JP4733012B2 - 処理方法及び処理装置 - Google Patents

処理方法及び処理装置 Download PDF

Info

Publication number
JP4733012B2
JP4733012B2 JP2006503312A JP2006503312A JP4733012B2 JP 4733012 B2 JP4733012 B2 JP 4733012B2 JP 2006503312 A JP2006503312 A JP 2006503312A JP 2006503312 A JP2006503312 A JP 2006503312A JP 4733012 B2 JP4733012 B2 JP 4733012B2
Authority
JP
Japan
Prior art keywords
acoustic energy
semiconductor substrate
substrate
cleaning
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006503312A
Other languages
English (en)
Other versions
JP2006518550A (ja
JP2006518550A5 (ja
Inventor
ボイド・ジョン・エム.
ラヴキン・マイケル
レデカー・フレッド・シー.
トリューア・ランドルフ・イー.
シエ・ウィリアム
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lam Research Corp
Original Assignee
Lam Research Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/371,603 external-priority patent/US7040330B2/en
Priority claimed from US10/377,943 external-priority patent/US7040332B2/en
Application filed by Lam Research Corp filed Critical Lam Research Corp
Publication of JP2006518550A publication Critical patent/JP2006518550A/ja
Publication of JP2006518550A5 publication Critical patent/JP2006518550A5/ja
Application granted granted Critical
Publication of JP4733012B2 publication Critical patent/JP4733012B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/6704Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
    • H01L21/67057Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing with the semiconductor substrates being dipped in baths or vessels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/10Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration
    • B08B3/12Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration by sonic or ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B2203/00Details of cleaning machines or methods involving the use or presence of liquid or steam
    • B08B2203/02Details of machines or methods for cleaning by the force of jets or sprays
    • B08B2203/0288Ultra or megasonic jets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S134/00Cleaning and liquid contact with solids
    • Y10S134/902Semiconductor wafer

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Cleaning By Liquid Or Steam (AREA)

Description

本発明は、一般に、表面洗浄に関し、特に、製造プロセスに続く半導体基板の超音波洗浄のための方法および装置に関する。
超音波(メガソニック)洗浄は、半導体の製造オペレーションで広く用いられており、バッチ洗浄プロセスでも単一ウエハ洗浄プロセスでも利用可能である。バッチ洗浄プロセスでは、超音波変換器の振動が、1バッチの半導体基板を収容する洗浄槽の液体内で音圧波を生成する。単一ウエハ超音波洗浄プロセスは、回転するウエハの上方で、ウエハにわたって走査される比較的小さい変換器を用いる。あるいは、全体を浸漬する場合には、単一ウエハ槽システムが用いられる。それぞれの場合で、超音波洗浄による主要な粒子除去の機序は、キャビテーションおよびアコースティックストリーミングに起因する。キャビテーションとは、音響エネルギが液体の媒体に供給された際に、溶解している気体から生成される微小な気泡が、急速に形成および崩壊することである。崩壊の際に、気泡はエネルギを放出し、そのエネルギが、粒子を基板に付着させる様々な付着力を断つことによって粒子除去の助けとなる。アコースティックストリーミングは、RF電力が圧電変換器に印加された際に、流体を通る音波によって引き起こされる流体の動きである。
図1Aは、バッチ式超音波洗浄システムを示す説明図である。槽100は、洗浄溶液で満たされる。ウエハ保持部102は、洗浄すべき1バッチのウエハを保持する。変換器104は、ほぼ1メガヘルツ(MHz)の周波数を有する音響エネルギによって圧力波を生成する。これらの圧力波は、粒子の再付着を抑制するのに適切な薬品と共に、洗浄作用を提供する。薬品を利用するだけでなく、バッチ式洗浄システムでは長い洗浄時間が必要となるため、国際半導体技術ロードマップ(ITRS)の要件に従って、薬品の使用の低減、ウエハ間での制御性の向上、および、欠陥の低減を実現するために、単一ウエハ洗浄システムに対して努力が注がれてきた。バッチ式システムには、槽の中の複数のウエハへの超音波エネルギの伝達が一様ではなく、建設的干渉による「ホットスポット」と、相殺的干渉による「コールドスポット」が生じることがあるという他の欠点もある。なお、それらの干渉は、複数のウエハおよび超音波槽からの超音波の反射によって引き起こされる。建設的干渉は、ウエハ基板上の繊細な形状またはパターンへの損傷を引き起こしうるため、すべてのホットスポットを損傷の閾値よりも低く保つためには、平均エネルギを下げる必要がある。コールドスポットの場合では、洗浄が不十分になるため、ウエハ保持部102内のウエハの全領域に到達するためには、より高い超音波エネルギを加える必要がある。いずれにしても、損傷を最小限に抑えつつ、洗浄を実行するのに十分な高さの平均エネルギを実現するには、妥協が必要になる。
図1Bは、単一ウエハ洗浄槽を示す説明図である。ここで、槽106は、洗浄溶液で満たされる。ウエハ110は、キャリア108によって支持されて、槽106の洗浄溶液内に沈められる。変換器104は、ウエハ110を洗浄するためのエネルギを供給する。洗浄溶液は、通例、ウエハの表面と、変換器104によって供給される音響エネルギによってウエハの表面から除去された粒子と、の間のゼータ電位を変化させて、粒子の再付着を防止する。洗浄溶液の濃度は、表面の間の適切なゼータ電位を維持するために、かなり厳しい範囲に維持されることが好ましい。しかしながら、基板の表面に設けられた線、コンタクト、空間、ビアなどの形状に対しては、その形状によって規定された領域内の粒子と基板との境界において、特定の洗浄溶液濃度を維持できない、すなわち、洗浄溶液を補給できないことから、粒子が基板の表面に再付着(リデポジット)する場合がある。さらに、(単一槽の超音波システムにおけるように)変換器が基板の表面に対して垂直に配置される場合には、アスペクト比の大きい形状は、形状における低い領域を、影で覆う、すなわち、超音波エネルギおよびキャビテーションから遮断(シールド)することがある。変換器がウエハ表面に平行に配置される場合には、キャビテーションは形状内で起きることが可能であるが、アコースティックストリーミングの方向は、分離された粒子を基板から遠ざけることを促進するのに最も好ましい方向にならない。しかしながら、この構成は、それぞれの結晶の間のギャップを引き起こす。この構成の他の欠点は、圧電結晶によって供給された音響エネルギは平行である性質があることから、ギャップにより、同等のレベルの音響エネルギを供給されない領域が生じることである。したがって、ウエハ110の一部の領域は、一様な音響エネルギを受けないため、一様な洗浄が実現されない。
さらに、基板にフィルムを付着(デポジット)させるために、電着、特に無電解めっきが一般に用いられる。例えば、無電解めっきによって、基板上に銅フィルムが付着されてよい。無電解めっきの欠点の一つは、無電解めっきを施されているパターン化された基板の形状において気泡の形成が起きると、以後のめっき動作(メッキオペレーション)においてすき間(ボイド)が生じることである。アスペクト比の高い形状に対する無電解めっきの他の欠点は、新鮮な反応物質が溶液から形状の中に大量移動し、副産物がその形状から大量移動することである。
これらの点から、形状によって規定された領域内に洗浄剤を補給することにより、音響エネルギによって除去された粒子がウエハ上に再付着することを防止できる単一ウエハ超音波洗浄構成を提供するための方法および装置が求められている。さらに、無電解めっき動作を施されている形状の近傍での気泡の形成を抑制すると共に、アスペクト比の高い形状に流入および流出する反応物質および副産物の大量移動を改善することが求められている。
概して、本発明は、これらの要求を満たすために、粒子を取り除くため、および、洗浄剤を形状領域内に補給して分離された粒子の除去を助けるための音響エネルギを、形状内に供給するための方法および装置を提供する。さらに、本発明は、気泡の形成を抑制すると共に無電解めっき動作中の大量移動を改善するためのシステムおよび方法を提供する。本発明は、方法、システム、または装置を含む種々の形態で実施できることを理解されたい。以下では、本発明の実施形態をいくつか説明する。
一実施形態では、半導体基板を洗浄するための方法が提供されている。その方法は、半導体基板の前記表面とほぼ平行な方向に向けられた音響エネルギを生成する工程と、前記半導体基板の前記表面とほぼ平行な方向に向けられた音響エネルギの一部を、反射面を用いて半導体基板の表面に向かって反射させる工程と、前記反射させた音響エネルギを用いて前記半導体基板の表面とほぼ垂直な方向に向けられた音響エネルギを生成する工程と、を備える。各方向の音響エネルギは、同時に(同じ位相で(インフェイズ))生成されてもよいし、交互に(違う位相で(アウトオブフェイズ))生成されてもよい。
別の実施形態では、半導体基板を洗浄するための装置が提供されている。その装置は、基部と、基部から伸びる少なくとも1つの側壁とを備える。側壁は、基部とほぼ垂直になっている。基部に取り付けられた第1の超音波変換器が備えられている。さらに、側壁に取り付けられた第2の超音波変換器が備えられている。第1の超音波変換器は、第2の超音波変換器とほぼ垂直な方向に向けられている。
さらに別の実施形態では、半導体基板を洗浄するためのシステムが提供されている。そのシステムは、基部と、基部から伸びる少なくとも1つの側壁とによって規定された内部空間を有する槽を備える。その槽は、内部空間の中に多量の液体を保持するよう構成されている。半導体基板を支持して半導体基板の軸を中心に回転させるよう構成された基板支持体が備えられている。基板支持体は、さらに、半導体基板を槽の内部空間の中に支持して回転させるよう構成されている。基部に結合された第1の超音波変換器が備えられている。その超音波変換器の上面は、半導体基板の下面とほぼ平行である。少なくとも1つの側壁には、第2の超音波変換器が結合されている。第1の超音波変換器は、半導体基板の下面とほぼ垂直な方向の音響エネルギを生成するよう構成されている。第2の超音波変換器は、半導体基板の下面とほぼ平行な方向の音響エネルギを生成するよう構成されている。
さらにまた別の実施形態では、基板の無電解めっきのための方法が提供されている。その方法は、めっき溶液の中に基板を浸す工程から始まる。次に、基板の表面上にフィルムが付着(デポジット)される。さらに、めっき溶液に、音響エネルギが伝達される。一実施形態では、ウエハ表面とほぼ平行に配置された変換器を用いて、音響エネルギが基板の表面に向けられ、基板の表面における気泡の形成が抑制される。別の実施形態では、ウエハ表面とほぼ垂直に配置された変換器を用いて、音響エネルギが基板の表面に向けられ、基板の表面における反応物質および副産物の大量移動が改善される。
別の実施形態では、基板の無電解めっきのための装置が提供されている。その装置は、めっき溶液を保持するよう構成された槽と、めっき溶液に音響エネルギを伝達するよう構成された変換器とを備える。
本発明のその他の態様および利点については、本発明の原理を例示した添付図面との関連で行う以下の詳細な説明から明らかになる。
パターン化された基板に設けられた形状の中に直接的に音響エネルギを供給すると共に、形状によって規定された領域に洗浄剤を補給するために最適化された超音波洗浄方式を提供するシステム、装置、および方法のための発明について説明する。しかしながら、本発明が、これらの詳細の一部または全てがなくとも実施可能であることは、当業者にとって明らかである。また、本発明が不必要に不明瞭となることを避けるため、周知の処理動作の説明は省略した。図1Aおよび1Bについては、「背景技術」において説明している。
本発明の実施形態は、パターン化された基板の超音波洗浄の洗浄効率を最適化するためのシステムおよび方法を提供するものである。本明細書で用いられているように、基板およびウエハは代替可能なものである。一方の変換器が、洗浄される基板の表面にほぼ平行に配置され、他方の変換器が、洗浄される基板の表面にほぼ垂直に配置されるように、直交して配置された2つの超音波変換器を準備することにより、キャビテーション効果およびアコースティックストリーミング効果の両方が最適化される。すなわち、基板の表面にほぼ平行な超音波変換器は、パターン化された基板の形状内に直接的に音響エネルギを供給することができる。形状内に直接的に供給された音響エネルギは、キャビテーションを引き起こして、形状内のすべての粒子を取り除く。一方、洗浄される基板の表面に対してほぼ垂直に配置された超音波変換器は、ウエハ表面に平行なアコースティックストリーミングを提供することができる。アコースティックストリーミングは、形状の周辺および内部の領域に渦すなわち乱流を引き起こす。その結果、形状に対する薬品の出入りが促進され、形状内の化学洗浄が可能になる。
さらに、本明細書に記載した実施形態は、超音波エネルギを作用させることにより無電解めっき動作の付着の質を改善するためのシステムおよび装置を提供する。超音波エネルギを作用させることにより、メッキプロセス中に形成される気泡の崩壊の助けとなるキャビテーションが引き起こされる。それらの気泡が崩壊するまでに到達するサイズは、作用される超音波エネルギの周波数によって決まる。したがって、めっき動作を施されている表面における気泡の形成は、めっき動作と共に超音波エネルギを作用させることにより制御されてよい。
図2は、本発明の一実施形態に従った、超音波洗浄装置を示す簡略な図である。超音波洗浄装置110は、基部120から伸びる側壁118および122を有する槽を備える。槽は、洗浄溶液112を収容する。洗浄溶液112は、超音波洗浄に用いられる任意の適切な洗浄溶液であってよく、粒子の除去を促進すると共に、基板116の表面への粒子の再付着を防ぐ特性を有する。本明細書で用いられているように、洗浄溶液および洗浄剤は代替可能なものである。図に示すように、基板116は、洗浄溶液112の中に浸され、キャリア114によって支持されている。当業者にとって明らかなように、超音波洗浄槽の洗浄溶液112の中に基板116を支持するために、任意の適切な手段が用いられてよい。超音波洗浄槽は、超音波変換器124および126に結合されている。超音波変換器126は、基板116の下面117と垂直に配置されている。したがって、変換器126は、以下で示すように、下面117と平行なアコースティックストリーミングを引き起こす。超音波変換器124は、基板116の下面117と平行に配置されている。したがって、変換器124は、形状、すなわち、ビア、ホール、トレンチなどにアクセスできる音響エネルギを供給して、それらの形状内でキャビテーションを引き起こす。すなわち、ウエハ表面の配置に対して水平および垂直な変換器は、粒子の除去とウエハ表面に対する流体薬品の交換との助けとなるアコースティックストリーミングおよび大量移動と、基板表面に付着した粒子を取り外して除去するキャビテーションとを実現する。
図3は、図2に示した超音波洗浄装置の別の実施形態である。ここで、基板116は、図2の水平の位置ではなく、垂直の位置に配置されている。当業者にとって明らかなように、基板116は、基板キャリア、ローラなどの任意の適切な支持手段によって支持されてよい。基板116は、超音波洗浄槽の基部120と側壁118および122によって規定される空間に収容された洗浄溶液112に浸される。超音波洗浄槽の形状は、一方の変換器が基板の表面とほぼ垂直な方向に音響エネルギを供給すると共に、他方の変換器が基板の表面とほぼ平行な方向に音響エネルギを供給するような変換器からの音響エネルギの伝達を実現するのに適切な任意の形状であってよいことを理解されたい。一実施形態では、音響エネルギの垂直方向は、垂線に対して約5度の範囲、すなわち、90±5度の範囲に存在する。ただし、その垂線は、基板の表面に対する垂線である。別の実施形態では、音響エネルギの平行方向は、平行線に対して約5度の範囲、すなわち、0±5度の範囲に存在する。ただし、その平行方向は、基板の表面すなわち基板の表面に平行な平面に対して平行である。したがって、基部の形状は、長方形、正方形、さらには円形であってもよい。ただし、側壁は、基部の超音波変換器によって伝達される音響エネルギに対して直交する方向に音響エネルギを伝達する超音波変換器の配置を可能にするよう構成される。洗浄溶液112は、DUPONT Electronic Technologies、EKC Technology,Inc.、またはASHLAND Corporationから入手可能な洗浄溶液など、任意の市販の洗浄溶液であってよいことを理解されたい。
図4は、本発明の一実施形態に従った、超音波洗浄装置を示す拡大断面図である。この図では、基板116のパターン化された表面117が、より詳細に示されている。すなわち、パターン化された表面の形状が図示されている。基板116は、超音波洗浄槽の側壁118と側壁122および基部120によって規定される空間に収容された洗浄溶液112に浸される。基板116は、自身の軸を中心にして適切な基板支持体により回転されてよいことを理解されたい。超音波変換器124および126は、それぞれ、変換素子124aおよび126aと、共振素子124bおよび126bとを備えている。超音波変換器124および126は、任意の適切な市販の超音波変換器であってよい。超音波変換器は、通例、500キロヘルツ(KHz)から5メガヘルツ(MHz)の周波数範囲のエネルギを発する。当業者に周知のように、超音波変換器に対して選択された特定の材料が、生成される周波数範囲を決定する。適切な材料としては、石英やサファイアなど、圧電材料および圧電セラミック材料が挙げられる。
超音波変換器126に対する超音波変換器124の向きは、パターン化された基板116の洗浄を改善するために、最適なエネルギおよび大量移動の利点を実現する。超音波変換器124は、基板116の表面117の形状にアクセスできる音響エネルギを供給する。ここで、音響エネルギは、キャビテーションを引き起こし、表面117の形状の内面に付着した粒子132を取り除く。内面への粒子132の再付着を防止するために、超音波変換器126は、矢印130で示すようにアコースティックストリーミングを引き起こす音響エネルギを供給する。アコースティックストリーミングとは、音響エネルギにさらされた際の流体内の速度勾配によって引き起こされる流体の動きである。アコースティックストリーミングは、周波数と、供給される強度との関数であり、主要な粒子除去の作用因子として作用する洗浄溶液の強い局所的な流れを提供する。アコースティックストリーミングによって引き起こされた流れは、矢印130で示すように、表面117に設けられた形状内に渦134を引き起こす。渦134は、乱流とも呼ばれ、形状の内外への大量移動を改善して、新鮮な洗浄溶液が、表面117に設けられた形状内に導入されることを可能にすると共に、超音波変換器124から形状内に伝達された音響エネルギで引き起こされたキャビテーションによって形状から取り除かれたすべての除去粒子を洗い流す。
図4の矢印128は、超音波変換器124から下面117の形状内部に伝達される音響エネルギを示している。上述のように、音響エネルギ128は、キャビテーションを引き起こして、粒子132を取り除く。乱流すなわち渦134は、形状、特にアスペクト比の高い形状の内外への反応物質/副産物の移動を改善する助けとなることを理解されたい。しかしながら、直接的なエネルギが形状内に伝達されることにより、キャビテーションと粒子の除去とが実現する。したがって、ウエハの表面と平行および垂直な超音波変換器の配置は、基板の表面に設けられた形状の洗浄、および、形状内への薬品の移動のための、直接的なエネルギを供給する。
図5は、図4の超音波洗浄槽の別の実施形態である。ここで、基板116は、水平の位置ではなく、垂直の位置に配置されている。したがって、超音波変換器126は、基板116の表面117に設けられた形状から粒子132を取り除くために、矢印128で示すように、直接的なエネルギを供給する。超音波変換器124は、渦134を引き起こすことで粒子132を洗い流すと共に下面117の形状内に新鮮な洗浄溶液を導入するアコースティックストリーミングを、矢印130で示すように引き起こす。洗浄溶液112は、特に単一ウエハ洗浄動作のために設計されているので、洗浄溶液112の反応物質/副産物の濃度が変化すると、洗浄特性も同様に変化することを理解されたい。すなわち、アスペクト比の高い形状(例えば、基板116の表面の形状)内の洗浄溶液112は、アスペクト比の高い形状の内部を洗浄する。洗浄が実行されると、その形状内の洗浄溶液の濃度が変化することにより、粒子と基板表面との間の界面の特性およびゼータ電位が変化しうる。洗浄溶液は、粒子132の表面と表面117との間の適切すなわち一貫したゼータ電位を維持できなくなるため、この変化により、粒子132が、基板116の表面に再付着する場合がある。したがって、アコースティックストリーミング、より正確には、アコースティックストリーミングによって引き起こされた渦134は、大量移動を改善して形状内に洗浄溶液を補給することにより、上述の再付着を防止する。
図6は、本発明の一実施形態に従って、超音波洗浄により半導体基板を洗浄するための方法の動作を示すフローチャートである。その方法は、2つの別個の変換器に結合された洗浄容器を準備する動作(オペレーション)140で始まる。例えば、図2ないし5に示された洗浄容器が準備されてよい。次いで、その方法は、洗浄容器に収容された洗浄溶液の中に基板が浸される動作142に進む。浸された基板は、一方の超音波変換器が、洗浄される表面とほぼ平行になると共に、第2の超音波変換器が、洗浄される基板の表面とほぼ垂直になるように配置されることを理解されたい。換言すると、変換器は、各変換器から洗浄溶液に伝達されるそれぞれの音響エネルギが、互いにほぼ直交する、すなわち、互いにほぼ直角に向けられるように配置される。上述のように、洗浄溶液は、単一ウエハ洗浄のために特に設計された市販の洗浄溶液であってよく、脱イオン水であってもよい。次いで、その方法は、基板が回転される動作144に進む。この動作では、基板は、周知の任意の適切な手段によって回転されてよい。
次に、図6の方法は、基板の表面とほぼ垂直な方向に、音響エネルギが生成される動作146に進む。この動作では、音響エネルギは、アスペクト比の高い形状に対して直接的に作用して、アスペクト比の高い形状を洗浄する際の粒子の除去のためのキャビテーションを提供する。次いで、その方法は、基板の表面とほぼ平行な方向に、音響エネルギが生成される動作148に進む。この動作では、音響エネルギは、アスペクト比の高い形状の内外への反応物質/副産物の移動を助ける渦を引き起こす。換言すると、アコースティックストリーミングは、薬品を補給して、洗浄されているウエハの表面に粒子が再付着することを防止する。さらに、アコースティックストリーミングは、分離された粒子の移動を促進する。ほぼ垂直の方向に生成された音響エネルギと、ほぼ平行の方向に生成された音響エネルギとは、同時または交互に作用させてもよいし、それらの方法の組み合わせで作用させてもよい。より具体的には、変換器は、同時または交互に電力を供給されてよく、すなわち、同じ位相または違う位相であってよい。
図7Aは、本発明の一実施形態に従って、無電解めっき動作で用いられる超音波変換器を示す簡略な説明図である。ここで、無電解めっき容器150は、めっき溶液152を収容する。基板154は、無電解めっき容器150の内部に支持される。周知のように、無電解めっきは、めっき溶液に構成要素を浸すことにより実行される。めっき溶液は、一般に、溶解性の金属塩と還元剤とからなる。金属塩は、酸素のない表面の上に還元される。そのように、金属フィルム(例えば、銅、ニッケルなど)が、表面の上に付着されてよい。しかしながら、金属が付着される表面の上または近傍に気泡が形成されると、結果として生じる金属フィルムにすき間が生じる場合がある。したがって、無電解めっき容器150に超音波変換器156を結合することにより、音響エネルギ160が、超音波変換器および基板に接するめっき溶液を通して、基板154の表面に向けられることが可能となり、発生しうる任意の気泡を崩壊させることができる。したがって、基板154の表面155に、より信頼性の高い一様なフィルムを付着させることができる。
図7Bは、図7Aの無電解めっき容器の別の実施形態である。ここでは、第2の超音波変換器が、基板154とほぼ直角に導入されている。したがって、変換器158は、無電解メッキプロセス中に基板154の表面からすべての粒子を取り払うために、アコースティックストリーミングを用いることを可能にする。すなわち、変換器158からのアコースティックストリーミングは、基板154の表面における反応物質および副産物の大量移動を改善する。無電解めっき容器150は、めっき溶液152を再循環または補給することが可能であってよいことを理解されたい。ここで、流入口164が、新鮮なめっき溶液をめっき容器150に供給してよく、流出口166が、排出されるめっき溶液の除去に用いられる。当業者にとって明らかなように、めっき溶液は、使い捨てシステムの代わりに、流入口164および流出口166を通して再循環される構成としてもよい。一実施形態では、めっき溶液152は、あふれ出た分が、排液収集部または排液管に放出される。さらに、流入口164および流出口166の位置と、めっき容器の形状は、無電解めっき動作を実行するのに適した任意の位置および形状であってよい。
要約すれば、図2ないし7Bを参照して上述した発明は、パターン化された基板の洗浄効率を最適化するための方法およびシステムに関するものである。洗浄される基板の表面に対して、一方が水平方向に、他方が垂直方向になるように、2つの超音波変換器を配置することにより、超音波エネルギに関連するキャビテーションおよびアコースティックストリーミングの特性が最適化される。水平に配置された、すなわち、基板表面とほぼ平行に配置された超音波変換器は、音響エネルギを形状内に伝達してキャビテーションを提供できるように、形状の内部に向かって真っ直ぐ向いている。キャビテーションは、形状内のすべての粒子を取り除く。
垂直に配置された、すなわち、基板表面とほぼ垂直に配置された超音波変換器は、ウエハの表面と平行なアコースティックストリーミングを引き起こす。アコースティックストリーミングは、取り外された粒子を除去するために渦および乱流を引き起こし、さらに、形状(例えば、アスペクト比の高い形状)内に洗浄剤を補給して、取り外された粒子が形状内部の表面に再付着しないことをさらに確実にする。基本的に、アコースティックストリーミングは、形状内に洗浄剤を補給することにより、形状内の化学洗浄を可能にする。本明細書に記載された実施形態は、化学反応を促進することが望ましい用途にも適用できることを理解されたい。例えば、レジスト剥離に関して、本明細書に記載された実施形態は、反応した物質を除去するための反応物質の大量移動を支援する。すなわち、上述のアコースティックストリーミングは、大量移動を促進する。
図8Aは、本発明の一実施形態に従って、基板の洗浄に音響エネルギを用いる洗浄装置を示す簡略な説明図である。洗浄装置218は、基部228と、基部から伸びる側壁232とからなる。内部空間220は、基部228と側壁232との間に規定される。洗浄装置218は、共振器226に結合された変換器224からなる音響エネルギ生成部223を備える。一実施形態では、音響エネルギ生成部223は、超音波エネルギを生成してよい。すなわち、変換器224は、超音波変換器である。本明細書に記載された実施形態は、超音波エネルギに関連しているが、本発明は、任意の音響エネルギに適用されてよいことを理解されたい。音響エネルギ生成部223は、洗浄装置218の下側の角に配置される。当業者にとって明らかなように、音響エネルギ生成部223の共振器226は、洗浄溶液に接している。したがって、音響エネルギは、洗浄溶液を通して基板に伝達され、洗浄プロセスを支援する。
図8Aに関して、音響エネルギ生成部223は、基板222の下面222aに対してほぼ平行な方向に向けられた音波を生成するよう構成されている。下面222aにほぼ平行な音波は、直線234で示されている。張り出しアーム238が、側壁232から張り出しており、基部228と張り出しアーム238との間の通路を規定している。張り出しアーム238は、任意の適切な長さであってよい。反射面230は、基部228の傾斜部分である。ここで、音響エネルギ生成部223によって生成された音波は、面230から反射されて、基板222の下面222aに向かう。反射された音響エネルギは、直線236で示されている。反射面230の傾斜は、ほぼ平行な音響エネルギ波234が、直線236で示すように、下面222aに対してほぼ垂直の方向に向けられるようになっている。例えば、表面230と基部228との間の角度は、約45度である。
さらに図8Aを参照すると、音波の方向が音響エネルギ源から切り離されていることを理解されたい。さらに、洗浄装置218の構成は、音響エネルギ生成部223の構成要素への外部からのアクセスを可能にする。一実施形態では、洗浄装置218は、高さの低い槽であってよく、すなわち、基板222は、基部228の約1/2インチ以内に配置される。基部228は、部分228aで示されるように、面230を越えて伸ばされてもよい。本実施形態では、部分228a、部分232a、基部228の高くなった部分、および面230で規定される領域は、空間になっている。別の実施形態では、面230が調節可能であることにより、面230と基部228との間の角度を調節することができる。したがって、面230が動くことにより、反射された音響エネルギが、基板222の表面222aを走査する。そのため、反射された音響エネルギは、縁部領域に同等量のエネルギが施されるように、基板の中央領域ではなく基板222の縁部領域付近に集中されてもよい。もちろん、後に示すように、基板222が回転していてもよい。
図8Bは、図8Aの洗浄装置の別の実施形態である。洗浄装置218は、基板222を洗浄するよう構成された槽を備え、基板222は、内部空間220内に収容された洗浄溶液に浸される。超音波変換器224は、共振器226に結合され、反射面230に向けて音響エネルギを生成する。ここで、反射面230は、洗浄装置218の洗浄溶液と接する凸面を有する。そのため、超音波変換器224によって生成された音響エネルギは、図8Aと異なるパターンで反射される。したがって、反射面230の凸形状により、直線234で示す生成された音響エネルギは、直線236で示すように、様々な角度で散乱する。そのため、直線236で示す反射された音響エネルギは、様々な角度で基板222の表面に作用する。基本的に、反射面230は、平行な発生源/音波を受け、規定された領域にわたって発生源/音波を拡散する。さらに、圧電結晶の間の空間(スペース)に対応するエネルギの格差(ギャップ)は、音響エネルギの反射によって排除される。
図8Cは、図8Aの洗浄装置のさらに別の実施形態である。洗浄装置218は、図8Aと同様に、基部228とそこから伸びる側壁232とを有して洗浄溶液を収容する槽を備える。ただし、図に示すように、洗浄装置218は、交互の反射面230と、オーバーフローあるいは再循環の機能とを有する。反射面230は、音響エネルギ生成部223で生成された音響エネルギを散乱するための多くの凸***を備える。したがって、基部228と張り出し部分238との間に規定される通路内にほぼ平行の方向で生成された音響エネルギは、反射された音響エネルギが基板222の下面222bにわたって拡散されるように、その方向を変える。もちろん、基板222は、基板の軸を中心に回転していてもよい。当業者にとって明らかなように、基板222の回転は、入手可能な任意の適切な回転手段によって実現されてよい。例えば、基板222を支持するよう構成された基板キャリアを用いて、回転力を提供してよい。あるいは、基板222の縁部を支持するローラが、回転力を提供してもよい。
さらに図8Cを参照すると、洗浄装置218は、流入口229と流出口231とをさらに備える。流入口229は、新鮮な洗浄溶液を洗浄装置内に送り込むことができる。流出口231は、一実施形態では、余分な洗浄溶液をあふれさせるよう構成されている。別の実施形態では、流出口231は、洗浄装置を通過した洗浄溶液を再循環させるために、ポンプを介して流入口229と連絡していてもよい。当業者にとって明らかなように、洗浄溶液は、単一基板洗浄装置用に設計されたものである。さらに、単一基板洗浄溶液は、EKC Inc.やAshland Inc.などの会社から入手可能である。
図8Dは、図8Aの洗浄装置のまたさらに別の実施形態である。この実施形態では、反射面230は、凹形状を有している。当業者にとって明らかなように、反射された音響エネルギ236は、基板222の下面222aの特定の点に収束される。このように、反射面230は、音響エネルギ源223によって生成された平行な音響エネルギ234を受けて、そのエネルギを収束させる。反射面230は、放物面形状を有して、反射されたエネルギ236を一点に収束させてもよい。あるいは、反射面230は、円筒の形状を有して、反射エネルギを一本の線に収束させてもよい。本実施形態でも、反射面230は、回転している基板の表面にわたって音響エネルギを走査するために可動であってもよい。当業者にとって明らかなように、生成された音響エネルギの方向を音響エネルギ源223から切り離すために、反射面230に対して多くの他の形状を用いてもよい。すなわち、反射面230は、音響エネルギ源223から伝達された音響エネルギを散乱、収束、または一様に分配するよう構成されてよい。
図9は、本発明の一実施形態に従って、2つの音響エネルギ生成部を有する洗浄装置を示す簡略な説明図である。洗浄装置218は、音響エネルギ生成部223および242を備える。なお、音響エネルギ生成部は、超音波変換器であってよい。音響エネルギ生成部223および242は、各音響エネルギ生成部で生成された音響エネルギが、基板222の上面222bまたは下面222aのいずれかにほぼ平行に方向付けられるよう構成される。すなわち、直線240aおよび240で表されるように、音響エネルギ生成部242で生成された音響エネルギは、基板222の上面222bおよび下面222aとほぼ平行になる。同様に、音響エネルギ生成部223によって生成された音響エネルギも、下面222aとほぼ平行になる。
さらに図9を参照して、洗浄装置は、半導体基板222の上下の面222aおよび222bとほぼ垂直な面を有する超音波変換器223および242を備えてもよい。超音波変換器223によって生成された音響エネルギ234の方向が、反射面230を介して変えられることで、音響エネルギは、基板222の下面222aとほぼ垂直になる。したがって、超音波変換器223によって生成された音響エネルギは、下面222aに設けられた形状内の粒子を取り除くためのキャビテーションを提供するために用いられてよい。超音波変換器242は、取り除かれた粒子を除去すると共に、設けられた形状内の洗浄溶液を新しくするためのアコースティックストリーミングを提供する。この洗浄動作の詳細については、図2ないし7Bに関連して上述した。もちろん、基板222は、図8Cに示したように、回転していてもよい。さらに、洗浄装置218は、図8Cを参照して説明したのと同様に、オーバーフローおよび再循環の機能を備えてもよい。
別の実施形態では、図9の反射面230は、基板表面222aの垂線に対してわずかな角度を付けて音響エネルギを反射してもよい。音響エネルギが基板表面に作用する角度を変化させることで、インピーダンスに関する振動を低減できる。一実施形態では、基板の表面の垂線に対する角度は、約3度から約6度の間である。導入された角度は、回転中のウエハの振れ(ふらつき)によって引き起こされるインピーダンスの変動を低減する。別の実施形態では、音響エネルギ源223は自動的に調整(チューン)される。
図10Aは、本発明の一実施形態に従って、基板の両側を洗浄するよう構成された洗浄装置を示す簡略な説明図である。洗浄装置218は、基板222の両面に音響エネルギを供給するよう構成された音響エネルギ生成部223および242aを備える。音響エネルギ生成部223で生成された音響エネルギは、反射面230で反射されて、基板222の下面222aを洗浄する。音響エネルギ生成部242aは、音響エネルギを222の上面222bに供給して、基板の上面の洗浄を促進するよう構成されている。ここで、音響エネルギ生成部242aは、基板222の上面222bに対してわずかな角度の付いた直線240bで示すように、音響エネルギを生成するよう構成されている。一実施形態では、音響エネルギ240bと上面222bとの間の角度は、約0度から5度の間である。音響エネルギ240bの一部は、直線246で示すように、上面222bで反射されることを理解されたい。したがって、反射面244aは、一旦反射された音響エネルギ246を、直線248で示すように、上面222bに戻すように反射するよう配置されてよい。もちろん、反射されたエネルギは、反射されるごとに力を失うが、音響エネルギを増大させれば、基板222の洗浄の助けとなる。
図10Bは、図10Aの洗浄装置の別の実施形態を示す簡略な説明図である。この実施例では、3つの音響エネルギ生成部223、242a、および242bが、洗浄装置218に備えられている。音響エネルギ生成部223は、基板222の下面222aに音響エネルギを供給し、同様に、音響エネルギ生成部242bは、基板222の下面222aに音響エネルギを供給する。音響エネルギ生成部242aは、図10Aを参照して上述したように、上面222bに音響エネルギを供給するよう構成されている。音響エネルギ生成部242bは、基板222の下面222aに対してわずかな角度が付いた音響エネルギを生成する。一実施形態では、直線240aで示す音響エネルギと下面222aとの間の角度は、約0度から約5度の間である。ここでも、音響エネルギ240aは、直線250で示されるように、基板222aで反射されてよい。したがって、反射面244bは、反射された音響エネルギ250を、直線252で示すように、基板222の下面222aに戻すように反射するよう配置されてよい。
図によると、反射面230は凸形状を有しているが、上述の形状を含む任意の適切な形状を有してよいことを理解されたい。さらに、一実施形態では、音響エネルギ生成部223、242a、および242bは超音波変換器である。また、基板222は、洗浄プロセス中にその軸を中心として回転してもよい。洗浄装置218は、図8Cを参照して説明したのと同様に、再循環およびオーバーフローの機能を実現するよう構成されてもよい。
図11は、本発明の一実施形態に従って、基板の表面を洗浄するための音響エネルギを作用させる方法の動作を示すフローチャートである。その方法は、半導体基板の表面とほぼ平行な方向に向けられた音響エネルギが、第1の変換器によって生成される動作260から始まる。例えば、ここで生成される音響エネルギは、図8A−8D、10A、および10Bの音響エネルギ生成部223によって生成される音響エネルギであってよい。次いで、その方法は、第1の変換器からの音響エネルギの方向が、半導体基板の表面とほぼ垂直な方向に変えられる動作262に進む。ここで、図8A−8D、9、10A、および10Bを参照して上述したような反射面などの反射面が、音響エネルギの方向を変えてよい。音響エネルギは、集束、散乱、または一様に分配されてよいことを理解されたい。このように、反射面は、基本的に、音響エネルギの方向を音響エネルギ源から切り離す。さらに、反射面は、洗浄される基板の表面にわたって音響エネルギを走査するために調節可能すなわち可動であってよい。
次に、図11の方法は、半導体基板の表面とほぼ平行な方向に向けられた音響エネルギが、第2の変換器によって生成される動作264に進む。ここで、第2の変換器は、より効率的に基板の表面を洗浄するためにアコースティックストリーミングを引き起こしてよい。第2の変換器で生成される音響エネルギは、図10Aおよび10Bを参照して上述したように、半導体基板の表面に対してわずかな角度を付けられてよいことを理解されたい。さらに、第2の変換器からの音響エネルギが向けられる面の反対側の面に、音響エネルギを向けるために、第3の音響エネルギ生成部が設けられてもよい。
要約すれば、図8Aないし11を参照して上述した発明は、半導体基板の洗浄効率を最適化するための方法およびシステムに関するものである。洗浄装置は、音波を音響生成部から切り離すことにより死角を排除する。切り離す効果は、洗浄される基板の表面に向けて音響エネルギを反射するよう配置された反射面によって実現される。洗浄効率をさらに増大させるために、複数の変換器が備えられてもよい。一実施形態では、基板の表面とほぼ垂直に向けられた2つの変換器が準備される。両方の変換器が、基板の表面とほぼ平行な方向に向けられた音響エネルギを供給するが、一方の音響エネルギの流れは、音響エネルギが基板表面とほぼ垂直になるように、反射面によって方向を変えられる。反射面は、洗浄溶液に適合して音響エネルギを反射する任意の材料からなってよい。例えば、反射材料は、ステンレス鋼、石英、テフロン(デュポン社の登録商標)、ポリプロピレン、炭化ケイ素、または、システムで用いられる洗浄剤に適合するその他の材料であってよい。別の実施形態では、反射面は、反射面に関連する軸を中心に動くよう構成されている。それにより、基板の表面にわたって音響エネルギを走査して、基板が回転している際に、基板表面にわたって、より一様に音響エネルギを分配することができる。
さらに、本明細書に記載された実施形態は、無電解めっき動作に関して、より高い質のフィルム付着を可能にする。無電解めっき動作中に超音波エネルギを作用させることにより、無電解めっき動作を施されている物体の表面における気泡の形成を抑制できる。めっき溶液に伝達される超音波エネルギに関連するキャビテーションの特性により、気泡は、物体の表面の近傍から効果的に除去され、それにより、付着されたフィルムにおけるすき間を大幅に排除することができる。
理解を深めるために、上述の発明について、ある程度詳しく説明したが、添付の特許請求の範囲内でいくらかの変更と変形を行ってもよいことは明らかである。したがって、本実施形態は、例示的なものであって、限定的なものではないとみなされ、本発明は、本明細書に示した詳細に限定されず、添付の特許請求の範囲および等価物の範囲内で変形されてよい。特許請求の範囲においては、要素および/または工程は、請求項の中で特に言及しない限り、動作に関する特定の順序を示すものではない。
バッチ式超音波洗浄システムを示す説明図。 単一ウエハ洗浄槽を示す説明図。 本発明の一実施形態に従った超音波洗浄装置を示す簡略な図。 図2に示した超音波洗浄装置の別の実施形態を示す図。 本発明の一実施形態に従った、超音波洗浄装置を示す拡大断面図。 図4の超音波洗浄槽の別の実施形態を示す図。 本発明の一実施形態に従って、超音波洗浄によって半導体基板を洗浄するための方法の動作を示すフローチャート。 本発明の一実施形態に従って、無電解めっき動作で用いられる超音波変換器を示す簡略な説明図。 図7Aの無電解めっき容器の別の実施形態を示す図。 本発明の一実施形態に従って、基板の洗浄に音響エネルギを用いる洗浄装置を示す簡略な説明図。 図8Aの洗浄装置の別の実施形態を示す図。 図8Aの洗浄装置のさらに別の実施形態を示す図。 図8Aの洗浄装置のまたさらに別の実施形態を示す図。 本発明の一実施形態に従って、2つの音響エネルギ生成部を有する洗浄装置を示す簡略な説明図。 本発明の一実施形態に従って、基板の両側を洗浄するよう構成された洗浄装置を示す簡略な説明図。 図10Aの洗浄装置の別の実施形態を示す簡略な説明図。 本発明の一実施形態に従って、基板の表面を洗浄するための音響エネルギを作用させる方法の動作を示すフローチャート。
符号の説明
100…槽
102…ウエハ保持部
104…変換器
106…槽
108…キャリア
112…洗浄溶液
114…キャリア
114a−c…ギャップ
116…基板
117…下面
118…側壁
120…基部
122…側壁
124…超音波変換器
124a…変換素子
124b…共振素子
126…超音波変換器
126a…変換素子
126b…共振素子
132…粒子
134…渦
150…無電解めっき容器
152…めっき溶液
154…基板
155…表面
156…超音波変換器
158…変換器
164…流入口
166…流出口
218…洗浄装置
220…内部空間
222…基板
222a…上面
222b…下面
223…音響エネルギ生成部
224…変換器
226…共振器
228…基部
228a…部分
229…流入口
230…反射面
231…流出口
232…側壁
232a…部分
238…張り出しアーム
242…音響エネルギ生成部
242a…音響エネルギ生成部
242b…音響エネルギ生成部
244a…反射面
244b…反射面

Claims (8)

  1. 溶液の中に浸された半導体基板を処理するための処理方法であって、
    半導体基板の表面とほぼ垂直な面を有する超音波変換器から前記半導体基板の前記表面とほぼ平行な方向に向けられた音響エネルギを生成する工程と、
    前記半導体基板の前記表面とほぼ平行な方向に向けられた音響エネルギの一部を、放物面形状を有する凹面である反射面を用いて半導体基板の表面の一点に向かって反射させることにより、前記半導体基板の前記表面とほぼ平行な方向に向けられた音響エネルギと同時に前記半導体基板の前記表面に対してほぼ垂直に照射される音響エネルギを生成する工程と、
    前記音響エネルギの発生源に対する前記反射面の角度を調整する工程と、
    を備え、処理方法。
  2. 請求項1に記載の処理方法において、さらに、
    前記半導体基板を前記半導体基板の表面に沿って回転させる工程と、を備える、処理方法。
  3. 請求項1または2に記載の処理方法において
    前記溶液は洗浄液であり、
    前記処理は洗浄処理である、処理方法。
  4. 請求項1または2に記載の処理方法において
    前記溶液はめっき液であり、
    前記処理は無電解めっき処理である、処理方法。
  5. 半導体基板を処理するための処理装置であって、
    半導体基板を処理するための処理液を入れるための槽と、
    前記槽の側壁に設けられ、前記半導体基板の表面とほぼ垂直な面を有する超音波変換器であって、前記洗浄される半導体基板の表面とほぼ平行な方向に向けた音響エネルギを生成する超音波変換器と、
    前記超音波変換器から生成される音響エネルギの一部を前記半導体基板の表面の一点に向かう、前記半導体基板の表面とほぼ垂直な方向に向けた音響エネルギを生成する放物面形状を有する凹面である反射面と、
    前記反射面の角度を調整するための調整部と、
    を備え、
    前記半導体基板の表面とほぼ平行な方向に向けた音響エネルギと前記半導体基板の表面とほぼ垂直な方向に向けた音響エネルギとは、同時に前記半導体基板に照射される、処理装置。
  6. 請求項に記載の処理装置において、
    前記半導体基板を前記半導体基板の表面に沿って回転させる基板回転装置を備える、処理装置。
  7. 請求項5または請求項に記載の処理装置において、
    前記処理液は洗浄溶液であり、
    前記処理は、洗浄処理である、処理装置。
  8. 請求項5または請求項に記載の処理装置において、
    前記処理液はめっき溶液であり、
    前記処理は、無電解めっき処理である、処理装置。
JP2006503312A 2003-02-20 2004-02-04 処理方法及び処理装置 Expired - Fee Related JP4733012B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US10/371,603 US7040330B2 (en) 2003-02-20 2003-02-20 Method and apparatus for megasonic cleaning of patterned substrates
US10/371,603 2003-02-20
US10/377,943 2003-02-28
US10/377,943 US7040332B2 (en) 2003-02-28 2003-02-28 Method and apparatus for megasonic cleaning with reflected acoustic waves
PCT/US2004/003179 WO2004074931A2 (en) 2003-02-20 2004-02-04 Method and apparatus for megasonic cleaning of patterned substrates

Publications (3)

Publication Number Publication Date
JP2006518550A JP2006518550A (ja) 2006-08-10
JP2006518550A5 JP2006518550A5 (ja) 2007-03-22
JP4733012B2 true JP4733012B2 (ja) 2011-07-27

Family

ID=32911940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006503312A Expired - Fee Related JP4733012B2 (ja) 2003-02-20 2004-02-04 処理方法及び処理装置

Country Status (5)

Country Link
EP (1) EP1599298A4 (ja)
JP (1) JP4733012B2 (ja)
KR (1) KR100952087B1 (ja)
TW (1) TWI290729B (ja)
WO (1) WO2004074931A2 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4027465B2 (ja) 1997-07-01 2007-12-26 株式会社半導体エネルギー研究所 アクティブマトリクス型表示装置およびその製造方法
DE102006033372B4 (de) * 2006-02-17 2010-04-29 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Ultraschallaktor zur Reinigung von Objekten
WO2010027583A1 (en) * 2008-09-03 2010-03-11 Universal Display Corporation Phosphorescent materials
JP5420336B2 (ja) * 2009-07-23 2014-02-19 大日本スクリーン製造株式会社 基板洗浄装置および基板洗浄方法
KR101639635B1 (ko) 2010-06-03 2016-07-25 삼성전자주식회사 메가소닉 세정 방법 및 세정 장치
JP5183777B2 (ja) * 2011-07-12 2013-04-17 株式会社カイジョー 超音波洗浄装置及び超音波洗浄方法
DE102013020518A1 (de) * 2013-12-11 2015-06-11 Forschungszentrum Jülich GmbH Fachbereich Patente Verfahren und Vorrichtung zur Polymerisation einer Zusammensetzung enthaltend Hydridosilane und anschließenden Verwendung der Polymerisate zur Herstellung von siliziumhaltigen Schichten
US11752529B2 (en) 2015-05-15 2023-09-12 Acm Research (Shanghai) Inc. Method for cleaning semiconductor wafers
JP6704714B2 (ja) * 2015-11-25 2020-06-03 株式会社ディスコ 切削装置
CN111386157B (zh) * 2017-11-15 2022-12-27 盛美半导体设备(上海)股份有限公司 用于清洗半导体晶圆的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60249331A (ja) * 1984-05-24 1985-12-10 Nec Corp 半導体ウエハ洗浄装置
JPH0766166A (ja) * 1993-08-26 1995-03-10 Puretetsuku:Kk 高周波洗浄装置
JPH09271729A (ja) * 1996-04-05 1997-10-21 Sonic Fueroo Kk 洗浄方法
JPH11188324A (ja) * 1997-12-26 1999-07-13 Kaijo Corp 超音波洗浄装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10323635A (ja) * 1997-05-26 1998-12-08 Sony Corp 超音波洗浄装置
US6085764A (en) * 1997-07-22 2000-07-11 Tdk Corporation Cleaning apparatus and method
EP1057546A1 (en) * 1999-06-01 2000-12-06 Applied Materials, Inc. Megasonic cleaner
US6276370B1 (en) * 1999-06-30 2001-08-21 International Business Machines Corporation Sonic cleaning with an interference signal
US6468362B1 (en) * 1999-08-25 2002-10-22 Applied Materials, Inc. Method and apparatus for cleaning/drying hydrophobic wafers
US6188162B1 (en) * 1999-08-27 2001-02-13 Product Systems Incorporated High power megasonic transducer
US6748961B2 (en) * 2001-03-30 2004-06-15 Lam Research Corporation Angular spin, rinse, and dry module and methods for making and implementing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60249331A (ja) * 1984-05-24 1985-12-10 Nec Corp 半導体ウエハ洗浄装置
JPH0766166A (ja) * 1993-08-26 1995-03-10 Puretetsuku:Kk 高周波洗浄装置
JPH09271729A (ja) * 1996-04-05 1997-10-21 Sonic Fueroo Kk 洗浄方法
JPH11188324A (ja) * 1997-12-26 1999-07-13 Kaijo Corp 超音波洗浄装置

Also Published As

Publication number Publication date
WO2004074931A2 (en) 2004-09-02
TWI290729B (en) 2007-12-01
TW200425231A (en) 2004-11-16
WO2004074931A3 (en) 2005-01-27
EP1599298A2 (en) 2005-11-30
JP2006518550A (ja) 2006-08-10
KR20050100405A (ko) 2005-10-18
EP1599298A4 (en) 2007-05-02
KR100952087B1 (ko) 2010-04-13

Similar Documents

Publication Publication Date Title
US20040163682A1 (en) Method and apparatus for megasonic cleaning of patterned substrates
JP4733012B2 (ja) 処理方法及び処理装置
JP2696017B2 (ja) 洗浄装置及び洗浄方法
TW550630B (en) Method and apparatus for wet processing wafers
US6148833A (en) Continuous cleaning megasonic tank with reduced duty cycle transducers
US20080105286A1 (en) Substrate Treatment Apparatus
TW200400565A (en) In-situ local heating using megasonic transducer resonator
JP4242677B2 (ja) ウェーハ洗浄システム
TW201029060A (en) Acoustic assisted single wafer wet clean for semiconductor wafer process
JP5974009B2 (ja) 改良超音波洗浄方法および装置
US20040168706A1 (en) Method and apparatus for megasonic cleaning with reflected acoustic waves
JPH0855827A (ja) ウェーハカセットおよびこれを使用した洗浄装置
JP2010153541A (ja) 超音波洗浄装置及び超音波洗浄方法
KR20200113366A (ko) 웨이퍼 세정 장치
US6523557B2 (en) Megasonic bath
JP2019145672A (ja) 洗浄装置
JPH07328573A (ja) 洗浄方法及び洗浄装置
JPH0449619A (ja) 超音波洗浄槽
JP2000107710A (ja) 超音波基板処理装置
JPH04196219A (ja) 超音波洗浄槽
KR102540172B1 (ko) 세정 성능이 개선된 초음파 세정 유닛 및 이를 포함하는 기판 세정 장치
JPH05267264A (ja) 液晶表示装置の製造方法
KR20170088398A (ko) 기판상의 균일한 금속화를 위한 장치 및 방법
JP2005235897A (ja) 基板洗浄装置及び基板洗浄方法
US11433436B2 (en) Carousel for ultrasonic cleaning and method of using thereof

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070201

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090428

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20090724

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20090731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100811

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110128

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110225

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110421

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees