JP4737746B2 - Thin film forming method and apparatus - Google Patents

Thin film forming method and apparatus Download PDF

Info

Publication number
JP4737746B2
JP4737746B2 JP2005098032A JP2005098032A JP4737746B2 JP 4737746 B2 JP4737746 B2 JP 4737746B2 JP 2005098032 A JP2005098032 A JP 2005098032A JP 2005098032 A JP2005098032 A JP 2005098032A JP 4737746 B2 JP4737746 B2 JP 4737746B2
Authority
JP
Japan
Prior art keywords
film forming
substrate
chamber
vapor deposition
small
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005098032A
Other languages
Japanese (ja)
Other versions
JP2006274396A (en
JP2006274396A5 (en
Inventor
陽彦 熱海
篤一 山本
宏 酒井
Original Assignee
株式会社昭和真空
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社昭和真空 filed Critical 株式会社昭和真空
Priority to JP2005098032A priority Critical patent/JP4737746B2/en
Publication of JP2006274396A publication Critical patent/JP2006274396A/en
Publication of JP2006274396A5 publication Critical patent/JP2006274396A5/ja
Application granted granted Critical
Publication of JP4737746B2 publication Critical patent/JP4737746B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は薄膜形成方法および薄膜形成装置にかかり、特に、機能素子を構成する有機薄膜の構造が素子特性に対して主要なパラメータとなる有機薄膜機能素子を形成する有機薄膜形成方法および有機薄膜形成装置に関する。   The present invention relates to a thin film forming method and a thin film forming apparatus, and in particular, an organic thin film forming method and an organic thin film forming method for forming an organic thin film functional element in which the structure of the organic thin film constituting the functional element is a main parameter for the element characteristics. Relates to the device.

有機エレクトロニクス分野から発生した次世代の表示素子として大きな市場となることが期待される有機EL素子は、高輝度、高効率で視野角が広く、高速応答性を有し、薄型の表示装置が得られることから近年注目されており、フルカラー化と長寿命化による実現化に向け、鋭意研究が行われている。   Organic EL devices, which are expected to become a large market for next-generation display devices generated from the organic electronics field, have high brightness, high efficiency, wide viewing angle, high-speed response, and thin display devices. Therefore, it has been attracting attention in recent years, and intensive research is being conducted toward realization by full color and long life.

図6に示すように一般的な有機EL素子は、ガラス基板50上に透明導電膜51を形成した後、有機薄膜52〜54を形成し、次いで、有機薄膜54表面に電極55を積層し、最後に缶56による封止を行うことで全体を保護している。
このように作製される有機EL素子は、各有機薄膜52〜54を、正孔輸送層、発光層、電子輸送層として機能させ、透明導電膜51に正電圧、電極55に負電圧を印加すると、発光層である有機薄膜53が電気ショックにより発光し、ガラス基板50を透過したEL光57が外部に放射される。
As shown in FIG. 6, in a general organic EL element, after forming a transparent conductive film 51 on a glass substrate 50, organic thin films 52 to 54 are formed, and then an electrode 55 is laminated on the surface of the organic thin film 54. Finally, the whole is protected by sealing with the can 56.
In the organic EL device manufactured in this way, when each organic thin film 52 to 54 functions as a hole transport layer, a light emitting layer, and an electron transport layer, a positive voltage is applied to the transparent conductive film 51 and a negative voltage is applied to the electrode 55. The organic thin film 53 as the light emitting layer emits light by electric shock, and the EL light 57 transmitted through the glass substrate 50 is emitted to the outside.

上述の透明導電膜51は、一般にはITO(Indium-Tin Oxide)薄膜が用いられている。その表面に有機薄膜52〜54を真空蒸着により積層する場合には、透明導電膜51が形成されたガラス基板50を用意し、透明導電膜51の表面処理を行った後、有機薄膜形成装置の真空槽内天井に設置する。前記真空槽内には、少なくとも一個以上の有機材料用蒸着源が配置されており、設置されたガラス基板50の透明導電膜51を有機材料用蒸着源に対向させ、該真空槽内を所定圧力まで排気する。前記有機材料用蒸着源には、予め有機蒸着材料を充填しておき、前記有機材料蒸着源を加熱すると、該真空槽内に該有機蒸着材料の蒸気が放出されるようになる。
蒸着速度制御手段により蒸発速度の安定を確認したところで、前記ガラス基板50下に配置されたシャッターを開放すると、有機蒸着材料の蒸気は該ガラス基板50に到達し、表面に一様な膜厚の有機薄膜が形成される。このように、有機薄膜形成装置を用いれば、真空雰囲気中で該ガラス基板50表面に膜質の良い有機薄膜を形成することが可能となっている。
The transparent conductive film 51 generally uses an ITO (Indium-Tin Oxide) thin film. When laminating the organic thin films 52 to 54 on the surface by vacuum deposition, a glass substrate 50 on which the transparent conductive film 51 is formed is prepared, and after the surface treatment of the transparent conductive film 51 is performed, the organic thin film forming apparatus Install on the ceiling of the vacuum chamber. In the vacuum chamber, at least one organic material deposition source is disposed, the transparent conductive film 51 of the installed glass substrate 50 is opposed to the organic material deposition source, and a predetermined pressure is applied in the vacuum chamber. Exhaust until. When the organic material vapor deposition source is filled with the organic vapor deposition material in advance and the organic material vapor deposition source is heated, the vapor of the organic vapor deposition material is released into the vacuum chamber.
After confirming the stability of the evaporation rate by the evaporation rate control means, when the shutter disposed under the glass substrate 50 is opened, the vapor of the organic evaporation material reaches the glass substrate 50 and has a uniform film thickness on the surface. An organic thin film is formed. As described above, when the organic thin film forming apparatus is used, it is possible to form an organic thin film having a good film quality on the surface of the glass substrate 50 in a vacuum atmosphere.

ところで、近年では、有機EL素子の表示装置への幅広い実用化に向け、さらなる高効率化、長寿命化が期待されている。前記有機EL素子の高効率化、長寿命化に向けた課題においては種々のパラメータが重畳することが知られている。その主なパラメータとして材料性能があげられ、有機蒸着材料によって特有のHOMO(最高被占軌道)ならびにLUMO(最低空軌道)の大きさ、バンドギャップ、キャリア移動度、ガラス転移温度等を有するため、前記した複数の性能の改善を目的とし有機合成によって多種多様な構造の化合物が合成されている。中でもイリジウム錯体等の三重項燐光発光を利用した新規発光材料や従来よりもキャリア移動度の大きい新規キャリア輸送性材料等の鋭意開発が行われている。   By the way, in recent years, higher efficiency and longer life are expected for practical application to a wide range of organic EL element display devices. It is known that various parameters are overlapped in the problem for improving the efficiency and extending the life of the organic EL element. Its main parameters are material performance, and because it has the characteristics of HOMO (highest occupied orbit) and LUMO (lowest empty orbit), band gap, carrier mobility, glass transition temperature etc. For the purpose of improving the plurality of performances described above, compounds having a wide variety of structures have been synthesized by organic synthesis. In particular, intensive developments such as new light emitting materials utilizing triplet phosphorescence such as iridium complexes and new carrier transporting materials having higher carrier mobility than conventional ones have been made.

また、材料性能以外に、有機EL素子の効率化、長寿命化に効果を及ぼす主なパラメータとして、有機EL素子を構成する各機能層の膜厚の組み合わせ、およびレーザー色素等をホスト材料に混入させたドーピング型素子における該ドーピングのホスト材料に対する重量パーセント濃度等の全体的な素子構造、各層における膜厚ならびに膜の組成があげられる。
そのため、有機蒸着材料は有機EL素子の各機能層として形成させる際、最適な素子構造が各材料により異なるため、各機能層において種々膜厚を変化させ複数の構造の素子を作製し構造の最適化を行っている。
In addition to the material performance, the main parameters that have an effect on improving the efficiency and extending the life of organic EL elements include the combination of the thickness of each functional layer that constitutes the organic EL element, and laser dyes etc. in the host material. The overall device structure, such as the weight percent concentration of the doped doping device relative to the host material, the film thickness of each layer, and the film composition.
Therefore, when the organic vapor deposition material is formed as each functional layer of the organic EL element, the optimum element structure differs depending on the material. Therefore, various thicknesses are changed in each functional layer, and elements with multiple structures are manufactured to optimize the structure. Is going on.

有機EL素子は図6に示すような積層構造を有するため、素子形成には複数回の成膜工程を必要とする。一般に、蒸着源の数が多い場合、あるいは、有機物および無機物蒸着の一環型装置の場合、例えば特許文献1に開示されるようなマルチチャンバータイプの製造装置が用いられることが多い。   Since the organic EL element has a laminated structure as shown in FIG. 6, the formation of the element requires a plurality of film forming steps. In general, when the number of vapor deposition sources is large, or in the case of a one-piece apparatus for organic and inorganic vapor deposition, for example, a multi-chamber type manufacturing apparatus as disclosed in Patent Document 1 is often used.

特許文献1は、発光素子の形成から封止までを大気に曝すことなく処理するマルチチャンバータイプの製造装置であり、複数の成膜室のうち、少なくとも2つの成膜室で平行してそれぞれの成膜室に搬入された基板上に蒸着を行うことにより、基板1枚当りの処理時間を短縮させるものである。また、基板と蒸着源ホルダとを相対的に移動させる手段を設けることにより、基板と蒸着源ホルダとの間隔距離を狭め、蒸着材料の利用効率及びスループットの向上をはかるものである。
特開2004−47452号
Patent Document 1 is a multi-chamber type manufacturing apparatus that performs processing from the formation of a light emitting element to sealing without exposure to the atmosphere. Among a plurality of film forming chambers, each of the film forming chambers is arranged in parallel in at least two film forming chambers. By performing vapor deposition on the substrate carried into the film formation chamber, the processing time per substrate is shortened. Further, by providing a means for relatively moving the substrate and the vapor deposition source holder, the distance between the substrate and the vapor deposition source holder is narrowed to improve the utilization efficiency and throughput of the vapor deposition material.
JP 2004-47452 A

材料性能および構造の最適化を最大限に向上させても、素子の効率面における内部量子効率には限界があると考えられている。そこで、近年では、いわゆるタンデム積層型有機EL素子と呼ばれる高い内部量子効率による長寿命を目指した新しい有機EL構造が発明され、今後の有機EL製品の実用化の中枢的技術として期待されている。本技術は、陽極-有機層-陰極を1ユニットとした場合、複数のユニットを順次積層させていく独特な構造であり、理論的に内部量子効率の限界がなくなるが、ユニットを重ねるためその分、電圧が上昇するデメリットもある。しかし用途によって、例えば家庭内照明などの実用化に向けて各照明製造メーカーなどで鋭意研究開発が行われている。
ユニット間の陰極および陽極は、電荷発生層と呼ばれる電子および正孔を発生可能な材料で、適度な透明度を有する材料が用いられているが、現在、研究の余地の十分残る課題となっている。
Even if material performance and structure optimization are maximized, the internal quantum efficiency in terms of device efficiency is considered to be limited. Therefore, in recent years, a new organic EL structure called a so-called tandem stacked organic EL element, which has a long internal life due to high internal quantum efficiency, has been invented, and is expected as a central technology for practical use of organic EL products in the future. This technology has a unique structure in which multiple units are stacked one by one when the anode-organic layer-cathode is one unit, and theoretically there is no limit on the internal quantum efficiency. There is also a disadvantage that the voltage rises. However, depending on the application, for example, lighting manufacturers are diligently conducting research and development toward the practical application of home lighting.
The cathode and anode between the units are materials that can generate electrons and holes, called charge generation layers, and materials with appropriate transparency are used. .

前述のとおり複数のユニットおよび機能層から構成されるため、各層を蒸着により順次形成させるためには、各層の膜厚をパラメータとしてとらえ、高効率化、長寿命化の最適実験を行うべく素子の作製を行うとすれば膨大な時間が必要となる。したがって、素子構造の最適化実験の効率的な対策が求められてきた。
したがって、これらを解決し簡便かつ効率的にタンデム積層型有機EL素子を自由に選択でき素子構造および膜の組成形態を変化させることができるものが求められている。
Since it is composed of a plurality of units and functional layers as described above, in order to sequentially form each layer by vapor deposition, the film thickness of each layer is taken as a parameter, and an element experiment is performed in order to perform an optimum experiment for high efficiency and long life. If production is performed, a huge amount of time is required. Therefore, an efficient countermeasure for the optimization experiment of the element structure has been demanded.
Accordingly, there is a need for a solution that solves these problems and can easily and efficiently select a tandem stacked organic EL element and change the element structure and composition of the film.

従来のマルチチャンバータイプの製造装置は、例えばアームロボット等の搬送手段を備える搬送室に複数の成膜室を連結し、各成膜室間の基板の受渡しは搬送室内の搬送手段を用いて行われる。例えば成膜を施そうとする基板を第一の成膜室から第二の成膜室に移動させる場合、第一の成膜室から搬送室に一度基板を移動させ、搬送室から第二の成膜室に移動させる必要があるが、基板の移動にはゲートの開閉や基板の受渡し等が伴うため、成膜室間での基板の受渡し時間が素子の作製時間に大きな影響を及ぼしていた。例えば複雑なタンデム積層型有機EL素子を作製しようとすると、従来装置では基板1枚当り30時間ほどの処理時間要してしまい素子作製の効率化を阻害していた。素子作製の効率化は、タンデム積層型有機EL素子の様に積層数の多い素子の作製において、特に大きな課題である。   In a conventional multi-chamber type manufacturing apparatus, for example, a plurality of film forming chambers are connected to a transfer chamber provided with transfer means such as an arm robot, and a substrate is transferred between the film forming chambers using the transfer means in the transfer chamber. Is called. For example, in the case where the substrate to be subjected to film formation is moved from the first film formation chamber to the second film formation chamber, the substrate is once moved from the first film formation chamber to the transfer chamber and then moved from the transfer chamber to the second film formation chamber. Although it is necessary to move to the deposition chamber, the movement of the substrate involves opening and closing of the gate and delivery of the substrate, so the delivery time of the substrate between the deposition chambers has had a significant effect on the device fabrication time. . For example, when a complicated tandem stacked organic EL element is to be manufactured, the conventional apparatus requires a processing time of about 30 hours per substrate, which hinders the efficiency of element manufacturing. Increasing the efficiency of device fabrication is a particularly significant issue in the fabrication of devices with a large number of layers such as tandem stacked organic EL devices.

また、マルチチャンバータイプの製造装置は、搬送室および搬送手段が装置構成を複雑化し面積を占有するため、装置の大型化も課題の一つとしてあげられる。特許文献1は製造時間を短縮させることを課題とし複数の基板に同一の蒸着を平行して行うものであるが、同一蒸着を行う成膜室を複数設ける必要があるため、更なる装置の大型化を免れない。基板1枚あたりの処理時間を短縮するためには同時処理する基板枚数を増加させればよいが、装置の大型化に直結するため基板1枚あたりの処理時間短縮には限界がある。   In addition, in the multi-chamber type manufacturing apparatus, since the transfer chamber and the transfer means occupy an area by complicating the apparatus configuration, increasing the size of the apparatus is one of the problems. Patent Document 1 aims to shorten the manufacturing time and performs the same vapor deposition on a plurality of substrates in parallel. However, since it is necessary to provide a plurality of film forming chambers for performing the same vapor deposition, the size of a further apparatus is increased. I cannot escape. In order to shorten the processing time per substrate, the number of substrates to be simultaneously processed may be increased, but there is a limit to shortening the processing time per substrate because it directly leads to an increase in the size of the apparatus.

また、マルチチャンバータイプの製造装置は、処理済基板を搬出した成膜室が次処理基板を搬入するまでの間隔が長いため、基板搬入時に蒸着源を稼動させ、搬出時に蒸着源を停止させることが一般的である。蒸着源を稼動させてから蒸発速度が安定するまでには時間を要するため、各成膜室への基板の搬出入の度に無駄な蒸着材料が消費し、更に蒸発速度の安定に要する時間がそのまま素子作製時間に加算されていた。
本発明は、同一真空槽内で効率的に複数の異なる構造および膜組成をもつタンデム積層型有機薄膜機能素子を簡便に形成することが可能な有機薄膜形成装置を実現することを目的とする。
In addition, since the multi-chamber type manufacturing apparatus has a long interval between the deposition chamber where the processed substrate is unloaded and the next processing substrate is loaded, the deposition source is operated when the substrate is loaded and the deposition source is stopped when the substrate is unloaded. Is common. Since it takes time for the evaporation rate to stabilize after the evaporation source is operated, useless evaporation material is consumed each time the substrate is carried in and out of each film formation chamber, and the time required for stabilization of the evaporation rate is further consumed. It was added as it was to the device fabrication time.
An object of this invention is to implement | achieve the organic thin film formation apparatus which can form easily the tandem laminated type organic thin film functional element which has several different structures and film | membrane compositions efficiently within the same vacuum chamber.

本発明の第1の側面は、真空槽、真空槽内部に形成され各々独立の成膜雰囲気を維持可能な複数の小成膜室、各小成膜室に配置される少なくとも1つの蒸着源、蒸着源に対面する所定の成膜位置に基板を配置させる基板保持手段、および、基板保持手段を駆動する移送機構を備え、移送機構を用いて任意の小成膜室内に任意の基板を配置させ、各小成膜室において基板それぞれが独立してかつ所望の時間に成膜される薄膜形成装置である。従って、複数の独立した成膜室に配置された基板の一部又は全部を同時に成膜することもできる。   The first aspect of the present invention is a vacuum chamber, a plurality of small film forming chambers formed inside the vacuum chamber and capable of maintaining independent film forming atmospheres, at least one vapor deposition source disposed in each small film forming chamber, A substrate holding means for placing the substrate at a predetermined film formation position facing the vapor deposition source and a transfer mechanism for driving the substrate holding means are provided, and an arbitrary substrate is placed in an arbitrary small film forming chamber using the transfer mechanism. A thin film forming apparatus in which each substrate is independently formed at a desired time in each small film forming chamber. Therefore, a part or all of the substrates arranged in a plurality of independent film formation chambers can be formed simultaneously.

上記第1の側面において、小成膜室は基板を搬出入するゲートを有し、小成膜室内の所定の成膜位置に基板を配置させることにより基板保持手段がゲートを閉蓋し、小成膜室内に外部とは独立した空間を形成するものである。また、小成膜室を同心円状に配列し、移送機構が同心円状に配列した基板保持手段を旋回させ、所望の小成膜室のゲート位置まで所望の基板を保持する基板保持手段を配置させた後、ゲート方向に基板保持手段を移動させてゲートを閉蓋し、基板保持手段をゲート方向と逆方向に移動させることにより小成膜室のゲートを開蓋する。更に、移送機構を用いて順次所望の小成膜室内に基板を移送して基板に多層膜を形成する間、小成膜室内に配置した蒸着源の蒸発速度を一定に維持し、稼動する蒸着源をシャッターにより遮蔽した状態で小成膜室を開放する。   In the first aspect, the small film formation chamber has a gate for carrying the substrate in and out, and the substrate holding means closes the gate by placing the substrate at a predetermined film formation position in the small film formation chamber. A space independent from the outside is formed in the film forming chamber. In addition, the small film forming chambers are arranged concentrically, and the substrate holding means in which the transfer mechanism is arranged concentrically is rotated, and the substrate holding means for holding the desired substrate to the gate position of the desired small film forming chamber is arranged. Thereafter, the substrate holding means is moved in the gate direction to close the gate, and the substrate holding means is moved in the direction opposite to the gate direction to open the gate of the small film forming chamber. Further, while the substrate is sequentially transferred into a desired small film forming chamber by using a transfer mechanism and a multilayer film is formed on the substrate, the evaporation rate of the evaporation source disposed in the small film forming chamber is kept constant and operated. The small film formation chamber is opened with the source shielded by the shutter.

上記側面において更に、基板保持手段は自転機構を備えて成膜時に基板を自転させ、蒸着源に再蒸発を防止する冷却機構を設け、複数の蒸着マスクパターンを備えて所望の蒸着マスクパターンを基板下に配置する蒸着マスク変換機構を有し、薄膜形成後の基板を外気に暴露することなく切り離し移動するトランスファーベッセルを備え、予め入力された所望の素子構造に基づいて、蒸着源および移送機構を操作する制御装置を備える。   In the above aspect, the substrate holding means further includes a rotation mechanism to rotate the substrate during film formation, and the evaporation source is provided with a cooling mechanism for preventing re-evaporation, and a plurality of evaporation mask patterns are provided to form a desired evaporation mask pattern on the substrate. It has a deposition mask conversion mechanism arranged below, and a transfer vessel that separates and moves the substrate after forming a thin film without exposing it to the outside air. Based on a desired element structure inputted in advance, a deposition source and a transfer mechanism are provided. A control device for operation is provided.

本発明の第2の側面は、真空槽内部に各々独立の成膜雰囲気を維持可能な複数の小成膜室形成し、各小成膜室に少なくとも1つの蒸着源配置し、蒸着源に成膜される基板を対向配置させる基板保持手段を備え、基板保持手段を駆動することにより任意の小成膜室内に任意の基板を配置させ、各小成膜室において独立してかつ所望の時間に成膜を行う薄膜形成方法である。従って、複数の独立した成膜室の一部又は全部で同時に成膜を行うこともできる。   According to a second aspect of the present invention, a plurality of small film forming chambers capable of maintaining independent film forming atmospheres are formed inside a vacuum chamber, and at least one vapor deposition source is disposed in each small film forming chamber. A substrate holding means for opposingly arranging the substrates to be coated is provided, and by driving the substrate holding means, an arbitrary substrate is placed in an arbitrary small film forming chamber, and in each small film forming chamber independently and at a desired time. A thin film forming method for forming a film. Accordingly, film formation can be performed simultaneously in some or all of a plurality of independent film formation chambers.

上記第2の側面において、小成膜室は基板を搬出入するゲートを有し、ゲートの閉蓋手段に基板を保持する。また、基板を順次所望の小成膜室内に移送して多層膜を形成する間、小成膜室内に配置した蒸着源の蒸発速度を一定に維持し、小成膜室の開放時にはシャッターを用いて蒸着源を遮蔽する。   In the second aspect, the small film forming chamber has a gate for carrying the substrate in and out, and holds the substrate on the gate closing means. In addition, while the substrate is sequentially transferred to a desired small film forming chamber to form a multilayer film, the evaporation rate of the evaporation source disposed in the small film forming chamber is kept constant, and a shutter is used when the small film forming chamber is opened. To shield the evaporation source.

本発明の第3の側面は、第1の側面を有する薄膜形成装置を用い、所望の有機材料を備える小成膜室に順次基板を移送することによる有機層の積層、および、電荷発生性材料を備える小成膜室に基板を移送することによる電荷発生層の形成を繰返し、タンデム積層型有機EL素子を作成する制御方法である。第3の側面において、薄膜形成装置が小成膜室内にシャッターを備え、シャッターの開閉により蒸着源から基板への有機材料の飛散を制御するものである。   According to a third aspect of the present invention, there is provided a stack of organic layers by sequentially transferring a substrate to a small film forming chamber having a desired organic material using a thin film forming apparatus having the first side surface, and a charge generating material Is a control method for creating a tandem stacked organic EL device by repeatedly forming a charge generation layer by transferring a substrate to a small film forming chamber. In the third aspect, the thin film forming apparatus includes a shutter in the small film forming chamber, and controls scattering of the organic material from the vapor deposition source to the substrate by opening and closing the shutter.

本発明により、複数の素子を同時に成膜することも可能であるため、素子の最適化実験を迅速かつ効率的に行うことが可能となり、研究開発時間を著しく短縮することが可能となった。更に、比較的高価な材料として知られる有機薄膜機能材料の消費も抑えることができるためコスト削減の効果も奏する。   According to the present invention, since it is possible to form a plurality of elements at the same time, it is possible to perform an optimization experiment of elements quickly and efficiently, and to significantly shorten the research and development time. Furthermore, since the consumption of the organic thin film functional material known as a relatively expensive material can be suppressed, an effect of cost reduction is also achieved.

本発明の成膜室はコンパートメントによって複数箇所に区切られた小成膜室を有し、各小成膜室には少なくとも1つの蒸着源が配置される。蒸着源は、抵抗加熱、電子ビーム、レーザー等の加熱手段を用いて蒸着材料を蒸発または昇華させるものであればよく、また、真空蒸着に限らずスパッタリングやイオンプレーティング等他の手段を用いてもよい。コンパートメントにより画定された各小成膜室は各々独立の成膜雰囲気を維持可能であり、隣接する各小成膜室において異種材料を同時蒸着させても蒸着材料が混入することはない。成膜室を複数の小成膜室に区分することにより、単一の成膜室内において異なる蒸着材料を独立かつ同時に成膜することが可能である。   The film formation chamber of the present invention has small film formation chambers divided into a plurality of locations by compartments, and at least one evaporation source is disposed in each small film formation chamber. The vapor deposition source may be any one that evaporates or sublimates the vapor deposition material using a heating means such as resistance heating, electron beam, or laser, and is not limited to vacuum vapor deposition, and other means such as sputtering or ion plating are used. Also good. Each of the small film forming chambers defined by the compartments can maintain an independent film forming atmosphere, and even when different materials are vapor-deposited simultaneously in the adjacent small film forming chambers, the vapor deposition material is not mixed. By dividing the deposition chamber into a plurality of small deposition chambers, different vapor deposition materials can be deposited independently and simultaneously in a single deposition chamber.

成膜を施そうとする基板は基板保持手段に保持され、基板保持手段は任意の基板を任意の小成膜室に移送可能な移送機構に搭載される。移送機構は少なくとも基板を含む基板保持手段の一部を小成膜室内に露呈し、小成膜室内の蒸着源と対面する所定の成膜位置に基板を配置させることが可能である。小成膜室には基板を搬出入するゲートが形成され、基板保持手段をゲートの蓋部として機能させることにより、基板の受渡し動作を省略し、基板を保持したまま各小成膜室への基板の搬出入を行うことが可能となる。これにより基板の搬送時間を大幅に削減し、従来のマルチチャンバのような搬送室を不要とするため、装置の小型化にも貢献する。基板保持手段は、小成膜室内の所定の成膜位置に基板を配置させることによりゲートを閉蓋し、小成膜室内に外部とは独立した空間を形成するよう設計すればよい。例えば小成膜室を同心円状に配列し、公転機構を用いて同じく同心円状に配列した基板ホルダを旋回駆動することにより所望の蒸着材料を配設する小成膜室のゲートに対面する位置に所望の基板を保持する基板保持手段を位置させ、基板保持手段をゲート方向に直線移動させることにより小成膜室を閉蓋することが可能となる。小成膜室を開蓋する際はゲートと反対方向に基板保持手段を直線移動させればよい。また、小成膜室内に配置した基板ホルダに基板自転機構を取り付ければ、均一な膜厚分布が得られにくい小さな小成膜室でも基板上の膜厚分布を極めて良好にすることが可能となる。   A substrate on which film formation is to be performed is held by a substrate holding unit, and the substrate holding unit is mounted on a transfer mechanism capable of transferring an arbitrary substrate to an arbitrary small film forming chamber. The transfer mechanism exposes at least a part of the substrate holding means including the substrate in the small film forming chamber, and can place the substrate at a predetermined film forming position facing the vapor deposition source in the small film forming chamber. A gate for carrying the substrate in and out is formed in the small film forming chamber, and the substrate holding means functions as a gate lid so that the substrate transfer operation is omitted and the substrate is held to each small film forming chamber. It becomes possible to carry in / out the substrate. This greatly reduces the time for transporting the substrate and eliminates the need for a transport chamber such as a conventional multi-chamber, which contributes to downsizing of the apparatus. The substrate holding means may be designed so that the gate is closed by placing the substrate at a predetermined film formation position in the small film formation chamber, and a space independent from the outside is formed in the small film formation chamber. For example, the small film forming chambers are arranged concentrically, and the substrate holder arranged in the same concentric shape using a revolving mechanism is driven to turn to a position facing the gate of the small film forming chamber in which a desired vapor deposition material is disposed. The small film forming chamber can be closed by positioning the substrate holding means for holding the desired substrate and moving the substrate holding means linearly in the gate direction. When the small film formation chamber is opened, the substrate holding means may be linearly moved in the direction opposite to the gate. In addition, if the substrate rotation mechanism is attached to the substrate holder disposed in the small film forming chamber, the film thickness distribution on the substrate can be made extremely good even in a small small film forming chamber in which a uniform film thickness distribution is difficult to obtain. .

基板保持手段に保持される基板を各小成膜室に順次移送することにより、基板表面には多層膜を形成することが可能である。多層膜の形成が終了するまでの間、各小成膜室内の蒸着源は、一度蒸発速度を安定させてからは蒸着源をOFFすることなく蒸着材料を継続的に蒸発または昇華させる。蒸発速度はCPUによるフィードバック制御により一定に保てばよい。蒸着源と基板ホルダの間には、基板面に対して蒸着材料を遮蔽するシャッターを設け、成膜時のみシャッターを開放する。成膜開始前、成膜終了後、および、小成膜室の開放時には、稼動する蒸着源をシャッターにより遮蔽して成膜室内に蒸着材料が飛散することを防げばよい。蒸着源を継続的に稼動することにより、蒸発速度が安定するまでの間消費する無駄な蒸着材料を低減し、蒸着材料の効率的利用に貢献する。また、蒸着源のON/OFFを省略することにより処理時間の短縮にも貢献する。   By sequentially transferring the substrate held by the substrate holding means to each small film forming chamber, a multilayer film can be formed on the substrate surface. Until the formation of the multilayer film is completed, the evaporation source in each small film formation chamber once evaporates or sublimates the evaporation material without turning off the evaporation source after the evaporation rate is once stabilized. The evaporation rate may be kept constant by CPU feedback control. A shutter for shielding the vapor deposition material from the substrate surface is provided between the vapor deposition source and the substrate holder, and the shutter is opened only during film formation. Before starting the film formation, after the film formation is completed, and when the small film formation chamber is opened, the operating evaporation source may be shielded by a shutter to prevent the evaporation material from being scattered in the film formation chamber. By continuously operating the vapor deposition source, wasteful vapor deposition material consumed until the evaporation rate is stabilized is reduced, thereby contributing to efficient use of the vapor deposition material. It also contributes to shortening the processing time by omitting ON / OFF of the deposition source.

図1は本発明の一実施形態の有機薄膜形成装置であり、成膜室と仕込み室の2室構成となっている。図1(a)は装置内部の概略平面図を示し、図1(b)は同じく装置内部の概略側面図を示す。
成膜室1および仕込み室2は、各々独立の排気系統4,5を備え、真空系統を区切るためのゲートバルブ3を介して連結されている。基板6には2行2列の透明導電膜が形成されたガラス基板を用いるものとし、成膜室1では8枚のガラス基板に薄膜を形成するものとするが、素子の配列および基板の処理枚数は自由に設定可能である。実施例は基板6と同数の基板ホルダ7を準備し、基板ホルダ7に基板6をセットした状態で仕込み室に収納するものとするが、基板ホルダ7に複数枚の基板を搭載しても基板ホルダ7を省略してもよい。
FIG. 1 shows an organic thin film forming apparatus according to an embodiment of the present invention, which has a two-chamber configuration of a film forming chamber and a preparation chamber. FIG. 1A is a schematic plan view of the inside of the apparatus, and FIG. 1B is a schematic side view of the inside of the apparatus.
The film forming chamber 1 and the preparation chamber 2 are provided with independent exhaust systems 4 and 5 and are connected via a gate valve 3 for separating the vacuum system. A glass substrate on which a transparent conductive film of 2 rows and 2 columns is formed is used as the substrate 6, and a thin film is formed on 8 glass substrates in the film forming chamber 1. The number of sheets can be set freely. In the embodiment, the same number of substrate holders 7 as the substrates 6 are prepared, and the substrates 6 are set in the substrate holders 7 and stored in the preparation chamber. However, even if a plurality of substrates are mounted on the substrate holder 7, The holder 7 may be omitted.

仕込み室2には8組の基板ホルダ7を収納可能なマガジン8が配置され、底面にはマガジン昇降機構9が取り付けられている。また、マガジン8内に収納された基板ホルダ7を1組ずつ成膜室1に搬送する直線搬送機構10を備え、ゲートバルブ3を開放して成膜室1内に8組の基板ホルダ7を搬入する。成膜室1には基板ホルダ7の保持手段である8台の基板ホルダ設置台12が備えられ、直線搬送機構10により基板ホルダ設置台12に基板ホルダ7が受渡され、基板ホルダ7は基板ホルダ設置台12の所定の位置にセットされる。仕込み室2天井には、素子作製を終了した基板6を、外気に暴露せずに、グローブボックスなどの不活性ガス雰囲気下に移動させることが可能となる、トランスファーベッセル11が取り付けられている。同図の装置は成膜終了後の基板6を仕込み室2に取出すものとするが、取出し室を別に設けてもよい。   A magazine 8 capable of storing eight sets of substrate holders 7 is arranged in the preparation chamber 2, and a magazine lifting mechanism 9 is attached to the bottom surface. Further, a linear transport mechanism 10 is provided for transporting the substrate holders 7 stored in the magazine 8 to the film forming chamber 1 one by one, and the gate valve 3 is opened so that eight sets of substrate holders 7 are placed in the film forming chamber 1. Carry in. The film forming chamber 1 is provided with eight substrate holder mounting bases 12 as holding means for the substrate holder 7, and the substrate holder 7 is delivered to the substrate holder mounting base 12 by the linear transport mechanism 10. It is set at a predetermined position on the installation table 12. A transfer vessel 11 is attached to the ceiling of the preparation chamber 2 so that the substrate 6 whose elements have been manufactured can be moved under an inert gas atmosphere such as a glove box without being exposed to the outside air. The apparatus shown in the figure takes out the substrate 6 after film formation into the preparation chamber 2, but a separate take-out chamber may be provided.

成膜室1はコンパートメント13により8箇所の小成膜室14に区切られ、各小成膜室14同士の雰囲気の干渉は発生しない構造となっている。図3は小成膜室14の概略分解図であり、コンパートメント13は底板30、底板30に立設される仕切板31、同じく底板30に立設され仕切板31の周囲を覆う側面板32、仕切板31および側面板32の上面を覆う天板33により構成される。説明のため、図3は側面板32の一部を切り剥がし、天板33のみを分解した状態を示している。また小成膜室14内には蒸着源15のみを示している。天板33には8つの貫通孔18が形成され、1つの小成膜室14に1つの貫通孔18が設けられる。天板33に形成された貫通孔18は各小成膜室14内に基板6を搬出入するゲートとして機能し、貫通孔18を閉蓋することにより小成膜室14内部には独立の成膜雰囲気を維持可能な空間が形成される。ゲートの形状、コンパートメントの形状は図示の例に限らず適宜選択すればよい。   The film forming chamber 1 is divided into eight small film forming chambers 14 by compartments 13 and has a structure in which no interference of the atmosphere between the small film forming chambers 14 occurs. FIG. 3 is a schematic exploded view of the small film forming chamber 14. The compartment 13 includes a bottom plate 30, a partition plate 31 erected on the bottom plate 30, and a side plate 32 that is also erected on the bottom plate 30 and covers the periphery of the partition plate 31. The top plate 33 covers the upper surfaces of the partition plate 31 and the side plate 32. For explanation, FIG. 3 shows a state where a part of the side plate 32 is cut off and only the top plate 33 is disassembled. Further, only the vapor deposition source 15 is shown in the small film forming chamber 14. Eight through holes 18 are formed in the top plate 33, and one through hole 18 is provided in one small film forming chamber 14. The through hole 18 formed in the top plate 33 functions as a gate for carrying the substrate 6 in and out of each small film forming chamber 14. By closing the through hole 18, an independent component is formed inside the small film forming chamber 14. A space capable of maintaining the film atmosphere is formed. The shape of the gate and the shape of the compartment are not limited to the illustrated example, and may be appropriately selected.

天板33上方の所定位置に基板ホルダ設置台12が配置されると、少なくとも基板ホルダ7を含む基板ホルダ設置台12の一部がコンパートメント13の貫通孔18に嵌入される。図2(a)は基板ホルダ設置台12が貫通孔18に嵌入される前の状態を、図2(b)は基板ホルダ設置台12が貫通孔18に嵌入された状態を説明する概略断面図である。基板ホルダ設置台12が図2(b)に示す位置に配置されると、貫通孔18は完全に塞がれ、コンパートメント13により独立の雰囲気を維持可能に隔離された8つの空間が形成される。このとき基板ホルダ7にセットされた基板6は小成膜室14内に配置された蒸着源15に対面する所定の成膜位置に配置され、この位置において成膜が施される。コンパートメント13および基板ホルダ設置台12は、基板ホルダ設置台12がゲート部を閉蓋するときに基板6が所望の成膜位置に配置されるよう予め設計すればよい。小成膜室14を開放する際は、基板ホルダ設置台12を貫通孔18から抜き出し、図2(a)に示す状態にすればよい。   When the substrate holder installation base 12 is arranged at a predetermined position above the top plate 33, at least a part of the substrate holder installation base 12 including the substrate holder 7 is inserted into the through hole 18 of the compartment 13. 2A is a schematic cross-sectional view illustrating a state before the substrate holder mounting base 12 is inserted into the through hole 18, and FIG. 2B is a schematic cross-sectional view illustrating a state where the substrate holder mounting base 12 is inserted into the through hole 18. It is. When the substrate holder mounting base 12 is arranged at the position shown in FIG. 2B, the through hole 18 is completely closed, and eight spaces are formed by the compartment 13 so as to be isolated so as to maintain an independent atmosphere. . At this time, the substrate 6 set in the substrate holder 7 is disposed at a predetermined film formation position facing the vapor deposition source 15 disposed in the small film formation chamber 14, and film formation is performed at this position. The compartment 13 and the substrate holder mounting base 12 may be designed in advance so that the substrate 6 is placed at a desired film forming position when the substrate holder mounting base 12 closes the gate portion. When the small film forming chamber 14 is opened, the substrate holder mounting base 12 may be extracted from the through hole 18 to be in the state shown in FIG.

同図では8箇所の小成膜室14を設け、マガジン8内に8組の基板ホルダ7を収納可能とするが、小成膜室の数およびマガジン内の基板ホルダ収納数は適宜選択すればよい。
小成膜室14の底面には2つの互いに独立した蒸着源15が配置されており、各蒸着源15には各々に対応する独立の水晶発振式膜厚計16が配置されている。蒸着材料19は有機材料に限らず、無機材料も含めて所望の材料を各小成膜室14に配置させればよい。蒸着源15と基板6の間には蒸着材料19の蒸発速度が安定するまでの間、蒸気を遮蔽するシャッター17が取り付けられている。蒸着源15の底面には冷却機構20が設けられ、蒸着源15を長時間稼動し続けた場合でも蒸着源15への熱の蓄積を回避することができる。
In the figure, eight small film forming chambers 14 are provided, and eight sets of substrate holders 7 can be stored in the magazine 8, but the number of small film forming chambers and the number of substrate holders stored in the magazine can be appropriately selected. Good.
Two independent vapor deposition sources 15 are arranged on the bottom surface of the small film forming chamber 14, and an independent crystal oscillation film thickness meter 16 corresponding to each vapor deposition source 15 is arranged in each vapor deposition source 15. The vapor deposition material 19 is not limited to an organic material, and a desired material including an inorganic material may be disposed in each small film forming chamber 14. Between the vapor deposition source 15 and the substrate 6, a shutter 17 that shields the vapor is attached until the vaporization rate of the vapor deposition material 19 is stabilized. A cooling mechanism 20 is provided on the bottom surface of the vapor deposition source 15, and accumulation of heat in the vapor deposition source 15 can be avoided even when the vapor deposition source 15 is operated for a long time.

基板ホルダ設置台12は、60rpm以上の回転数で回転可能な自転機構21を有し、60rpm以上の比較的高回転数で基板ホルダ7を自転させることにより均一な膜厚分布が得られる。成膜室1には、各小成膜室14上に設置された8個の各基板ホルダ設置台12を昇降させる昇降機構22、および、所望の小成膜室14の直上に基板ホルダ設置台12を旋回させる公転機構23が取り付けられている。実施例では駆動源にステッピングモーターを用い、自転機構21にステッピングモーター24を、公転機構23にステッピングモーター25を接続するものとするが、各機構21,23に接続する駆動源は回転動力を与えるものであればこれに限られるものではない。ステッピングモーター24,25は制御装置26に接続される。制御装置26には基板の自転および公転移動を制御するプログラムが入力され、自転機構21が任意の回転数で回転し、公転機構23が任意の回転角度で停止するようモーターを制御する。制御装置26には、昇降機構21、シャッター17、蒸着源15、および、水晶発振式膜厚計16も接続される。   The substrate holder mounting base 12 has a rotation mechanism 21 that can rotate at a rotation speed of 60 rpm or more, and a uniform film thickness distribution can be obtained by rotating the substrate holder 7 at a relatively high rotation speed of 60 rpm or more. In the film forming chamber 1, a lift mechanism 22 that lifts and lowers each of the eight substrate holder mounting bases 12 installed on each small film forming chamber 14, and a substrate holder mounting base directly above the desired small film forming chamber 14. A revolution mechanism 23 for turning 12 is attached. In the embodiment, a stepping motor is used as a drive source, a stepping motor 24 is connected to the rotation mechanism 21, and a stepping motor 25 is connected to the revolution mechanism 23. However, the drive sources connected to the mechanisms 21 and 23 give rotational power. If it is a thing, it is not restricted to this. The stepping motors 24 and 25 are connected to the control device 26. A program for controlling the rotation and revolution movement of the substrate is input to the control device 26, and the motor is controlled so that the rotation mechanism 21 rotates at an arbitrary rotation number and the revolution mechanism 23 stops at an arbitrary rotation angle. The control device 26 is also connected with an elevating mechanism 21, a shutter 17, a vapor deposition source 15, and a crystal oscillation type film thickness meter 16.

一般に有機物蒸着と無機物蒸着とでは異なる蒸着マスクが用いられるため、有機物蒸着を行う小成膜室14と無機物蒸着を行う小成膜室14を設ける場合には、蒸着マスクを変換できる蒸着マスク変換機構27を取り付ければよい。図4に蒸着マスク変換機構27の一例を示す。図中(a)は概略平面図を、図中(b)は概略側面図を示す。例えば、破線Xにて示す有機物蒸着用マスクと、破線Yにて示す無機物蒸着用マスクとを用いる場合、2種の開口パターン(図ではXおよびY)を備えるマスク板40を用意し、駆動機構41により基板6に対する開口パターンを変更させればよい。所望の小成膜室14に蒸着マスク変換機構27を取り付け、すべて独立に駆動する図示しない駆動源に接続し、制御装置26によって自動制御すればよい。駆動機構41には、例えば圧空による往復動作機構を用いてもよい。
更に、基板6近接下に特願2003−390319号に開示されるようなコンビナトリアルマスクを設置すれば、同一の小成膜室内においても異なる構造の素子を作成することができる。
In general, since different vapor deposition masks are used for organic vapor deposition and inorganic vapor deposition, when a small film formation chamber 14 for performing organic vapor deposition and a small film formation chamber 14 for performing inorganic vapor deposition are provided, a vapor deposition mask conversion mechanism capable of converting the vapor deposition mask. 27 may be attached. FIG. 4 shows an example of the vapor deposition mask conversion mechanism 27. In the figure, (a) is a schematic plan view, and (b) is a schematic side view. For example, when using an organic vapor deposition mask indicated by a broken line X and an inorganic vapor deposition mask indicated by a broken line Y, a mask plate 40 having two types of opening patterns (X and Y in the figure) is prepared, and a drive mechanism What is necessary is just to change the opening pattern with respect to the board | substrate 6 by 41. FIG. A vapor deposition mask converting mechanism 27 is attached to a desired small film forming chamber 14, connected to a driving source (not shown) that is driven independently, and automatically controlled by the control device 26. As the drive mechanism 41, for example, a reciprocating mechanism using compressed air may be used.
Further, if a combinatorial mask as disclosed in Japanese Patent Application No. 2003-390319 is installed in the vicinity of the substrate 6, elements having different structures can be formed even in the same small film forming chamber.

次に、成膜動作について説明する。
基板6をセットした状態の基板ホルダ7を8組準備し、大気圧に開放した仕込み室2のマガジン8内に収納する。このときゲートバルブ3は閉塞し、成膜室1は図示しない真空ポンプを含む排気系統4により所定の真空度に維持しておく。仕込み室2を排気系統5により成膜室1に等しい真空度まで真空排気した後、ゲートバルブ3を開放し、8組の基板ホルダ7を、直線搬送機構10および公転機構23を順次動作させることにより仕込み室2から成膜室1内に移送し、基板ホルダ設置台12上に載置させる。公転機構23を駆動し、各小成膜室14に所望の基板ホルダ7を配置させるよう基板ホルダ設置台12を旋回させる。昇降機構22を駆動し、基板ホルダ設置台12を所定位置まで降下させ、各小成膜室14内に独立の成膜雰囲気を形成する。
Next, the film forming operation will be described.
Eight sets of substrate holders 7 with the substrate 6 set are prepared and stored in the magazine 8 of the preparation chamber 2 opened to atmospheric pressure. At this time, the gate valve 3 is closed, and the film forming chamber 1 is maintained at a predetermined degree of vacuum by an exhaust system 4 including a vacuum pump (not shown). After the preparation chamber 2 is evacuated to a vacuum level equal to that of the film formation chamber 1 by the exhaust system 5, the gate valve 3 is opened, and the eight sets of substrate holders 7 are sequentially operated by the linear transport mechanism 10 and the revolution mechanism 23. Then, the substrate is transferred from the preparation chamber 2 into the film formation chamber 1 and placed on the substrate holder mounting base 12. The revolution mechanism 23 is driven, and the substrate holder mounting base 12 is rotated so that the desired substrate holder 7 is placed in each small film forming chamber 14. The elevating mechanism 22 is driven to lower the substrate holder mounting base 12 to a predetermined position, thereby forming an independent film forming atmosphere in each small film forming chamber 14.

8室の小成膜室14底面に隣接配置された2つの蒸着源15は、セラミックスからなる容器(るつぼ)を有し、内部に有機または無機の蒸着材料19が充填される。るつぼの周囲には図示しない抵抗加熱ヒータが巻回されており、各蒸着源15のヒータに通電加熱させ、蒸着材料19の蒸気を発生させ、小成膜室14内へ蒸気を放出する。該蒸気の蒸発速度は水晶発振式膜厚計16により検出し、制御装置26により図示しない電流電源へフィードバック制御を行い所定の蒸発速度に安定させる。蒸発速度が安定するまでは蒸気遮蔽用シャッター17を閉じ基板6面へ到達する蒸発物質は遮蔽しておく。   The two vapor deposition sources 15 arranged adjacent to the bottom surface of the eight small film forming chambers 14 have containers (crucibles) made of ceramics, and are filled with an organic or inorganic vapor deposition material 19 inside. A resistance heater (not shown) is wound around the crucible. The heater of each vapor deposition source 15 is energized and heated to generate vapor of the vapor deposition material 19 and discharge the vapor into the small film forming chamber 14. The vapor evaporation rate is detected by the crystal oscillation type film thickness meter 16, and the control device 26 performs feedback control to a current power source (not shown) to stabilize the vapor evaporation rate. Until the evaporation rate is stabilized, the vapor shielding shutter 17 is closed and the evaporated substance reaching the surface of the substrate 6 is shielded.

自転機構21を駆動させ、基板ホルダ7を所定の回転数で回転させる。回転数の安定化を確認後、各基板6の状態が、所望の材料を成膜する位置にある場合、基板ホルダ7下に配置したシャッター17を開放し、加熱によって発生した蒸気を基板表面に付着させる。ただし、基板6の状態によっては、所望の材料が蒸着できる位置にない場合があるが、その際はシャッター17を開放せず、他の材料の蒸着が終了するまで待機する。成膜を開始させた小成膜室14においては、水晶発振式膜厚計16等によって、所望の膜厚まで、膜を基板上に堆積させた後、シャッター17を閉じ、自転機構21を停止させる。このとき蒸着源15の電源はOFFすることなく蒸発速度は安定させたままとする。蒸発速度を一定に保っているため、膜厚は各蒸着源15の蒸気の付着時間により制御できる。   The rotation mechanism 21 is driven to rotate the substrate holder 7 at a predetermined number of rotations. After confirming the stabilization of the number of revolutions, when the state of each substrate 6 is in a position where a desired material is deposited, the shutter 17 disposed under the substrate holder 7 is opened, and the vapor generated by heating is applied to the substrate surface. Adhere. However, depending on the state of the substrate 6, the desired material may not be in a position where it can be deposited, but in that case, the shutter 17 is not opened and the process waits until the deposition of other materials is completed. In the small film forming chamber 14 where the film formation is started, after a film is deposited on the substrate to a desired film thickness by the crystal oscillation type film thickness meter 16 or the like, the shutter 17 is closed and the rotation mechanism 21 is stopped. Let At this time, the evaporation rate is kept stable without turning off the power source of the vapor deposition source 15. Since the evaporation rate is kept constant, the film thickness can be controlled by the vapor deposition time of each vapor deposition source 15.

成膜中の全ての基板6に所望の材料を目的の膜厚まで蒸着させた後、基板ホルダ設置台12を昇降機構22により上昇させ小成膜室14を開放する。このときすべての小成膜室14内において、シャッター17が基板6面に対して蒸着材料19を遮蔽した状態であるため、蒸着材料19が成膜室14内に飛散することはない。各基板ホルダ7が所望の小成膜室14に配置されるように、公転機構23を用いて基板ホルダ設置台12を旋回移動させ、昇降機構22を用いて基板ホルダ設置台12を降下させ、小成膜室14内に再度独立の成膜雰囲気を形成する。シャッター17を開けば成膜が開始するため、各小成膜室14で所望膜厚まで成膜を行い成膜終了と同時にシャッター17を閉じる。このとき所望の小成膜室14に配置されていない基板6を搬入した小成膜室14ではシャッター17は開放せず閉じたままとすればよい。全ての小成膜室14で成膜が終了した後、同様に全ての小成膜室14を開放し、基板ホルダ設置台12を旋回させればよい。自転動作、成膜動作、昇降動作、公転動作を順次繰り返し、成膜室に搬入した8枚の基板6に、所望の膜厚、構造、膜組成の薄膜を形成し終えた時点で蒸着源15の稼動を停止し、成膜後の基板6は仕込み室のトランスファーベッセル11から真空状態を維持したまま切り離して移動させればよい。公転機構23により層の成膜順などを種々組み合わせることで、多数の構造もしくは組成の素子を同一真空槽内で同時に形成することが可能となる。   After depositing a desired material to a target film thickness on all the substrates 6 during film formation, the substrate holder mounting base 12 is raised by the elevating mechanism 22 to open the small film formation chamber 14. At this time, in all the small film forming chambers 14, since the shutter 17 shields the vapor deposition material 19 from the surface of the substrate 6, the vapor deposition material 19 does not scatter into the film formation chamber 14. The substrate holder mounting base 12 is swung using the revolution mechanism 23 so that each substrate holder 7 is disposed in the desired small film forming chamber 14, and the substrate holder mounting base 12 is lowered using the lifting mechanism 22, An independent film forming atmosphere is formed again in the small film forming chamber 14. Since film formation starts when the shutter 17 is opened, film formation is performed up to a desired film thickness in each small film formation chamber 14, and the shutter 17 is closed simultaneously with completion of film formation. At this time, in the small film forming chamber 14 into which the substrate 6 not placed in the desired small film forming chamber 14 is carried, the shutter 17 may be kept closed without being opened. After film formation is completed in all the small film forming chambers 14, all the small film forming chambers 14 may be similarly opened and the substrate holder mounting base 12 may be rotated. When the thin film having a desired film thickness, structure, and film composition has been formed on the eight substrates 6 carried into the film forming chamber, the evaporation source 15 is sequentially repetitively rotated, filmed, lifted, and revolved. The substrate 6 after film formation may be separated and moved from the transfer vessel 11 in the preparation chamber while maintaining the vacuum state. By combining various order of film formation by the revolving mechanism 23, it becomes possible to simultaneously form elements having a large number of structures or compositions in the same vacuum chamber.

以下図1に示す装置の制御フローについて説明する。
まず、蒸着開始前に予め制御装置26に所望の素子を作製するための動作プログラムを入力する。動作プログラムには、公転動作のプログラム、蒸着源のプログラム、シャッター開閉のプログラム、自転動作のプログラム、蒸着マスクの変換動作のプログラムが含まれる。プログラムは必要に応じて追加・削除すればよく、また、ここでは公転動作のプログラムにより公転機構22と昇降機構23を制御することとする。小成膜室14には番号を付し、各小成膜室14に配置した蒸着材料19を小成膜室番号に対応させて動作プログラムに入力する。同様に成膜室1内に搭載した基板6に番号を付し、基板番号を入力する。また、基板番号に対応させて所望の素子構造の層番号を付し、層番号に対応する膜厚および膜組成を入力する。
Hereinafter, the control flow of the apparatus shown in FIG. 1 will be described.
First, an operation program for producing a desired element is input to the control device 26 in advance before the start of vapor deposition. The operation programs include a revolution operation program, a deposition source program, a shutter opening / closing program, a rotation operation program, and a deposition mask conversion operation program. The program may be added / deleted as necessary, and here, the revolution mechanism 22 and the lifting mechanism 23 are controlled by the revolution program. Numbers are assigned to the small film forming chambers 14, and the vapor deposition material 19 arranged in each small film forming chamber 14 is input to the operation program in association with the small film forming chamber numbers. Similarly, a number is assigned to the substrate 6 mounted in the film forming chamber 1, and the substrate number is input. Further, a layer number of a desired element structure is assigned in correspondence with the substrate number, and a film thickness and a film composition corresponding to the layer number are input.

公転動作のプログラム入力では、公転の停止位置および蒸着時間を入力する。蒸着源のプログラム入力では、蒸発速度を入力する。シャッター開閉のプログラム入力では、任意の基板番号の素子構造における何層目であるかおよび蒸着時間を入力する。自転動作のプログラム入力では、自転の回転数および蒸着時間を入力する。蒸着マスクの変換動作のプログラム入力では、任意の基板番号および層番号を入力し、蒸着マスク変換のタイミングを設定する。   In the program input of the revolution operation, the revolution stop position and the deposition time are input. In the vapor deposition source program input, the evaporation rate is input. In program input for opening and closing the shutter, the number of layers in the element structure of an arbitrary substrate number and the deposition time are input. In the program input of the rotation operation, the rotation speed and deposition time are input. In the program input of the vapor deposition mask conversion operation, an arbitrary substrate number and layer number are input, and the vapor deposition mask conversion timing is set.

動作プログラムを入力することにより、公転のためのステッピングモーター25を操作して、所望の蒸着材料が配置された位置に設置すること、自転のためのステッピングモーター24を操作して成膜中の基板回転数を目的の回転数に保つこと、また、シャッター開閉動作において基板6を所望の時間蒸着源15に対して露出するようにシャッター17を開くこと、再度、基板公転のためのステッピングモーター25を操作して基板6を次層の小成膜室14に移動することが可能となる。蒸着源15を露出するシャッター17の開時間および自転回転数は適宜選択すればよい。また、有機物用の小成膜室から無機物用の小成膜室に移動する場合等、蒸着マスクの変換が必要となる際は、蒸着マスク変換機構27を操作すればよい。   By inputting an operation program, the stepping motor 25 for revolution is operated to install it at a position where a desired vapor deposition material is disposed, and the substrate during film formation by operating the stepping motor 24 for rotation. Keeping the rotational speed at the target rotational speed, opening the shutter 17 so that the substrate 6 is exposed to the vapor deposition source 15 for a desired time in the shutter opening / closing operation, and again setting the stepping motor 25 for substrate revolution. It becomes possible to operate and move the substrate 6 to the small film forming chamber 14 of the next layer. What is necessary is just to select suitably the opening time of the shutter 17 which exposes the vapor deposition source 15, and a rotation speed. In addition, the vapor deposition mask conversion mechanism 27 may be operated when the vapor deposition mask needs to be converted, such as when moving from a small film formation chamber for organic substances to a small film formation chamber for inorganic substances.

成膜時、自転動作、シャーター開閉は各小成膜室14で行うが、同図の装置では自転動作のON/OFFを1回ずつ、シャッター開閉動作を1回ずつ行った時点で各小成膜室における蒸着を終了するプログラムとする。蒸着は、蒸発速度の安定性と自転回転数を確認後開始する。任意の基板および層番号における所定時間の蒸着後、シャッター17を閉じ、順次所望の材料を配置した小成膜室14へ移動させる。同様に動作プログラムで指定された位置および時間に従い、プログラムされた所定時間の蒸着およびマスクの移動が終了した時点で成膜を終了する。   During film formation, the rotation operation and the shutter opening / closing are performed in each small film forming chamber 14, but in the apparatus shown in the figure, the rotation operation is turned ON / OFF once and the shutter opening / closing operation is performed once each time. A program for ending vapor deposition in the film chamber. Vapor deposition starts after confirming the stability of the evaporation rate and the rotation speed. After vapor deposition for a predetermined time on an arbitrary substrate and layer number, the shutter 17 is closed and sequentially moved to the small film forming chamber 14 in which a desired material is arranged. Similarly, in accordance with the position and time designated by the operation program, the film formation is terminated when the deposition and the movement of the mask are completed for the programmed predetermined time.

図5に4枚の基板に4層の薄膜を積層する場合の操作フロー図を示す。基板番号は1〜4とし、蒸着材料A´〜D´を備える小成膜室番号をA〜Dとする。説明を簡略化するため4層の薄膜を作製する例を示すが、小成膜室の数、基板数、積層数は適宜選択すればよい。
フロー図には自転動作および公転動作のON/OFFは省略するが、自転動作はシャッター開前にONし、シャッター閉後にOFFするものとし、公転動作は小成膜室への基板搬出前にONし、基板搬入後にOFFするものとする。
FIG. 5 shows an operation flow diagram in the case of stacking four layers of thin films on four substrates. The substrate numbers are 1 to 4, and the small film forming chamber numbers including the vapor deposition materials A ′ to D ′ are A to D. In order to simplify the description, an example in which a four-layer thin film is formed is shown; however, the number of small deposition chambers, the number of substrates, and the number of stacked layers may be selected as appropriate.
In the flow diagram, ON / OFF of the rotation operation and revolution operation is omitted, but the rotation operation is turned ON before the shutter is opened and turned OFF after the shutter is closed, and the rotation operation is turned ON before the substrate is transferred to the small film forming chamber. And turn off after board loading.

まず、小成膜室Aのみ蒸着を開始し、基板1に薄膜材料A´を所望の膜厚堆積させる。蒸着源の蒸発速度は一定速度に保っているため、膜厚はシャッター開からシャッター閉までの時間により調整すればよい。小成膜室B〜Dは蒸着源をOFFした状態のため、小成膜室Aの蒸着が終了した時点で全ての小成膜室を開放し、基板の搬出入を行う。   First, vapor deposition is started only in the small film forming chamber A, and a thin film material A ′ is deposited on the substrate 1 with a desired film thickness. Since the evaporation rate of the evaporation source is kept constant, the film thickness may be adjusted by the time from the shutter opening to the shutter closing. Since the small film forming chambers B to D are in a state where the vapor deposition source is turned off, all the small film forming chambers are opened when the vapor deposition in the small film forming chamber A is completed, and the substrate is carried in and out.

次に、小成膜室Bに搬入した基板1の蒸着を開始し、薄膜材料A´上に薄膜材料B´を所望の膜厚堆積させる。同時に小成膜室Aでは次に成膜を開始する基板4に薄膜材料A´を所望の膜厚堆積させる。小成膜室では蒸着源はONしたままの状態であるため、シャッターの開閉のみで成膜を行う。小成膜室C〜Dは蒸着源をOFFした状態のため、小成膜室AおよびBの蒸着が終了した時点で全ての小成膜室を開放し、基板の搬出入を行う。   Next, vapor deposition of the substrate 1 carried into the small film forming chamber B is started, and a thin film material B ′ is deposited on the thin film material A ′ to a desired film thickness. At the same time, in the small film forming chamber A, a thin film material A ′ is deposited on the substrate 4 on which film formation is to be started next to a desired thickness. In the small film formation chamber, the vapor deposition source remains on, so that the film is formed only by opening and closing the shutter. Since the small film forming chambers C to D are in a state in which the vapor deposition source is turned off, when the vapor deposition of the small film forming chambers A and B is completed, all the small film forming chambers are opened and the substrates are carried in and out.

次に、小成膜室Cに搬入した基板1の蒸着を開始し、薄膜材料B´上に薄膜材料C´を所望の膜厚堆積させる。同時に小成膜Aでは基板3に薄膜材料A´を、小成膜室Bでは基板4に薄膜材料B´を所望の膜厚堆積させる。小成膜室A〜Cの全ての蒸着が終了した時点で全ての小成膜室を開放し、基板の搬出入を行う。   Next, vapor deposition of the substrate 1 carried into the small film forming chamber C is started, and a thin film material C ′ is deposited on the thin film material B ′ to a desired film thickness. At the same time, the thin film material A ′ is deposited on the substrate 3 in the small film formation A, and the thin film material B ′ is deposited on the substrate 4 in the small film formation chamber B. When all the depositions in the small film forming chambers A to C are completed, all the small film forming chambers are opened, and the substrate is carried in and out.

次に、小成膜室Dに搬入した基板1の蒸着を開始し、薄膜材料C´上に薄膜材料D´を所望の膜厚堆積させる。同時に小成膜室A〜Cにおいても成膜を施し、小成膜室A〜D全ての蒸着が終了した時点で基板の搬出入を行う。
同図では、蒸着材料A´〜D´を4層積層させた時点で所望の素子が作製されるため、この時点で小成膜室Aの蒸着源をOFFする。同様の作業を繰返し、蒸着の終了した小成膜室から順に蒸着源をOFFし、基板1〜4まで全てに所望の素子が作製された時点で、成膜室から基板を取出せばよい。各層の膜厚はシャッターの開閉動作により変更できるため、各基板で膜厚を変更すれば4種の素子を作製可能である。また、蒸着材料の種類を増やせば、或いは複数種の蒸着材料から同時蒸着する場合は各蒸着源の蒸発速度を変更すれば、基板搬出入の動作変更により膜組成の異なる複数種の素子を作成することも可能である。
Next, vapor deposition of the substrate 1 carried into the small film forming chamber D is started, and a thin film material D ′ is deposited on the thin film material C ′ to a desired film thickness. At the same time, film formation is performed in the small film forming chambers A to C, and the substrate is carried in and out when all the small film forming chambers A to D are deposited.
In the figure, since a desired element is produced when four layers of vapor deposition materials A ′ to D ′ are laminated, the vapor deposition source in the small film forming chamber A is turned off at this point. The same operation is repeated, the deposition source is turned off in order from the small deposition chamber where deposition is completed, and the substrate may be taken out from the deposition chamber when desired elements are fabricated on all of the substrates 1 to 4. Since the thickness of each layer can be changed by opening and closing the shutter, four types of elements can be manufactured by changing the thickness of each substrate. In addition, if the number of types of vapor deposition materials is increased, or if vapor deposition is performed simultaneously from multiple types of vapor deposition materials, changing the evaporation rate of each vapor deposition source will create multiple types of elements with different film compositions by changing the operation of loading and unloading the substrate. It is also possible to do.

同図では小成膜室を一巡させた時点で成膜を終了させているが、タンデム構造の素子を作製する場合等は、小成膜室間を複数回巡回させて複数のユニットを積層させてもよい。
実施例は、単一真空槽内を小成膜室に区切り有機物用および無機物用の複数の蒸着源を配置し、旋回動作という簡単な基板公転機構で駆動することにより複数の素子を同時に処理することが可能となる。また、基板の受渡しを省略することにより基板の移動時間を削減し、基板1枚当りの処理時間を大幅に削減することが可能となる。更に、小成膜室の数だけ素子が作製可能となり、膜厚、層構造、膜組成などをパラメータとた素子構造の最適化実験であっても効率的にサンプルを作成することが可能となる。加えて、成膜工程が増えるほど同時処理枚数が増加するため、基板1枚当りの処理時間を更に削減することができる。
In this figure, the film formation is completed when the small film formation chamber is completed. However, when manufacturing an element of a tandem structure, a plurality of units are stacked by circulating between the small film formation chambers multiple times. May be.
In the embodiment, a single vacuum chamber is divided into small film forming chambers, a plurality of vapor deposition sources for organic substances and inorganic substances are arranged, and a plurality of elements are processed simultaneously by being driven by a simple substrate revolving mechanism called a swivel operation. It becomes possible. Further, by omitting the delivery of the substrate, it is possible to reduce the movement time of the substrate and to greatly reduce the processing time per substrate. Furthermore, it is possible to produce as many elements as the number of small deposition chambers, and it is possible to efficiently create samples even in element structure optimization experiments using parameters such as film thickness, layer structure, and film composition. . In addition, since the number of simultaneously processed films increases as the number of film forming steps increases, the processing time per substrate can be further reduced.

以下、図1に示す有機薄膜形成装置を用い、図8に示すタンデム型構造の有機EL素子を8種作製した例を示す。図8に示す素子は、正孔輸送層、発光層1、発光層2、および、電子輸送層からなる有機層を、電荷発生層を介在させて3ユニット積層させたものである。正孔輸送層として図7(a)に示す化学構造式のジアミン系化合物であるα-NPDを、電子輸送層として図7(b)に示すBalqを、発光層1として図7(c)に示すperyleneを0.5wt%ドープしたBalqを、発光層2として図7(d)に示すrubreneを1wt%ドープしたBalqを、電荷発生層として無機材料であるV2O5を用いている。 Hereinafter, an example in which eight types of organic EL elements having the tandem structure shown in FIG. 8 are produced using the organic thin film forming apparatus shown in FIG. The element shown in FIG. 8 is obtained by laminating three units of an organic layer composed of a hole transport layer, a light-emitting layer 1, a light-emitting layer 2, and an electron transport layer with a charge generation layer interposed therebetween. As a hole transport layer, α-NPD, which is a diamine compound having the chemical structural formula shown in FIG. 7A, Balq shown in FIG. 7B as an electron transport layer, and FIG. As shown in FIG. 7 (d), Balq doped with 0.5% by weight perylene of 0.5% by weight, Balq doped with 1% by weight of rubrene, and V 2 O 5 which is an inorganic material are used as a charge generation layer.

基板には、ITOからなる厚さ130nmの透明導電膜を2.0mm×2.0mm×4ヶあらかじめパターニング形成した50mm×50mmのガラス基板を用い、該ガラス基板を搭載した基板ホルダは8組準備した。基板番号は1〜8とする。るつぼに装填する有機蒸着材料の深さは4mmとした。蒸発速度は全ての蒸着源において一定となるように安定させ、自転機構の回転速度は60rpmとした。   As a substrate, a transparent conductive film made of ITO having a thickness of 130 nm and 2.0 mm × 2.0 mm × 4 pre-patterned glass substrates of 50 mm × 50 mm is used, and eight sets of substrate holders on which the glass substrates are mounted are prepared. did. The board numbers are 1-8. The depth of the organic vapor deposition material loaded in the crucible was 4 mm. The evaporation speed was stabilized so as to be constant in all the vapor deposition sources, and the rotation speed of the rotation mechanism was 60 rpm.

小成膜室番号をA〜Hとすると、各小成膜室に配置した蒸着材料、および蒸発速度は表1に示す通りである。小成膜室EおよびFには蒸着材料を配置せず、成膜は行わないものとする。小成膜室A〜Hは図9に示す通りに配列されるものとし、数字は基板番号を示す。基板の搬出入時は公転機構を矢印方向に45°旋回させるものとし、基板は隣接する矢印方向の小成膜室に移動するものとする。図9(a)は、成膜開始時における基板配置を示し、公転機構を駆動することにより基板は図9(b)に示す位置に移動する。   Assuming that the small film forming chamber numbers are A to H, vapor deposition materials and evaporation rates arranged in the respective small film forming chambers are as shown in Table 1. No vapor deposition material is disposed in the small film forming chambers E and F, and no film formation is performed. The small film forming chambers A to H are arranged as shown in FIG. 9, and the numerals indicate the substrate numbers. When the substrate is carried in and out, the revolving mechanism is rotated by 45 ° in the direction of the arrow, and the substrate is moved to the adjacent small film forming chamber in the direction of the arrow. FIG. 9A shows the substrate arrangement at the start of film formation, and the substrate moves to the position shown in FIG. 9B by driving the revolution mechanism.

小成膜室の数は異なるが、基板1〜8は図5に示すフローチャートと同様に動かせばよい。図9(a)に示す基板位置から成膜を開始し、各小成膜室を4巡させれば全ての基板に図8に示すタンデム型有機EL素子が作成される。   Although the number of small film forming chambers is different, the substrates 1 to 8 may be moved similarly to the flowchart shown in FIG. When film formation is started from the substrate position shown in FIG. 9A and each small film formation chamber is rotated four times, the tandem organic EL elements shown in FIG. 8 are formed on all the substrates.

具体的には、小成膜室Aにおいて正孔輸送層を形成後、小成膜室Bにおいて発光層1、小成膜室Cにおいて発光層2、小成膜室Dにおいて電子輸送層を順次積層する。小成膜室Eおよび小成膜室Fにおいて待機後、小成膜室Gにおいて電荷発生層を形成する。その後小成膜室Hにおいて成膜を行わずに待機した後再度小成膜室Aに基板を搬入して次ユニットの形成を開始する。小成膜室A〜DおよびGにおいて2層目のユニットを積層後、小成膜室Hにおいて同様に待機し、再び小成膜室Aに基板を搬入して次ユニットの形成を開始する。小成膜室A〜Dにおいて3層目のユニットを積層後、小成膜室Gでは成膜を行わずに待機し、小成膜室Hにおいて陰極を形成すればよい。また、小成膜室Gおよび小成膜室Hにおいては蒸着マスク変換機構を設け、マスクパターンの変更を行った。   Specifically, after forming the hole transport layer in the small film forming chamber A, the light emitting layer 1 in the small film forming chamber B, the light emitting layer 2 in the small film forming chamber C, and the electron transport layer in the small film forming chamber D are sequentially formed. Laminate. After waiting in the small film forming chamber E and the small film forming chamber F, a charge generation layer is formed in the small film forming chamber G. After that, after waiting without performing film formation in the small film forming chamber H, the substrate is again carried into the small film forming chamber A and the formation of the next unit is started. After stacking the second layer units in the small film formation chambers A to D and G, the small film formation chamber H waits in the same manner, and the substrate is loaded again into the small film formation chamber A to start forming the next unit. After the third layer unit is stacked in the small film forming chambers A to D, the small film forming chamber G may stand by without forming a film, and the cathode may be formed in the small film forming chamber H. Further, in the small film forming chamber G and the small film forming chamber H, an evaporation mask converting mechanism was provided to change the mask pattern.

小成膜室Aにおける第1層目のユニット形成時のみ、正孔輸送層の蒸着は基板1から8で各60、120、180、240、270、300、330、360秒間とし、α-NPDの蒸気が該ガラス基板のITO膜表面で12nm,24nm,36nm,48nm,54nm,60nm,66nm,72nmの8種類の膜厚になるように堆積させた。第2層目、第3層目のユニット形成時は、正孔輸送層の蒸着は基板1〜8で100秒間とし、20nm堆積させた。
小成膜室Bおよび小成膜室Cでは各発光層を30nm、小成膜室Dでは電子輸送層を20nm、小成膜室Gでは電荷発生層を5nm堆積させた。
小成膜室Hには、モリブデンの材質で形成された蒸着ボートにフッ化リチウムを配置し、蒸着速度0.01nm/sでLiF(フッ化リチウム)を膜厚0.5nm堆積させた後、タングステン製のフィラメントコイルにワイヤ形状のアルミニウム金属を配置させ、フィラメントに通電加熱を行い、蒸着速度1nm/sでアルミニウム金属を膜厚100nm堆積させた。リチウムの化合物であるLiF(フッ化リチウム)は、有機薄膜とアルミニウム金属の間に低仕事関数の中間層として導入される。
Only when the first layer unit is formed in the small film forming chamber A, the hole transport layer is deposited on the substrates 1 to 8 for 60, 120, 180, 240, 270, 300, 330, 360 seconds, and α-NPD. Were deposited on the surface of the ITO film of the glass substrate so as to have 8 film thicknesses of 12 nm, 24 nm, 36 nm, 48 nm, 54 nm, 60 nm, 66 nm and 72 nm. At the time of forming the second and third layer units, the hole transport layer was deposited on the substrates 1 to 8 for 100 seconds and deposited to 20 nm.
In the small film forming chamber B and the small film forming chamber C, each light emitting layer was deposited to 30 nm, in the small film forming chamber D, the electron transport layer was deposited to 20 nm, and in the small film forming chamber G, the charge generation layer was deposited to 5 nm.
In the small film forming chamber H, lithium fluoride is placed on a vapor deposition boat formed of molybdenum material, and LiF (lithium fluoride) is deposited to a thickness of 0.5 nm at a vapor deposition rate of 0.01 nm / s. Wire-shaped aluminum metal was placed on a tungsten filament coil, and the filament was energized and heated to deposit 100 nm of aluminum metal at a deposition rate of 1 nm / s. LiF (lithium fluoride), which is a compound of lithium, is introduced as an intermediate layer having a low work function between the organic thin film and the aluminum metal.

該ガラス基板上のタンデム型構造における各層の膜厚の組み合わせは用いた真空蒸着装置内の小成膜室の数と同じ8個であり作製された該タンデム型の素子構造を以下に示す。中間層ha省略するが、基板1〜8において中間層の構造は同一である。
(1)ITO(130nm)/α-NPD(12nm)/Balq...../LiF(0.5nm)/Al(100nm),
(2)ITO(130nm)/α-NPD(24nm)/Balq...../LiF(0.5nm)/Al(100nm),
(3)ITO(130nm)/α-NPD(36nm)/Balq...../LiF(0.5nm)/Al(100nm),
(4)ITO(130nm)/α-NPD(48nm)/Balq...../LiF(0.5nm)/Al(100nm),
(5)ITO(130nm)/α-NPD(54nm)/Balq...../LiF(0.5nm)/Al(100nm),
(6)ITO(130nm)/α-NPD(60nm)/Balq...../LiF(0.5nm)/Al(100nm),
(7)ITO(130nm)/α-NPD(66nm)/Balq...../LiF(0.5nm)/Al(100nm),
(8)ITO(130nm)/α-NPD(72nm)/Balq...../LiF(0.5nm)/Al(100nm),
The combination of film thicknesses of each layer in the tandem structure on the glass substrate is eight, which is the same as the number of small film forming chambers in the vacuum deposition apparatus used, and the produced tandem element structure is shown below. Although the intermediate layer ha is omitted, the structures of the intermediate layers in the substrates 1 to 8 are the same.
(1) ITO (130 nm) / α-NPD (12 nm) / Balq. . . . . /LiF(0.5nm)/Al(100nm),
(2) ITO (130 nm) / α-NPD (24 nm) / Balq. . . . . /LiF(0.5nm)/Al(100nm),
(3) ITO (130 nm) / α-NPD (36 nm) / Balq. . . . . /LiF(0.5nm)/Al(100nm),
(4) ITO (130 nm) / α-NPD (48 nm) / Balq. . . . . /LiF(0.5nm)/Al(100nm),
(5) ITO (130 nm) / α-NPD (54 nm) / Balq. . . . . /LiF(0.5nm)/Al(100nm),
(6) ITO (130 nm) / α-NPD (60 nm) / Balq. . . . . /LiF(0.5nm)/Al(100nm),
(7) ITO (130 nm) / α-NPD (66 nm) / Balq. . . . . /LiF(0.5nm)/Al(100nm),
(8) ITO (130 nm) / α-NPD (72 nm) / Balq. . . . . /LiF(0.5nm)/Al(100nm),

前記のような構造を有する8個のタンデム積層型有機EL素子の輝度-電圧特性、視感効率-電圧特性、電流効率-電圧特性の測定を行った結果(7)番目の素子構造であるITO(130nm)/α-NPD(66nm)/ Balq/.....LiF (0.5nm)/Al(100nm)がもっとも光学特性が良いことわかった。本素子作製では第1層目の正孔輸送層の膜厚のみをパラメータとして変化させたが、任意の層の膜厚もしくは膜組成を変化させることにより作製可能な素子構造には際限がない。   As a result of measuring luminance-voltage characteristics, luminous efficiency-voltage characteristics, and current efficiency-voltage characteristics of the eight tandem stacked organic EL elements having the above-described structure, (7) ITO, which is the first element structure (130 nm) / α-NPD (66 nm) / Balq /. . . . . LiF (0.5 nm) / Al (100 nm) was found to have the best optical properties. In this device fabrication, only the film thickness of the first hole transport layer was changed as a parameter, but there is no limit to the device structure that can be fabricated by changing the film thickness or film composition of any layer.

表2は、上記8種の有機EL素子の作製に要した時間を示す。合計時間は各動作項目に要した時間を加算した時間であり、8枚の基板作製に要した時間である。8つの小成膜室を4巡させているため動作項目(V)、(VII)、(VIII)の動作回数は各々32回であり、基板1枚当り小成膜室Gにおいて2回小成膜室Hにおいて1回成膜が施されるため動作項目(VI)の動作回数は24回となる。従来装置では、複雑なタンデム積層型有機EL素子を作製する際30時間程度要していたが、図1に示す装置を用いることにより作製時間を5時間43分まで短縮した。実施例は同時に8枚の基板を作製しているため、1枚当りの作製時間は43分となり、素子作製の効率を著しく向上させている。本発明の装置を用いれば、従来の方法では素子構造の最適化実験を一素子ずつ成膜することによって時間を要してしまうところを、複数の基板を同時に成膜することによって短縮でき、膨大な研究開発時および研究開発費用を解消することができる。   Table 2 shows the time required for producing the eight organic EL elements. The total time is a time obtained by adding the time required for each operation item, and is the time required for manufacturing the eight substrates. Since there are four rounds of eight small film forming chambers, the number of operations of the operation items (V), (VII), and (VIII) is 32 times each, and the small film forming chamber G is performed twice in each small film forming chamber G. Since film formation is performed once in the film chamber H, the operation item (VI) is operated 24 times. In the conventional apparatus, it took about 30 hours to manufacture a complex tandem organic EL element. However, using the apparatus shown in FIG. 1, the manufacturing time was reduced to 5 hours and 43 minutes. In the example, since eight substrates are manufactured at the same time, the manufacturing time per one is 43 minutes, and the device manufacturing efficiency is remarkably improved. By using the apparatus of the present invention, the conventional method can shorten the time required for the optimization experiment of the element structure by forming the elements one by one by simultaneously forming a plurality of substrates. Can eliminate unnecessary R & D costs and R & D costs.

上記した実施の形態および実施例は本発明の技術的思想に基づいて変形することが可能である。
上記実施例では有機EL素子の作製例をあげたが、それ以外の有機薄膜機能素子の作製にも利用できる。例えば、近年注力されている有機薄膜トランジスタの作製プロセスもしくは将来への応用が期待される有機太陽電池の作製プロセスにも利用してもよい。
上記実施例として用いた有機EL素子は、3ユニットとして構成される限定された構造であるが、通常有機ELの素子構造はさらに各機能層を有する積層構造のものが多くこれに利用してもよい。また、レーザー色素等のドーピング材料を添加する素子の作製に応用してもよい。
The above-described embodiments and examples can be modified based on the technical idea of the present invention.
In the above embodiment, an example of manufacturing an organic EL element is given, but it can also be used for manufacturing other organic thin film functional elements. For example, the present invention may also be used in an organic thin film transistor manufacturing process that has been focused on in recent years or an organic solar cell manufacturing process that is expected to be applied in the future.
The organic EL elements used in the above examples have a limited structure configured as three units. However, the organic EL element structure usually has a laminated structure having each functional layer and can be used for this. Good. Moreover, you may apply to preparation of the element which adds doping materials, such as a laser pigment | dye.

Figure 0004737746
Figure 0004737746

Figure 0004737746
Figure 0004737746

有機薄膜形成装置概略図Schematic diagram of organic thin film forming equipment 小成膜室概略図Small deposition chamber schematic 小成膜室概略斜視図Small deposition chamber schematic perspective view 蒸着マスク変換機構概略図Schematic diagram of evaporation mask conversion mechanism 操作フロー図Operation flow diagram 有機EL素子を示す説明図Explanatory drawing showing organic EL elements 蒸着材料説明図Vapor deposition material illustration タンデム型構造の有機EL素子を示す説明図Explanatory drawing showing an organic EL device with a tandem structure 実施例における小成膜室番号および基板番号を示す図The figure which shows the small film-forming chamber number and board | substrate number in an Example

符号の説明Explanation of symbols

1 成膜室
2 仕込み室
3 ゲートバルブ
4 排気系統
5 排気系統
6 基板
7 基板ホルダ
8 マガジン
9 マガジン昇降機構
10 直線搬送機構
11 トランスファーベッセル
12 基板ホルダ設置台
13 コンパートメント
14 小成膜室
15 蒸着源
16 水晶発振式膜厚計
17 シャッター
18 貫通孔
19 蒸着材料
20 冷却機構
21 自転機構
22 昇降機構
23 公転機構
24 ステッピングモーター
25 ステッピングモーター
26 制御装置
27 蒸着マスク変換機構
30 底板
31 仕切板
32 側面板
33 天板
40 マスク板
41 駆動機構
1 Deposition chamber
2 Preparation room
3 Gate valve
4 Exhaust system
5 Exhaust system
6 Board
7 Board holder
8 Magazine
9 Magazine lifting mechanism
10 Linear transport mechanism
11 Transfer vessel
12 Board holder mounting base
13 compartments
14 Small deposition chamber
15 Deposition source
16 Crystal oscillation film thickness meter
17 Shutter
18 Through hole
19 Vapor deposition materials
20 Cooling mechanism
21 Rotation mechanism
22 Lifting mechanism
23 Revolution mechanism
24 stepper motor
25 Stepping motor
26 Control unit
27 Deposition mask conversion mechanism
30 Bottom plate
31 Partition plate
32 Side plate
33 Top plate
40 Mask board
41 Drive mechanism

Claims (7)

真空槽、該真空槽内部に形成され各々独立の成膜雰囲気を維持可能な複数の小成膜室、各小成膜室に配置される少なくとも1つの蒸着源、該蒸着源に対面する所定の成膜位置に該基板を配置させる基板保持手段、および、該基板保持手段を駆動する移送機構を備え、
該移送機構によって任意の小成膜室内に任意の基板が配置され、各小成膜室において該基板それぞれが独立してかつ所望の時間に成膜され、
該小成膜室に該基板を搬出入するためのゲートに該基板保持手段が嵌合されて該基板が該小成膜室内の所定の成膜位置に配置されることにより、該基板保持手段が該ゲートを閉蓋し、該小成膜室内に外部とは独立した空間が形成された薄膜形成装置であって、
該小成膜室が同心円状に配列され、
該移送機構が、
同心円状に配列した該基板保持手段を旋回させ、所望の小成膜室のゲート位置まで所望の基板を保持する該基板保持手段を配置させた後、該ゲート方向に該基板保持手段を移動させて該ゲートを閉蓋し、該基板保持手段を該ゲート方向と逆方向に移動させることにより該小成膜室のゲートを開蓋するよう構成され、
該基板を収納する仕込み室、及び
該仕込み室から所定旋回位置の該基板保持手段に該基板を受渡す直線搬送機構を備え、
該直線搬送機構及び該移送機構を順次動作させることにより各基板が各小成膜室に搬入されるように構成されたことを特徴とする薄膜形成装置。
A vacuum chamber, a plurality of small film formation chambers formed inside the vacuum chamber and capable of maintaining independent film formation atmospheres, at least one vapor deposition source disposed in each small film formation chamber, and a predetermined surface facing the vapor deposition source A substrate holding means for placing the substrate at a film forming position, and a transfer mechanism for driving the substrate holding means,
Arbitrary substrates are arranged in arbitrary small film forming chambers by the transfer mechanism, and the respective substrates are formed independently and at desired times in each small film forming chamber,
The substrate holding means is fitted into a gate for carrying the substrate in and out of the small film forming chamber, and the substrate is placed at a predetermined film forming position in the small film forming chamber, whereby the substrate holding means Is a thin film forming apparatus in which the gate is closed and a space independent from the outside is formed in the small film forming chamber ,
The small film forming chambers are arranged concentrically,
The transfer mechanism is
The substrate holding means arranged concentrically is swiveled, and the substrate holding means for holding the desired substrate to the gate position of the desired small film forming chamber is arranged, and then the substrate holding means is moved in the gate direction. The gate is closed, and the gate of the small film forming chamber is opened by moving the substrate holding means in the direction opposite to the gate direction.
A preparation chamber for storing the substrate, and a linear transfer mechanism for delivering the substrate from the preparation chamber to the substrate holding means at a predetermined turning position,
A thin film forming apparatus, wherein each substrate is carried into each small film forming chamber by sequentially operating the linear transport mechanism and the transfer mechanism.
請求項1記載の薄膜形成装置であって、
該移送機構によって順次所望の小成膜室内に該基板が移送され該基板に多層膜が形成される間、該小成膜室内に配置した該蒸着源の蒸発速度が一定に維持され、稼動する該蒸着源をシャッターにより遮蔽し、蒸着源をOFFすることなく蒸発速度を一定に維持した状態で該小成膜室が開放されることを特徴とする薄膜形成装置。
The thin film forming apparatus according to claim 1,
While the substrate is sequentially transferred to a desired small film forming chamber by the transfer mechanism and a multilayer film is formed on the substrate, the evaporation rate of the vapor deposition source disposed in the small film forming chamber is maintained constant and operates. A thin film forming apparatus, wherein the vapor deposition source is shielded by a shutter, and the small film forming chamber is opened in a state where the evaporation rate is kept constant without turning off the vapor deposition source.
請求項1又は2記載の薄膜形成装置であって、
該基板保持手段は自転機構を備え、成膜時に該基板を自転させることを特徴とする薄膜膜形成装置。
The thin film forming apparatus according to claim 1 or 2 ,
The substrate holding means includes a rotation mechanism, and rotates the substrate during film formation.
請求項1又は2記載の薄膜形成装置であって、
複数の蒸着マスクパターンを備え、さらに、所望の蒸着マスクパターンを基板下に配置する蒸着マスク変換機構を有することを特徴とする薄膜形成装置。
The thin film forming apparatus according to claim 1 or 2 ,
A thin film forming apparatus comprising a plurality of vapor deposition mask patterns and further comprising a vapor deposition mask conversion mechanism for disposing a desired vapor deposition mask pattern under the substrate.
請求項1又は2記載の薄膜形成装置であって、
該蒸着源に再蒸発を防止する冷却機構を設けたことを特徴とする薄膜形成装置。
The thin film forming apparatus according to claim 1 or 2 ,
A thin film forming apparatus, wherein the evaporation source is provided with a cooling mechanism for preventing re-evaporation.
請求項1又は2記載の薄膜形成装置であって、
薄膜形成後の該基板を外気に暴露することなく切り離し移動するトランスファーベッセルを備えたことを特徴とする薄膜形成装置。
The thin film forming apparatus according to claim 1 or 2 ,
A thin film forming apparatus, comprising: a transfer vessel that separates and moves the substrate after the thin film is formed without being exposed to outside air.
請求項1又は2記載の薄膜形成装置であって、
予め入力された所望の素子構造に基づいて、該蒸着源および該移送機構を操作する制御装置を備えたことを特徴とする薄膜形成装置。
The thin film forming apparatus according to claim 1 or 2 ,
A thin film forming apparatus comprising a control device for operating the vapor deposition source and the transfer mechanism based on a desired element structure inputted in advance.
JP2005098032A 2005-03-30 2005-03-30 Thin film forming method and apparatus Active JP4737746B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005098032A JP4737746B2 (en) 2005-03-30 2005-03-30 Thin film forming method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005098032A JP4737746B2 (en) 2005-03-30 2005-03-30 Thin film forming method and apparatus

Publications (3)

Publication Number Publication Date
JP2006274396A JP2006274396A (en) 2006-10-12
JP2006274396A5 JP2006274396A5 (en) 2008-05-01
JP4737746B2 true JP4737746B2 (en) 2011-08-03

Family

ID=37209428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005098032A Active JP4737746B2 (en) 2005-03-30 2005-03-30 Thin film forming method and apparatus

Country Status (1)

Country Link
JP (1) JP4737746B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6375694B2 (en) * 2014-05-28 2018-08-22 日本精機株式会社 Vapor deposition apparatus and organic EL element manufacturing method
CN108359937B (en) * 2018-02-27 2023-08-22 温州驰诚真空机械有限公司 Conversion type physical vapor deposition particle source
CN115110037B (en) * 2022-06-23 2024-01-12 北海惠科半导体科技有限公司 Coating method of evaporation coating device and evaporation coating device
CN115584472A (en) * 2022-11-01 2023-01-10 上海哈呐技术装备有限公司 Magnetron sputtering coating machine

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04176863A (en) * 1990-11-09 1992-06-24 Mitsubishi Electric Corp Thin film forming device
JPH04323362A (en) * 1991-04-19 1992-11-12 Ulvac Japan Ltd Formation of multilayer film and its forming device
JPH05125520A (en) * 1991-11-06 1993-05-21 Ulvac Japan Ltd Forming device for multilayer film
JPH05179428A (en) * 1991-05-23 1993-07-20 Matsushita Electric Ind Co Ltd Thin film forming device
JPH06108250A (en) * 1992-09-25 1994-04-19 Tokyo Electric Co Ltd Thin film producing device
JPH06322542A (en) * 1993-05-13 1994-11-22 Sony Corp Thin film forming device
JPH10255973A (en) * 1997-03-10 1998-09-25 Idemitsu Kosan Co Ltd Manufacture of organic electroluminescent element
JPH1194714A (en) * 1997-09-18 1999-04-09 Ricoh Co Ltd Sample carrying device
JP2002033283A (en) * 2000-07-13 2002-01-31 Japan Science & Technology Corp Combinatorial device manufacturing equipment
JP2002334489A (en) * 2001-05-10 2002-11-22 Matsushita Electric Ind Co Ltd Method of manufacturing optical information recording medium
JP2003059130A (en) * 2001-08-21 2003-02-28 Sony Corp Device and method for film formation, production method for optical recording medium, and optical recording medium
JP2003272860A (en) * 2002-03-26 2003-09-26 Junji Kido Organic electroluminescent element
JP2003306761A (en) * 2002-04-17 2003-10-31 Ulvac Japan Ltd Film deposition apparatus with mask positioning mechanism

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04176863A (en) * 1990-11-09 1992-06-24 Mitsubishi Electric Corp Thin film forming device
JPH04323362A (en) * 1991-04-19 1992-11-12 Ulvac Japan Ltd Formation of multilayer film and its forming device
JPH05179428A (en) * 1991-05-23 1993-07-20 Matsushita Electric Ind Co Ltd Thin film forming device
JPH05125520A (en) * 1991-11-06 1993-05-21 Ulvac Japan Ltd Forming device for multilayer film
JPH06108250A (en) * 1992-09-25 1994-04-19 Tokyo Electric Co Ltd Thin film producing device
JPH06322542A (en) * 1993-05-13 1994-11-22 Sony Corp Thin film forming device
JPH10255973A (en) * 1997-03-10 1998-09-25 Idemitsu Kosan Co Ltd Manufacture of organic electroluminescent element
JPH1194714A (en) * 1997-09-18 1999-04-09 Ricoh Co Ltd Sample carrying device
JP2002033283A (en) * 2000-07-13 2002-01-31 Japan Science & Technology Corp Combinatorial device manufacturing equipment
JP2002334489A (en) * 2001-05-10 2002-11-22 Matsushita Electric Ind Co Ltd Method of manufacturing optical information recording medium
JP2003059130A (en) * 2001-08-21 2003-02-28 Sony Corp Device and method for film formation, production method for optical recording medium, and optical recording medium
JP2003272860A (en) * 2002-03-26 2003-09-26 Junji Kido Organic electroluminescent element
JP2003306761A (en) * 2002-04-17 2003-10-31 Ulvac Japan Ltd Film deposition apparatus with mask positioning mechanism

Also Published As

Publication number Publication date
JP2006274396A (en) 2006-10-12

Similar Documents

Publication Publication Date Title
US8524313B2 (en) Method for manufacturing a device
US7429300B2 (en) Successive vapour deposition system, vapour deposition system, and vapour deposition process
KR100483487B1 (en) Apparatus for and method of vacuum vapor deposition and organic electroluminescent device
KR101003404B1 (en) Fabrication system and a fabrication method of a light emitting device
TWI275319B (en) Manufacturing method and method of operating a manufacturing apparatus
JP5315361B2 (en) Method for manufacturing light emitting device
JP4312289B2 (en) Organic thin film forming equipment
KR101191569B1 (en) Film forming device
JP2003077662A (en) Method and device for manufacturing organic electroluminescent element
JP2007227086A (en) Deposition apparatus and method of manufacturing light emitting element
JP3742567B2 (en) Vacuum deposition apparatus and vacuum deposition method
JP4737746B2 (en) Thin film forming method and apparatus
JP4495951B2 (en) Method and apparatus for forming organic material thin film
JP5798452B2 (en) Evaporation source
WO2005107392A2 (en) System for vaporizing materials onto substrate surface
JP3863988B2 (en) Vapor deposition equipment
JP4494126B2 (en) Film forming apparatus and manufacturing apparatus
JP4368633B2 (en) Manufacturing equipment
JP4439827B2 (en) Manufacturing apparatus and light emitting device manufacturing method
JP4515060B2 (en) Manufacturing apparatus and method for producing layer containing organic compound
JP2010121215A (en) Deposition apparatus and deposition method
JP2016098417A (en) Vapor deposition apparatus and method for manufacturing organic el device
JP2001057289A (en) Manufacturing device for organic el display device and manufacture thereof
JP2022003159A (en) Vapor deposition apparatus
JP2003193224A (en) Thin film manufacturing apparatus, thin film multiple layer apparatus using the same, and thin film manufacturing method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080318

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110425

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4737746

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250