JP4725653B2 - 多気筒内燃機関の運転制御装置 - Google Patents

多気筒内燃機関の運転制御装置 Download PDF

Info

Publication number
JP4725653B2
JP4725653B2 JP2009019653A JP2009019653A JP4725653B2 JP 4725653 B2 JP4725653 B2 JP 4725653B2 JP 2009019653 A JP2009019653 A JP 2009019653A JP 2009019653 A JP2009019653 A JP 2009019653A JP 4725653 B2 JP4725653 B2 JP 4725653B2
Authority
JP
Japan
Prior art keywords
temperature
catalyst
cylinder
reduced
cylinder operation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009019653A
Other languages
English (en)
Other versions
JP2010174789A (ja
Inventor
修事 湯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009019653A priority Critical patent/JP4725653B2/ja
Priority to DE112010000766T priority patent/DE112010000766T5/de
Priority to PCT/IB2010/000143 priority patent/WO2010086710A1/en
Priority to US13/146,349 priority patent/US20110283688A1/en
Priority to CN201080005926XA priority patent/CN102301114A/zh
Publication of JP2010174789A publication Critical patent/JP2010174789A/ja
Application granted granted Critical
Publication of JP4725653B2 publication Critical patent/JP4725653B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • F02D41/0087Selective cylinder activation, i.e. partial cylinder operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/011Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more purifying devices arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/101Three-way catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • F02D41/0082Controlling each cylinder individually per groups or banks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/024Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus
    • F02D41/0245Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus by increasing temperature of the exhaust gas leaving the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0802Temperature of the exhaust gas treatment apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D37/00Non-electrical conjoint control of two or more functions of engines, not otherwise provided for
    • F02D37/02Non-electrical conjoint control of two or more functions of engines, not otherwise provided for one of the functions being ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/1502Digital data processing using one central computing unit
    • F02P5/1512Digital data processing using one central computing unit with particular means concerning an individual cylinder
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Toxicology (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Ignition Timing (AREA)

Description

本発明は、多気筒内燃機関の運転制御装置に係る。特に、本発明は、内燃機関の負荷等に応じて一部の気筒の稼働を休止させる減筒運転が実行可能な多気筒内燃機関に対し、この減筒運転の継続時間の長期化を図るための改良に関する。
従来より、例えば下記の特許文献1〜特許文献3に開示されているように、エンジンの無負荷時等に、一部の気筒の稼働を休止させて燃料消費率の改善を図る減筒運転が実行可能な多気筒エンジンが知られている。
例えば、エンジンのアイドリング運転時等のように、余剰出力のある状態では、各気筒に掛かる負荷が小さいため、吸排気損失が大きくなり、燃焼効率の悪化が懸念される。このため、一部の気筒(例えばV型エンジンにあっては一方のバンクの気筒)への燃料供給を停止して、これら気筒を休止させる(非稼働にする)減筒運転を行い、燃料が供給される稼動気筒(他方のバンクの気筒)の負荷を高めて燃焼効率を高めるようにする。これにより、燃料消費率の改善及び燃料消費量の削減を図ることができる。
尚、特許文献1には、上記減筒運転から全気筒運転(全ての気筒に対して燃料を供給する運転)に移行した際、それまで非稼働状態にあった気筒(休止気筒)に繋がる排気系に備えられている触媒の温度が活性温度よりも低い場合、その気筒の燃焼行程における点火時期を遅角させることが開示されている。これにより、触媒温度を早期に上昇させて排気エミッションの改善を図るようにしている。
また、特許文献2では、減筒運転中に、休止気筒に繋がる排気系に備えられている触媒の温度が所定温度(触媒が確実に活性状態にあると想定される温度)よりも低くなった場合には減筒運転を禁止している。つまり、触媒温度の低下に伴って全気筒運転に移行させることにより、触媒温度が活性温度以下にまで低下することに起因する全気筒運転復帰時の排気エミッションの悪化を防止している。
更に、特許文献3には、触媒早期暖機制御の実行時に、点火遅角を行って排気ガス温度を昇温させると共に、この際、一部の気筒への燃料噴射を停止して減筒運転を行うことが開示されている。
特開2005−351134号公報 特開2001−227369号公報 特開2001−182601号公報
ところで、上記減筒運転が実行可能なエンジンにおいて、特許文献1や特許文献2に開示されているように、減筒運転時に非稼働状態となる気筒(休止気筒)に繋がる排気系の触媒(以下、休止気筒側触媒と呼ぶ)と、稼働状態を継続する気筒(稼働気筒)に繋がる排気系の触媒(以下、稼働気筒側触媒と呼ぶ)とが互いに独立している構成にあっては、以下の課題が生じる可能性がある。
つまり、エンジンが無負荷になるなどして減筒運転実行条件が成立した時点で、仮に、休止気筒側触媒の温度が活性温度下限値(例えば450℃)以上であったとしても、その触媒温度が十分に高くない状況(例えば触媒の活性温度下限値よりも50℃程度しか高くない状況)では、減筒運転の開始後、短時間のうちに触媒温度が活性温度下限値付近にまで低下してしまって、全気筒運転を復帰させねばならないことになる。
特に、減筒運転中における休止気筒の吸気バルブ及び排気バルブの動作として、全気筒運転時と同様に開閉させるようにしたエンジンにおいては、減筒運転中に休止気筒側触媒に空気(外気と同程度の温度の空気)が流れることになるため、単位時間当たりの触媒温度の低下量が大きくなりやすく、上記課題は助長されることになる。
このような場合、減筒運転の継続時間が極端に短くなって、この減筒運転が実行可能なエンジンシステムのメリットを十分に活用することが困難になってしまう。その結果、燃料消費率の改善効果及び燃料消費量の削減効果を十分に奏することができなくなってしまう可能性がある。
この課題は上記各特許文献においても同様に生じる可能性がある。つまり、特許文献1では、減筒運転から全気筒運転に移行した後に点火時期を遅角させることで触媒温度を上昇させるものであり、この手法では、減筒運転中における休止気筒側触媒の温度を活性温度に維持する時間を長くして減筒運転の継続時間を長期化するといったことはできない。
また、特許文献2は、単に、触媒の温度が所定温度よりも低くなった場合に減筒運転を禁止するものであり、この手法においても、減筒運転中における休止気筒側触媒の温度を活性温度に維持する時間を長くすることはできない。
また、特許文献3に開示されている排気系の構成は、全気筒が同一の触媒に繋がっているため(休止気筒側触媒と稼働気筒側触媒とが独立する構成ではないため)、減筒運転実行中に一部の触媒の温度が低下してしまうといった上記課題を生じるものではない。つまり、本発明が対象とする排気系構造とはなっていない。
本発明は、かかる点に鑑みてなされたものであり、その目的とするところは、減筒運転が実行可能な多気筒内燃機関に対し、この減筒運転時に休止気筒側触媒の温度を高く維持して、この減筒運転の継続時間を長く確保することができる多気筒内燃機関の運転制御装置を提供することにある。
−課題の解決原理−
上記の目的を達成するために講じられた本発明の解決原理は、減筒運転の開始時に、その減筒運転において非稼働状態となる気筒(休止予定気筒)に繋がる排気系の触媒温度を予め高く設定しておく制御を実行し、その後、減筒運転を開始するようにしている。このため、減筒運転中に上記触媒温度が活性温度下限値付近に低下するまでの時間を長期化でき、減筒運転の継続時間が長く得られるようにしている。
−解決手段−
具体的に、本発明は、複数気筒のうちの一部の気筒に繋がる第1の排気通路に設けられた第1の触媒と、他の気筒に繋がる第2の排気通路に設けられた第2の触媒とを備えると共に、所定の減筒運転実行条件の成立に伴って上記一部の気筒を非稼働にする減筒運転が実行可能な多気筒内燃機関の運転制御装置を前提とする。この多気筒内燃機関の運転制御装置に対し、触媒温度認識手段と触媒予備加熱動作実行手段とを備えさせている。触媒温度認識手段は、上記第1の触媒の温度を検出または推定するものである。また、触媒予備加熱動作実行手段は、上記減筒運転実行条件が成立した際、上記触媒温度認識手段によって検出または推定された第1の触媒の温度が、この第1の触媒の活性温度下限値に対して所定値だけ高い値として設定された予備加熱必要温度未満である場合に、上記減筒運転の実行に先立って上記第1の触媒の温度を上記予備加熱必要温度以上に上昇させるための触媒予備加熱動作を実行するようにしている。そして、上記触媒予備加熱動作は、上記減筒運転の実行に先立って、その減筒運転時に非稼働となる上記一部の気筒の点火栓の点火タイミングを遅角させるものであって、その点火タイミングの遅角量を徐々に大きくしていくことで、混合気の燃焼により発生するエネルギのうち、内燃機関のトルク発生に寄与する運動エネルギの量を徐々に減少させていくと共に触媒予備加熱に寄与する熱エネルギの量を徐々に増大させていく。そして、上記減筒運転実行条件が成立している間に、上記触媒予備加熱動作により第1の触媒の温度が上記予備加熱必要温度以上にまで上昇すると、上記触媒予備加熱動作を終了して減筒運転が開始されるようにしている。
ここで、上記減筒運転時に非稼働となる「一部の気筒」としては、単一の気筒ばかりでなく、複数の気筒(例えばV型エンジンにおける一方のバンクの気筒)をも含む概念である。また、互いに異なる排気通路に設けられることで独立配置される触媒としては、上記第1の触媒及び第2の触媒の2種類だけでなく、3種類以上の触媒が互いに独立配置されていてもよい。
上記の特定事項により、全気筒運転の実行中に減筒運転実行条件が成立した際、上記触媒温度認識手段によって第1の触媒の温度が検出または推定される。そして、この第1の触媒の温度が所定の予備加熱必要温度未満であった場合には、上記減筒運転実行条件の成立後、直ちに減筒運転を開始させるのではなく、先ず、上記第1の触媒の温度を上記予備加熱必要温度以上に上昇させるための触媒予備加熱動作を実行する。そして、この触媒予備加熱動作の実行によって第1の触媒の温度が予備加熱必要温度以上にまで十分に上昇した後に、減筒運転を開始することになる。つまり、第1の触媒の温度が比較的高い状態で減筒運転が開始されることになるので、この減筒運転中に第1の触媒の温度が次第に低下していったとしても、その温度が、全気筒運転の復帰を必要とする温度(例えば活性温度下限値)まで低下する時間を長期化できる。その結果、減筒運転の継続時間を長く得ることができ、減筒運転を実行可能としたエンジンシステムのメリットを十分に活用することが可能になり、燃料消費率の改善効果及び燃料消費量の削減効果を十分に奏することができる。
また、触媒予備加熱動作として点火栓の点火タイミングを遅角させているため、上記一部の気筒(減筒運転に移行した際に非稼働となる気筒)の燃焼行程での燃焼開始タイミングも遅角されると共にその燃焼が緩慢になり、混合気の一部が排気通路(第1の排気通路)内で燃焼する状態となる。このため、排気系内のガス温度を大幅に上昇させることで第1の触媒の温度を急速に上昇させることができる。従って、短時間のうちに、第1の触媒の温度を上記予備加熱必要温度以上にまで十分に上昇させることが可能になり、上記触媒予備加熱動作期間中に供給される燃料を効果的に第1の触媒の温度上昇に寄与させることができる。その結果、触媒予備加熱動作に使用する燃料量を比較的少なく抑えることができて、燃料消費量の大幅な増大を招くことがなくなる。
また、減筒運転実行条件が成立して触媒予備加熱動作が開始されると、その初期時には、点火栓の点火タイミングの遅角量は比較的小さく、混合気の燃焼により発生するエネルギの大部分は内燃機関のトルク発生に寄与する運動エネルギであり、その一部が触媒予備加熱(第1の触媒の加熱)に寄与する熱エネルギとして使用される。その後、点火栓の点火タイミングの遅角量が次第に大きくなっていくに従って、混合気の燃焼により発生するエネルギのうち、内燃機関のトルク発生に寄与する運動エネルギの量は次第に小さくなっていくのに対し、触媒予備加熱に寄与する熱エネルギの量は次第に大きくなっていく。そして、上記第1の触媒の温度が上記予備加熱必要温度以上に達すると、触媒予備加熱動作は終了し、減筒運転が開始される。このように、全気筒運転から減筒運転に切り換わる際、触媒予備加熱動作中に、内燃機関のトルクが徐々に減少していくことになるので、この運転切り換え時に急激なトルク変動が生じることはなくなり、運転切り換え時の振動(ショック)を殆ど生じさせないようにすることができる。つまり、車両の乗員に、全気筒運転から減筒運転に切り換わったことを意識させることなしに運転切り換えを行うことができ、ドライバビリティの大幅な改善を図ることができる。このように、本解決手段によれば、運転切り換え時の振動を殆ど生じさせることのない、これまでにない全気筒運転から減筒運転への切り換え動作の実現と、減筒運転の継続時間を長く得ることによる燃料消費率の改善効果及び燃料消費量の削減効果とを両立することができる。
上記減筒運転から全気筒運転に切り換えるための構成としては以下のものが挙げられる。つまり、上記減筒運転中に上記第1の触媒の温度が所定の全気筒運転復帰温度まで低下した場合、減筒運転から全気筒運転に切り換えるようにしている。そして、上記全気筒運転復帰温度としては、上記第1の触媒の活性温度下限値よりも高い温度であり、且つ上記予備加熱必要温度よりも低い温度に設定している(第1の触媒の活性温度下限値<全気筒運転復帰温度<予備加熱必要温度)。
このように各温度を設定すること(予備加熱必要温度を全気筒運転復帰温度よりも高く設定していること、及び、全気筒運転復帰温度を第1の触媒の活性温度下限値よりも高く設定していること)により、減筒運転中に上記触媒温度が活性温度下限値付近に低下するまでの時間を長期化と、減筒運転から全気筒運転に切り換えられた場合の排気エミッションの悪化防止とを両立することが可能になる。
本発明では、減筒運転の開始時に、その減筒運転において非稼働状態となる気筒に繋がる排気系の触媒温度を予め高く設定しておく制御を実行し、その後、減筒運転を開始するようにしている。このため、減筒運転中に上記触媒温度が活性温度下限値付近に低下するまでの時間を長期化でき、その結果、減筒運転の継続時間を長く得ることができ、燃料消費率の改善効果及び燃料消費量の削減効果を十分に奏することができる。
実施形態に係るV型エンジンをクランクシャフトの軸心に沿った方向から見たエンジン内部の概略構成を示す図である。 エンジン、吸排気系及び制御系の概略を示すシステム構成図である。 エンジンの制御系を示すブロック図である。 運転切り換え制御の動作手順を示すフローチャート図である。
以下、本発明の実施の形態を図面に基づいて説明する。本実施形態は、内燃機関としてV型6気筒ガソリンエンジンを搭載した車両に本発明を適用した場合について説明する。
本実施形態の特徴とする制御である減筒運転への切り換え時の制御について説明する前に、エンジン全体構成及び制御ブロックについて説明する。
−エンジン全体構成の説明−
図1は、本実施形態に係るV型エンジンEをクランクシャフトCの軸心に沿った方向から見たエンジン内部の概略構成を示す図である。また、図2は、このエンジンE、吸排気系及び制御系の概略を示すシステム構成図である。
これら図に示すように、V型エンジンEは、シリンダブロック1の上部にV型に突出した一対のバンク2L,2Rを有している。各バンク2L,2Rは、シリンダブロック1の上端部に設置されたシリンダヘッド3L,3Rと、その上端に取り付けられたヘッドカバー4L,4Rとをそれぞれ備えている。上記シリンダブロック1には複数のシリンダ5L,5R,…(例えば各バンク2L,2Rに3個ずつ)が所定の挟み角(例えば90°)をもって配設されており、これらシリンダ5L,5R,…の内部にピストン51L,51R,…が往復移動可能に収容されている。また、各ピストン51L,51R,…はコネクティングロッド52L,52R,…を介してクランクシャフトCに動力伝達可能に連結されている。更に、シリンダブロック1の下側にはクランクケース6が取り付けられており、上記シリンダブロック1内の下部からクランクケース6の内部に亘る空間がクランク室61となっている。また、このクランクケース6の更に下側にはオイル溜まり部となるオイルパン62が配設されている。
また、上記シリンダヘッド3L,3Rには吸気ポート31L,31Rを開閉するための吸気バルブ32L,32R及び排気ポート33L,33Rを開閉するための排気バルブ34L,34Rがそれぞれ組み付けられており、シリンダヘッド3L,3Rとヘッドカバー4L,4Rとの間に形成されているカム室41L,41Rに配置されたカムシャフト35L,35R,36L,36Rの回転によって各バルブ32L,32R,34L,34Rの開閉動作が行われるようになっている。
また、本実施形態に係るエンジンEのシリンダヘッド3L,3Rは、分割構造となっている。詳しくは、シリンダブロック1の上面に取り付けられるシリンダヘッド本体37L,37Rと、このシリンダヘッド本体37L,37Rの上側に組み付けられるカムシャフトハウジング38L,38Rとによりシリンダヘッド3L,3Rが構成されている。
一方、上記各バンク2L,2Rの内側(バンク間側)の上部には各バンク2L,2Rに対応する吸気マニホールド7L,7Rが配設されており、各吸気マニホールド7L,7Rの下流端が各吸気ポート31L,31R,…に連通している。また、この吸気マニホールド7L,7Rは、各バンク共通のサージタンク71(図2参照)及びスロットルバルブ72を備えた吸気管73に連通されており、この吸気管73の上流側にはエアクリーナ74が設けられている。これにより、上記エアクリーナ74から吸気管73内に導入された空気は、サージタンク71を通じて各吸気マニホールド7L,7Rに導入される。
上記シリンダヘッド3L,3Rの吸気ポート31L,31Rにはインジェクタ75L,75Rがそれぞれ設けられており、このインジェクタ75L,75Rからの燃料噴射時にあっては、吸気マニホールド7L,7R内に導入された空気と、このインジェクタ75L,75Rから噴射された燃料とが混合されて混合気となり、吸気バルブ32L,32Rの開弁に伴って燃焼室76L,76Rへ導入されることになる。
燃焼室76L,76Rの頂部には点火プラグ77L,77Rが配設されている。上記燃焼室76L,76Rにおいて、点火プラグ77L,77Rの点火に伴う混合気の燃焼圧力はピストン51L,51Rに伝えられ、ピストン51L,51Rを往復運動させる。このピストン51L,51Rの往復運動はコネクティングロッド52L,52Rを介してクランクシャフトCに伝えられ、回転運動に変換されてエンジンEの出力として取り出されることになる。また、上記各カムシャフト35L,35R,36L,36Rは、クランクシャフトCから取り出される動力がタイミングチェーンによって伝達されて回転駆動され、この回転によって上記各バルブ32L,32R,34L,34Rの開閉動作を行わせる。
上記燃焼後の混合気は排気ガスとなり、排気バルブ34L,34Rの開弁に伴い排気マニホールド8L,8Rに排出される。排気マニホールド8L,8Rには排気管81L,81Rがそれぞれ接続され、更に、排気管81L,81Rには三元触媒等を内蔵した触媒コンバータ82L,82Rが取り付けられている。この触媒コンバータ82L,82Rを排気ガスが通過することにより、排気ガス中に含まれる炭化水素(HC)、一酸化炭素(CO)、及び酸化窒素成分(NOx)が浄化されるようになっている。また、上記排気管81L,81Rの下流端側は合流されてマフラ83に接続されている。
−制御ブロックの説明−
以上のエンジンEの運転状態はエンジンECU(Electronic Control Unit)9によって制御される。このエンジンECU9は、図3に示すように、CPU(Central Processing Unit)91、ROM(Read Only Memory)92、RAM(Random Access Memory)93及びバックアップRAM94などを備えている。
ROM92は、各種制御プログラムや、それら各種制御プログラムを実行する際に参照されるマップ等が記憶されている。CPU91は、ROM92に記憶された各種制御プログラムやマップに基づいて演算処理を実行する。
RAM93は、CPU91での演算結果や各センサから入力されたデータ等を一時的に記憶するメモリであり、バックアップRAM94は、エンジンEの停止時にその保存すべきデータ等を記憶する不揮発性のメモリである。これらROM92、CPU91、RAM93及びバックアップRAM94は、バス97を介して互いに接続されるとともに、外部入力回路95及び外部出力回路96と接続されている。
外部入力回路95には、水温センサ101、エアフローメータ102、吸気温センサ103、A/Fセンサ104a、O2センサ104b、スロットルポジションセンサ105、クランク角センサ106、カム角センサ107、ノックセンサ108、吸気圧センサ109、アクセル開度センサ110等が接続されている。一方、外部出力回路96には、上記インジェクタ75L,75R、イグナイタ111及び、スロットルバルブ72を駆動するスロットルモータ72a等が接続されている。
上記水温センサ101は、シリンダブロック1に形成されているウォータジャケット11内を流れる冷却水の温度を検出し、その冷却水温信号をエンジンECU9に送信する。
エアフローメータ102は、吸入空気量を検出し、その吸入空気量信号をエンジンECU9に送信する。
吸気温センサ103は、上記エアクリーナ74の下流側に配設され、吸入空気温度を検出して、その吸気温信号をエンジンECU9に送信する。
A/Fセンサ104aは、各触媒コンバータ82L,82Rの上流側に配設され、例えば限界電流式の酸素濃度センサが適用されている。そして、このA/Fセンサ104aは、広い空燃比領域に亘って空燃比に対応した出力電圧を発生し、その電圧信号をエンジンECU9に送信する。
2センサ104bは、各触媒コンバータ82L,82Rの下流側に配設され、例えば起電力式(濃淡電池式)の酸素濃度センサが適用されている。そして、このO2センサ104bは、排気中の空燃比が理論空燃比にあるか否かを判定しその判定信号をエンジンECU9に送信する。
スロットルポジションセンサ105は、スロットルバルブ72の開度を検出するものであって、そのスロットル開度検出信号をエンジンECU9に送信する。
クランク角センサ106は、クランクシャフトCの近傍に配設されており、クランクシャフトCの回転角(クランク角CA)及び回転速度(エンジン回転速度NE)を検出するものである。具体的に、このクランク角センサ106は、所定のクランク角(例えば30°)毎にパルス信号を出力する。このクランク角センサ106によるクランク角の検出手法の一例としては、クランクシャフトCと回転一体のロータ(NEロータ)106aの外周面の30°おきに外歯を形成しておき、この外歯と対面して電磁ピックアップで成る上記クランク角センサ106を配置する。そして、クランクシャフトCの回転に伴って外歯がクランク角センサ106の近傍を通過した際に、このクランク角センサ106が出力パルスを発生するようになっている。尚、このNEロータ106aとしては、外周面に形成される外歯が10°おきに形成されたものが適用される場合もある。この場合、エンジンECU9内で分周して30°CA毎の出力パルスを発生する。
カム角センサ107は、吸気カムシャフト35L,35Rの近傍に配設されており、例えば第1番気筒の圧縮上死点(TDC)に対応してパルス信号を出力することにより気筒判別センサとして使用される。つまり、このカム角センサ107は、吸気カムシャフト35L,35Rの1回転毎にパルス信号を出力する。このカム角センサ107によるカム角の検出手法の一例としては、吸気カムシャフト35L,35Rと回転一体のロータの外周面の1箇所に外歯を形成しておき、この外歯と対面して電磁ピックアップで成る上記カム角センサ107を配置し、吸気カムシャフト35L,35Rの回転に伴って外歯がカム角センサ107の近傍を通過した際に、このカム角センサ107が出力パルスを発生するようになっている。上記ロータはクランクシャフトCの1/2の回転速度で回転するため、クランクシャフトCが720°回転する毎に出力パルスを発生する。言い換えると、ある特定の気筒が同一行程(例えば第1番気筒が圧縮上死点に達した時点)となる度に出力パルスを発生する構成である。
ノックセンサ108は、各バンク2L,2Rそれぞれに配設され、シリンダブロック1に伝わるエンジンの振動を圧電素子式(ピエゾ素子式)または電磁式(マグネット、コイル)などによって検出する振動式センサであり、シリンダブロック1の振動の大きさに応じた出力信号をエンジンECU9に送信する。
吸気圧センサ109は、サージタンク71に取り付けられており、吸気管73内の圧力(吸気管内圧力)を検出し、その吸気圧信号をエンジンECU9に送信する。
アクセル開度センサ110は、アクセルペダルの踏み込み量(アクセル開度)に応じた検出信号を出力するものであり、単位時間あたりのアクセル開度の変化量を認識することによってアクセルの操作速度を認識できるようになっている。
そして、エンジンECU9は、上記各種センサ101〜110の出力信号に基づいて、イグナイタ111、インジェクタ75L,75R、スロットルモータ72a等の各部を制御することにより、点火時期制御等を含むエンジンEの各種制御を実行する。
その一例として、イグナイタ111,111による点火プラグ77L,77Rの点火タイミングの基本制御としては、点火タイミングがMBT(Minimum Spark Advance for Best Torque:最適点火時期)に近付くように点火タイミングの進角補正を行っていきながら、ノックセンサ108,108によってノッキングが検知された場合には、点火タイミングの遅角補正を行ってノッキングを解消するといった制御が行われる。
また、インジェクタ75L,75Rの燃料噴射の制御としては、エンジン負荷やエンジン回転数等に基づいて目標空燃比を算出し、エアフローメータ102によって検出された吸入空気量に基づき、上記目標空燃比が得られるように燃料噴射量の制御(インジェクタ75L,75Rの開弁時間の制御)が行われる。この際、上記A/Fセンサ104a及びO2センサ104bの各出力に基づいて排気ガス中の酸素濃度を算出し、その算出した酸素濃度から得られる実際の空燃比を目標空燃比(例えば理論空燃比)に一致させるように、インジェクタ75L,75Rによる燃料噴射量を制御するといった空燃比フィードバック制御が行われる。
また、スロットルモータ72aの駆動制御としては、運転者により操作されるアクセルペダルの開度等に基づき、要求されたエンジン出力を得るための吸入空気量となるスロットルバルブ72の開度が得られるようにスロットルモータ72aの駆動量が制御される。
また、エンジンECU9は、後述する減筒運転制御も実行するようになっている。以下、この減筒運転について説明する。
−減筒運転−
本実施形態に係るV型エンジンEは、左側バンク2L及び右側バンク2Rのうち一方のバンク(例えば左側バンク2L)に属する気筒群(本実施形態では3気筒)の稼働を休止する減筒運転が可能となっている。つまり、エンジンEのアイドリング運転時等のように、余剰出力のある状態では、各気筒に掛かる負荷が小さいため、吸排気損失が大きくなり、燃焼効率の悪化が懸念される。このため、無負荷時や軽負荷時には、一方のバンクの気筒への燃料供給を遮断して、これら気筒を休止させる減筒運転を行い、燃料が供給される稼動気筒(他方のバンクの気筒)の負荷を高めて運転効率を上げることにより、燃料消費率の改善を図るようにしている。
この減筒運転の具体的な動作としては、上記クランク角センサ106からの出力信号に基づいて算出されるエンジン回転数、スロットルポジションセンサ105により検出されるスロットルバルブ72の開度等に基づいて、エンジンEがアイドリング運転等の無負荷状態や軽負荷状態にあるか否かを判定し、無負荷状態や軽負荷状態にある際には減筒運転実行条件が成立したと判定するようにしている。
また、本実施形態では、減筒運転の実行時には、常に左側バンク2Lの3気筒について稼働を休止するようにしている。その理由は、図示しないが、燃料タンク内で発生した蒸発燃料が右側バンク2Rの吸気マニホールド7Rに導入される構成となっており、この蒸発燃料を処理する必要があることから、この右側バンク2Rの3気筒については稼働を継続させるためである。
尚、減筒運転としては、これに限らず、減筒運転への移行時に、前回の減筒運転時に稼働していたバンクを休止バンクとし、前回の減筒運転時に休止していたバンクを稼働バンクとして運転するようにしてもよい。つまり、減筒運転が開始される度に、休止させるバンクを交互に切り換えることで、各気筒の累積稼働時間の均一化を図り、エンジンEの長寿命化を図るものである。
また、本実施形態においては、減筒運転中は、休止気筒の吸気バルブ32L及び排気バルブ34Lについては、全気筒運転中と同様に開閉動作を行うようにしている。これにより、減筒運転を実行しない従来のエンジンからの大きな設計変更を必要とすることなしに、本実施形態に係るエンジンEを構築することができるようにしている。
尚、減筒運転中は、休止気筒の吸気バルブ32L及び排気バルブ34Lについては全閉状態としてもよい。これによれば、休止気筒でのピストン51Lの往復動によるポンピングロスを低減でき、エンジンEの効率の向上を図ることができる。
−運転切り換え制御−
次に、全気筒運転と減筒運転との間で運転を切り換える本実施形態の特徴とする制御動作について説明する。
具体的には、上述した減筒運転実行条件が成立した場合に、左側バンク2Lの3気筒、つまり減筒運転時に稼働が休止される気筒に繋がる排気管(第1の排気通路を構成する排気管)81Lに設けられた触媒コンバータ82Lの温度を推定し、この温度が所定の予備加熱必要温度未満であった場合には、減筒運転の実行に先立って、この触媒コンバータ82Lの温度を上昇させるための触媒予備加熱動作を実行するようにしている(触媒予備加熱動作実行手段による触媒予備加熱動作の実行)。
尚、以下の説明では、減筒運転時に非稼働となる左側バンク2Lの3気筒に繋がる排気管81Lに設けられた触媒コンバータ82Lを第1触媒コンバータ(第1の触媒)82Lと呼び、減筒運転時であっても稼働を継続する右側バンク2Rの3気筒に繋がる排気管(第2の排気通路を構成する排気管)81Rに設けられた触媒コンバータ82Rを第2触媒コンバータ(第2の触媒)82Rと呼ぶこととする。
図4は、全気筒運転と減筒運転との間で運転を切り換える運転切り換え制御の手順を示すフローチャートである。この図4に示すルーチンは、所定時間毎、または、クランクシャフトCの所定角度回転毎に実行される。
先ず、ステップST1において、減筒運転実行条件が成立しているか否かを判定する。この減筒運転実行条件としては、上述した如く、エンジンEがアイドリング運転等の無負荷状態や軽負荷状態にあるか否か、その他、上記水温センサ101によって検出される冷却水の温度が所定温度(例えば50℃)以上であるか否か等が挙げられる。尚、本実施形態では、このステップST1で判定される減筒運転実行条件には、第1触媒コンバータ82Lの温度条件を含めないこととしている。つまり、第1触媒コンバータ82Lの温度に関わりなく、他の減筒運転実行条件が成立している場合には、このステップST1ではYES判定されることになる。
そして、上記減筒運転実行条件が成立していない場合には、ステップST1でNO判定され、ステップST7に移って全気筒運転を継続する。また、減筒運転実行中に、ステップST1でNO判定された場合には、全気筒運転が復帰されることになる。
一方、上記減筒運転実行条件が成立している場合には、ステップST1でYES判定され、ステップST2に移る。このステップST2では、現在のエンジンEの運転状態が全気筒運転中であるか否かを判定する。つまり、それまで減筒運転実行条件が成立していなかったために全気筒運転が行われていた状態から、減筒運転実行条件が成立した状態となったか否か、または、後述する触媒予備加熱動作の実行中であって未だ減筒運転に移行されておらず、全気筒運転が行われている状態であるか否かを判定する。
そして、エンジンEが全気筒運転中であり、ステップST2でYES判定された場合には、ステップST3に移り、上記第1触媒コンバータ82Lの温度が所定の予備加熱必要温度(A)未満であるか否かを判定する。つまり、そのまま減筒運転に移行してしまうと、極めて短時間のうちに第1触媒コンバータ82Lの温度が活性温度下限値付近まで低下してしまい早期に全気筒運転に切り換えねばならなくなる状況であるか否かを判定する。
尚、この予備加熱必要温度(A)としては、第1触媒コンバータ82Lの活性温度下限値(例えば450℃)に対して150℃程度高い値として設定される。これら値は、これに限定されるものではない。
また、この第1触媒コンバータ82Lの温度は、現在のエンジン運転状態から推定される。具体的には、エンジン回転数とエンジン負荷(スロットルバルブ開度等)とから第1触媒コンバータ82Lの温度を推定する触媒温度推定マップを上記ROM92に記憶させておき、この触媒温度推定マップに、現在のエンジン回転数およびエンジン負荷を当て嵌めることで第1触媒コンバータ82Lの温度を推定する(触媒温度認識手段による触媒温度の推定動作)。また、第1触媒コンバータ82Lの温度推定動作としては、排気ガス温度から推定するようにしてもよい。例えば、第1触媒コンバータ82Lの上下流に排気ガス温度センサをそれぞれ備えさせ、これら排気ガス温度センサで検出された排気ガス温度に基づいて第1触媒コンバータ82Lの温度を推定するものである。また、第1触媒コンバータ82Lの温度をサーミスタなどの手段を用いて直接的に検出するようにしてもよい(触媒温度認識手段による触媒温度の検出動作)。
上記第1触媒コンバータ82Lの温度が上記予備加熱必要温度以上である場合(ステップST3でNO判定された場合)には、ステップST6に移り、そのまま減筒運転に移行しても、第1触媒コンバータ82Lの温度が活性温度下限値付近まで低下するまでには十分な時間を確保することができるとして、減筒運転を実行する。つまり、左側バンク2Lの各気筒への燃料噴射を停止して、これら気筒の稼働を休止させる。
一方、上記第1触媒コンバータ82Lの温度が上記予備加熱必要温度未満であり、ステップST3でYES判定された場合には、ステップST4に移って触媒予備加熱動作を実行する。この触媒予備加熱動作として、具体的には、全気筒運転を継続したまま、つまり、左側バンク2Lの各気筒への燃料噴射を継続したままで、これら気筒に備えられている点火プラグ77Lの点火タイミングを遅角させる。
より具体的には、上記点火タイミングの遅角量を徐々に大きくしていく。例えばクランクシャフトCの10回転毎に点火タイミングを1°CA(クランク角度で1°)ずつ遅角側に移行させていく。この値はこれに限定されるものではなく、実験やシミュレーション等により予め求められている。
これにより、これら気筒(減筒運転に移行した際に非稼働となる気筒:休止予定気筒)の燃焼行程での燃焼開始タイミングが遅角されると共にその燃焼が緩慢になり、混合気の一部が排気管81L内で燃焼する状態となる。このため、第1触媒コンバータ82Lが備えられている排気系内のガス温度を大幅に上昇させることで、この第1触媒コンバータ82Lの温度を急速に上昇させることができる。
また、上記点火タイミングの遅角量を徐々に大きくしていくことで、これら気筒内の混合気の燃焼により発生するエネルギのうち、エンジンEのトルク発生に寄与する運動エネルギの量を徐々に減少させていくと共に第1触媒コンバータ82Lの予備加熱に寄与する熱エネルギの量を徐々に増大させていくことになる。つまり、減筒運転実行条件が成立して触媒予備加熱動作が開始されると、その初期時には、点火プラグ77Lの点火タイミングの遅角量は比較的小さく、混合気の燃焼により発生するエネルギの大部分はエンジンEのトルク発生に寄与する運動エネルギとなり、その一部が第1触媒コンバータ82Lの予備加熱に寄与する熱エネルギとして使用される。その後、点火プラグ77Lの点火タイミングの遅角量が次第に大きくなっていくに従って、混合気の燃焼により発生するエネルギのうち、エンジンEのトルク発生に寄与する運動エネルギの量は次第に小さくなっていくのに対し、第1触媒コンバータ82Lの予備加熱に寄与する熱エネルギの量は次第に大きくなっていくことになる。即ち、この触媒予備加熱動作では、第1触媒コンバータ82Lの予備加熱能力を徐々に高めながら、エンジンEのトルクを徐々に小さくするような動作となる。
この場合、徐々に小さくなるように変化されるエンジンEのトルクの下限値(触媒予備加熱動作中におけるエンジンEのトルクの下限値)としては、後述する全気筒運転から減筒運転への移行時のエンジンEのトルク(無負荷状態や軽負荷状態で3気筒のみが稼働している場合のエンジンEのトルク)に略一致するように、上記点火タイミングの遅角最大量は規定されている。
このような触媒予備加熱動作が行われ、減筒運転実行条件が成立している間は、ステップST1〜ステップST4の動作が繰り返される。そして、減筒運転実行条件が成立している間に、第1触媒コンバータ82Lの温度が上記予備加熱必要温度以上になると、ステップST3でNO判定され、ステップST6に移る。このステップST6では、第1触媒コンバータ82Lの温度が上記予備加熱必要温度以上に達したことで、触媒予備加熱動作が終了し、減筒運転が実行される。
この際、上述した如く、触媒予備加熱動作中にはエンジンEのトルクが徐々に小さくされていたため、全気筒運転から減筒運転への運転切り換え時の急激なトルク変動が解消されることになり、運転切り換え時の振動(ショック)を殆ど生じさせないようにすることができる。つまり、車両の乗員に、全気筒運転から減筒運転に切り換わったことを意識させることなしに運転切り換えを行うことができ、ドライバビリティの大幅な改善を図ることができる。
以上のようにして、減筒運転が開始された状態で、エンジン負荷が高くなるなどして減筒運転実行条件が非成立となった場合には、ステップST1でNO判定され、ステップST7に移って全気筒運転を実行する。つまり、減筒運転実行条件が非成立となったことに伴って減筒運転から全気筒運転に切り換える。
また、減筒運転が実行されている状態では、ステップST2でNO判定され、ステップST5に移って、上記第1触媒コンバータ82Lの温度が所定の全気筒運転復帰温度(B)未満であるか否かを判定する。つまり、第1触媒コンバータ82Lの温度が活性温度下限値付近まで低下したか否かが判定される。
尚、この全気筒運転復帰温度(B)としては、第1触媒コンバータ82Lの活性温度下限値(例えば450℃)に対して50℃程度高い値として設定される。これら値は、これに限定されるものではない。
上記第1触媒コンバータ82Lの温度が上記全気筒運転復帰温度以上である場合(ステップST5でNO判定された場合)には、そのまま減筒運転を継続する。
一方、上記第1触媒コンバータ82Lの温度が上記全気筒運転復帰温度未満となり、ステップST5でYES判定された場合には、全気筒運転復帰時の排気エミッションの悪化を回避するために、ステップST7に移って全気筒運転を実行する。
以上説明したように、本実施形態では、全気筒運転の実行中に減筒運転実行条件が成立した際、上記第1触媒コンバータ82Lの温度が予備加熱必要温度未満であった場合には、上記減筒運転実行条件の成立後、直ちに減筒運転を開始させるのではなく、先ず、上記触媒予備加熱動作を実行して第1触媒コンバータ82Lの温度を予備加熱必要温度以上に上昇させる。そして、この触媒予備加熱動作の実行によって第1触媒コンバータ82Lの温度が予備加熱必要温度以上まで上昇した後に、減筒運転を開始するようにしている。このため、第1触媒コンバータ82Lの温度が比較的高い状態で減筒運転が開始されることになるので、この減筒運転中に第1触媒コンバータ82Lの温度が次第に低下していったとしても、その温度が、全気筒運転の復帰を必要とする温度(上記全気筒運転復帰温度)まで低下する時間を長期化できる。その結果、減筒運転の継続時間を長く得ることができ、減筒運転が実行可能なエンジンシステムのメリットを十分に活用することが可能になり、燃料消費率の改善効果及び燃料消費量の削減効果を十分に奏することができる。
また、本実施形態では、触媒予備加熱動作中にはエンジンEのトルクが徐々に小さくされているため、全気筒運転から減筒運転への運転切り換え時の振動を殆ど生じさせることのない、これまでにない全気筒運転から減筒運転への切り換え動作を実現することもできる。
(触媒予備加熱動作の変形例)
次に、触媒予備加熱動作の変形例について説明する。上述した実施形態では、触媒予備加熱動作として、減筒運転において非稼働状態となる気筒(休止予定気筒)の点火タイミングを遅角させるようにしていた。それに代えて、以下に述べるような触媒予備加熱動作を実行することも本発明の技術的思想の範疇である。
先ず、減筒運転において非稼働状態となる気筒(休止予定気筒)に対しては点火プラグ77Lの点火を実行しないようにするものである。つまり、触媒予備加熱動作中にあっては、休止予定気筒に対して燃料供給のみを行って点火プラグ77Lの点火を実行しないようにする。
これによれば、上記休止予定気筒内の混合気の大部分が未燃ガスとして排気管81Lに送り込まれ、第1触媒コンバータ82L内の熱エネルギを受けて燃焼(酸化反応)することになる。この場合にも、上述した実施形態での触媒予備加熱動作と同様に、短時間のうちに、第1触媒コンバータ82Lの温度を上記予備加熱必要温度以上にまで上昇させることが可能になる。また、この場合、上記触媒予備加熱動作期間中に供給される燃料の略全量を第1触媒コンバータ82Lの温度上昇に寄与させることが可能になるので、触媒予備加熱動作に使用する燃料量を必要最小限に抑えることができる。
尚、このように点火プラグ77Lを非点火とする触媒予備加熱動作を実行する場合、第1触媒コンバータ82Lの内部に、ある程度の熱エネルギが存在している必要があるので、この第1触媒コンバータ82Lの温度を検知または推定しておき、この第1触媒コンバータ82Lの内部に、混合気を燃焼させるだけの十分な熱エネルギが存在していることを確認した状態で上記動作が実施されることになる。つまり、上記予備加熱必要温度(A)としては、第1触媒コンバータ82Lの内部での混合気の燃焼が可能となる温度に設定されることになる。
また、触媒予備加熱動作の他の変形例として、エンジンEを筒内直噴型ガソリンエンジンとした場合に、減筒運転において非稼働状態となる気筒(休止予定気筒)に燃料を供給するインジェクタ75Lからの燃料噴射タイミングを制御することも挙げられる。
つまり、このインジェクタ75Lからの燃料噴射タイミングを遅角させる。例えば、点火プラグ77Lの点火タイミングと略同タイミングまで燃料噴射タイミングを遅角させた場合には、休止予定気筒内ので燃焼開始タイミングが遅角側に移行することになる。また、点火プラグ77Lの点火タイミングよりも遅角側にまで燃料噴射タイミングを遅角させた場合には、気筒内では燃焼が行われないことになる。これら何れにおいても排気管81L内や第1触媒コンバータ82L内で混合気が燃焼することになるので、第1触媒コンバータ82Lの温度を急速に上昇させることが可能になり、上述した実施形態の場合と同様の効果を奏することができる。
また、触媒予備加熱動作の開始後、上記燃料噴射タイミングの遅角量を徐々に大きくしていくようにしてもよい。例えばクランクシャフトCの10回転毎に燃料噴射タイミングを1°CAずつ遅角側に移行させていく。この値はこれに限定されるものではなく、実験やシミュレーション等により予め求められている。
−他の実施形態−
以上説明した実施形態では、自動車用V型エンジンEに本発明を適用した場合について説明した。本発明はこれに限らず、自動車用水平対向型エンジン、自動車用直列型エンジン等に対しても適用可能である。また、ガソリンエンジンに限らずディーゼルエンジンにも適用可能である。ディーゼルエンジンに適用する場合、この種のエンジンは一般的に点火プラグを備えていないので、上述した変形例で述べたように、インジェクタからの燃料噴射タイミングを遅角側に制御することで触媒予備加熱動作を実行することになる。また、本発明は、エンジンの気筒数、燃料噴射方式、その他、エンジンEの仕様は特に限定されるものではない。
また、上記実施形態では、触媒予備加熱動作として、休止予定気筒の点火タイミングを徐々に遅角させるようにしていた。本発明はこれに限らず、触媒予備加熱動作の開始と同時に休止予定気筒の点火タイミングを大きく遅角側に移行させ、その点火タイミングを維持(第1触媒コンバータ82Lの温度が予備加熱必要温度に達するまで維持)するようにしてもよい。
本発明は、自動車に搭載され減筒運転が実行可能とされたエンジンにおいて、全気筒運転から減筒運転に切り換える際の制御に適用することが可能である。
77L 点火プラグ(点火栓)
81L 排気管(第1の排気通路)
81R 排気管(第2の排気通路)
82L 第1触媒コンバータ(第1の触媒)
82R 第2触媒コンバータ(第2の触媒)
E エンジン(多気筒内燃機関)

Claims (2)

  1. 複数気筒のうちの一部の気筒に繋がる第1の排気通路に設けられた第1の触媒と、他の気筒に繋がる第2の排気通路に設けられた第2の触媒とを備えると共に、所定の減筒運転実行条件の成立に伴って上記一部の気筒を非稼働にする減筒運転が実行可能な多気筒内燃機関の運転制御装置において、
    上記第1の触媒の温度を検出または推定する触媒温度認識手段と、
    上記減筒運転実行条件が成立した際、上記触媒温度認識手段によって検出または推定された第1の触媒の温度が、この第1の触媒の活性温度下限値に対して所定値だけ高い値として設定された予備加熱必要温度未満である場合に、上記減筒運転の実行に先立って上記第1の触媒の温度を上記予備加熱必要温度以上に上昇させるための触媒予備加熱動作を実行する触媒予備加熱動作実行手段とを備えており、
    上記触媒予備加熱動作は、上記減筒運転の実行に先立って、その減筒運転時に非稼働となる上記一部の気筒の点火栓の点火タイミングを遅角させるものであって、その点火タイミングの遅角量を徐々に大きくしていくことで、混合気の燃焼により発生するエネルギのうち、内燃機関のトルク発生に寄与する運動エネルギの量を徐々に減少させていくと共に触媒予備加熱に寄与する熱エネルギの量を徐々に増大させていくものであり、
    上記減筒運転実行条件が成立している間に、上記触媒予備加熱動作により第1の触媒の温度が上記予備加熱必要温度以上にまで上昇すると、上記触媒予備加熱動作を終了して減筒運転が開始される構成となっていることを特徴とする多気筒内燃機関の運転制御装置。
  2. 上記請求項1記載の多気筒内燃機関の運転制御装置において、
    上記減筒運転中に上記第1の触媒の温度が所定の全気筒運転復帰温度まで低下した場合、減筒運転から全気筒運転に切り換えるようになっており、
    上記全気筒運転復帰温度は、上記第1の触媒の活性温度下限値よりも高い温度であり、且つ上記予備加熱必要温度よりも低い温度に設定されていることを特徴とする多気筒内燃機関の運転制御装置。
JP2009019653A 2009-01-30 2009-01-30 多気筒内燃機関の運転制御装置 Expired - Fee Related JP4725653B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2009019653A JP4725653B2 (ja) 2009-01-30 2009-01-30 多気筒内燃機関の運転制御装置
DE112010000766T DE112010000766T5 (de) 2009-01-30 2010-01-27 Betriebssteuerungsvorrichtung und Betriebssteuerungsverfahren für einenMehrzylinderverbrennungsmotor
PCT/IB2010/000143 WO2010086710A1 (en) 2009-01-30 2010-01-27 Operation control device and operation control method for multi-cylinder internal combustion engine
US13/146,349 US20110283688A1 (en) 2009-01-30 2010-01-27 Operation control device and operation control method for multi-cylinder internal combustion engine
CN201080005926XA CN102301114A (zh) 2009-01-30 2010-01-27 用于多汽缸内燃机的运转控制设备和运转控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009019653A JP4725653B2 (ja) 2009-01-30 2009-01-30 多気筒内燃機関の運転制御装置

Publications (2)

Publication Number Publication Date
JP2010174789A JP2010174789A (ja) 2010-08-12
JP4725653B2 true JP4725653B2 (ja) 2011-07-13

Family

ID=42109891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009019653A Expired - Fee Related JP4725653B2 (ja) 2009-01-30 2009-01-30 多気筒内燃機関の運転制御装置

Country Status (5)

Country Link
US (1) US20110283688A1 (ja)
JP (1) JP4725653B2 (ja)
CN (1) CN102301114A (ja)
DE (1) DE112010000766T5 (ja)
WO (1) WO2010086710A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5854126B2 (ja) * 2012-03-22 2016-02-09 トヨタ自動車株式会社 内燃機関の制御装置
US8973354B2 (en) * 2012-03-28 2015-03-10 Honda Motor Co., Ltd. Exhaust system for variable cylinder engine
US9043122B2 (en) * 2012-06-29 2015-05-26 Ford Global Technologies, Llc Method and system for pre-ignition control
US9581126B2 (en) * 2013-12-17 2017-02-28 Ford Global Technologies, Llc Engine control for limiting catalyst temperature in normal and economy modes
DE102015100135B4 (de) 2014-01-16 2019-07-11 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Verfahren zum Verhindern einer DFCO
JP6268524B2 (ja) * 2014-02-28 2018-01-31 スズキ株式会社 触媒温度推定装置
DE102015008722A1 (de) * 2015-07-04 2017-01-05 Man Truck & Bus Ag Innenmotorischer Heizbetrieb durch Lasterhöhung
US11421614B1 (en) 2021-07-28 2022-08-23 Ford Global Technologies, Llc Methods and systems for increasing catalyst temperature
US11873774B2 (en) * 2021-10-27 2024-01-16 Ford Global Technologies, Llc Method and system for reactivating a catalyst
JP2023183172A (ja) * 2022-06-15 2023-12-27 トヨタ自動車株式会社 車両の制御装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005351134A (ja) * 2004-06-09 2005-12-22 Toyota Motor Corp 内燃機関の制御装置及びハイブリッドシステムの制御装置
JP2007177643A (ja) * 2005-12-27 2007-07-12 Toyota Motor Corp 内燃機関の制御装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4334557A1 (de) * 1993-10-11 1995-04-13 Bayerische Motoren Werke Ag Vorrichtung zur Leerlaufregelung einer Kraftfahrzeug-Brennkraftmaschine
JP2001182601A (ja) 1999-12-24 2001-07-06 Denso Corp 排ガス浄化用触媒の早期暖機制御装置
US6560959B2 (en) * 1999-12-06 2003-05-13 Denso Corporation Exhaust gas purification apparatus of internal combustion engine
DE19959610A1 (de) * 1999-12-10 2001-06-13 Volkswagen Ag Verfahren zum Aufheizen eines Katalysators insbesondere im Leerlaufbetrieb eines magerlauffähigen Verbrennungsmotors eines Fahrzeugs
DE19963929A1 (de) * 1999-12-31 2001-07-12 Bosch Gmbh Robert Verfahren zum Betreiben einer Brennkraftmaschine insbesondere eines Kraftfahrzeugs
JP2001227369A (ja) 2000-02-17 2001-08-24 Honda Motor Co Ltd 気筒休止内燃機関の制御装置
US6415601B1 (en) * 2000-12-07 2002-07-09 Ford Global Technologies, Inc. Temperature management of catalyst system for a variable displacement engine
JP2002349304A (ja) * 2001-05-18 2002-12-04 Yamaha Motor Co Ltd 気筒数制御エンジン
US7159387B2 (en) * 2004-03-05 2007-01-09 Ford Global Technologies, Llc Emission control device
JP4279717B2 (ja) * 2004-04-12 2009-06-17 本田技研工業株式会社 内燃機関の制御装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005351134A (ja) * 2004-06-09 2005-12-22 Toyota Motor Corp 内燃機関の制御装置及びハイブリッドシステムの制御装置
JP2007177643A (ja) * 2005-12-27 2007-07-12 Toyota Motor Corp 内燃機関の制御装置

Also Published As

Publication number Publication date
US20110283688A1 (en) 2011-11-24
JP2010174789A (ja) 2010-08-12
DE112010000766T5 (de) 2012-11-29
CN102301114A (zh) 2011-12-28
WO2010086710A1 (en) 2010-08-05

Similar Documents

Publication Publication Date Title
JP4725653B2 (ja) 多気筒内燃機関の運転制御装置
US9970403B2 (en) Control apparatus for internal combustion engine
US7246595B1 (en) Diesel engine with differential cylinder group operation
JP2007046500A (ja) 内燃機関
JP7035557B2 (ja) エンジンの制御方法及びエンジンシステム
JP2019127867A (ja) エンジンの制御方法及びエンジンシステム
JP5786880B2 (ja) 内燃機関の制御装置
JP2013108409A (ja) 内燃機関の始動制御装置
US20060201469A1 (en) Method for operating an internal combustion engine
JP2009019577A (ja) 内燃機関の制御装置
JP2019127869A (ja) エンジンの制御方法及びエンジンシステム
JP2019127868A (ja) エンジンの制御方法及びエンジンシステム
JP2009036021A (ja) 内燃機関の過給機制御装置及び排気圧力制御方法
JP4840240B2 (ja) 内燃機関の制御システム
JP2009074513A (ja) 内燃機関の制御装置
JP2010255465A (ja) 多気筒内燃機関の運転制御装置
JP5831160B2 (ja) 内燃機関の制御装置
JP5429148B2 (ja) 予混合圧縮自己着火エンジン
JP2008051016A (ja) 内燃機関の点火時期制御装置
JP2006132399A (ja) 過給機付エンジンの制御装置および制御方法
US11352970B2 (en) Control device of internal combustion engine
JP5733189B2 (ja) 内燃機関の燃料噴射制御装置
JP2010223133A (ja) 多気筒内燃機関の運転制御装置
JP5482515B2 (ja) 多気筒内燃機関の制御装置
JP5206274B2 (ja) 火花点火式内燃機関の設計方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110328

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees