JP4736885B2 - Waste heat recovery power generation system - Google Patents

Waste heat recovery power generation system Download PDF

Info

Publication number
JP4736885B2
JP4736885B2 JP2006082469A JP2006082469A JP4736885B2 JP 4736885 B2 JP4736885 B2 JP 4736885B2 JP 2006082469 A JP2006082469 A JP 2006082469A JP 2006082469 A JP2006082469 A JP 2006082469A JP 4736885 B2 JP4736885 B2 JP 4736885B2
Authority
JP
Japan
Prior art keywords
steam
hot water
exhaust heat
heat recovery
generating means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006082469A
Other languages
Japanese (ja)
Other versions
JP2007255349A (en
Inventor
謙年 林
知義 石川
仁司 石塚
卓 那須
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2006082469A priority Critical patent/JP4736885B2/en
Publication of JP2007255349A publication Critical patent/JP2007255349A/en
Application granted granted Critical
Publication of JP4736885B2 publication Critical patent/JP4736885B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Description

本発明は、排熱回収発電システムに関するものである。
The present invention relates to an exhaust heat recovery power generation system.

排熱回収して発電を行う技術に関して以下のものが提案されている。
セメントプロセスからの排熱を回収する発電設備において、セメント排熱によって高圧の飽和蒸気を発生させ、ガスタービン排ガスの高温側によって過熱蒸気として蒸気タービンに送るほか、ガスタービン排ガスの低温側によって発生させた熱水およびセメント排熱によって発生させた熱水を中圧フラッシャに導き、発生させた中圧飽和蒸気をガスタービン排ガス中温部分で過熱して中圧・中温蒸気とし、さらに中圧フラッシャ内の熱水を低圧フラッシャに導き低圧飽和蒸気を発生させ、中圧・中温蒸気と低圧飽和蒸気を蒸気タービンに混気させる熱効率の高い発電プラント(特許文献1参照)。
特開平6―42703号公報
The followings have been proposed regarding technologies for recovering exhaust heat and generating electricity.
In a power generation facility that recovers exhaust heat from the cement process, high-pressure saturated steam is generated by cement exhaust heat, and is sent to the steam turbine as superheated steam by the high-temperature side of the gas turbine exhaust gas, and is also generated by the low-temperature side of the gas turbine exhaust gas. The hot water generated by the heated hot water and cement waste heat is led to an intermediate pressure flasher, and the generated intermediate pressure saturated steam is overheated at the intermediate temperature portion of the gas turbine exhaust gas to become intermediate and intermediate temperature steam. A power plant with high thermal efficiency that guides hot water to a low-pressure flasher to generate low-pressure saturated steam and mixes medium-pressure / medium-temperature steam and low-pressure saturated steam into a steam turbine (see Patent Document 1).
JP-A-6-42703

回収の容易な排熱源は、例えば特許文献1に示されるような方式によって既に排熱回収されており、未回収のまま残されている排熱源は排熱量が小さく、かつ分散して存在している場合が多い。
このような、未回収のまま残されている散在する小排熱量の排熱源から効率的な熱回収を行うシステムについては未だ有効なものがなく、その開発が望まれている。
The exhaust heat source that is easy to recover has already been exhausted and recovered by, for example, the method shown in Patent Document 1, and the exhaust heat source that remains unrecovered has a small amount of exhaust heat and is dispersed. There are many cases.
Such a system that efficiently recovers heat from the exhaust heat sources having a small amount of exhaust heat remaining unrecovered is not yet effective, and its development is desired.

本発明はかかる課題を解決するためになされたものであり、未回収のまま分散して存在する排熱を効率よく回収する排熱回収発電システムを得ることを目的としている。
The present invention has been made to solve such a problem, and an object of the present invention is to obtain an exhaust heat recovery power generation system that efficiently recovers exhaust heat that is dispersed without being recovered.

上記のような未回収排熱源について分散して存在するそれぞれの場所で動力回収しようとすれば小型の熱回収タービンを設置することとなるが、タービンは小型になるほど低効率となる上、コストが割高となるため経済性が得られない。   If power is to be recovered at each of the locations where the uncollected exhaust heat source is dispersed, a small heat recovery turbine will be installed. However, the smaller the turbine, the lower the efficiency and the lower the cost. Because it is expensive, economic efficiency cannot be obtained.

そこで、それぞれの場所で動力回収するのではなく、それぞれの場所で発生する排熱を搬送して1箇所に集めて利用するのが望ましいと考えられるが、蒸気で搬送すると搬送配管口径が大きくなり、熱搬送設備(配管)のコストが高くなる。
この点、排熱を熱水で熱回収し、熱水を搬送することによって一箇所に集めるようにすれば熱搬送配管径を小さくできる。そして、一箇所に集めた熱水をタービン入口で減圧してフラッシュして得られる蒸気をタービン駆動に供するようにする。
Therefore, instead of recovering power at each location, it is considered desirable to transport the exhaust heat generated at each location and collect it in one location for use. The cost of heat transfer equipment (piping) increases.
In this regard, if the exhaust heat is recovered with hot water and collected in one place by transporting the hot water, the diameter of the heat transport pipe can be reduced. Then, steam obtained by depressurizing and flushing hot water collected at one place at the turbine inlet is supplied to the turbine drive.

しかし、フラッシュして得られる蒸気は飽和蒸気であるため、タービンでの動力回収効率が低い。この理由は、飽和蒸気駆動の場合、タービン出口蒸気の湿り度が高くなるが、湿り度が高くなる(乾き度が低くなる)とタービン回転翼の浸食が問題となるため、乾き度の下限制約から、タービンで回収できる動力が小さくなるためである。
この点、タービン入口蒸気(飽和状態)を加熱して過熱蒸気とすることにより、タービン出口湿り度を抑制することが可能である。
しかしながら、他の高温媒体(例えば燃焼ガス)により過熱する場合、過熱対象となる飽和蒸気は例えば200℃程度以上の温度となっているため、高温媒体からは例えば250℃程度までしか熱を取りきれず、十分に高温媒体の熱量を有効利用できない。例えば、燃料の燃焼ガスにより過熱する場合、過熱に供された後の燃焼排ガスが高い温度のまま排気されてしまう。
また、過熱手段に関しても、例えば特許文献1のようにガスタービンの排ガスを利用するためには、高コストなガスタービンを併設する必要がある。
However, since the steam obtained by flashing is saturated steam, the power recovery efficiency in the turbine is low. The reason for this is that in the case of saturated steam drive, the turbine outlet steam wetness increases, but if the wetness increases (dryness decreases), erosion of the turbine rotor blades becomes a problem. This is because the power that can be recovered by the turbine is reduced.
In this respect, it is possible to suppress the turbine outlet wetness by heating the turbine inlet steam (saturated state) to superheated steam.
However, when overheating with another high-temperature medium (for example, combustion gas), the saturated steam to be overheated has a temperature of, for example, about 200 ° C. or higher, so that the heat from the high-temperature medium can be removed only to about 250 ° C. Therefore, the amount of heat of the high temperature medium cannot be effectively utilized. For example, in the case of overheating with fuel combustion gas, the combustion exhaust gas after being subjected to overheating is exhausted at a high temperature.
As for the superheating means, in order to use the exhaust gas of the gas turbine as in Patent Document 1, for example, it is necessary to provide a high-cost gas turbine.

そこで、過熱対象となる飽和蒸気は200℃程度以上の温度であっても、過熱に供するエネルギーを無駄にしないような過熱方式で、しかも低コストな過熱手段が必要となる。
本発明は以上のような検討を基になされたものであり、具体的には以下のような構成を有するものである。
Therefore, even if the saturated steam to be overheated is at a temperature of about 200 ° C. or higher, an overheating method that does not waste energy for overheating and that is low-cost is required.
The present invention has been made on the basis of the above studies, and specifically has the following configuration.

(1)本発明に係る排熱回収発電システムは、分散した小規模排熱源から排出される排熱を熱水として回収する複数の排熱回収熱水ボイラと、該複数の排熱回収熱水ボイラで生成された熱水を一箇所に集める高圧熱水配管系と、減圧手段とフラッシャから成り前記熱水から飽和蒸気を発生させる飽和蒸気発生手段と、該飽和蒸気発生手段によって発生した飽和蒸気を過熱蒸気にする過熱蒸気生成手段と、該過熱蒸気発生手段によって生成された蒸気によって駆動する蒸気タービン発電機を備え、前記過熱蒸気生成手段が、蒸気タービンと同軸で駆動される蒸気圧縮機であることを特徴とする排熱回収発電システム。
(1) An exhaust heat recovery power generation system according to the present invention includes a plurality of exhaust heat recovery hot water boilers that recover exhaust heat discharged from dispersed small-scale exhaust heat sources as hot water, and the plurality of exhaust heat recovery hot waters. High-pressure hot water piping system that collects hot water generated in the boiler in one place, saturated steam generating means that includes decompression means and a flasher to generate saturated steam from the hot water, and saturated steam generated by the saturated steam generating means A superheated steam generating means for converting the superheated steam into steam, and a steam turbine generator driven by the steam generated by the superheated steam generating means , wherein the superheated steam generating means is a steam compressor driven coaxially with the steam turbine. exhaust heat recovery power generation system characterized in that it is.

(2)また本発明に係る排熱回収発電システムは、分散した小規模排熱源から排出される排熱を熱水として回収する複数の排熱回収熱水ボイラと、該複数の排熱回収熱水ボイラで生成された熱水を一箇所に集める高圧熱水配管系と、減圧手段とフラッシャから成り前記熱水から飽和蒸気を発生させる飽和蒸気発生手段と、該飽和蒸気発生手段によって発生した飽和蒸気を過熱蒸気にする過熱蒸気生成手段と、該過熱蒸気発生手段によって生成された蒸気によって駆動する蒸気タービン発電機とを備え、前記過熱蒸気生成手段が、蓄熱式バーナを適用した燃料焚き過熱器であることを特徴とするものである。
上記(1)、(2)に示したような過熱蒸気生成手段を用いることで、低コストで効率よく過熱蒸気を生成することが可能となる。
(2) The exhaust heat recovery power generation system according to the present invention includes a plurality of exhaust heat recovery hot water boilers that recover exhaust heat discharged from dispersed small-scale exhaust heat sources as hot water, and the plurality of exhaust heat recovery heats. A high-pressure hot water piping system that collects hot water generated by a water boiler in one place, a saturated steam generating means that generates saturated steam from the hot water, comprising a decompression means and a flasher, and saturation generated by the saturated steam generating means A fuel-fired superheater comprising superheated steam generating means for converting the steam into superheated steam, and a steam turbine generator driven by the steam generated by the superheated steam generating means, wherein the superheated steam generating means employs a regenerative burner It is characterized by being.
By using the superheated steam generation means as shown in the above (1) and (2), it is possible to efficiently generate the superheated steam at a low cost.

(3)また、上記(1)又は(2)に記載の飽和蒸気発生手段は多段式であり、蒸気タービンは混圧式であることを特徴とするものである。
(3) Further , the saturated steam generating means described in the above (1) or (2) is a multistage type, and the steam turbine is a mixed pressure type .

本発明においては、分散した小規模排熱源から排出される排熱を利用して熱水を生成する工程と、複数箇所で生成された熱水を一箇所に集める工程と、一箇所に集められた熱水から飽和蒸気を生成する工程と、生成された飽和蒸気を過熱蒸気にする工程と、生成された過熱蒸気によって蒸気タービンを駆動して発電する工程と、を備えたことにより、未回収のまま分散して存在する排熱を効率よく回収することが可能となる。   In the present invention, a process of generating hot water using exhaust heat exhausted from a dispersed small-scale exhaust heat source, a process of collecting hot water generated at a plurality of locations in one place, and a collection in one place A step of generating saturated steam from the heated water, a step of converting the generated saturated steam to superheated steam, and a step of generating power by driving a steam turbine with the generated superheated steam, It becomes possible to efficiently recover the exhaust heat existing in a dispersed state.

[実施の形態1]
図1は本発明の一実施の形態に係る排熱回収発電システムの系統図である。以下、図1に基づいて本実施の形態を説明する。
本実施の形態に係る排熱回収発電システム1は、分散した小規模排熱源3から排熱を熱水として回収する複数の排熱回収熱水ボイラ5と、該複数の排熱回収熱水ボイラ5で生成された熱水を一箇所に集める高圧熱水配管系7と、高圧熱水配管系7によって一箇所に集められた熱水から熱回収して発電を行う熱回収発電プラント9を備えている。
[Embodiment 1]
FIG. 1 is a system diagram of an exhaust heat recovery power generation system according to an embodiment of the present invention. Hereinafter, the present embodiment will be described with reference to FIG.
The exhaust heat recovery power generation system 1 according to the present embodiment includes a plurality of exhaust heat recovery hot water boilers 5 that recover exhaust heat as hot water from dispersed small-scale exhaust heat sources 3, and the plurality of exhaust heat recovery hot water boilers. A high-pressure hot water piping system 7 that collects the hot water generated in 5 at one location, and a heat recovery power plant 9 that recovers heat from the hot water collected at one location by the high-pressure hot water piping system 7 to generate power ing.

熱回収発電プラント9は、第1の減圧弁11と第1のフラッシャ13から成り前記熱水から飽和蒸気を発生させる第1の飽和蒸気発生手段15と、第1の飽和蒸気発生手段15によって発生した飽和蒸気を加熱して過熱蒸気を生成する蓄熱式バーナーを適用した燃料焚き過熱器17と、第2の減圧弁19と第2のフラッシャ21から成り第1のフラッシャ13の熱水から飽和蒸気を発生させる第2の飽和蒸気発生手段23と、燃料焚き過熱器17で生成された過熱蒸気と第2の飽和蒸気発生手段23で生成された飽和蒸気を導入して駆動される混圧式の蒸気タービン25と、該蒸気タービン25によって駆動されて発電を行う発電機27と、を備えている。
以下、主な構成を詳細に説明する。
The heat recovery power plant 9 includes a first saturated steam generating means 15 that includes a first pressure reducing valve 11 and a first flasher 13 and generates saturated steam from the hot water, and is generated by the first saturated steam generating means 15. The fuel-fired superheater 17 to which the regenerative burner that generates the superheated steam by heating the saturated steam is applied, the second pressure reducing valve 19 and the second flasher 21, and the saturated steam from the hot water of the first flasher 13. The second saturated steam generating means 23 for generating the steam, the superheated steam generated by the fuel-fired superheater 17 and the saturated steam generated by the second saturated steam generating means 23 are introduced to drive the mixed pressure steam A turbine 25 and a generator 27 that is driven by the steam turbine 25 to generate electric power are provided.
Hereinafter, the main configuration will be described in detail.

<小規模排熱源>
小規模排熱源3とは、散在する排熱量の少ない未回収の排熱源をいう。例えば製鉄所などで敷地内に点在している各種工場において加熱炉の排ガス(例えば300℃)が未利用のまま排出されているが、このような未利用の加熱炉の排ガスが小規模排熱源3にあたる。
<Small exhaust heat source>
The small-scale exhaust heat source 3 refers to an uncollected exhaust heat source with a small amount of scattered exhaust heat. For example, heating furnace exhaust gas (for example, 300 ° C.) is discharged unused at various factories scattered around the site at steelworks, etc., but such unused exhaust gas from a heating furnace is discharged on a small scale. Heat source 3

<排熱回収熱水ボイラ>
排熱回収熱水ボイラ5とは、小規模排熱源3の排熱と供給される水との熱交換によって熱水を生成するものである。
<Exhaust heat recovery hot water boiler>
The exhaust heat recovery hot water boiler 5 generates hot water by heat exchange between the exhaust heat of the small-scale exhaust heat source 3 and the supplied water.

<高圧熱水配管系>
高圧熱水配管系7は、複数の排熱回収熱水ボイラ5で生成された熱水を一箇所に集めるための配管系であり、配管8およびポンプ29を含む。配管8は、複数の排熱回収熱水ボイラ5の熱水出口側に接続されて熱水を熱回収発電プラント9に送水する送水ラインと、第2のフラッシャ21および蒸気タービン25から排出される蒸気を復水する復水器31に接続されて動力回収された後の復水を排熱回収熱水ボイラ5の給水口に戻す戻水ラインからなり、熱水および動力回収された後の復水が循環する循環路を形成している。
<High pressure hot water piping system>
The high-pressure hot water piping system 7 is a piping system for collecting hot water generated by the plurality of exhaust heat recovery hot water boilers 5 at one location, and includes a piping 8 and a pump 29. The pipe 8 is connected to the hot water outlet side of the plurality of exhaust heat recovery hot water boilers 5 and is discharged from a water supply line for supplying hot water to the heat recovery power plant 9, the second flasher 21, and the steam turbine 25. It is connected to a condenser 31 for condensing steam, and is composed of a return water line for returning the condensed water after power recovery to the water supply port of the exhaust heat recovery hot water boiler 5, and recovering the hot water and power recovered It forms a circulation path through which water circulates.

<第1の飽和蒸気発生手段>
第1の飽和蒸気発生手段15は、第1の減圧弁11と第1のフラッシャ13からなるものである。第1の減圧弁11によって高圧の熱水を減圧して蒸気を発生させ、第1のフラッシャ13によって蒸気と熱水とに分離する。第1のフラッシャ13で気液分離された飽和蒸気は燃料焚き過熱器17に供給され、加熱されて過熱蒸気となる。
<First saturated steam generating means>
The first saturated steam generating means 15 includes a first pressure reducing valve 11 and a first flasher 13. The first pressure reducing valve 11 decompresses the high-pressure hot water to generate steam, and the first flasher 13 separates the steam into hot water. The saturated steam that has been gas-liquid separated by the first flasher 13 is supplied to the fuel-fired superheater 17 and is heated to become superheated steam.

<燃料焚き過熱器>
燃料焚き過熱器17は、蓄熱式バーナーを利用した燃料焚き方式のものである。蓄熱式バーナーは、2つのバーナーを一組として一定時間毎に交互に燃焼させ、非燃焼側を煙道とするものである。排気ガスが非燃焼側のバーナーを経由して煙道に排出する過程において、バーナー直後に設置された蓄熱体を加熱することにより、排熱を蓄熱する。そして、この側のバーナーが燃焼する時には、燃焼用空気が蓄熱体を通過するときに高温に加熱されてバーナーに供給される。
<Fuel-fired superheater>
The fuel-fired superheater 17 is of a fuel-fired type using a regenerative burner. The regenerative burner is a set of two burners that are alternately burned at regular intervals, and the non-burning side is the flue. In the process of exhaust gas being discharged to the flue via the burner on the non-combustion side, the exhaust heat is stored by heating the heat storage body installed immediately after the burner. And when this burner of this side burns, when combustion air passes a thermal storage body, it is heated to high temperature and is supplied to a burner.

上記のように構成された燃料焚き過熱器17においては、第1のフラッシャ13で気液分離された飽和蒸気が導入されて、バーナーの燃焼ガスと熱交換され飽和蒸気が過熱蒸気とされ、過熱蒸気は蒸気タービン25に導入されてタービンを駆動する。
このとき、飽和蒸気を加熱したあとの燃焼排ガスは非燃焼側のバーナーに設置された蓄熱体で低温まで熱回収された後に排出されるので、熱を無駄にすることが無く好適である。
In the fuel-fired superheater 17 configured as described above, the saturated steam that has been gas-liquid separated by the first flasher 13 is introduced, heat exchanged with the combustion gas of the burner, and the saturated steam is converted into superheated steam. Steam is introduced into the steam turbine 25 to drive the turbine.
At this time, the combustion exhaust gas after heating the saturated steam is discharged after being heat recovered to a low temperature by the heat storage body installed in the burner on the non-combustion side, which is preferable without wasting heat.

<第2の飽和蒸気発生手段>
第2の飽和蒸気発生手段23は、第2の減圧弁19と第2のフラッシャ21を備えてなるものである。
第2の減圧弁19は第1のフラッシャ13からの熱水を減圧して蒸気を発生させる。第2のフラッシャ21は第2の減圧弁19の下流側にあって気液を分離する。第2のフラッシャ21で分離された飽和蒸気は蒸気タービン25に供給されてその駆動に供される。
<Second saturated steam generating means>
The second saturated steam generating means 23 includes a second pressure reducing valve 19 and a second flasher 21.
The second pressure reducing valve 19 depressurizes the hot water from the first flasher 13 to generate steam. The second flasher 21 is located downstream of the second pressure reducing valve 19 and separates gas and liquid. The saturated steam separated by the second flasher 21 is supplied to the steam turbine 25 to be driven.

<蒸気タービン>
蒸気タービンは、過熱蒸気および飽和蒸気を導入して駆動する混圧式の蒸気タービン25であり、発電機27を駆動して発電を行う。
<Steam turbine>
The steam turbine is a mixed pressure steam turbine 25 that is driven by introducing superheated steam and saturated steam, and generates electricity by driving a generator 27.

次に、上記のように構成された本実施の動作を説明する。
上記のように構成された排熱回収発電システム1においては、小規模排熱源3からの排出される排熱が排熱回収熱水ボイラ5によって熱水として熱回収され、生成された熱水は高圧熱水配管系7によって、熱回収発電プラント9に送水される。
熱回収発電プラント9に送水された熱水は、第1減圧弁によって減圧されて蒸気を発生させ、第1のフラッシャ13で気液分離される。第1のフラッシャ13で気液分離された飽和蒸気は燃料焚き過熱器17に送られて過熱蒸気とされ、蒸気タービン25に導入されて駆動源とされる。
Next, the operation of the present embodiment configured as described above will be described.
In the exhaust heat recovery power generation system 1 configured as described above, the exhaust heat exhausted from the small-scale exhaust heat source 3 is recovered as hot water by the exhaust heat recovery hot water boiler 5, and the generated hot water is Water is sent to the heat recovery power plant 9 by the high-pressure hot water piping system 7.
The hot water sent to the heat recovery power plant 9 is decompressed by the first pressure reducing valve to generate steam, and is separated into gas and liquid by the first flasher 13. The saturated steam that has been gas-liquid separated by the first flasher 13 is sent to the fuel-fired superheater 17 to become superheated steam, and is introduced into the steam turbine 25 to serve as a drive source.

第1のフラッシャ13で気液分離された熱水は第2の減圧弁19によって減圧されて蒸気を発生させ、第2のフラッシャ21で気液分離される。第2のフラッシャ21で気液分離された飽和蒸気は蒸気タービン25に導入され、タービンの駆動に供される。
蒸気タービン25に導入された過熱蒸気および飽和蒸気は復水器31によって復水され、高圧熱水配管系7を介して排熱回収熱水ボイラ5へ循環される。
The hot water that has been gas-liquid separated by the first flasher 13 is decompressed by the second pressure reducing valve 19 to generate steam, and is gas-liquid separated by the second flasher 21. The saturated steam that has been gas-liquid separated by the second flasher 21 is introduced into the steam turbine 25 and used for driving the turbine.
The superheated steam and saturated steam introduced into the steam turbine 25 are condensed by the condenser 31 and circulated to the exhaust heat recovery hot water boiler 5 through the high pressure hot water piping system 7.

以上のように、本実施の形態においては、分散している排熱源からの熱回収および回収熱の搬送を熱水によって行うようにしたので、蒸気で熱搬送する場合に比べて配管径が小さくて済み、回収熱を1箇所に集めて集中利用することが可能となる。
また、第1のフラッシャ21によってフラッシュさせた蒸気(飽和蒸気)を加熱して過熱蒸気にして蒸気タービン25に導入するようにしたので、蒸気タービン25での動力回収量が増大し、効率が向上する。
さらに、飽和蒸気の加熱装置である燃料焚き過熱器17に蓄熱式バーナーを適用したことにより、加熱に供された後の燃焼排ガスの熱エネルギーを回収・蓄熱して燃焼空気の予熱に利用するようにしたので、比較的高温の燃焼排ガスの熱回収を効率的に行うことができ、燃料焚き過熱器17の燃料消費量を低減できる。
なお、上述した実施の形態では飽和蒸気発生手段は2段となっているが、3段以上としてももちろん良い。
As described above, in the present embodiment, the heat recovery from the dispersed exhaust heat source and the transport of the recovered heat are performed by hot water, so the pipe diameter is smaller than that in the case of heat transport by steam. It is possible to collect the collected heat in one place and use it centrally.
In addition, since the steam (saturated steam) flashed by the first flasher 21 is heated to be superheated steam and introduced into the steam turbine 25, the amount of recovered power in the steam turbine 25 is increased and the efficiency is improved. To do.
Further, by applying a regenerative burner to the fuel-fired superheater 17, which is a saturated steam heating device, the thermal energy of the combustion exhaust gas after being heated is recovered and stored to be used for preheating the combustion air. Therefore, the heat recovery of the relatively high-temperature combustion exhaust gas can be performed efficiently, and the fuel consumption of the fuel-fired superheater 17 can be reduced.
In the above-described embodiment, the saturated steam generating means has two stages, but may be three or more stages.

[実施の形態2]
図2は本発明の他の実施の形態に係る排熱回収発電システム33の系統図であり、図1と同一部分には同一の符号が付してある。以下、図2に基づいて本実施の形態を説明する。
本実施の形態においては、実施の形態1における燃料焚き過熱器17に代えて飽和蒸気を圧縮して過熱蒸気を生成する蒸気圧縮機35を設けたものである。なお、蒸気圧縮機35の回転軸は蒸気タービン25の回転軸と同軸で駆動される。
[Embodiment 2]
FIG. 2 is a system diagram of an exhaust heat recovery power generation system 33 according to another embodiment of the present invention, and the same components as those in FIG. Hereinafter, the present embodiment will be described with reference to FIG.
In the present embodiment, instead of the fuel-fired superheater 17 in the first embodiment, a steam compressor 35 that compresses saturated steam and generates superheated steam is provided. The rotation shaft of the steam compressor 35 is driven coaxially with the rotation shaft of the steam turbine 25.

第1のフラッシャ13で気液分離された飽和蒸気は蒸気圧縮機35で断熱圧縮されて圧力と温度が高められて過熱蒸気となって蒸気タービン25に導入される。
このように、蒸気圧縮機35で飽和蒸気を圧縮して過熱蒸気とすることによって動力回収されるエネルギーが増大することになるが、その理由を以下説明する。
The saturated steam that has been gas-liquid separated by the first flasher 13 is adiabatically compressed by the steam compressor 35, the pressure and temperature are increased, and superheated steam is introduced into the steam turbine 25.
As described above, the energy recovered by motive power recovery is increased by compressing the saturated steam to the superheated steam by the steam compressor 35. The reason will be described below.

図3は蒸気圧縮機35で飽和蒸気を圧縮して過熱蒸気とすることによって動力回収されるエネルギーが増大することの原理説明図である。図3においては、縦軸が比エンタルピ、横軸が比エントロピの座標面に飽和蒸気線(太い曲線)と蒸気タービン25で許容される乾き度(制約下限乾き度)の蒸気線(細い曲線)を示している。   FIG. 3 is an explanatory diagram of the principle that the energy recovered by power is increased by compressing saturated steam into superheated steam by the steam compressor 35. In FIG. 3, the vertical axis is the specific enthalpy and the horizontal axis is the specific entropy. The saturated steam line (thick curve) and the steam line (thin limit lower limit dryness) allowed on the steam turbine 25 (thin curve). Is shown.

蒸気タービン25に飽和蒸気を導入した場合、a1の比エンタルピを持つ飽和蒸気が、蒸気タービン25で膨張して動力回収されてa2の比エンタルピを持つ蒸気となる。このとき蒸気はa1−a2=A(図3参照)のエネルギーを放出して動力として回収される。ここで、a2よりさらに低い比エンタルピまで動力回収しようとした場合、タービン出口蒸気の乾き度がさらに低下し、制約下限乾き度(例えば0.86)以下となってしまうため、好ましくない。
他方、飽和蒸気を蒸気圧縮機35によって断熱圧縮して蒸気タービン25に導入した場合、a1の比エンタルピを持つ飽和蒸気が断熱圧縮によってb1の比エンタルピを持つ蒸気とされて蒸気タービン25に導入され、蒸気タービン25で膨張して動力回収されてb2の比エンタルピを持つ蒸気となる。このとき蒸気はb1−b2=B(図3参照)のエネルギーを放出して動力として回収される。すなわち、蒸気タービン出口の制約下限乾き度が同じ(例えば0.86)でも、従来の出口比エンタルピa2に比べてさらに低い出口比エンタルピb2まで動力を回収できることになる。
したがって、飽和蒸気を蒸気圧縮機35によって断熱圧縮したことによって、蒸気圧縮機35で圧縮するのに要するエネルギー:C(=b1−a1)を差し引いても、B−C−A=D(図3参照)だけ動力回収できるエネルギーが増加する。
When saturated steam is introduced into the steam turbine 25, saturated steam having a specific enthalpy of a1 expands in the steam turbine 25 and is recovered in power to become steam having a specific enthalpy of a2. At this time, the steam releases energy of a1-a2 = A (see FIG. 3) and is recovered as power. Here, when attempting to recover the power to a specific enthalpy lower than a2, the dryness of the steam at the turbine outlet is further reduced, which is not preferable because the dryness of the lower limit of restriction (for example, 0.86) is not reached.
On the other hand, when saturated steam is adiabatically compressed by the steam compressor 35 and introduced into the steam turbine 25, the saturated steam having a specific enthalpy of a1 is converted to steam having a specific enthalpy of b1 by adiabatic compression and introduced into the steam turbine 25. Then, the steam is expanded by the steam turbine 25 and the power is recovered to become steam having a specific enthalpy of b2. At this time, the steam is recovered as power by releasing energy of b1−b2 = B (see FIG. 3). That is, even if the restriction lower limit dryness of the steam turbine outlet is the same (for example, 0.86), the power can be recovered to the outlet specific enthalpy b2 that is lower than the conventional outlet specific enthalpy a2.
Therefore, B−C−A = D (FIG. 3) even if energy (C (= b1−a1)) required for compression by the steam compressor 35 is subtracted by adiabatic compression of the saturated steam by the steam compressor 35. The energy that can be recovered is only increased.

増加する回収動力の大きさは蒸気圧縮機の圧力比(=吐出圧力/吸込圧力)によって変化する。そこで、蒸気圧縮機の圧力比をパラメータとして増加する回収動力量(軸出力比=(A+D)/A)を試算した。試算の結果を、軸出力比を縦軸にとり、蒸気圧縮機の圧力比(=吐出圧力/吸込圧力)を横軸にとってグラフ表示した図4に示す。
なお、試算に用いた蒸気圧縮機、導入する蒸気、蒸気タービンの各条件は以下の通りである。
(a)圧縮機
・圧縮機圧力比(=吐出圧力/吸込圧力)をパラメータ
・圧縮効率(指示効率):0.8
(b)オリジナル蒸気: 200℃飽和
(c)蒸気タービン
・効率: 0.8
・許容乾き度:0.86
The magnitude of the increased recovery power varies depending on the pressure ratio (= discharge pressure / suction pressure) of the steam compressor. Therefore, a recovery power amount (shaft output ratio = (A + D) / A) that increases with the pressure ratio of the steam compressor as a parameter was calculated. The results of the trial calculation are shown in FIG. 4, which is a graph showing the shaft output ratio on the vertical axis and the pressure ratio (= discharge pressure / suction pressure) of the steam compressor on the horizontal axis.
The conditions of the steam compressor, the steam to be introduced, and the steam turbine used for the trial calculation are as follows.
(a) Compressor ・ Compressor pressure ratio (= discharge pressure / suction pressure) parameter ・ Compression efficiency (indicated efficiency): 0.8
(b) Original steam: 200 ℃ saturation
(c) Steam turbine • Efficiency: 0.8
-Allowable dryness: 0.86

図4に示すように、蒸気圧縮機で飽和蒸気を圧縮した後、蒸気タービンに導入することにより、動力回収できるエネルギーが増大していることがわかる。また、蒸気圧縮機の圧力比が増大するにしたがって、軸出力比が増大していることが分かり、10%以上動力回収できるエネルギーが増加している。   As shown in FIG. 4, it is understood that the energy that can be recovered by power is increased by compressing saturated steam with a steam compressor and then introducing the steam into a steam turbine. Moreover, it turns out that the shaft output ratio is increasing as the pressure ratio of the steam compressor increases, and the energy that can recover power by 10% or more is increased.

以上のように本実施の形態によれば、蒸気圧縮機35を駆動するのに要するエネルギー以上のエネルギーを回収できる。
なお、蒸気圧縮機35の駆動エネルギー以上に回収エネルギーが増大しているが、これはタービン出口蒸気のエネルギー状態(比エンタルピ)が低くなっているため、すなわち蒸気の保有エネルギーを低エネルギー状態まで利用できるようになったためであり、熱力学第一法則や第二法則に反しているわけではない。
As described above, according to the present embodiment, it is possible to recover more energy than that required to drive the steam compressor 35.
It should be noted that the recovered energy is increased more than the driving energy of the steam compressor 35. This is because the energy state (specific enthalpy) of the turbine outlet steam is low, that is, the retained energy of the steam is used up to the low energy state. This is because it is possible to do so, and does not violate the first and second laws of thermodynamics.

また、第1のフラッシャ13から導入される飽和蒸気を過熱蒸気とする手段として蒸気タービン25と同軸で駆動する蒸気圧縮機35を用いたので、過熱蒸気を生成するために外部から燃料や電力、動力を供給する必要が無く、過熱蒸気を得ることができる。
さらに、蒸気圧縮機35で生成された過熱蒸気をそのまま蒸気タービン25に導入しているので、例えば蒸気圧縮機で過熱蒸気を生成しその熱で飽和蒸気を過熱蒸気にして蒸気タービンに導入するような方式の場合に必要となる熱交換器などが必要ない。
なお、蒸気圧縮機35は、本システムにおける最も高圧で比容積の小さな蒸気を圧縮するものであり、容積的にも小さなもので済む。
In addition, since the steam compressor 35 that is driven coaxially with the steam turbine 25 is used as means for converting the saturated steam introduced from the first flasher 13 into superheated steam, fuel and electric power from the outside in order to generate superheated steam, There is no need to supply power, and superheated steam can be obtained.
Further, since the superheated steam generated by the steam compressor 35 is introduced into the steam turbine 25 as it is, for example, the superheated steam is generated by the steam compressor, and the saturated steam is converted into superheated steam by the heat and introduced into the steam turbine. This eliminates the need for heat exchangers, etc., that are necessary in the case of simple systems.
The steam compressor 35 compresses the steam having the highest pressure and the small specific volume in the present system, and may be small in volume.

蒸気圧縮機35は蒸気圧縮機35の駆動開始時には、発電機27をモータとして機能させて蒸気タービン25のタービン軸を回転させることで蒸気圧縮機35を駆動し、蒸気タービン25の駆動が安定してから発電機に切り替えるようにしてもよい。
さらに、蒸気圧縮機35を蒸気タービン25による同軸駆動とせず、他の駆動手段、例えば電動モータ等で駆動するようにしてももちろん良い。
The steam compressor 35 drives the steam compressor 35 by rotating the turbine shaft of the steam turbine 25 by causing the generator 27 to function as a motor at the start of driving of the steam compressor 35, so that the driving of the steam turbine 25 is stabilized. After that, you may make it switch to a generator.
Further, the steam compressor 35 may be driven by other driving means, for example, an electric motor or the like, instead of being coaxially driven by the steam turbine 25.

本発明の一実施の形態に係る排熱回収発電システムの系統図である。1 is a system diagram of an exhaust heat recovery power generation system according to an embodiment of the present invention. 本発明の他の実施の形態に係る排熱回収発電システムの系統図である。It is a systematic diagram of the waste heat recovery power generation system which concerns on other embodiment of this invention. 本発明の他の実施の形態の原理説明図である。It is a principle explanatory view of other embodiments of the present invention. 本発明の他の実施の形態の効果を説明する説明図である。It is explanatory drawing explaining the effect of other embodiment of this invention.

符号の説明Explanation of symbols

1 排熱回収発電システム、3 小規模排熱源、5 排熱回収熱水ボイラ、7 高圧熱水配管系、11 第1の減圧弁、13 第1のフラッシャ、15 第1の飽和蒸気発生手段、17 燃料焚き過熱器、19 第2の減圧弁、21 第2のフラッシャ、23 第2の飽和蒸気発生手段、25 蒸気タービン、27 発電機、33 排熱回収発電システム、35 蒸気圧縮機。   DESCRIPTION OF SYMBOLS 1 Waste heat recovery power generation system, 3 Small-scale waste heat source, 5 Waste heat recovery hot water boiler, 7 High pressure hot water piping system, 11 1st pressure-reduction valve, 13 1st flasher, 15 1st saturated steam generation means, Reference Signs List 17 fuel-fired superheater, 19 second pressure reducing valve, 21 second flasher, 23 second saturated steam generating means, 25 steam turbine, 27 generator, 33 exhaust heat recovery power generation system, 35 steam compressor.

Claims (3)

分散した小規模排熱源から排出される排熱を熱水として回収する複数の排熱回収熱水ボイラと、該複数の排熱回収熱水ボイラで生成された熱水を一箇所に集める高圧熱水配管系と、減圧手段とフラッシャから成り前記熱水から飽和蒸気を発生させる飽和蒸気発生手段と、該飽和蒸気発生手段によって発生した飽和蒸気を過熱蒸気にする過熱蒸気生成手段と、該過熱蒸気発生手段によって生成された蒸気によって駆動する蒸気タービン発電機とを備え、A plurality of exhaust heat recovery hot water boilers that recover exhaust heat discharged from dispersed small-scale exhaust heat sources as hot water, and high-pressure heat that collects hot water generated by the plurality of exhaust heat recovery hot water boilers in one place A saturated steam generating means for generating saturated steam from the hot water, a superheated steam generating means for converting the saturated steam generated by the saturated steam generating means to superheated steam, and the superheated steam. A steam turbine generator driven by steam generated by the generating means,
前記過熱蒸気生成手段が、蒸気タービンと同軸で駆動される蒸気圧縮機であることを特徴とする排熱回収発電システム。  The exhaust heat recovery power generation system, wherein the superheated steam generation means is a steam compressor driven coaxially with a steam turbine.
分散した小規模排熱源から排出される排熱を熱水として回収する複数の排熱回収熱水ボイラと、該複数の排熱回収熱水ボイラで生成された熱水を一箇所に集める高圧熱水配管系と、減圧手段とフラッシャから成り前記熱水から飽和蒸気を発生させる飽和蒸気発生手段と、該飽和蒸気発生手段によって発生した飽和蒸気を過熱蒸気にする過熱蒸気生成手段と、該過熱蒸気発生手段によって生成された蒸気によって駆動する蒸気タービン発電機とを備え
前記過熱蒸気生成手段が、蓄熱式バーナを適用した燃料焚き過熱器であることを特徴とする排熱回収発電システム。
A plurality of exhaust heat recovery hot water boilers that recover exhaust heat discharged from dispersed small-scale exhaust heat sources as hot water, and high-pressure heat that collects hot water generated by the plurality of exhaust heat recovery hot water boilers in one place A saturated steam generating means for generating saturated steam from the hot water, a superheated steam generating means for converting the saturated steam generated by the saturated steam generating means into superheated steam, and the superheated steam; A steam turbine generator driven by steam generated by the generating means ,
The exhaust heat recovery power generation system, wherein the superheated steam generation means is a fuel-fired superheater to which a regenerative burner is applied .
前記飽和蒸気発生手段は多段式であり、蒸気タービンは混圧式であることを特徴とする請求項1又は2に記載の排熱回収発電システム。
3. The exhaust heat recovery power generation system according to claim 1, wherein the saturated steam generation means is a multistage type, and the steam turbine is a mixed pressure type .
JP2006082469A 2006-03-24 2006-03-24 Waste heat recovery power generation system Expired - Fee Related JP4736885B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006082469A JP4736885B2 (en) 2006-03-24 2006-03-24 Waste heat recovery power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006082469A JP4736885B2 (en) 2006-03-24 2006-03-24 Waste heat recovery power generation system

Publications (2)

Publication Number Publication Date
JP2007255349A JP2007255349A (en) 2007-10-04
JP4736885B2 true JP4736885B2 (en) 2011-07-27

Family

ID=38629828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006082469A Expired - Fee Related JP4736885B2 (en) 2006-03-24 2006-03-24 Waste heat recovery power generation system

Country Status (1)

Country Link
JP (1) JP4736885B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106640243A (en) * 2016-12-30 2017-05-10 翁志远 Residual heat electric generating system and technology thereof, as well as power station

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100931404B1 (en) * 2008-03-17 2009-12-11 주식회사 대열보일러 Combustion Engine Generator Waste Heat Recovery Device
JP2010243013A (en) * 2009-04-02 2010-10-28 Miura Co Ltd Exhaust gas heat recovery device
JP5552284B2 (en) 2009-09-14 2014-07-16 信越化学工業株式会社 Polycrystalline silicon manufacturing system, polycrystalline silicon manufacturing apparatus, and polycrystalline silicon manufacturing method
CN102062385B (en) * 2011-01-06 2012-11-21 双良节能***股份有限公司 Vacuum flash vaporizer using residual heat of foul water
JP5691557B2 (en) * 2011-01-25 2015-04-01 株式会社Ihi Steam generating method and steam generating apparatus
JP5830698B2 (en) * 2011-03-09 2015-12-09 パナソニックIpマネジメント株式会社 Combined heat and power system
JP6085565B2 (en) * 2011-11-02 2017-02-22 鈴木 陸夫 Steam turbine generator
GB2506597B (en) * 2012-10-02 2014-10-22 rui-qi Tong Exhaust heat reuse and transferring device
JP6214253B2 (en) * 2013-07-12 2017-10-18 日立造船株式会社 Boiler system
JP2017040201A (en) 2015-08-19 2017-02-23 株式会社東芝 Power generation system and operation method for same
JP6419888B1 (en) * 2017-04-28 2018-11-07 三菱日立パワーシステムズ株式会社 Power plant and operation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5823211A (en) * 1981-08-04 1983-02-10 Mitsubishi Heavy Ind Ltd Waste heat recovery power plant
JPH0642703A (en) * 1992-06-05 1994-02-18 Kawasaki Heavy Ind Ltd Cement waste heat recovery power generating plant combined with gas turbine
JPH10141012A (en) * 1996-11-13 1998-05-26 Mitsubishi Heavy Ind Ltd Refuse incineration generating plant having independent heater

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5823211A (en) * 1981-08-04 1983-02-10 Mitsubishi Heavy Ind Ltd Waste heat recovery power plant
JPH0642703A (en) * 1992-06-05 1994-02-18 Kawasaki Heavy Ind Ltd Cement waste heat recovery power generating plant combined with gas turbine
JPH10141012A (en) * 1996-11-13 1998-05-26 Mitsubishi Heavy Ind Ltd Refuse incineration generating plant having independent heater

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106640243A (en) * 2016-12-30 2017-05-10 翁志远 Residual heat electric generating system and technology thereof, as well as power station

Also Published As

Publication number Publication date
JP2007255349A (en) 2007-10-04

Similar Documents

Publication Publication Date Title
JP4736885B2 (en) Waste heat recovery power generation system
RU2532635C2 (en) Electric energy accumulation by thermal accumulator and reverse electric energy production by thermodynamic cyclic process
EP3284920B1 (en) Hybrid generation system using supercritical carbon dioxide cycle
KR101403798B1 (en) A method and system for generating power from a heat source
JP3681434B2 (en) Cogeneration system and combined cycle power generation system
US7356993B2 (en) Method of converting energy
JP5897302B2 (en) Steam turbine power generation system
CA2679811C (en) High efficiency feedwater heater
JP4794229B2 (en) Gas turbine power generator and gas turbine combined power generation system
JP2000145408A (en) Binary waste power generation method and its system
JP4666641B2 (en) Energy supply system, energy supply method, and energy supply system remodeling method
JP4185326B2 (en) Gas / air combined turbine equipment
RU2524588C2 (en) Power plant running on organic fuel with carbon dioxide separator and method of its operation
JP3961653B2 (en) Power plant
JP2011149434A (en) Gas turbine combined power generation system
US11313252B2 (en) Enhanced HRSG for repowering a coal-fired electrical generating plant
JP2005282512A (en) Effective use device of surplus steam
JP2010508460A (en) Steam generation method
JPS6365807B2 (en)
JP2009180101A (en) Decompression arrangement equipped with energy recovery capability
JPH102205A (en) Hydrogen combustion turbine plant
RU2555609C2 (en) Combined cycle cooling unit operating method and device for its implementation
JP2960371B2 (en) Hydrogen combustion turbine plant
JP2007255350A (en) Power recovery method and power recovery device
JP4343610B2 (en) Power generation apparatus and power generation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110418

R150 Certificate of patent or registration of utility model

Ref document number: 4736885

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees