JP4728061B2 - Workpiece shape recognition device - Google Patents

Workpiece shape recognition device Download PDF

Info

Publication number
JP4728061B2
JP4728061B2 JP2005211556A JP2005211556A JP4728061B2 JP 4728061 B2 JP4728061 B2 JP 4728061B2 JP 2005211556 A JP2005211556 A JP 2005211556A JP 2005211556 A JP2005211556 A JP 2005211556A JP 4728061 B2 JP4728061 B2 JP 4728061B2
Authority
JP
Japan
Prior art keywords
workpiece
support member
shape
shape recognition
semiconductor wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005211556A
Other languages
Japanese (ja)
Other versions
JP2006138836A (en
Inventor
勝通 五十畑
圭吾 吉田
諭 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Disco Corp
Original Assignee
Disco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Disco Corp filed Critical Disco Corp
Priority to JP2005211556A priority Critical patent/JP4728061B2/en
Publication of JP2006138836A publication Critical patent/JP2006138836A/en
Application granted granted Critical
Publication of JP4728061B2 publication Critical patent/JP4728061B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Dicing (AREA)

Description

本発明は,切削装置などに設けられる被加工物形状認識装置に係り,特に,精度の高い被加工物の形状認識をすることが可能な被加工物形状認識装置に関する。   The present invention relates to a workpiece shape recognition device provided in a cutting device or the like, and more particularly, to a workpiece shape recognition device capable of highly accurate workpiece shape recognition.

ダイシング装置においては,半導体ウェハの切削ライン(ストリート)とそれを切削するブレードとを精密に位置合わせするためのアライメントが必要である。このアライメントの精度を高めるためには,半導体ウェハ上で距離をおいた2ヶ所(アライメントストローク)でパターンマッチング等を行わなければならない。通常の状態では,半導体ウェハは略円盤状であり,略円盤状であるという前提の下に自動的にアライメントを実行して各種の処理を行う自動化が進められている。   In the dicing apparatus, alignment for precisely aligning the cutting line (street) of the semiconductor wafer and the blade for cutting the semiconductor wafer is necessary. In order to increase the accuracy of this alignment, pattern matching or the like must be performed at two positions (alignment strokes) on the semiconductor wafer at a distance. In a normal state, the semiconductor wafer has a substantially disk shape, and automation is being performed to perform various processes by automatically performing alignment under the premise that the semiconductor wafer has a substantially disk shape.

ところが,実際の製造工程においては,半導体ウェハが割れたり,欠けを生じたりする場合がある。このような場合には,高価な半導体ウェハの材料を無駄にしないようにするため,部分的に破損した状態でも使用できる部分を切削してチップにするようにしている。ただし,このような場合には自動化は不可能であり,手動によりアライメントして切削しなくてはならない。また,フレーム上に複数のウェハが載置されている場合もあり,この場合にもそれぞれのウェハについて手動でアライメントを行わなければならない。   However, in an actual manufacturing process, the semiconductor wafer may be cracked or chipped. In such a case, in order not to waste the material of the expensive semiconductor wafer, the portion that can be used even in a partially damaged state is cut into chips. However, in such a case, automation is not possible, and it must be manually aligned and cut. In some cases, a plurality of wafers are mounted on the frame, and in this case also, the wafers must be manually aligned.

さらに,半導体ウェハが略円盤状であっても,大きさの異なる(例えば,5インチと6インチ)被切削物が生産ラインに流れてくる場合には,その都度半導体ウェハの大きさに合った条件のデータをマニュアルで選択しなければならず,その選択作業が連続した自動処理の著しい障害になる。   Furthermore, even if the semiconductor wafer is substantially disk-shaped, if workpieces with different sizes (for example, 5 inches and 6 inches) flow into the production line, they will match the size of the semiconductor wafer each time. The condition data must be selected manually, and the selection operation becomes a significant obstacle to continuous automatic processing.

このような理由から,アライメント処理の前に半導体ウェハの形状を認識するための形状認識装置が使用されるようになった。   For this reason, a shape recognition device for recognizing the shape of a semiconductor wafer before alignment processing has come to be used.

このような形状認識装置の例は,特許文献1や特許文献2に記載されている。特許文献1には,照明装置からの照明光を半導体ウェハに対して斜め方向から入射させ,撮影装置により垂直方向から半導体ウェハを撮影することができる形状認識装置が記載されている。特許文献1に記載された形状認識装置においては,撮影装置は,正反射された照明光を直接受けない位置に配置されており,通常の場合,半導体ウェハに入射した照明光はほとんど正反射し,撮影装置には入射しないため,TVカメラが出力する映像においては,半導体ウェハの部分は真っ暗になり,粘着テープの部分は照明光が拡散反射するため明るくなる。そこで,半導体ウェハの形状を認識する画像処理は,適当な閾値を設定して二値化画像を生成し,半導体ウェハの外形を認識することにより行う。一方,特許文献2には,半導体ウェハを挟んで撮影手段の反対側に散乱光照明手段が配置された形状認識装置が記載されている。特許文献2に記載された形状認識装置においては,散乱光照明手段から投光された光が,半導体ウェハが存在する部分では遮断され,半導体ウェハを貼付した粘着テープの部分では透過されることから,半導体ウェハの部分は暗くなり,粘着テープの部分は明るくなるため,半導体ウェハの形状を認識することができる。   Examples of such shape recognition devices are described in Patent Document 1 and Patent Document 2. Patent Document 1 describes a shape recognition device in which illumination light from an illumination device is incident on a semiconductor wafer from an oblique direction, and a semiconductor wafer can be imaged from a vertical direction by an imaging device. In the shape recognition device described in Patent Document 1, the imaging device is arranged at a position where it does not directly receive the specularly reflected illumination light. In general, the illumination light incident on the semiconductor wafer is almost specularly reflected. Since the light does not enter the photographing apparatus, in the image output from the TV camera, the semiconductor wafer portion becomes completely dark and the adhesive tape portion becomes bright because the illumination light is diffusely reflected. Therefore, image processing for recognizing the shape of the semiconductor wafer is performed by generating a binarized image by setting an appropriate threshold value and recognizing the outer shape of the semiconductor wafer. On the other hand, Patent Document 2 describes a shape recognition device in which a scattered light illumination unit is disposed on the opposite side of a photographing unit across a semiconductor wafer. In the shape recognition device described in Patent Document 2, the light projected from the scattered light illuminating means is blocked at the portion where the semiconductor wafer is present and is transmitted at the portion of the adhesive tape to which the semiconductor wafer is stuck. Since the semiconductor wafer portion becomes dark and the adhesive tape portion becomes bright, the shape of the semiconductor wafer can be recognized.

特開平6−258056号公報Japanese Patent Laid-Open No. 6-258056 特許第2991593号公報Japanese Patent No. 2991593

このように,特許文献1または特許文献2に記載された形状認識装置においては,いずれも半導体ウェハの部分を暗部,半導体ウェハの周囲(例えば,粘着テープなど)を明部として捉えることにより,半導体ウェハの形状を認識している。   As described above, in each of the shape recognition devices described in Patent Document 1 or Patent Document 2, the semiconductor wafer portion is regarded as a dark portion and the periphery of the semiconductor wafer (for example, an adhesive tape or the like) is regarded as a bright portion. The shape of the wafer is recognized.

しかしながら,かかる形状認識装置においては,拡散反射する光によって半導体ウェハの周囲を明部として認識するため,外乱光の影響を受けやすい。その結果,半導体ウェハの部分とその周囲とのコントラストが出ないため精度の高い形状認識ができない,という問題があった。   However, in such a shape recognition device, the periphery of the semiconductor wafer is recognized as a bright part by diffusely reflected light, and therefore, it is easily affected by disturbance light. As a result, there is a problem that the shape cannot be recognized with high accuracy because there is no contrast between the semiconductor wafer portion and its surroundings.

また,半導体ウェハの薄型化が進むとともに,粘着テープではなく,剛性を持った支持板によって,半導体ウェハを支持することが行われるようになってきた。この支持板には,通常,不透明な板状部材が使用されることが多い。この場合に,例えば,特許文献1に記載された形状認識装置においては,半導体ウェハの周囲の板状部材も光を正反射してしまい,コントラストが出ないため半導体ウェハの形状を認識することができない,という問題があった。さらに,特許文献2に記載された形状認識装置においても,光は板状部材を透過しないため,半導体ウェハの形状を認識することができない,という問題があった。このように,半導体ウェハを板状部材で支持する場合には,従来の方法では形状認識を行うことができないのが現状であった。   Further, as semiconductor wafers have become thinner, it has become possible to support semiconductor wafers with a rigid support plate instead of an adhesive tape. Usually, an opaque plate member is often used for the support plate. In this case, for example, in the shape recognition apparatus described in Patent Document 1, the plate-shaped member around the semiconductor wafer also regularly reflects light, and the contrast does not appear, so that the shape of the semiconductor wafer can be recognized. There was a problem that it was not possible. Furthermore, the shape recognition apparatus described in Patent Document 2 also has a problem that the shape of the semiconductor wafer cannot be recognized because light does not pass through the plate-like member. As described above, when a semiconductor wafer is supported by a plate-like member, the conventional method cannot recognize the shape.

そこで,本発明は,このような問題に鑑みてなされたもので,その目的は,外乱光の影響を受けにくく,精度の高い形状認識を行うことが可能な,新規かつ改良された被加工物形状認識装置を提供することにある。   Therefore, the present invention has been made in view of such problems, and its object is to provide a new and improved work piece that is less susceptible to ambient light and can perform highly accurate shape recognition. The object is to provide a shape recognition device.

また,本発明の別の目的は,支持部材の種類を選ばずに被加工物の形状を認識することが可能な,新規かつ改良された被加工物形状認識装置を提供することにある。   Another object of the present invention is to provide a new and improved workpiece shape recognition device capable of recognizing the shape of a workpiece without selecting the type of support member.

上記課題を解決するために,本発明のある観点によれば,被加工物を支持する支持部材と,支持部材と被加工物とを照明する照明手段と,被加工物の像を撮影してビデオ信号を出力する撮影手段と,ビデオ信号を処理して被加工物の形状を認識する形状認識手段と,を備える被加工物形状認識装置において:支持部材は,被加工物よりも低い正反射率を有し,撮影手段は,被加工物の表面と支持部材の表面で正反射された照明光を直接受ける位置に配置され,被加工物を明部,支持部材を暗部として映し出すことを特徴とする被加工物形状認識装置が提供される。
In order to solve the above problems, according to an aspect of the present invention, a support member that supports a workpiece, an illumination unit that illuminates the support member and the workpiece, and an image of the workpiece are captured. In a workpiece shape recognition apparatus comprising: a photographing means for outputting a video signal; and a shape recognition means for processing the video signal to recognize the shape of the workpiece: the support member has a lower regular reflection than the workpiece The photographing means is arranged at a position that directly receives the illumination light regularly reflected by the surface of the workpiece and the surface of the support member, and projects the workpiece as a bright portion and the support member as a dark portion. A workpiece shape recognition apparatus is provided.

かかる構成を有することにより,本発明に係る被加工物形状認識装置によれば,従来のように,拡散反射光によって被加工物の形状を認識するのではなく,正反射光によって被加工物の形状を認識するため,撮影手段に外乱光が入り込むことがほとんどなくなり,外乱光の影響をほとんど受けないため,コントラストが得やすく,精度の高い形状認識をすることができる。   With this configuration, according to the workpiece shape recognition apparatus according to the present invention, the shape of the workpiece is not recognized by the diffuse reflected light as in the prior art, but the workpiece is recognized by the regular reflected light. Since the shape is recognized, the disturbance light hardly enters the photographing means and is hardly affected by the disturbance light, so that the contrast can be easily obtained and the shape can be recognized with high accuracy.

また,本発明に係る被加工物形状認識装置によれば,被加工物の支持部材が光を遮断する板状部材である場合でも被加工物の形状認識をすることができるだけでなく,粘着テープのような透明部材であっても被加工物の形状認識をすることができるため,支持部材の種類を選ばずに被加工物の形状を認識することが可能となる。   Moreover, according to the workpiece shape recognition apparatus according to the present invention, not only can the shape of the workpiece be recognized even when the support member of the workpiece is a plate-like member that blocks light, the adhesive tape Since the shape of the workpiece can be recognized even with such a transparent member, the shape of the workpiece can be recognized without selecting the type of the support member.

ここで,上述したように,撮影手段が被加工物を明部,支持部材を暗部として映し出しているのは,被加工物の表面が鏡面加工されている場合が多く,その場合には,被加工物の正反射率が高いためである。   Here, as described above, the photographing means projects the work piece as a bright part and the support member as a dark part. In many cases, the surface of the work piece is mirror-finished. This is because the regular reflectance of the workpiece is high.

したがって,支持部材は,被加工物と正反射率が異なる材質であるか,あるいは表面加工が施されていることにより,被加工物よりも低い正反射率を有していれば良く,その種類は問わず,例えば表面が梨地に加工されたシリコン板などのような光を透過しない部材である。   Therefore, the support member may be made of a material having a regular reflectance different from that of the workpiece, or may have a regular reflectance lower than that of the workpiece due to surface treatment. However, it is a member that does not transmit light, such as a silicon plate whose surface is processed into a satin finish.

例えば,支持部材が梨地加工されたシリコン板であって,被加工物が鏡面加工された半導体ウェハである場合には,半導体ウェハの正反射率の方が梨地加工されたシリコン板の正反射率よりも高いため,被加工物である半導体ウェハが明部として映し出され,支持部材である梨地加工されたシリコン板が暗部として映し出される。そこで,本発明の形状認識手段において明部の形状を認識することにより,被加工物である半導体ウェハの形状を認識することができる。   For example, when the support member is a satin-finished silicon plate and the workpiece is a mirror-finished semiconductor wafer, the regular reflectance of the semiconductor wafer is the regular reflectance of the satin-finished silicon plate. Therefore, the semiconductor wafer as a workpiece is projected as a bright portion, and the satin-finished silicon plate as a support member is projected as a dark portion. Therefore, by recognizing the shape of the bright portion in the shape recognition means of the present invention, the shape of the semiconductor wafer as the workpiece can be recognized.

また,本発明に係る形状認識装置のうち少なくとも撮影手段と照明手段は,被加工物が収納されたカセットの搬出入口の近傍に設けられることが望ましい。   In the shape recognition apparatus according to the present invention, it is desirable that at least the photographing means and the illumination means are provided in the vicinity of the carry-in / out entrance of the cassette in which the workpiece is stored.

これは,半導体ウェハなどの被加工物の形状認識をアライメント前に行わなければならないため,カセットから被加工物が引き出される搬送経路上にあることが望ましいからである。本発明においては,例えば,カセットのウェハ搬出入口の近傍であって,搬送経路の上方に撮影手段と照明手段を配置することができる。このように配置した場合には,搬送経路を移動する半導体ウェハなどの被加工物に対して,照明手段によって光を当てて,撮影手段によって被加工物を撮影することができる。   This is because the shape of a workpiece such as a semiconductor wafer must be recognized before alignment, and therefore it is desirable that the workpiece is on a transport path through which the workpiece is drawn from the cassette. In the present invention, for example, the photographing means and the illumination means can be arranged in the vicinity of the wafer carry-in / out entrance of the cassette and above the conveyance path. When arranged in this way, light can be applied to the workpiece such as a semiconductor wafer moving along the transfer path by the illumination means, and the workpiece can be photographed by the photographing means.

また,照明手段と撮影手段とのY軸方向の距離を近づけることによって,撮影手段により撮影された画像の歪みを低減することができる。   Further, by reducing the distance in the Y-axis direction between the illumination unit and the imaging unit, it is possible to reduce distortion of the image captured by the imaging unit.

また,撮影手段は,被加工物の像を複数の部分に分割して撮影し,形状認識手段は,複数の部分に分割して撮影された被加工物の像を編集して被加工物の全体像を形成し,形成された被加工物の全体像に基づいて,被加工物の形状を認識することができるものであってもよい。   The photographing means shoots the image of the workpiece divided into a plurality of parts, and the shape recognizing means edits the image of the workpiece divided and photographed into a plurality of parts to The whole image may be formed, and the shape of the workpiece may be recognized based on the formed whole image of the workpiece.

被加工物の形状を認識する際に,かかる方法を採用することにより,撮影するために被加工物を載置するポジションを必要とせず,被加工物全体が撮影手段の視野に収まるような空間をも必要としないため,被加工物形状認識装置の設置面積や大きさを縮小することができる。さらに,このことにより,設備コストや生産コストを削減することもできる。   By adopting this method when recognizing the shape of the workpiece, there is no need for a position for placing the workpiece for imaging, and the entire workpiece can be accommodated in the field of view of the imaging means. Therefore, the installation area and size of the workpiece shape recognition device can be reduced. Furthermore, this can also reduce equipment costs and production costs.

本発明によれば,正反射光を直接的に認識するため,外乱光の影響を受けにくく,精度の高い形状認識を行うことが可能な,被加工物形状認識装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, since a regular reflection light is recognized directly, it can provide the workpiece shape recognition apparatus which cannot perform the influence of disturbance light and can perform shape recognition with high precision.

また,本発明によれば,被加工物の支持部材が光を遮断する板状部材である場合でも被加工物の形状認識をすることができるだけでなく,粘着テープのような透明部材であっても被加工物の形状認識をすることができるため,支持部材の種類を選ばずに被加工物の形状を認識することが可能な,被加工物形状認識装置を提供することができる。   Further, according to the present invention, not only can the shape of the workpiece be recognized even when the support member of the workpiece is a plate-like member that blocks light, the transparent member such as an adhesive tape can be used. Since the shape of the workpiece can also be recognized, it is possible to provide a workpiece shape recognition apparatus that can recognize the shape of the workpiece without selecting the type of the support member.

以下に添付図面を参照しながら,本発明の好適な実施の形態について詳細に説明する。なお,本明細書及び図面において,実質的に同一の機能構成を有する構成要素については,同一の符号を付することにより重複説明を省略する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the present specification and drawings, components having substantially the same functional configuration are denoted by the same reference numerals, and redundant description is omitted.

(ダイシング装置10の構成)
以下に,本発明の一実施形態に係る被加工物形状認識装置を備える切削装置として構成されたダイシング装置について説明する。まず,図1を参照しながら,本実施形態に係るダイシング装置10について説明する。なお,図1は,本実施形態に係るダイシング装置10の外観構成を示す斜視図である(外装ハウジングは省略してある)。
(Configuration of the dicing apparatus 10)
Below, the dicing apparatus comprised as a cutting device provided with the workpiece shape recognition apparatus which concerns on one Embodiment of this invention is demonstrated. First, a dicing apparatus 10 according to the present embodiment will be described with reference to FIG. FIG. 1 is a perspective view showing an external configuration of the dicing apparatus 10 according to the present embodiment (the exterior housing is omitted).

図1に示すように,ダイシング装置10は,ウェハカセット11と,昇降手段12と,搬送手段13,14と,ウェハガイドレール15と,チャックテーブル16と,切削ユニット17と,洗浄手段18と,照明手段20と,撮影手段30と,を備える。   As shown in FIG. 1, the dicing apparatus 10 includes a wafer cassette 11, a lifting / lowering means 12, transfer means 13 and 14, a wafer guide rail 15, a chuck table 16, a cutting unit 17, a cleaning means 18, Illumination means 20 and photographing means 30 are provided.

ウェハカセット11の左右両内側面には,半導体ウェハを載置するためのウェハ載置用溝11aが1または複数形成されている。図1においては,ウェハ載置用溝11aが6つ形成された場合を示しているが,ウェハ載置用溝11aの数は6つに限られない。   One or a plurality of wafer mounting grooves 11 a for mounting semiconductor wafers are formed on both the left and right inner side surfaces of the wafer cassette 11. Although FIG. 1 shows a case where six wafer mounting grooves 11a are formed, the number of wafer mounting grooves 11a is not limited to six.

昇降手段12は,例えば,エレベータのようなもので,主として,ボールスクリューと支持部材とを備え,ウェハカセット11を昇降することができる。   The elevating means 12 is, for example, an elevator, and mainly includes a ball screw and a support member, and can elevate and lower the wafer cassette 11.

搬送手段13,14は,Y軸方向およびZ軸方向に移動可能に構成されており,このうち,搬送手段13は,主に,ウェハカセット11からウェハを搬出し,搬出したウェハの切削および洗浄の後,ウェハを再びウェハカセット11に搬入するためのものであり,搬送手段14は,主に,ウェハガイドレール15上で位置合わせされた半導体ウェハをチャックテーブル16上に移動させ,切削後のウェハをチャックテーブル16から洗浄手段18まで搬送するためのものである。なお,搬送手段13,14には,吸着部(図示せず)が設けられており,例えば,真空吸着などによりウェハを吸着して保持することができる。   The transfer means 13 and 14 are configured to be movable in the Y-axis direction and the Z-axis direction. Among these, the transfer means 13 mainly carries out the wafer from the wafer cassette 11 and cuts and cleans the unloaded wafer. After that, the transfer means 14 mainly moves the semiconductor wafer aligned on the wafer guide rail 15 onto the chuck table 16 to carry the wafer after cutting. This is for transferring the wafer from the chuck table 16 to the cleaning means 18. The transfer means 13 and 14 are provided with a suction portion (not shown), and can hold and hold the wafer by, for example, vacuum suction.

ウェハガイドレール15は,略平行に配置された2つの支持部材で構成されており,これら2つの支持部材は,Y軸方向に延びている。また,2つの支持部材は,互いに対向した上半分が切り欠かれ,断面が略L字形状に形成されている。この2つの支持部材は,相互の間隔を変えられるように移動可能に構成され,その間隔を少なくとも搬送手段14の径よりも大きくすることができる。   The wafer guide rail 15 is composed of two support members arranged substantially in parallel, and these two support members extend in the Y-axis direction. In addition, the two support members are formed such that the upper half facing each other is cut out and the cross section is formed in an approximately L shape. The two support members are configured to be movable so that the distance between them can be changed, and the distance can be made at least larger than the diameter of the conveying means 14.

チャックテーブル16は,例えば,その上面に真空チャック機構を具備しており,ウェハを真空吸着して保持することができる。また,チャックテーブル16は,例えば,ウェハを保持した状態で,電動モータ(図示せず)によって水平方向に回転することもできる。   The chuck table 16 has, for example, a vacuum chuck mechanism on its upper surface, and can hold the wafer by vacuum suction. The chuck table 16 can also be rotated in the horizontal direction by an electric motor (not shown), for example, while holding the wafer.

このチャックテーブル16の下方には,チャックテーブル移動手段が設けられている。このチャックテーブル移動手段は,例えば,チャックテーブル16を略水平に支持するチャックテーブル支持部材16aと,基台16b上にX軸方向に延長するように配設され,チャックテーブル支持部材16aのX軸方向の移動を案内する一対のガイドレール16cと,X軸方向に延長するように配設され,チャックテーブル支持部材16aの下部と係合し,電動モータ16dによって回転駆動されるボールスクリュー16eとからなる。かかるチャックテーブル移動手段は,ボールスクリュー16eを回転させてチャックテーブル支持部材16aをガイドレール16cにそってX軸方向に移動させることにより,チャックテーブル16および半導体ウェハをX軸方向に移動させることができる。   Below the chuck table 16, chuck table moving means is provided. The chuck table moving means is, for example, disposed on the chuck table support member 16a for supporting the chuck table 16 substantially horizontally and on the base 16b so as to extend in the X-axis direction. A pair of guide rails 16c that guide the movement in the direction, and a ball screw 16e that is disposed so as to extend in the X-axis direction, engages with the lower portion of the chuck table support member 16a, and is rotationally driven by the electric motor 16d. Become. The chuck table moving means can move the chuck table 16 and the semiconductor wafer in the X-axis direction by rotating the ball screw 16e and moving the chuck table support member 16a along the guide rail 16c in the X-axis direction. it can.

一方,切削手段17は,例えば,チャックテーブル16より上方に位置するように配設されている。この切削手段17は,例えば,略リング形状を有する極薄の切削ブレード17aと,Y軸方向に延長するよう配設された回転軸であって,先端部に切削ブレード17aが装着されたスピンドル17b等とから構成されている。切削手段17は,吊持部17eによって吊持され,この吊持部17eを,支持部材17cに設けられたガイドレール17dに沿ってY軸方向に移動させることによって,切削手段17がチャックテーブル16上をY軸方向に移動可能としている。   On the other hand, the cutting means 17 is arrange | positioned so that it may be located above the chuck table 16, for example. The cutting means 17 includes, for example, an ultra-thin cutting blade 17a having a substantially ring shape, and a rotary shaft arranged so as to extend in the Y-axis direction. The spindle 17b has a cutting blade 17a attached to the tip. Etc. The cutting means 17 is suspended by a suspension portion 17e, and this cutting portion 17e is moved in the Y-axis direction along a guide rail 17d provided on the support member 17c. The top is movable in the Y-axis direction.

洗浄手段18は,チャックテーブル16で切削加工された半導体ウェハを洗浄するためのものである。   The cleaning means 18 is for cleaning the semiconductor wafer cut by the chuck table 16.

照明手段20は,発光ダイオードであるLED(Light Emitting Diode)が面光源として使用される。詳しくは後述する。   The illumination unit 20 uses a light emitting diode (LED) as a surface light source. Details will be described later.

撮影手段30は,本実施形態においては,例えば,モノクロカメラであり,半導体ウェハの一部分を撮影する。撮影手段30は,支持部材と被加工物との表面で正反射された照明光を直接受ける位置に配置される。詳しくは後述する。   In this embodiment, the photographing unit 30 is, for example, a monochrome camera, and photographs a part of the semiconductor wafer. The photographing means 30 is disposed at a position that directly receives the illumination light that is regularly reflected by the surfaces of the support member and the workpiece. Details will be described later.

(被加工物形状認識装置の構成)
次に,図2および図3を参照しながら,本実施形態に係る被加工物形状認識装置の構成について詳細に説明する。なお,図2は,図1に示された被加工物形状認識装置をY軸正方向から見た場合の正面図であり,図3は,図1に示された被加工物形状認識装置をX軸正方向から見た場合の側面図である。
(Configuration of workpiece shape recognition device)
Next, the configuration of the workpiece shape recognition apparatus according to the present embodiment will be described in detail with reference to FIGS. 2 and 3. 2 is a front view of the workpiece shape recognition apparatus shown in FIG. 1 when viewed from the positive direction of the Y axis, and FIG. 3 shows the workpiece shape recognition apparatus shown in FIG. It is a side view at the time of seeing from the X-axis positive direction.

図2および図3に示したように,本実施形態に係る被加工物形状認識装置は,支持部材102と,照明手段20と,撮影手段30と,形状認識手段(図示せず)と,を備える。   As shown in FIGS. 2 and 3, the workpiece shape recognition apparatus according to this embodiment includes a support member 102, an illumination means 20, a photographing means 30, and a shape recognition means (not shown). Prepare.

支持部材102は,例えば半導体ウェハなどの被加工物100を支持するための部材であり,鏡面加工された被加工物100よりも低い正反射率を有するものである。すなわち,支持部材102は,その材質が被加工物100とは異なっていること,あるいは支持部材102の表面加工が施されていることなどによって,被加工物100よりも低い正反射率を有していればその種類は問わない。例えば,半導体ウェハなどの被加工物100はチャックテーブル16上に保持されるが,加工中にばらばらになるのを防止するため,半導体ウェハなどの被加工物100の裏面に粘着テープを貼り付けた上でチャックテーブル16上に保持するのが一般的であるが,この場合には,支持部材102は,粘着テープとなる。また,半導体ウェハの薄型化が進むとともに,粘着テープではなく,剛性を持った支持板によって,半導体ウェハを支持することが行われるようになってきており,この場合には,通常,不透明な板状部材が使用されることが多く,例えば,梨地加工されたシリコン板のような光を透過しない遮蔽板であってもよい。   The support member 102 is a member for supporting the workpiece 100 such as a semiconductor wafer, and has a regular reflectance lower than that of the mirror-finished workpiece 100. That is, the support member 102 has a lower regular reflectance than that of the workpiece 100 because the material of the support member 102 is different from that of the workpiece 100 or the surface of the support member 102 is processed. If it does, the kind will not ask. For example, the workpiece 100 such as a semiconductor wafer is held on the chuck table 16, but an adhesive tape is attached to the back surface of the workpiece 100 such as a semiconductor wafer in order to prevent the workpiece 100 from being separated during processing. In general, the support member 102 is an adhesive tape. In addition, as semiconductor wafers have become thinner, it has become possible to support semiconductor wafers with a rigid support plate instead of an adhesive tape. In this case, an opaque plate is usually used. For example, a shielding plate that does not transmit light, such as a satin-finished silicon plate, may be used.

照明手段20は,支持部材102と被加工物100とを照明するためのものであり,上述したように,LEDが面光源として使用される。色は,撮影手段30がモノクロであれば,白色あるいは赤色など,どんな色であっても良いが,撮影手段30がカラーであれば,被加工物100の色によっては,コントラストを強調するために,白色あるいは赤色などの色を選択する必要があると考えられる。例えば,白色LEDでは13000ルクス,赤色LEDでは10000ルクスの強い光が使用される。強い光を使用するのは,コントラストを強調し,外乱光の影響を受けないようにするためである。   The illumination means 20 is for illuminating the support member 102 and the workpiece 100, and as described above, an LED is used as a surface light source. The color may be any color such as white or red if the photographing means 30 is monochrome. However, if the photographing means 30 is color, depending on the color of the workpiece 100, the color may be enhanced. It may be necessary to select a color such as white or red. For example, strong light of 13000 lux is used for white LEDs and 10,000 lux is used for red LEDs. The reason for using strong light is to enhance the contrast so that it is not affected by ambient light.

撮影手段30は,被加工物100の像を撮影してビデオ信号を出力するものであり,上述したように,本実施形態においては,モノクロカメラが使用されている。また,撮影手段30は,上述したように,被加工物100と支持部材102との表面で正反射された照明光を直接受ける位置に配置される。このとき,照明手段20では強い光が使用されるため,撮影手段30をレンズの絞りを閉めることによって,コントラストを強調でき,形状認識の精度を高めることができる。   The photographing means 30 is for photographing an image of the workpiece 100 and outputting a video signal. As described above, in this embodiment, a monochrome camera is used. Further, as described above, the photographing unit 30 is disposed at a position that directly receives the illumination light that is regularly reflected by the surfaces of the workpiece 100 and the support member 102. At this time, since strong light is used in the illumination unit 20, the contrast of the photographing unit 30 can be enhanced by closing the aperture of the lens, and the accuracy of shape recognition can be increased.

また,撮影手段30は,より詳細には,例えば,レンズ32と,鏡筒34と,TVカメラ36とを備える。レンズ32は直下に移動された被加工物100及び支持部材102の表面の像を拡大してTVカメラ36に投影し,TVカメラ36はビデオ信号を出力する。なお,撮影手段30は,保持部材38により固定保持されている。   More specifically, the photographing unit 30 includes, for example, a lens 32, a lens barrel 34, and a TV camera 36. The lens 32 enlarges and projects the image of the surface of the workpiece 100 and the support member 102 that have been moved directly below, onto the TV camera 36, and the TV camera 36 outputs a video signal. The photographing means 30 is fixed and held by a holding member 38.

これら照明手段20および撮影手段30は,形状認識をアライメント前に行わなければならないため,ウェハカセット11から半導体ウェハが引き出される搬送経路上にあることが最も望ましい。本実施形態においては,例えば,ウェハカセット11のウェハ搬出入口の近傍であって,搬送経路,例えば,ウェハガイドレール15の上方に撮影手段20と照明手段30とを配置している。そこで,ウェハガイドレール15に沿って搬送経路を移動する半導体ウェハなどの被加工物100に対して,照明手段20によって光を当てて,撮影手段30によって被加工物100を撮影する。   Since the illumination unit 20 and the imaging unit 30 must be recognized before alignment, it is most desirable that the illumination unit 20 and the imaging unit 30 be on a transfer path through which the semiconductor wafer is drawn from the wafer cassette 11. In the present embodiment, for example, the photographing means 20 and the illumination means 30 are arranged in the vicinity of the wafer carry-in / out entrance of the wafer cassette 11 and above the conveyance path, for example, the wafer guide rail 15. Therefore, the workpiece 100 such as a semiconductor wafer moving along the transfer path along the wafer guide rail 15 is irradiated with light by the illumination unit 20 and the workpiece 100 is photographed by the photographing unit 30.

また,照明手段20と撮影手段30とのY軸方向の距離を近づけることによって,撮影手段30により撮影された画像の歪みを低減することができる。   Further, by reducing the distance in the Y-axis direction between the illumination unit 20 and the imaging unit 30, it is possible to reduce distortion of the image captured by the imaging unit 30.

形状認識手段は,図示してはいないが,撮影手段30と接続されており,撮影手段30により出力されたビデオ信号を処理して被加工物100の形状を認識するためのものである。具体的には,例えば,適当な閾値を設定して二値化画像を生成し,被加工物100の外形を認識する。   Although not shown, the shape recognizing means is connected to the photographing means 30 and processes the video signal output by the photographing means 30 to recognize the shape of the workpiece 100. Specifically, for example, a binary image is generated by setting an appropriate threshold value, and the outer shape of the workpiece 100 is recognized.

(本実施形態における形状認識の方法)
次に,図4および図5を参照しながら,本実施形態に係る被加工物形状認識装置による形状認識の方法について説明する。なお,図4は,本実施形態に係る被加工物形状認識装置における被加工物の形状認識の方法を概念的に示す説明図であり,図5は,入射光と反射光との関係を示す説明図である。
(Shape recognition method in this embodiment)
Next, a shape recognition method by the workpiece shape recognition apparatus according to the present embodiment will be described with reference to FIGS. 4 and 5. FIG. 4 is an explanatory diagram conceptually showing a method of recognizing the shape of the work piece in the work shape recognizing apparatus according to this embodiment, and FIG. 5 shows the relationship between incident light and reflected light. It is explanatory drawing.

図4に示したように,本実施形態においては,照明手段20が被加工物100と支持部材102とを照明し,撮影手段30が被加工物100と支持部材102との表面で正反射された照明光を直接的に受光して,半導体ウェハ等の被加工物100の形状を認識する。すなわち,本実施形態においては,従来のように,拡散反射光によって被加工物100の形状を認識するのではなく,正反射光によって被加工物100の形状を認識する。このため,撮影手段30に外乱光が入り込むことがほとんどなくなり,外乱光の影響をほとんど受けないため,コントラストが得やすく,精度の高い形状認識をすることが可能となる。   As shown in FIG. 4, in this embodiment, the illumination unit 20 illuminates the workpiece 100 and the support member 102, and the imaging unit 30 is regularly reflected on the surfaces of the workpiece 100 and the support member 102. The received illumination light is directly received to recognize the shape of the workpiece 100 such as a semiconductor wafer. That is, in the present embodiment, the shape of the workpiece 100 is not recognized by diffuse reflected light as in the prior art, but the shape of the workpiece 100 is recognized by regular reflected light. For this reason, disturbance light hardly enters the photographing means 30 and is hardly affected by the disturbance light, so that it is easy to obtain contrast and shape recognition with high accuracy can be performed.

また,本実施形態においては,半導体ウェハなどの被加工物100と支持部材102との正反射率の差によりコントラストを得ている。例えば,本実施形態においては,被加工物100は,支持部材102よりも高い正反射率を有する。このため,従来のように形状認識の対象である被加工物100を暗部として捉えるのではなく,図4に示したように,被加工物100が明部として捉えられ,その周囲の支持部材102が暗部として捉えられることになる。本実施形態の被加工物形状認識装置は,このように,被加工物100を明部,支持部材102を暗部として捉えることにより,半導体ウェハ等の被加工物100の形状を認識しようとするものである。   In this embodiment, the contrast is obtained by the difference in regular reflectance between the workpiece 100 such as a semiconductor wafer and the support member 102. For example, in the present embodiment, the workpiece 100 has a higher regular reflectance than the support member 102. For this reason, the workpiece 100 that is the object of shape recognition is not captured as a dark portion as in the conventional case, but the workpiece 100 is captured as a bright portion as shown in FIG. Will be perceived as a dark area. In this way, the workpiece shape recognition apparatus of this embodiment attempts to recognize the shape of the workpiece 100 such as a semiconductor wafer by capturing the workpiece 100 as a bright portion and the support member 102 as a dark portion. It is.

ここで,図5を参照しながら,正反射率について説明する。一般に,平滑平面(曲面の場合には反射点に接する仮想平面)における光の反射については,入射角=反射角となるが,このように入射角=反射角となるような反射を正反射と呼ぶ。しかし,実際には,完全な平面というのはありえず,表面に微細な凹凸があるため,反射光の一部は,入射角=反射角とならない反射をしており,このような入射角=反射角とはならない反射を拡散反射と呼ぶ。すなわち,図4に示したように,入射光Lの入射角をαとすると,正反射光Lの反射角βは,入射角αと等しく,拡散反射光Lの反射角は,入射角αと異なる。また,入射光Lを100としたとき,正反射光Lとして反射する光の割合を正反射率(%),正反射光L以外の反射光,すなわち拡散反射光Lとして反射する光の割合を拡散反射率(%),正反射率と拡散反射率との和を全反射率(%)という。なお,一般に,反射面では光の吸収が起こるために全反射率は100%とはならない。 Here, the regular reflectance will be described with reference to FIG. In general, for reflection of light on a smooth plane (a virtual plane in contact with a reflection point in the case of a curved surface), the incident angle = reflection angle, but such reflection where the incident angle = reflection angle is regarded as regular reflection. Call. However, in reality, there is no perfect plane, and since there are fine irregularities on the surface, a part of the reflected light is reflected so that the incident angle is not equal to the reflective angle. The reflection that does not become the reflection angle is called diffuse reflection. That is, as shown in FIG. 4, when the incident angle of the incident light L i is α, the reflection angle β of the regular reflected light L r is equal to the incident angle α, and the reflection angle of the diffusely reflected light L d is Different from angle α. Further, when the incident light L i is 100, the ratio of light reflected as specularly reflected light L r specular reflectance (%), the specular reflected light L r other of the reflected light, that is, reflected as diffuse reflected light L d The ratio of light is called diffuse reflectance (%), and the sum of regular reflectance and diffuse reflectance is called total reflectance (%). In general, since light is absorbed on the reflecting surface, the total reflectance is not 100%.

再び,図4を参照しながら,本実施形態における形状認識の方法について説明する。半導体ウェハなどの被加工物100がウェハカセット11から搬送されると,搬送路,例えば,ウェハガイドレール15の上側にある照明手段20によって,支持部材102に支持された被加工物100を照明する。撮影手段30では,被加工物100および支持部材102の表面で正反射された画像を撮影する。   The shape recognition method in this embodiment will be described again with reference to FIG. When the workpiece 100 such as a semiconductor wafer is transferred from the wafer cassette 11, the workpiece 100 supported by the support member 102 is illuminated by the illumination means 20 on the transfer path, for example, the wafer guide rail 15. . The photographing unit 30 photographs images that are regularly reflected on the surfaces of the workpiece 100 and the support member 102.

被加工物100は,支持部材102によって支持されるが,例えば,支持部材102が粘着テープである場合には,粘着テープに入射した光はほとんど拡散してしまうため,撮影手段30で捉えた画像においては,やはり,被加工物100が明部,支持部材102が暗部として映し出される。そして,形状認識手段においては,明部の形状を認識することにより,被加工物100の形状を認識することができる。   The workpiece 100 is supported by the support member 102. For example, when the support member 102 is an adhesive tape, light incident on the adhesive tape is almost diffused. , The workpiece 100 is projected as a bright part and the support member 102 is projected as a dark part. In the shape recognition means, the shape of the workpiece 100 can be recognized by recognizing the shape of the bright part.

また,例えば,支持部材102が梨地加工されたシリコン板である場合には,鏡面加工された被加工物100の方が支持部材102よりも高い反射率を有しているため,正反射光を直接受光する位置に設けられた撮影手段30で捉えた画像においては,被加工物100が明部,支持部材102が暗部として映し出されることとなる。この場合も,上述した場合と同様に,形状認識手段において明部の形状を認識することにより,被加工物100の形状を認識することができる。   Further, for example, when the support member 102 is a satin-finished silicon plate, the mirror-finished workpiece 100 has a higher reflectance than the support member 102, so that the specularly reflected light is transmitted. In the image captured by the photographing means 30 provided at the position where light is directly received, the workpiece 100 is projected as a bright portion and the support member 102 is projected as a dark portion. Also in this case, the shape of the workpiece 100 can be recognized by recognizing the shape of the bright portion in the shape recognition means, as in the case described above.

このように,本実施形態によれば,支持部材102が,例えば粘着テープなどの光がほとんど拡散してしまう材質であっても,例えば梨地加工されたシリコン板などの光を透過しない遮蔽板であっても,半導体ウェハなどの被加工物100よりも低い正反射率を有する材質であれば,支持部材102の材質を問わず,被加工物100の形状を認識することができる。   As described above, according to the present embodiment, the support member 102 is a shielding plate that does not transmit light, such as a satin-finished silicon plate, even if the support member 102 is made of a material such as an adhesive tape that diffuses light almost. Even if it is a material having a lower regular reflectance than the workpiece 100 such as a semiconductor wafer, the shape of the workpiece 100 can be recognized regardless of the material of the support member 102.

また,本実施形態においては,被加工物100と支持部材102との正反射率の差によりコントラストを得ているため,被加工物100と支持部材102との正反射率が異なっていれば,支持部材102の種類や材質を問わない。すなわち,本実施形態においては,半導体ウェハなどの被加工物の正反射率が支持部材の正反射率より高いという前提に立っていたが,理論的には,支持部材の正反射率が被加工物の正反射率より高い場合であってもよい。この状態を現在具体的に想定することは難しいが,半導体ウェハなどの被加工物を暗部,支持部材を明部として捉えることにより,被加工物の形状を認識することができると考えられる。   In the present embodiment, since contrast is obtained by the difference in regular reflectance between the workpiece 100 and the support member 102, if the regular reflectance between the workpiece 100 and the support member 102 is different, The kind and material of the support member 102 are not ask | required. That is, in the present embodiment, the specular reflectance of a workpiece such as a semiconductor wafer is based on the premise that the regular reflectance of the support member is higher than that of the support member. It may be higher than the regular reflectance of the object. Although it is difficult to specifically assume this state at present, it is considered that the shape of the workpiece can be recognized by grasping the workpiece such as a semiconductor wafer as a dark portion and the support member as a bright portion.

また,本実施形態においては,半導体ウェハなどの被加工物の形状を認識するときに,被加工物全体を一括して撮影するのではなく,被加工物全体を複数の部分に分割して撮影する。そして,複数に分割して撮影された被加工物の各部分の画像を,画像処理により,被加工物全体の画像に編集した後,形状認識を行う。   Also, in this embodiment, when recognizing the shape of a workpiece such as a semiconductor wafer, the entire workpiece is not shot at once, but is shot by dividing the entire workpiece into a plurality of parts. To do. Then, the image of each part of the workpiece taken by dividing into a plurality of images is edited into an image of the entire workpiece by image processing, and then shape recognition is performed.

このような撮影方法を採用するのは,形状認識の精度の問題ではなく,形状認識装置を置くスペースの問題があるためである。すなわち,被加工物全体を一括して撮影する方法を採用すると,撮影するために被加工物を載置するポジションが必要となることに加え,被加工物全体を一括して撮影するためには,被加工物全体が撮影手段の視野に収まるような空間も必要となるため,形状認識装置全体が大きくなってしまう。形状認識装置の設置面積や大きさを縮小することは,設備コストや生産コストの削減につながる大きな要素のひとつとなるため,安易に装置全体を大きくすることはできない。さらに,通常,ダイシング装置には,形状認識装置自体が標準仕様で取り付けられていないため,後からダイシング装置に組み込むときに形状認識装置を設置できるだけのスペースがない。また,外付けユニットにするにしても,ユーザ側の工場で設置スペースがないこともある。   The reason for adopting such a photographing method is not a problem of shape recognition accuracy but a problem of a space for placing the shape recognition device. In other words, if the method of photographing the whole workpiece in a batch is adopted, in addition to requiring a position for placing the workpiece for photographing, in order to photograph the whole workpiece in a batch The space for the entire workpiece to be within the field of view of the photographing means is also required, which increases the overall shape recognition device. Reducing the installation area and size of the shape recognition device is one of the major factors that lead to a reduction in equipment costs and production costs, so the entire device cannot be easily enlarged. In addition, since the shape recognition device itself is not normally attached to the dicing device, there is not enough space for installing the shape recognition device when it is later incorporated into the dicing device. Even if an external unit is used, there may be no installation space at the user's factory.

このような背景から,本発明者らは,大きな設置面積を必要としない形状認識装置を検討した結果,半導体ウェハなどの被加工物全体の像を複数に分割して撮影し,分割して撮影された画像を画像処理によって,1つの被加工物全体の画像に編集した後に,被加工物全体の形状を認識する方法を創出した。   Against this background, the present inventors have studied a shape recognition device that does not require a large installation area. As a result, the whole image of a workpiece such as a semiconductor wafer is divided into a plurality of images. After editing the processed image into an image of one entire workpiece by image processing, a method for recognizing the shape of the entire workpiece was created.

以上,添付図面を参照しながら本発明の好適な実施形態について説明したが,本発明は係る例に限定されないことは言うまでもない。当業者であれば,特許請求の範囲に記載された範疇内において,各種の変更例または修正例に想到し得ることは明らかであり,それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although preferred embodiment of this invention was described referring an accompanying drawing, it cannot be overemphasized that this invention is not limited to the example which concerns. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the claims, and these are naturally within the technical scope of the present invention. Understood.

本発明は,切削装置などに設けられる被加工物形状認識装置に適用可能であり,特に,精度の高い被加工物の形状認識をすることが可能な被加工物形状認識装置に適用可能である。   The present invention can be applied to a workpiece shape recognition device provided in a cutting device or the like, and in particular, can be applied to a workpiece shape recognition device that can recognize the shape of a workpiece with high accuracy. .

本実施形態に係るダイシング装置の外観構成を示す斜視図である。It is a perspective view which shows the external appearance structure of the dicing apparatus which concerns on this embodiment. 図1に示された被加工物形状認識装置をY軸正方向から見た場合の正面図である。It is a front view at the time of seeing the workpiece shape recognition apparatus shown by FIG. 1 from the Y-axis positive direction. 図1に示された被加工物形状認識装置をX軸正方向から見た場合の側面図である。It is a side view at the time of seeing the workpiece shape recognition apparatus shown by FIG. 1 from the X-axis positive direction. 本実施形態に係る被加工物形状認識装置における被加工物の形状認識の方法を概念的に示す説明図である。It is explanatory drawing which shows notionally the method of the workpiece shape recognition in the workpiece shape recognition apparatus which concerns on this embodiment. 入射光と反射光との関係を示す説明図である。It is explanatory drawing which shows the relationship between incident light and reflected light.

符号の説明Explanation of symbols

10 ダイシング装置
11 ウェハカセット
12 昇降手段
13,14 搬送手段
15 ウェハガイドレール
16 チャックテーブル
17 切削手段
18 洗浄手段
20 照明手段
30 撮影手段
32 レンズ
34 鏡筒
36 TVカメラ
100 被加工物
102 支持部材
DESCRIPTION OF SYMBOLS 10 Dicing apparatus 11 Wafer cassette 12 Elevating means 13, 14 Conveying means 15 Wafer guide rail 16 Chuck table 17 Cutting means 18 Cleaning means 20 Illuminating means 30 Imaging means 32 Lens 34 Lens barrel 36 TV camera 100 Workpiece 102 Support member

Claims (4)

被加工物を支持する支持部材と,前記支持部材と前記被加工物とを照明する照明手段と,前記被加工物の像を撮影してビデオ信号を出力する撮影手段と,前記ビデオ信号を処理して前記被加工物の形状を認識する形状認識手段と,を備える被加工物形状認識装置において:
前記支持部材は,前記被加工物よりも低い正反射率を有し,
前記撮影手段は,前記被加工物の表面と前記支持部材の表面で正反射された照明光を直接受ける位置に配置され,前記被加工物を明部,前記支持部材を暗部として映し出すことを特徴とする,被加工物形状認識装置。
A support member that supports the workpiece; an illumination unit that illuminates the support member and the workpiece; an imaging unit that captures an image of the workpiece and outputs a video signal; and processes the video signal In a workpiece shape recognition apparatus comprising: shape recognition means for recognizing the shape of the workpiece:
The support member has a lower regular reflectance than the workpiece;
The photographing means is disposed at a position that directly receives illumination light regularly reflected by the surface of the workpiece and the surface of the support member, and projects the workpiece as a bright portion and the support member as a dark portion. A workpiece shape recognition device.
前記支持部材は,光を透過しない部材であることを特徴とする,請求項1に記載の被加工物形状認識装置。   The workpiece shape recognition apparatus according to claim 1, wherein the support member is a member that does not transmit light. 少なくとも前記撮影手段と前記照明手段とは,前記被加工物が収納されたカセットの搬出入口の近傍に設けられることを特徴とする,請求項1または2のいずれか1項に記載の被加工物形状認識装置。   The workpiece according to claim 1, wherein at least the photographing unit and the illumination unit are provided in the vicinity of a carry-in / out port of a cassette in which the workpiece is stored. Shape recognition device. 前記撮影手段は,前記被加工物の像を複数の部分に分割して撮影し,
前記形状認識手段は,前記複数の部分に分割して撮影された前記被加工物の像を編集して前記被加工物の全体像を形成し,形成された前記被加工物の全体像に基づいて,前記被加工物の形状を認識することを特徴とする,請求項1,2または3のいずれか1項に記載の被加工物形状認識装置。
The photographing means shoots an image of the workpiece divided into a plurality of parts,
The shape recognition means edits an image of the workpiece taken by dividing into the plurality of portions to form an overall image of the workpiece, and based on the formed overall image of the workpiece 4. The workpiece shape recognition apparatus according to claim 1, wherein the shape of the workpiece is recognized. 5.
JP2005211556A 2004-10-14 2005-07-21 Workpiece shape recognition device Active JP4728061B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005211556A JP4728061B2 (en) 2004-10-14 2005-07-21 Workpiece shape recognition device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004300186 2004-10-14
JP2004300186 2004-10-14
JP2005211556A JP4728061B2 (en) 2004-10-14 2005-07-21 Workpiece shape recognition device

Publications (2)

Publication Number Publication Date
JP2006138836A JP2006138836A (en) 2006-06-01
JP4728061B2 true JP4728061B2 (en) 2011-07-20

Family

ID=36619747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005211556A Active JP4728061B2 (en) 2004-10-14 2005-07-21 Workpiece shape recognition device

Country Status (1)

Country Link
JP (1) JP4728061B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009190127A (en) * 2008-02-15 2009-08-27 Disco Abrasive Syst Ltd Semiconductor manufacturing apparatus
JP7144964B2 (en) * 2018-04-27 2022-09-30 株式会社ディスコ Wafer grinding method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06258056A (en) * 1993-03-05 1994-09-16 Tokyo Seimitsu Co Ltd Profile recognition system for semiconductor wafer
JPH085571A (en) * 1994-06-21 1996-01-12 New Kurieishiyon:Kk Inspection equipment
JP2000009452A (en) * 1998-06-22 2000-01-14 Hitachi Tobu Semiconductor Ltd Method and apparatus for inspecting surface roughness
JP2000182996A (en) * 1998-12-14 2000-06-30 Tokyo Seimitsu Co Ltd Dicing device
JP2001312116A (en) * 2000-04-28 2001-11-09 Canon Inc Image forming device and method for detecting processing color slippage of image forming device
JP2002139451A (en) * 2000-08-04 2002-05-17 Nikon Corp Surface inspection apparatus
JP2002195955A (en) * 2000-12-25 2002-07-10 Matsushita Electric Ind Co Ltd Method and device for inspecting semiconductor failure

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06258056A (en) * 1993-03-05 1994-09-16 Tokyo Seimitsu Co Ltd Profile recognition system for semiconductor wafer
JPH085571A (en) * 1994-06-21 1996-01-12 New Kurieishiyon:Kk Inspection equipment
JP2000009452A (en) * 1998-06-22 2000-01-14 Hitachi Tobu Semiconductor Ltd Method and apparatus for inspecting surface roughness
JP2000182996A (en) * 1998-12-14 2000-06-30 Tokyo Seimitsu Co Ltd Dicing device
JP2001312116A (en) * 2000-04-28 2001-11-09 Canon Inc Image forming device and method for detecting processing color slippage of image forming device
JP2002139451A (en) * 2000-08-04 2002-05-17 Nikon Corp Surface inspection apparatus
JP2002195955A (en) * 2000-12-25 2002-07-10 Matsushita Electric Ind Co Ltd Method and device for inspecting semiconductor failure

Also Published As

Publication number Publication date
JP2006138836A (en) 2006-06-01

Similar Documents

Publication Publication Date Title
JP6465722B2 (en) Processing equipment
JP4743827B2 (en) LCD panel visual inspection equipment
KR100361962B1 (en) Apparatus for inspecting the defects on the wafer periphery and method of inspection
JP3967759B2 (en) Inspection device for transparent substrate end face and inspection method thereof
JP2991593B2 (en) Semiconductor wafer shape recognition device for dicing machine
CN110071065B (en) Cutting method for workpiece
JP2007147433A (en) Flaw inspection method of ceramic plate and flaw inspection device therefor
JP6602705B2 (en) Wafer edge inspection equipment
KR20190111764A (en) Grinding apparatus
JP4385419B2 (en) Appearance inspection method and appearance inspection apparatus
JP4728061B2 (en) Workpiece shape recognition device
JP7144964B2 (en) Wafer grinding method
TW202016532A (en) Dicing-tip inspection apparatus
JP4392213B2 (en) Surface inspection device for inspecting for cracks in semiconductor substrates
JP2002076031A (en) Apparatus for manufacturing semiconductor
KR20190079528A (en) Cutting apparatus
KR20150134267A (en) Device for photographing side of electronic component package
JP6101481B2 (en) Internal inspection device for workpieces with laminated structure
KR200188365Y1 (en) Apparatus for inspecting the defects on the wafer periphery
JP3123835B2 (en) Component mounting device
JPH06258056A (en) Profile recognition system for semiconductor wafer
KR102654620B1 (en) Peeling device
JP2000099625A (en) Character recognizing device
TWI743992B (en) Foreign matter detection system for sucker
JP7312579B2 (en) Eccentricity detection device and eccentricity detection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110414

R150 Certificate of patent or registration of utility model

Ref document number: 4728061

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250