wiring conductor 13a disposed on the surface of the insulating substrate 12 is manufactured by sticking a fine rough surface of a metal foil on a transfer film. The rough surface and side surfaces are chemically roughened, and the rough surface side is embedded in the surface of the outermost insulating layer 11. On the other hand, the 2nd wiring conductor 13b arrange | positioned between the insulating layers 11 is manufactured by sticking the rough surface of metal foil on a transfer film, and a fine rough surface and a side surface are chemically roughened. The fine rough surface side is embedded in the surface of the insulating layer 11. This is important in the second embodiment.

絶縁基板12の表面に配設された第1の配線導体13aは、粗面および側面が化学的に粗化されているとともに粗面側が絶縁層11の表面に埋入されていることから、化学的に粗化された粗面および側面の凹凸と絶縁層11の熱硬化性樹脂とが噛み合って絶縁層11に強固に密着するとともに、絶縁基板12の表面に露出する面が微粗面となるので露出面に大きな凹凸が形成されることがない。したがって第1の配線導体13aと後述するめっき金属層から成る第3の配線導体16とが良好に接続される。   The first wiring conductor 13 a disposed on the surface of the insulating substrate 12 has a rough surface and side surfaces that are chemically roughened, and the rough surface side is embedded in the surface of the insulating layer 11. The roughened rough surface and the irregularities on the side surface and the thermosetting resin of the insulating layer 11 mesh with each other and firmly adhere to the insulating layer 11, and the surface exposed to the surface of the insulating substrate 12 becomes a fine rough surface. Therefore, large unevenness is not formed on the exposed surface. Therefore, the 1st wiring conductor 13a and the 3rd wiring conductor 16 which consists of a metal plating layer mentioned later are connected favorably.

また、絶縁層11の間に配設された第2の配線導体13bは、微粗面および側面が化学的に粗化されているとともに微粗面側が絶縁層11の表面に埋入されていることから、第2の配線導体13bが埋入された側の絶縁層11の熱硬化性樹脂と第2の配線導体13bの化学的に粗化された微粗面および側面の凹凸と噛み合って強固に密着するとともに反対側の粗面の凹凸とこれに接する絶縁層11の熱硬化性樹脂とが噛み合って上下の絶縁層11に強固に密着する。   The second wiring conductor 13b disposed between the insulating layers 11 has a rough surface and side surfaces that are chemically roughened, and the fine surface side is embedded in the surface of the insulating layer 11. Therefore, the thermosetting resin of the insulating layer 11 on the side where the second wiring conductor 13b is embedded and the finely roughened surface and side surface unevenness of the second wiring conductor 13b mesh with each other to be strong. And the unevenness of the rough surface on the opposite side meshes with the thermosetting resin of the insulating layer 11 in contact therewith and firmly adheres to the upper and lower insulating layers 11.

したがって、第2の形態例の配線基板によれば、半導体素子18を実装する際の熱や半導体素子18が作動時に発生する熱が加えられても、配線導体13aや13bと絶縁層11との間に剥離が発生することはないとともに第1の配線導体13aと第3の配線導体16との電気的接続信頼性に優れる配線基板を提供することができる。   Therefore, according to the wiring board of the second embodiment, even if heat is generated when the semiconductor element 18 is mounted or heat generated when the semiconductor element 18 is activated, the wiring conductors 13a and 13b and the insulating layer 11 It is possible to provide a wiring board that does not cause separation in between and has excellent electrical connection reliability between the first wiring conductor 13a and the third wiring conductor 16.

なお、絶縁基板12の表面に配設された第1の配線導体13aは、化学的に粗化された粗面の算術平均粗さが1μm未満であると、絶縁層11との密着力が弱いものとなり、第1の配線導体13aに熱や応力が加えられると、絶縁基板12から剥離してしまう危険性が大きくなり、他方、2μmを超えると、第1の配線導体13aを形成する際に微細な配線パターンを良好に形成することが困難になる。したがって、絶縁基板12の表面に埋設された第1の配線導体13aの、化学的に粗化された粗面の算術平均粗さは1〜2μmであることが好ましい。   The first wiring conductor 13a disposed on the surface of the insulating substrate 12 has weak adhesion to the insulating layer 11 when the arithmetic average roughness of the chemically roughened rough surface is less than 1 μm. When heat or stress is applied to the first wiring conductor 13a, the risk of peeling from the insulating substrate 12 increases. On the other hand, when the thickness exceeds 2 μm, the first wiring conductor 13a is formed. It becomes difficult to satisfactorily form a fine wiring pattern. Therefore, the arithmetic mean roughness of the chemically roughened rough surface of the first wiring conductor 13a embedded in the surface of the insulating substrate 12 is preferably 1 to 2 μm.

さらに、第1の配線導体13aは、その化学的に粗化された側面の算術平均粗さが0.3μm未満であると、側面と絶縁層11との接合力を向上させることが困難であり、0.7μmを超えると、第1の配線導体13aを形成する際に微細な配線パターンを良好に形成することが困難になる。したがって、絶縁基板12の表面に配設された第1の配線導体13aは、その化学的に粗化された側面の算術平均粗さが0.3〜0.7μmであることが好ましい。   Furthermore, if the arithmetic average roughness of the chemically roughened side surface of the first wiring conductor 13a is less than 0.3 μm, it is difficult to improve the bonding force between the side surface and the insulating layer 11. If the thickness exceeds 0.7 μm, it is difficult to satisfactorily form a fine wiring pattern when forming the first wiring conductor 13a. Therefore, it is preferable that the first wiring conductor 13 a disposed on the surface of the insulating substrate 12 has an arithmetic average roughness of 0.3 to 0.7 μm on the chemically roughened side surface.

またさらに、絶縁層11の間に配設された第2の配線導体13bは、その化学的に粗化された微粗面および側面の算術平均粗さが0.3μm未満であると、絶縁層11との密着力が小さく、絶縁層11との間で剥離してしまう危険性が大きくなり、0.7μmを超えると、第2の配線導体13bを形成する際に微細な配線パターンを形成することが困難となる。したがって、絶縁層11の間に配設された第2の配線導体13bは、その化学的に粗化された微粗面および側面の算術平均粗さが0.3〜0.7μmであることが好ましい。また、絶縁層11の間に配設された第2の配線導体13bは、その粗面の算術平均粗さが1μm未満であると、絶縁層11との密着力が小さく、絶縁層11との間で剥離してしまう危険性が大きくなり、2μmを超えると、第2の配線導体13bを形成する際に微細な配線パターンを形成することが困難となる。したがって、絶縁層11の間に配設された第2の配線導体13bは、その粗面の算術平均粗さが1〜2μmであることが好ましい。   Furthermore, the second wiring conductor 13b disposed between the insulating layers 11 has a chemically roughened fine rough surface and an arithmetic mean roughness of the side surface of less than 0.3 μm. 11 is small, and there is a high risk of peeling from the insulating layer 11. When the thickness exceeds 0.7 μm, a fine wiring pattern is formed when the second wiring conductor 13b is formed. It becomes difficult. Therefore, the second wiring conductor 13b disposed between the insulating layers 11 has an arithmetic average roughness of 0.3 to 0.7 μm on the chemically roughened fine surface and side surface. preferable. In addition, the second wiring conductor 13b disposed between the insulating layers 11 has a small adhesive force with the insulating layer 11 when the arithmetic average roughness of the rough surface thereof is less than 1 μm. When the thickness exceeds 2 μm, it is difficult to form a fine wiring pattern when forming the second wiring conductor 13b. Therefore, it is preferable that the arithmetic mean roughness of the rough surface of the second wiring conductor 13b disposed between the insulating layers 11 is 1 to 2 μm.

また、絶縁層11を貫通して設けられた貫通導体14は、前述した第1の形態例における貫通導体4と同様の材料および方法により形成され、貫通導体14に含有される合金粉末同士が互いに接触するとともに合金粉末と配線導体13aや13bを構成する銅箔とが接触することにより第1の配線導体13aと第2の配線導体13bとの間や第2の配線導体13b同士の間を電気的に接続する。   Further, the through conductor 14 provided through the insulating layer 11 is formed by the same material and method as the through conductor 4 in the first embodiment described above, and the alloy powders contained in the through conductor 14 are mutually connected. The contact between the alloy powder and the copper foil constituting the wiring conductors 13a and 13b makes electrical contact between the first wiring conductor 13a and the second wiring conductor 13b and between the second wiring conductors 13b. Connect.

さらに、絶縁基板12の表面には、第1の配線導体13aの一部を露出させる開口部を有する樹脂層15が積層されており、樹脂層15の表面および開口部内には第1の配線導体13aに電気的に接続された銅めっき等のめっき金属層から成る第3の配線導体16が被着されている。   Furthermore, a resin layer 15 having an opening that exposes a part of the first wiring conductor 13a is laminated on the surface of the insulating substrate 12, and the first wiring conductor is formed on the surface of the resin layer 15 and in the opening. A third wiring conductor 16 made of a plated metal layer such as copper plating electrically connected to 13a is deposited.

樹脂層15は、第3の配線導体16の支持体としての機能を有し、その厚みが10〜80μmであり、エポキシ樹脂等の熱硬化性樹脂に平均粒径が0.1〜2μmのシリカやアルミナ等の無機絶縁フィラーを10〜50質量%程度分散させた絶縁樹脂材料から成る。   The resin layer 15 has a function as a support for the third wiring conductor 16, has a thickness of 10 to 80 μm, and is a silica having an average particle diameter of 0.1 to 2 μm in a thermosetting resin such as an epoxy resin. And an insulating resin material in which an inorganic insulating filler such as alumina is dispersed at about 10 to 50% by mass.

この樹脂層15は、未硬化の熱硬化性樹脂に平均粒径0.1〜2μmの無機絶縁フィラーを分散させてシート状に形成した樹脂シートを、絶縁基板12の表面に真空プレスにより貼着し、その後、樹脂シート中の熱硬化性樹脂を150〜200℃で熱硬化することにより絶縁基板12の表面に積層される。また開口部は樹脂層15にレーザ加工を施すことにより形成される。なお、絶縁基板12の表面を例えばバフロールを用いた機械的研磨法により算術平均粗さが0.1〜2μmとなるように粗化しておくと、絶縁基板12と樹脂層15とを強固に密着させることができる。したがって、絶縁基板12の表面は、その算術平均粗さが0.1〜2μmとなるように粗化されていることが好ましい。また、第1の配線導体13aは、その樹脂層15に接する表面を算術平均粗さが0.1〜2μmとなるように化学的に粗化した微粗面としておくと、第1の配線導体13aとこれに接する樹脂層15とを強固に密着させることができる。したがって、第1の配線導体13aの樹脂層15に接する表面は、その算術平均粗さが0.3〜0.7μmとなるように化学的に粗化した微粗面であることが好ましい。   This resin layer 15 is formed by sticking a resin sheet formed into a sheet shape by dispersing an inorganic insulating filler having an average particle diameter of 0.1 to 2 μm in an uncured thermosetting resin on the surface of the insulating substrate 12 by a vacuum press. Then, the thermosetting resin in the resin sheet is laminated on the surface of the insulating substrate 12 by thermosetting at 150 to 200 ° C. The opening is formed by applying laser processing to the resin layer 15. When the surface of the insulating substrate 12 is roughened by, for example, a mechanical polishing method using buffol so that the arithmetic average roughness is 0.1 to 2 μm, the insulating substrate 12 and the resin layer 15 are firmly adhered to each other. Can be made. Therefore, the surface of the insulating substrate 12 is preferably roughened so that its arithmetic average roughness is 0.1 to 2 μm. In addition, the first wiring conductor 13a has a first wiring conductor that has a surface that is in contact with the resin layer 15 that is chemically roughened so that the arithmetic average roughness is 0.1 to 2 μm. 13a and the resin layer 15 in contact therewith can be firmly adhered. Therefore, the surface of the first wiring conductor 13a that is in contact with the resin layer 15 is preferably a finely roughened surface that is chemically roughened so that its arithmetic average roughness is 0.3 to 0.7 μm.

樹脂層15の表面および開口部内に被着された配線導体16は、下地としての厚みが1〜2μmの無電解銅めっきと、その上の主導体としての厚みが10〜30μmの電解銅めっきとから成り、配線基板に搭載される半導体素子18の各電極と絶縁基板12表面の第1の配線導体13aとの間を高密度で接続する機能を有する。そして、例えば上面側の最表層の樹脂層15上に配設された第3の配線導体16の一部が半導体素子18の電極に半田バンプ19aを介して電気的に接続される半導体素子接続パッドを形成しているとともに下面側の最表層の樹脂層15上に配設された第3の配線導体16の一部が外部電気回路基板の配線導体に半田バンプ19bを介して電気的に接続される外部接続パッドを形成している。   The wiring conductor 16 deposited on the surface of the resin layer 15 and in the opening includes an electroless copper plating having a thickness of 1 to 2 μm as a base, and an electrolytic copper plating having a thickness of 10 to 30 μm as a main conductor thereon. And has a function of connecting each electrode of the semiconductor element 18 mounted on the wiring board and the first wiring conductor 13a on the surface of the insulating substrate 12 with high density. For example, a semiconductor element connection pad in which a part of the third wiring conductor 16 disposed on the outermost resin layer 15 on the upper surface side is electrically connected to the electrode of the semiconductor element 18 via the solder bump 19a. A part of the third wiring conductor 16 disposed on the outermost resin layer 15 on the lower surface side is electrically connected to the wiring conductor of the external electric circuit board via the solder bumps 19b. Forming external connection pads.

この第3の配線導体16は、セミアディティブ法により形成される。具体的には、まず樹脂層15の表面および開口部の内壁を過マンガン酸塩類水溶液等の粗化液に浸漬し表面を算術平均粗さが0.2〜1.0μmとなるように化学的に粗化する。樹脂層15の表面および開口部の内壁を算術平均粗さが0.2〜1.0μmとなるように化学的に粗化することにより樹脂層15と第3の配線導体16とを強固に密着させることができる。したがって、樹脂層15の表面および開口部の内壁を算術平均粗さが0.2〜1.0μmとなるように化学的に粗化することが好ましい。次に開口部から露出する第1の配線導体13aの表面をマイクロエッチングして算術平均粗さが0.05〜0.1μmとなるように平滑化する。開口部から露出する第1の配線導体13aの表面を算術平均粗さが0.05〜0.1μmとなるようにマイクロエッチングにより平滑化することにより第1の配線導体13aと第3の配線導体16とを強固に密着させることができる。したがって、樹脂層15の開口部から露出する第1の配線導体13aの表面を算術平均粗さが0.05〜0.1μmとなるようにマイクロエッチングにより平滑化することが好ましい。その後、無電解めっき用パラジウム触媒の水溶液中に浸漬して樹脂層15の表面および開口部内にパラジウム触媒を付着させる。次に、硫酸銅とホルマリンとEDTAナトリウム塩と安定剤とを含有する無電解銅めっき液中に約30分間浸漬して樹脂層15の表面および開口部内の全面に厚みが1〜2μm程度の無電解銅めっきを析出させる。次に、樹脂層15の表面および開口部内の全面に被着させた無電解銅めっきの表面に第3の配線導体16の配線パターン形状に対応する開口部を有するめっきレジスト層を被着する。次に、硫酸と硫酸銅5水和物と塩素と光沢剤とを含有する電解銅めっき液中に数A/dm2の電流を印加しながら数時間浸漬することによりめっきレジスト層の開口部から露出した無電解銅めっき上に厚みが10〜30μmの電解銅めっきを被着する。その後、めっきレジスト層を水酸化ナトリウムで剥離し、さらに、めっきレジスト層を剥離したことにより露出する無電解銅めっきを硫酸と過酸化水素水の混合物等の硫酸系水溶液によりエッチング除去して第3の配線導体16が形成される。   The third wiring conductor 16 is formed by a semi-additive method. Specifically, first, the surface of the resin layer 15 and the inner wall of the opening are immersed in a roughening solution such as a permanganate aqueous solution, and the surface is chemically treated so that the arithmetic average roughness becomes 0.2 to 1.0 μm. To roughen. The resin layer 15 and the third wiring conductor 16 are firmly adhered by chemically roughening the surface of the resin layer 15 and the inner wall of the opening so that the arithmetic average roughness is 0.2 to 1.0 μm. Can be made. Therefore, it is preferable to chemically roughen the surface of the resin layer 15 and the inner wall of the opening so that the arithmetic average roughness is 0.2 to 1.0 μm. Next, the surface of the first wiring conductor 13a exposed from the opening is microetched to smooth the arithmetic average roughness to 0.05 to 0.1 μm. The surface of the first wiring conductor 13a exposed from the opening is smoothed by microetching so that the arithmetic average roughness is 0.05 to 0.1 μm, whereby the first wiring conductor 13a and the third wiring conductor. 16 can be firmly attached to each other. Therefore, it is preferable to smooth the surface of the first wiring conductor 13a exposed from the opening of the resin layer 15 by microetching so that the arithmetic average roughness is 0.05 to 0.1 μm. Then, it is immersed in the aqueous solution of the palladium catalyst for electroless plating, and a palladium catalyst is made to adhere in the surface of the resin layer 15, and an opening part. Next, it is immersed in an electroless copper plating solution containing copper sulfate, formalin, EDTA sodium salt, and a stabilizer for about 30 minutes, and a thickness of about 1 to 2 μm is formed on the surface of the resin layer 15 and the entire surface of the opening. Electrolytic copper plating is deposited. Next, a plating resist layer having an opening corresponding to the wiring pattern shape of the third wiring conductor 16 is applied to the surface of the resin layer 15 and the surface of the electroless copper plating applied to the entire surface of the opening. Next, it is exposed from the opening of the plating resist layer by immersing in an electrolytic copper plating solution containing sulfuric acid, copper sulfate pentahydrate, chlorine, and brightener for several hours while applying a current of several A / dm2. An electrolytic copper plating having a thickness of 10 to 30 μm is deposited on the electroless copper plating. Thereafter, the plating resist layer is stripped with sodium hydroxide, and the electroless copper plating exposed by stripping the plating resist layer is removed by etching with a sulfuric acid-based aqueous solution such as a mixture of sulfuric acid and hydrogen peroxide. The wiring conductor 16 is formed.

さらにこの第2の形態例では、最外層の樹脂層15上に耐半田樹脂層17が被着されている。耐半田樹脂層17は、その厚みが10〜50μmであり、例えばアクリル変性エポキシ樹脂等の感光性樹脂と光開始剤等とから成る混合物に30〜70質量%のシリカやタルク等の無機粉末フィラーを含有させた絶縁材料から成り、隣接する第3の配線導体16同士が半田により電気的に短絡することを防止するとともに、第3の配線導体16と樹脂層15との接合強度を向上させる機能を有する。   Furthermore, in this second embodiment, a solder-resistant resin layer 17 is deposited on the outermost resin layer 15. The solder-resistant resin layer 17 has a thickness of 10 to 50 μm. For example, 30 to 70% by mass of an inorganic powder filler such as silica or talc in a mixture of a photosensitive resin such as an acrylic-modified epoxy resin and a photoinitiator. A function of preventing the adjacent third wiring conductors 16 from being electrically short-circuited by solder and improving the bonding strength between the third wiring conductor 16 and the resin layer 15. Have

この耐半田樹脂層17は、感光性樹脂と光開始剤と無機粉末フィラーとから成る未硬化の樹脂フィルムを最外層の樹脂層15の表面に被着させるか、あるいは、感光性樹脂と光開始材と無機粉末フィラーとから成る未硬化の樹脂ワニスを最外層の樹脂層15の表面に塗布して未硬化の感光性樹脂層を形成し、しかる後、その未硬化の感光性樹脂層を露光および現像して開口部を形成し、これを紫外線硬化および熱硬化させることにより形成される。   The solder-resistant resin layer 17 is formed by depositing an uncured resin film made of a photosensitive resin, a photoinitiator, and an inorganic powder filler on the surface of the outermost resin layer 15 or by using a photosensitive resin and a photoinitiator. An uncured resin varnish comprising a material and an inorganic powder filler is applied to the surface of the outermost resin layer 15 to form an uncured photosensitive resin layer, and then the uncured photosensitive resin layer is exposed. And it develops, forms an opening part, and forms this by carrying out ultraviolet curing and thermosetting.

そして、この例の配線基板は、上面側に露出する半導体素子接続パッドに半導体素子18の各電極を電気的に接続することにより半導体装置となり、この半導体装置における外部接続パッドを外部電気回路基板の配線導体に電気的に接続することにより搭載する半導体素子18が外部の電気回路に接続されることとなる。   The wiring board of this example becomes a semiconductor device by electrically connecting each electrode of the semiconductor element 18 to the semiconductor element connection pad exposed on the upper surface side, and the external connection pad in this semiconductor device is connected to the external electric circuit board. By electrically connecting to the wiring conductor, the mounted semiconductor element 18 is connected to an external electric circuit.

なお、本発明は上述の実施の形態例に限定されるものではなく、本発明の要旨を逸脱しない範囲であれば、種々の変更が可能であることは言うまでもない。   It should be noted that the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the present invention.

本発明の製造方法により得られた配線基板における配線導体と絶縁層との接着性を評価するために、次のような評価用の試料を製作して評価を行なった。   In order to evaluate the adhesiveness between the wiring conductor and the insulating layer in the wiring board obtained by the manufacturing method of the present invention, the following samples for evaluation were manufactured and evaluated.

まず、粗面と微粗面とを有するとともに粗面の算術平均粗さがそれぞれ異なる数種類の電解銅箔を準備した。次にそれらの銅箔の微粗面側を転写フィルムに接着するとともにその銅箔を幅が30〜100μmの配線パターン状にエッチングした後、露出した粗面および側面を蟻酸の噴霧により化学的に粗化して絶縁基板の表面に配設するための第1の配線導体を転写フィルム上に形成した。また、上記と同様の銅箔の粗面側を転写フィルムに接着するとともにその銅箔を上記と同様にして幅が30〜100μmのパターンにエッチングした後、露出した微粗面および側面を上記と同様にして粗化することにより絶縁層の間に配設するための第2の配線導体を転写フィルム上に形成した。   First, several types of electrolytic copper foils having a rough surface and a fine rough surface and different arithmetic average roughness of the rough surface were prepared. Next, the copper foil is bonded to the transfer film and the copper foil is etched into a wiring pattern having a width of 30 to 100 μm, and then the exposed rough surface and side surfaces are chemically sprayed with formic acid. A first wiring conductor for roughening and disposing on the surface of the insulating substrate was formed on the transfer film. Also, after bonding the rough surface side of the copper foil similar to the above to the transfer film and etching the copper foil into a pattern having a width of 30 to 100 μm in the same manner as described above, the exposed fine rough surface and side surfaces are By roughening in the same manner, a second wiring conductor to be disposed between the insulating layers was formed on the transfer film.

次にガラスクロスに未硬化のアリル変性ポリフェニレンエーテル樹脂を含浸させた絶縁シートの表面に上記の転写フィルム上の配線導体をそれぞれ熱プレスにより埋入させた後、転写フィルムを除去することにより配線導体を転写した。   Next, the wiring conductor on the transfer film was embedded in the surface of the insulating sheet impregnated with uncured allyl-modified polyphenylene ether resin in a glass cloth, respectively, and then the wiring conductor was removed by removing the transfer film. Was transcribed.

次に絶縁基板の表面に配設するための第1の配線導体が転写された絶縁シートと、絶縁層の間に配設するための第2の配線導体が転写された絶縁シートとを重ねて熱プレスすることにより絶縁基板の表面に第1の配線導体が配設されているとともに絶縁層の間に第2の配線導体が配設された絶縁基板を得た。   Next, the insulating sheet on which the first wiring conductor to be disposed on the surface of the insulating substrate is transferred and the insulating sheet on which the second wiring conductor to be disposed between the insulating layers are transferred are overlapped. The insulating substrate in which the first wiring conductor was disposed on the surface of the insulating substrate and the second wiring conductor was disposed between the insulating layers was obtained by hot pressing.

次にこれらの絶縁基板の表面に銅箔から成る配線導体の一部を露出させる開口部を有するエポキシ樹脂から成る樹脂層を積層するとともに開口部内に露出した銅箔から成る配線導体の表面をマイクロエッチングして算術平均粗さが0.05〜0.1μmとなるように平滑化した後、樹脂層の表面および開口部内にセミアディティブ法を用いて銅めっきから成る配線導体を被着させて本発明による試料を得た。また、転写フィルム上の配線パターン状にエッチングされた電解銅箔の露出面を粗化処理しないで転写した以外は上述の方法と同様の方法により作製することにより本発明の範囲外の比較のための試料を得た。
これらの試料においては、銅箔から成る配線導体と銅めっきから成る配線導体とは強固に密着しており、両者の電気的な接続は良好であった。
Next, a resin layer made of an epoxy resin having an opening that exposes a part of the wiring conductor made of copper foil is laminated on the surface of these insulating substrates, and the surface of the wiring conductor made of copper foil exposed in the opening is micronized. After etching and smoothing so that the arithmetic average roughness becomes 0.05 to 0.1 μm, a wiring conductor made of copper plating is deposited on the surface and openings of the resin layer using a semi-additive method. A sample according to the invention was obtained. Also, for comparison outside the scope of the present invention, it was produced by the same method as described above except that the exposed surface of the electrolytic copper foil etched into the wiring pattern on the transfer film was transferred without roughening. Samples were obtained.
In these samples, the wiring conductor made of copper foil and the wiring conductor made of copper plating were firmly adhered, and the electrical connection between them was good.

次にこれらの試料をMIL−STD−883DのCondition Bに規定の−55〜+125℃の温度サイクル試験に1000サイクル入れた後、絶縁層と配線導体との間に剥離が発生するかどうかを確認した。また、各配線導体のパターン形状についてもその良否を確認した。   Next, after these samples were put into a temperature cycle test of −55 to + 125 ° C. specified in Condition B of MIL-STD-883D for 1000 cycles, it was confirmed whether or not peeling occurred between the insulating layer and the wiring conductor. did. The quality of the pattern shape of each wiring conductor was also confirmed.

その結果を表1に示す。なお、表1において、試料番号*1の試料は本発明の範囲外の比較のための試料である。   The results are shown in Table 1. In Table 1, the sample of sample number * 1 is a sample for comparison outside the scope of the present invention.

Figure 0004738430
Figure 0004738430

表1に示すように、本発明による試料(試料番号2〜5)においては、配線導体と絶縁層との間に剥離が発生することなく、両者が強固に密着していることが分かる。これに対し、本発明の範囲外の比較のための試料(試料番号*1)においては、配線導体と絶縁層との間に剥離が発生した。   As shown in Table 1, in the samples according to the present invention (sample numbers 2 to 5), it can be seen that the two are firmly adhered without separation between the wiring conductor and the insulating layer. On the other hand, in the sample for comparison (sample number * 1) outside the scope of the present invention, peeling occurred between the wiring conductor and the insulating layer.

また、本発明による試料(試料番号2〜5)のうち、第1の配線導体における粗面および側面の算術平均粗さがそれぞれ2.5μm、1.0μmであり、かつ第2の配線導体における微粗面および側面の算術表面粗さがそれぞれ1.0μmである試料番号5の試料は、第1および第2の配線導体のパターン形状が悪く、高密度配線には不向きであるが、第1の配線導体における粗面および側面の算術平均粗さがそれぞれ1.0〜2.0μm、0.3〜0.7μmであり、かつ第2の配線導体における微粗面および側面の算術平均粗さがそれぞれ0.3〜0.7μmである試料番号2〜3の試料は、第1および第2の配線導体のパターン形状が良好であり高密度配線が可能であることが分かる。   Further, among the samples according to the present invention (sample numbers 2 to 5), the arithmetic average roughness of the rough surface and the side surface of the first wiring conductor is 2.5 μm and 1.0 μm, respectively, and the second wiring conductor The sample of Sample No. 5 in which the arithmetic surface roughness of the fine rough surface and the side surface is 1.0 μm is not suitable for high-density wiring because the pattern shape of the first and second wiring conductors is bad. Arithmetic average roughness of the rough surface and side surface of the wiring conductor of 1.0 to 2.0 μm and 0.3 to 0.7 μm, respectively, and arithmetic average roughness of the fine rough surface and side surface of the second wiring conductor It can be seen that samples Nos. 2 to 3 having a thickness of 0.3 to 0.7 μm have good pattern shapes of the first and second wiring conductors, and high-density wiring is possible.

本発明を実施するための第1の形態例を示す断面図である。It is sectional drawing which shows the 1st example of an embodiment for implementing this invention. 図1に示す形態例の要部拡大断面図である。It is a principal part expanded sectional view of the form example shown in FIG. 本発明を実施するための第2の形態例を示す断面図である。It is sectional drawing which shows the 2nd example for implementing this invention. 図3に示す形態例の要部拡大断面図である。It is a principal part expanded sectional view of the form example shown in FIG.

符号の説明Explanation of symbols

1,11:絶縁層
2,12:絶縁基板
3a,13a:第1の配線導体
3b,13b:第2の配線導体
16:第3の配線導体
5,15:樹脂層
DESCRIPTION OF SYMBOLS 1,11: Insulating layer 2, 12: Insulating substrate 3a, 13a: 1st wiring conductor 3b, 13b: 2nd wiring conductor 16: 3rd wiring conductor 5, 15: Resin layer

Claims (3)

絶縁層が積層されて成る絶縁基板と、該絶縁基板の表面に配設された第1の配線導体と、前記絶縁層の層間に配設された第2の配線導体とを具備する配線基板の製造方法であって、
一方面が粗面であり、他方面が前記粗面よりも算術平均粗さの小さい微粗面である電解金属箔を複数準備する工程と、
前記複数の金属箔のうちの一部の金属箔の前記微粗面に転写フィルムを貼着して前記第1の配線導体用転写フィルムを形成する工程と、
前記複数の金属箔のうちの他の金属箔の前記粗面に転写フィルムを貼着して前記第2の配線導体用転写フィルムを形成する工程と、
前記第1の配線導体用転写フィルムおよび前記第2の配線導体用転写フィルムの前記金属箔をそれぞれパターン加工して第1の配線導体および第2の配線導体を形成した後、露出した前記第1の配線導体および前記第2の配線導体の表面を粗化する工程と、
前記絶縁層を複数準備する工程と、
前記複数の絶縁層のうちの一部の絶縁層に前記第1の配線導体用転写フィルムの前記第1の配線導体を埋入させた後、前記一部の絶縁層から前記転写フィルムを剥離して、前記第1の配線導体を前記一部の絶縁層に転写する工程と、
前記複数の絶縁層のうちの他の絶縁層に前記第2の配線導体用転写フィルムの前記第2の配線導体を埋入させた後、前記他の絶縁層から前記転写フィルムを剥離して、前記第2の配線導体を前記他の絶縁層に転写する工程と、
前記第1の配線導体が最外層となり、前記第2の配線導体が内層となるように、前記複数の絶縁層を積層する工程とを具備することを特徴とする配線基板の製造方法。
A wiring board comprising: an insulating substrate in which insulating layers are laminated; a first wiring conductor disposed on a surface of the insulating substrate; and a second wiring conductor disposed between the insulating layers. A manufacturing method comprising:
A step of preparing a plurality of electrolytic metal foils whose one side is a rough surface and the other side is a fine rough surface having a smaller arithmetic average roughness than the rough surface;
A step of forming a transfer film for the first wiring conductor by attaching a transfer film to the finely rough surface of some of the metal foils;
A step of attaching a transfer film to the rough surface of another metal foil of the plurality of metal foils to form the second wiring conductor transfer film;
The metal foils of the first wiring conductor transfer film and the second wiring conductor transfer film are patterned to form the first wiring conductor and the second wiring conductor, respectively, and then the exposed first first wiring conductor and second wiring conductor are formed . Roughening the surfaces of the wiring conductor and the second wiring conductor ;
Preparing a plurality of the insulating layers;
The first wiring conductor of the first wiring conductor transfer film is embedded in a part of the plurality of insulating layers, and then the transfer film is peeled off from the part of the insulating layer. Transferring the first wiring conductor to the part of the insulating layer;
After embedding the second wiring conductor of the second wiring conductor transfer film in another insulating layer of the plurality of insulating layers, peeling the transfer film from the other insulating layer, Transferring the second wiring conductor to the other insulating layer;
And a step of laminating the plurality of insulating layers so that the first wiring conductor is an outermost layer and the second wiring conductor is an inner layer.
前記絶縁基板の表面に、前記第1の配線導体の一部を露出させる開口部を有する樹脂層を積層する工程をさらに具備することを特徴とする請求項1記載の配線基板の製造方法。   2. The method of manufacturing a wiring board according to claim 1, further comprising a step of laminating a resin layer having an opening exposing a part of the first wiring conductor on a surface of the insulating substrate. 前記第1の配線導体の前記開口部から露出する面をエッチングして平滑化する工程をさらに具備することを特徴とする請求項2記載の配線基板の製造方法。   The method for manufacturing a wiring board according to claim 2, further comprising a step of etching and smoothing a surface exposed from the opening of the first wiring conductor.
JP2008075412A 2008-03-24 2008-03-24 Wiring board manufacturing method Expired - Fee Related JP4738430B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008075412A JP4738430B2 (en) 2008-03-24 2008-03-24 Wiring board manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008075412A JP4738430B2 (en) 2008-03-24 2008-03-24 Wiring board manufacturing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003370460A Division JP4349882B2 (en) 2003-10-30 2003-10-30 Wiring board and semiconductor device

Publications (2)

Publication Number Publication Date
JP2008235910A JP2008235910A (en) 2008-10-02
JP4738430B2 true JP4738430B2 (en) 2011-08-03

Family

ID=39908256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008075412A Expired - Fee Related JP4738430B2 (en) 2008-03-24 2008-03-24 Wiring board manufacturing method

Country Status (1)

Country Link
JP (1) JP4738430B2 (en)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000077850A (en) * 1998-08-31 2000-03-14 Kyocera Corp Multilayer wiring board and its manufacture
JP2000165052A (en) * 1998-11-30 2000-06-16 Kyocera Corp Multilayer wiring board
JP2001044638A (en) * 1999-07-30 2001-02-16 Kyocera Corp Multi-layer wiring board and manufacture thereof
JP2001094259A (en) * 1999-09-24 2001-04-06 Jsr Corp Multilayer wiring board and manufacturing method
JP2001096666A (en) * 1999-10-04 2001-04-10 Nikko Materials Co Ltd Copper foil with base and method for manufacturing copper foil laminate
JP2001284797A (en) * 2000-03-28 2001-10-12 Kyocera Corp Multilayer wiring board and method for manufacturing it
JP2001339166A (en) * 2000-05-30 2001-12-07 Kyocera Corp Multilayer wiring board and method of production
JP2002141674A (en) * 2000-10-31 2002-05-17 Kyocera Corp Wiring board and its manufacturing method
JP2002204043A (en) * 2000-10-31 2002-07-19 Kyocera Corp Circuit board and its manufacturing method
JP2002232152A (en) * 2001-01-30 2002-08-16 Kyocera Corp Multilayer wiring board
JP2002353597A (en) * 2001-05-29 2002-12-06 Nitto Denko Corp Metal transfer sheet, producing method and wiring circuit board thereof
JP2003039602A (en) * 2001-07-30 2003-02-13 Kyocera Corp Insulating film and multilayered wiring board
JP2003046224A (en) * 2001-07-30 2003-02-14 Kyocera Corp Metal layer transfer film and method of manufacturing it

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000077850A (en) * 1998-08-31 2000-03-14 Kyocera Corp Multilayer wiring board and its manufacture
JP2000165052A (en) * 1998-11-30 2000-06-16 Kyocera Corp Multilayer wiring board
JP2001044638A (en) * 1999-07-30 2001-02-16 Kyocera Corp Multi-layer wiring board and manufacture thereof
JP2001094259A (en) * 1999-09-24 2001-04-06 Jsr Corp Multilayer wiring board and manufacturing method
JP2001096666A (en) * 1999-10-04 2001-04-10 Nikko Materials Co Ltd Copper foil with base and method for manufacturing copper foil laminate
JP2001284797A (en) * 2000-03-28 2001-10-12 Kyocera Corp Multilayer wiring board and method for manufacturing it
JP2001339166A (en) * 2000-05-30 2001-12-07 Kyocera Corp Multilayer wiring board and method of production
JP2002141674A (en) * 2000-10-31 2002-05-17 Kyocera Corp Wiring board and its manufacturing method
JP2002204043A (en) * 2000-10-31 2002-07-19 Kyocera Corp Circuit board and its manufacturing method
JP2002232152A (en) * 2001-01-30 2002-08-16 Kyocera Corp Multilayer wiring board
JP2002353597A (en) * 2001-05-29 2002-12-06 Nitto Denko Corp Metal transfer sheet, producing method and wiring circuit board thereof
JP2003039602A (en) * 2001-07-30 2003-02-13 Kyocera Corp Insulating film and multilayered wiring board
JP2003046224A (en) * 2001-07-30 2003-02-14 Kyocera Corp Metal layer transfer film and method of manufacturing it

Also Published As

Publication number Publication date
JP2008235910A (en) 2008-10-02

Similar Documents

Publication Publication Date Title
JP4846258B2 (en) Wiring board and manufacturing method thereof
JP4004196B2 (en) Semiconductor chip
JP4349882B2 (en) Wiring board and semiconductor device
JP2004179545A (en) Wiring board
JP4738430B2 (en) Wiring board manufacturing method
JP2004207338A (en) Wiring board
JP2004152869A (en) Wiring board
JP4679553B2 (en) Semiconductor chip
JP4142934B2 (en) Wiring board manufacturing method
JP2004179440A (en) Wiring board and manufacturing method therefor
JP4492071B2 (en) Wiring board manufacturing method
JP2004172415A (en) Method of manufacturing wiring board
JP4139185B2 (en) Wiring board manufacturing method
JP4142933B2 (en) Wiring board manufacturing method
JP2004165575A (en) Method of manufacturing wiring board
JP2004165573A (en) Method of manufacturing wiring board
JP2004140190A (en) Method of manufacturing wiring board
JP2004193505A (en) Wiring board
JP2004165321A (en) Wiring board and its manufacturing method
JP2009290233A (en) Wiring substrate and method for manufacturing the same
JP2004140109A (en) Method of manufacturing wiring board
JP2004165325A (en) Method of manufacturing wiring board
JP2004140191A (en) Method of manufacturing wiring board
JP2004165576A (en) Method of manufacturing wiring board
JP2004165578A (en) Method of manufacturing wiring board

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110426

R150 Certificate of patent or registration of utility model

Ref document number: 4738430

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees