JP4716855B2 - Sialon cutting tool and tool equipped therewith - Google Patents

Sialon cutting tool and tool equipped therewith Download PDF

Info

Publication number
JP4716855B2
JP4716855B2 JP2005324179A JP2005324179A JP4716855B2 JP 4716855 B2 JP4716855 B2 JP 4716855B2 JP 2005324179 A JP2005324179 A JP 2005324179A JP 2005324179 A JP2005324179 A JP 2005324179A JP 4716855 B2 JP4716855 B2 JP 4716855B2
Authority
JP
Japan
Prior art keywords
sialon
tool
cutting tool
phase
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005324179A
Other languages
Japanese (ja)
Other versions
JP2007130700A (en
Inventor
亮二 豊田
宏平 虻川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2005324179A priority Critical patent/JP4716855B2/en
Publication of JP2007130700A publication Critical patent/JP2007130700A/en
Application granted granted Critical
Publication of JP4716855B2 publication Critical patent/JP4716855B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Ceramic Products (AREA)

Description

本発明はサイアロン製切削工具及びこれを備えた工具に関し、詳しくは優れた耐摩耗性を有するサイアロン製切削工具及びこれを備えた工具に関する。   The present invention relates to a sialon cutting tool and a tool including the same, and more particularly to a sialon cutting tool having excellent wear resistance and a tool including the same.

サイアロンは窒化珪素と比較して優れた硬度と、室温から高温にいたるまでの温度範囲における高い強度とを有し、化学的安定性が高い素材であると認識されている。そのため、耐熱性及び耐化学反応性が要求される熱鋼の圧延用ガイドロールやダイス、アルミニウム・ダイキャスト、機械のスリーブなどの構造材料として使われることが多かった。さらに、耐摩耗性が良好であると認識されていることから切削工具や軸受けにも利用可能であると考えられるに到った。しかしながら、現実においては、サイアロン製切削工具は、難削性の耐熱合金等の粗切削加工に用いられる程度で、被削材の面粗度や寸法精度に影響するインサート刃先の耐摩耗性についてはあまり考慮されることはなかった。   Sialon is recognized as a material having high hardness compared to silicon nitride and high strength in a temperature range from room temperature to high temperature and high chemical stability. Therefore, it is often used as a structural material for hot steel rolling guide rolls and dies, aluminum die-casting, mechanical sleeves, etc. that require heat resistance and chemical reactivity resistance. Furthermore, since it was recognized that abrasion resistance was good, it came to be considered that it could be used for cutting tools and bearings. However, in reality, Sialon cutting tools are only used for rough cutting of difficult-to-cut heat-resistant alloys, etc., and the wear resistance of the insert edge that affects the surface roughness and dimensional accuracy of the work material It was not considered much.

近年、自動車の燃費向上を目的としてFC材を主とする自動車部材の軽量化が大きな課題となっている。このような背景から、自動車部材の薄肉化、軽量化の要求が高まっており、粗加工と雖も高精度の加工が要求されるようになって来た。   In recent years, for the purpose of improving the fuel efficiency of automobiles, weight reduction of automobile members mainly made of FC materials has become a major issue. Against this background, demands for thinner and lighter automobile members are increasing, and high-precision machining is required for roughing and wrinkling.

これらFC材の粗加工については、従来は窒化珪素製切削工具の使用が多かったが、窒化珪素自体は共有結合性の材料であり、高速加工時の高温によりシリコンと窒素とに分解しやすいことが欠点であった。その分解反応は、切削加工時に窒化珪素がFC材の主要成分である鉄や炭素と高い切削圧力にて接触することで化学反応が起こり、より早く進むことになる。インサート刃先の窒化珪素が分解することにより刃先が摩耗、損傷する。刃先が摩耗すると被削材の面粗度や寸法精度が悪化し、ついには工具が使用不能となり工具寿命となる。   For rough machining of these FC materials, silicon nitride cutting tools have been used in the past, but silicon nitride itself is a covalent material, and it tends to decompose into silicon and nitrogen at high temperatures during high-speed machining. Was a drawback. The decomposition reaction proceeds faster when silicon nitride comes into contact with iron or carbon, which are the main components of the FC material, at high cutting pressure during cutting. The cutting edge is worn and damaged by the decomposition of silicon nitride at the cutting edge of the insert. When the cutting edge wears, the surface roughness and dimensional accuracy of the work material deteriorate, and finally the tool becomes unusable and the tool life is reached.

これら化学反応による損傷から刃先が摩耗する機構について、本発明者らが鋭意研究したところ、前述のとおり、窒化珪素が有する機械的な耐磨耗性を損ねることなく、FC材と工具材質との化学反応を抑制することが、工具寿命を延長させるために重要であることが判明した。   The inventors of the present invention have made extensive studies on the mechanism by which the blade edge wears due to damage caused by these chemical reactions, and as described above, without degrading the mechanical wear resistance of silicon nitride, the FC material and the tool material It has been found that suppressing chemical reactions is important for extending tool life.

ところで、(a)被削材と工具材質との化学反応を抑制するために、工具材質に鉄と反応性の低いチタン化合物又はアルミ化合物からなる硬質層を被覆することが知られている。例えば、特許文献1には、窒化チタン、炭化チタン等のチタン化合物とアルミナ等のアルミ化合物とを被覆し、FC材を切削加工する事例が開示されている。さらに、窒化珪素に窒化チタンを添加し、普通鋳鉄を切削加工する発明が開示されている。   By the way, it is known that (a) in order to suppress a chemical reaction between a work material and a tool material, the tool material is coated with a hard layer made of a titanium compound or an aluminum compound having low reactivity with iron. For example, Patent Document 1 discloses an example in which an FC material is cut by coating a titanium compound such as titanium nitride or titanium carbide with an aluminum compound such as alumina. Furthermore, an invention is disclosed in which titanium nitride is added to silicon nitride and ordinary cast iron is cut.

(b)被削材と工具基材自体との化学反応性を抑制させる方法するために、窒化チタン又はアルミナを工具基材に添加することにより工具基材自体の化学反応性を抑制する方法も知られている。この場合の窒化チタンは、分散粒子として組織中に存在し、工具基材の耐化学反応性を改善しようとするものである。また、アルミナは窒化珪素粒子内に固溶することによりサイアロン粒子となり、窒化珪素粒子自体の耐化学反応性を改善しようとしている。このような方法は、特許文献2に開示されている。   (b) In order to suppress the chemical reactivity between the work material and the tool base material itself, there is also a method for suppressing the chemical reactivity of the tool base material itself by adding titanium nitride or alumina to the tool base material. Are known. Titanium nitride in this case is present in the structure as dispersed particles, and is intended to improve the chemical reactivity resistance of the tool substrate. In addition, alumina dissolves in silicon nitride particles to form sialon particles, and attempts to improve the chemical reaction resistance of the silicon nitride particles themselves. Such a method is disclosed in Patent Document 2.

(c)切削工具の高温特性を改善するためには粒界結晶化させてガラス相を低減し、耐摩耗性を改善する方法が知られている。メリライトを含有した工具基材については特許文献3及び4に開示されている。   (c) In order to improve the high temperature characteristics of a cutting tool, a method is known in which the grain phase is crystallized to reduce the glass phase and improve the wear resistance. The tool base material containing melilite is disclosed in Patent Documents 3 and 4.

特許第3107168号公報Japanese Patent No. 3107168 特開2005−231928号公報JP 2005-231928 A 特許第3266200号公報Japanese Patent No. 3266200 特許第3437380号公報Japanese Patent No. 3437380

本願発明者らの検討によると以下の事柄を見出した。上述の(a)の技術では、被覆層を設けることによる効果により、被削材と切削工具基材の化学反応による摩耗は抑制されるが、被覆時に窒化珪素基材と窒化チタンやアルミナの熱膨張係数の相違により被覆層に引っ張り残留応力が生じ、被覆層を破壊の起点としてインサートの刃先が欠損し工具寿命が低下する事がある。   According to the study by the present inventors, the following matters have been found. In the technique (a) described above, the wear due to the chemical reaction between the work material and the cutting tool substrate is suppressed by the effect of providing the coating layer, but the heat of the silicon nitride substrate and titanium nitride or alumina during coating is suppressed. Due to the difference in expansion coefficient, a tensile residual stress is generated in the coating layer, and the cutting edge of the insert may be damaged using the coating layer as a starting point of fracture, thereby reducing the tool life.

また、前記(b)の技術では、窒化チタンの添加により、窒化チタンと窒化珪素粒子との熱膨張係数の相違による耐熱衝撃性の低下、アルミ化合物の添加によるサイアロン化により粒子自体の硬度低下に起因する機械的な耐磨耗性の低下及び強度低下等により、高温切削時の工具寿命を低下させてしまうことがある。また、過度のサイアロン化により熱伝導率の低下を招くことにより、耐熱衝撃性が低下することがある。   In the technique (b), the addition of titanium nitride reduces the thermal shock resistance due to the difference in thermal expansion coefficient between titanium nitride and silicon nitride particles, and the sialonization due to the addition of an aluminum compound reduces the hardness of the particles themselves. The tool life during high-temperature cutting may be reduced due to a decrease in mechanical wear resistance and a decrease in strength. In addition, thermal shock resistance may be reduced due to a decrease in thermal conductivity due to excessive sialonization.

前記(c)の技術では、特に母材が窒化珪素であるときには、化学的反応性が高いために化学的摩耗が進行してしまい、メリライトの生成により機械的摩耗つまり境界摩耗の抑制効果が小さくなってしまう。   In the technique (c), particularly when the base material is silicon nitride, chemical wear proceeds due to high chemical reactivity, and the effect of suppressing mechanical wear, that is, boundary wear, is small due to the formation of melilite. turn into.

本発明はこうした問題点に鑑みてなされたのであって、例えば工具基材の特性を低下させることなく、被削材と工具刃先との化学反応による化学摩耗、及びアブレッシブな機械的摩耗を低減し、工具寿命を改善したサイアロン製切削工具を提供することを課題とする。   The present invention has been made in view of these problems.For example, chemical wear caused by a chemical reaction between a work material and a tool blade edge and abrasive mechanical wear can be reduced without deteriorating the characteristics of the tool base. An object of the present invention is to provide a sialon cutting tool with improved tool life.

前記課題を解決するための手段として、
請求項1は、α−サイアロン及びβ−サイアロンからなるサイアロン相と、焼結助剤由来の希土類元素を含有し、Si6−ZAl8−Zで表されるβ−サイアロン相のZ値が0.2≦Z≦0.7であり、粒界相の一部又は全てがメリライト相であり、そのメリライト相がβ−サイアロンの含有量に対して最高X線強度比で0.3以上1.0以下の割合で含有され、サイアロン相中のα−サイアロン相の割合を示すα率が10%以上40%以下であり、室温におけるビッカース硬度が小さくても16GPaであるサイアロン焼結体で形成されて成ることを特徴とするサイアロン製切削工具であり、
請求項2は、前記サイアロン製切削工具が鋳鉄の切削用である前記請求項1に記載のサイアロン製切削工具であり、
請求項3は、前記請求項1又は2に記載のサイアロン製切削工具とこのサイアロン製切削工具を保持するホルダーとを有することを特徴とする工具である。
As means for solving the problems,
Claim 1 includes a sialon phase composed of α-sialon and β-sialon, and a rare earth element derived from a sintering aid, and expressed by Si 6-Z Al Z O Z N 8-Z Z value of 0.2 ≦ Z ≦ 0.7, part or all of the grain boundary phase is a melilite phase, and the melilite phase is 0 in the maximum X-ray intensity ratio with respect to the content of β-sialon. The sialon firing is contained at a ratio of 3 or more and 1.0 or less, the α ratio indicating the ratio of the α-sialon phase in the sialon phase is 10% or more and 40% or less, and even if the Vickers hardness at room temperature is small, it is 16 GPa. A sialon cutting tool characterized in that it is formed of a knot.
Claim 2 is the sialon cutting tool according to claim 1, wherein the sialon cutting tool is for cutting cast iron.
A third aspect of the present invention is a tool comprising the sialon cutting tool according to the first or second aspect and a holder for holding the sialon cutting tool.

本発明によると、例えば工具基材の特性を低下させることなく、被削材と工具刃先との化学反応による化学摩耗、及びアブレッシブな機械的摩耗を低減し、工具寿命を改善したサイアロン製切削工具を提供することができる。   According to the present invention, for example, a sialon cutting tool that has improved tool life by reducing chemical wear due to a chemical reaction between the work material and the tool edge and abrasive mechanical wear without degrading the characteristics of the tool base. Can be provided.

本発明のサイアロン製切削工具は、β−サイアロン及びα−サイアロンからなるサイアロン相を主相としているサイアロン焼結体で形成されて成る。   The sialon cutting tool of the present invention is formed of a sialon sintered body having a sialon phase composed of β-sialon and α-sialon as a main phase.

一般に、サイアロンは原料となる窒化珪素、アルミナ、窒化アルミニウム、シリカなどのSi,Al,O,Nといった構成元素を含む原料粉末に焼結助剤等を加えて焼結して成る。通常、サイアロン粒子には組成式Si6−ZAl8−Z(0<Z≦4.2)で表されるβ-サイアロンと、組成式Mx(Si,Al)12(O,N)16(0<X≦2、MはMg,Ca,Sc,Y,Dy,Er,Yb,Lu等の、侵入型となって固溶する元素を示す。)で示されるα−サイアロンが混在している。β−サイアロンは窒化珪素同様に針状組織が絡み合った組織となるため、高靭性であり、α−サイアロンは等軸状の粒子形状であるため、β−サイアロンと比較して低靭性ではあるが、硬度が高い特長を有する。 In general, sialon is formed by adding a sintering aid or the like to a raw material powder containing constituent elements such as Si, Al, O, N such as silicon nitride, alumina, aluminum nitride, and silica as raw materials. Usually, sialon particles include β-sialon represented by a composition formula Si 6-Z Al Z O Z N 8-Z (0 <Z ≦ 4.2), and a composition formula Mx (Si, Al) 12 (O, N) 16 (0 <X ≦ 2, M represents an element that enters and dissolves, such as Mg, Ca, Sc, Y, Dy, Er, Yb, and Lu). It is mixed. Since β-sialon has a structure in which needle-like structures are entangled like silicon nitride, it has high toughness. Since α-sialon has an equiaxed particle shape, it has low toughness compared to β-sialon. , Has the feature of high hardness.

サイアロン粒子間の粒界相にはガラス相と結晶相とがある。焼結助剤は、焼結時に、窒化珪素及び窒化珪素に不純物として含まれるシリカ成分等とともに液相化して、サイアロン粒子の生成、サイアロン粒子の再配列、粒成長、緻密化に寄与したあと、冷却時に固化してガラス相又は結晶相としてサイアロン粒界に粒界相を生成する。サイアロン焼結体の耐熱性、靱性、硬度を改善するために、本発明に係るサイアロン製切削工具の中でも好適なサイアロン製切削工具は、通常の場合、焼結助剤として用いられる希土類元素、好ましくはSc、Y、Dy、Yb、及びLuから成る群から選択される少なくとも一種の元素をサイアロン焼結体中に酸化物換算で1〜7質量%含有している。   The grain boundary phase between sialon particles includes a glass phase and a crystal phase. The sintering aid is liquid phased together with silicon nitride and a silica component contained as an impurity in silicon nitride during sintering, and contributes to generation of sialon particles, rearrangement of sialon particles, grain growth, and densification. It solidifies upon cooling to produce a grain boundary phase at the sialon grain boundary as a glass phase or a crystalline phase. In order to improve the heat resistance, toughness and hardness of the sialon sintered body, the sialon cutting tool suitable among the sialon cutting tools according to the present invention is usually a rare earth element used as a sintering aid, preferably Contains at least one element selected from the group consisting of Sc, Y, Dy, Yb, and Lu in the sialon sintered body in an amount of 1 to 7% by mass in terms of oxide.

サイアロン焼結体中の上記特定の希土類元素の酸化物換算含有量の質量%は、焼結原料粉末は過不足なく焼結体になるものと想定して、焼結体中の含有組成ではなく、素地調製時の組成から求めることができる。   The mass% of oxide content of the specific rare earth element in the sialon sintered body is not the composition contained in the sintered body, assuming that the sintering raw material powder will be a sintered body without excess or deficiency. It can be determined from the composition at the time of preparing the substrate.

本発明のサイアロン製切削工具を形成するサイアロン焼結体中のSi6−ZAl8−Zで表されるβ−サイアロンのZ値は0.2〜0.7である。β−サイアロンのZ値がこの範囲であるサイアロン焼結体は、窒化珪素と比べるとサイアロン製切削工具は被削材との化学反応が発生しにくく、また、サイアロン化による強度低下も少なく、熱伝導率低下も少ない。すなわち、0.2未満ではサイアロン製切削工具と被削材との化学反応の抑制効果が充分でなく、0.7より大きいと、サイアロン製切削工具の強度低下が顕著となる。このZ値の測定方法としては、X線回折測定により測定されるサイアロン焼結体中のβ-サイアロンのa軸格子定数と、β-窒化ケイ素のa軸格子定数(7.60442Å)の差から通常の方法により算出する(算出方法については特許文献5を参照のこと)。 Z value of Si 6-Z Al Z O Z N β- sialon represented by 8-Z in sialon sintered body to form a sialon cutting tool made of the present invention is 0.2 to 0.7. A sialon sintered body in which the Z value of β-sialon is in this range is less susceptible to chemical reaction with the work material than sialon cutting tools compared to silicon nitride, and is less susceptible to strength reduction due to sialonization. There is little decrease in conductivity. That is, if it is less than 0.2, the effect of suppressing the chemical reaction between the sialon cutting tool and the work material is not sufficient, and if it is more than 0.7, the strength of the sialon cutting tool is significantly reduced. As a method for measuring this Z value, from the difference between the a-axis lattice constant of β-sialon in the sialon sintered body measured by X-ray diffraction measurement and the a-axis lattice constant of β-silicon nitride (7.60442Å). Calculation is performed by a normal method (refer to Patent Document 5 for the calculation method).

特表2004−527434Special table 2004-527434

本発明に係るサイアロン製切削工具を形成するサイアロン焼結体は、粒界相の一部又は全部がメリライト相である。この発明における好適なメリライトはSiRe(ただし、Reは希土類元素を示す。)で示すことができる。このメリライト相のサイアロン焼結体中での含有量は、最高X線強度比で0.2以上かつ1.0以下である。メリライト相を前記範囲でサイアロン焼結体中に含まれていると、サイアロン焼結体における残留ガラスが非常に少なくなり、耐磨耗性及び高温特性に優れたサイアロン製切削工具が実現される。また、メリライト相の含有量が前記最高X線強度比で1.0を越えると、サイアロン焼結体の耐酸化性が低下するので、化学的耐磨耗性に劣るサイアロン製切削工具となってしまう。 In the sialon sintered body forming the sialon cutting tool according to the present invention, part or all of the grain boundary phase is the melilite phase. A suitable melilite in the present invention can be represented by Si 3 Re 2 O 3 N 4 (where Re represents a rare earth element). The content of the melilite phase in the sialon sintered body is 0.2 to 1.0 in terms of the maximum X-ray intensity ratio. When the melilite phase is contained in the sialon sintered body within the above range, the residual glass in the sialon sintered body is extremely reduced, and a sialon cutting tool having excellent wear resistance and high temperature characteristics is realized. Further, if the content of the melilite phase exceeds 1.0 in terms of the maximum X-ray intensity ratio, the oxidation resistance of the sialon sintered body is lowered, so that the cutting tool made of sialon is inferior in chemical wear resistance. End up.

本発明に係るサイアロン製切削工具は、サイアロン粒子中のα−サイアロンの比率を示すα率が10%以上40%以下である。サイアロン粒子中の一部がα−サイアロンであることが好適なインサート用焼結体を形成する。α−サイアロンはその生成時に焼結助剤として添加した特定の希土類酸化物に由来する特定の前記希土類元素を粒子内に固溶し、サイアロン粒界の結晶相あるいはガラス相の量を低減し、機械的な摩耗損傷を抑制することができる。α−サイアロンが十分に生成せず、しかも希土類酸化物由来の元素がα−サイアロン粒子内へ充分固溶しないと、前記元素が粒界に多く残ってしまい熱膨張係数の大きい焼結体となり、充分な熱衝撃抵抗性を得ることができない。サイアロン中に占めるα−サイアロンの比率であるα率は、X線回折におけるβ−サイアロンの(101)面ピーク強度をβ1、(210)面ピーク強度をβ2、α−サイアロンの(102)面ピーク強度をα1、(210)面ピーク強度をα2とした時に、{(α1+α2)/(β1+β2+α1+α2)}×100の計算式で算出される。前記α率が10%未満では粒界層が多く残り耐摩耗性、耐熱衝撃性が充分でない。また、前記α率が40%を越えると、靭性の低い等軸状のα-サイアロン粒子が多くなるために、耐欠損性が劣ってしまい好ましくない。   In the sialon cutting tool according to the present invention, the α ratio indicating the ratio of α-sialon in the sialon particles is 10% or more and 40% or less. It is preferable that a part of the sialon particles is α-sialon to form a sintered body for insert. α-sialon is a solid solution of the specific rare earth element derived from the specific rare earth oxide added as a sintering aid at the time of production in the particles, reducing the amount of crystal phase or glass phase of the sialon grain boundary, Mechanical wear damage can be suppressed. If the α-sialon is not sufficiently generated and the element derived from the rare earth oxide is not sufficiently solid-solved in the α-sialon particle, a large amount of the element remains at the grain boundary, resulting in a sintered body having a large thermal expansion coefficient. Sufficient thermal shock resistance cannot be obtained. The α rate, which is the ratio of α-sialon in the sialon, is determined by the β-sialon (101) plane intensity in β-ray diffraction, the (210) plane peak intensity in β2, and the (102) plane peak in α-sialon in X-ray diffraction. When the intensity is α1 and the (210) plane peak intensity is α2, it is calculated by the formula {(α1 + α2) / (β1 + β2 + α1 + α2)} × 100. When the α ratio is less than 10%, a large number of grain boundary layers remain and the wear resistance and thermal shock resistance are not sufficient. On the other hand, when the α ratio exceeds 40%, the number of equiaxed α-sialon particles having low toughness is increased, so that the fracture resistance is inferior.

本発明のサイアロン製切削工具におけるサイアロン焼結体の硬度は、室温におけるビッカ−ス硬度で16GPa以上である。ビッカース硬度はJIS Z 2244に準じて測定することができ、本発明においては市販のビッカ−ス硬度計を用いて室温下、荷重30kgf、保持時間30秒の条件にて測定する。ビッカース硬度が16GPa以上であるサイアロン焼結体で形成したサイアロン製切削工具は、耐摩耗性が良好であり、ビッカ−ス硬度が前記値よりも小さいと硬度不足となって十分な耐摩耗性のないサイアロン製切削工具となってしまう。   The hardness of the sialon sintered body in the sialon cutting tool of the present invention is 16 GPa or more in terms of Vickers hardness at room temperature. Vickers hardness can be measured according to JIS Z 2244, and in the present invention, it is measured using a commercially available Vickers hardness meter under conditions of room temperature, load of 30 kgf, and holding time of 30 seconds. A sialon cutting tool formed of a sialon sintered body having a Vickers hardness of 16 GPa or more has good wear resistance. If the Vickers hardness is smaller than the above value, the hardness is insufficient and the wear resistance is sufficient. There will be no sialon cutting tool.

本発明の工具は、本発明のサイアロン製切削工具とこれをスローアウェイチップとして装着するホルダーとを有し、高性能の工具として使用される。特に、本発明のサイアロン製切削工具及び工具は普通鋳鉄のみならず難削材である例えばダクタイル鋳鉄、耐熱合金等を高速加工する際、工具刃先の摩耗量が小さく、かつ欠損率が低く、工具寿命が長い。粗切削加工用工具として用いても被削材の面粗度及び寸法精度等に影響する工具刃先の耐摩耗性に優れ、面粗度や寸法精度のよい切削加工が長時間継続できる。なお、本発明の工具は広義の切削用の工具であり、旋削加工、フライス加工などを行う工具全般を言う。   The tool of the present invention has the sialon cutting tool of the present invention and a holder for mounting the cutting tool as a throw-away tip, and is used as a high-performance tool. In particular, the cutting tool and tool made of sialon according to the present invention has a small tool edge wear amount and a low chipping rate when machining not only ordinary cast iron but also difficult-to-cut materials such as ductile cast iron and heat-resistant alloy at high speed. Long life. Even if it is used as a rough cutting tool, it has excellent wear resistance of the tool edge that affects the surface roughness and dimensional accuracy of the work material, and cutting with good surface roughness and dimensional accuracy can be continued for a long time. The tool of the present invention is a cutting tool in a broad sense, and refers to all tools that perform turning, milling, and the like.

本発明のサイアロン製切削工具の好ましい製造方法について、以下に説明する。Si粉末及びAl粉末、AlN粉末等のサイアロンを構成する元素を含む粉末を、焼結助剤として希土類元素の酸化物粉末であるY粉末、Dy粉末、Er粉末、Yb粉末、Lu粉末等と混合して得られる混合物を原料粉末とする。原料粉末は、その平均粒径が10μm以下、好ましくは5μm以下、さらに好ましくは3μm以下の粉末を用いるとよい。これらの原料粉末は焼結後のインサートの組成を考慮してそれぞれの比率を決めればよい。通常は、Si粉末を95〜50質量%、Al粉末を0.5〜20質量%、AlN粉末を0〜40質量%、焼結助剤を1〜7質量%とすればよい。調製した原料粉末をボールミルのような混合粉砕機、例えばSi製ボールを備えたSi製ポットを用いてエタノール等の粉末を実質的に溶解しない液体を加えて1〜300時間混合してスラリーを製造する。この際、原料粉末の粒径が大きいときには粉砕時間を長くして粉砕を十分にする。 A preferred method for producing the sialon cutting tool of the present invention will be described below. Y 2 O 3 powder and Dy 2 O 3 powder, which are rare earth element oxide powders, using a powder containing an element constituting sialon such as Si 3 N 4 powder, Al 2 O 3 powder, and AlN powder as a sintering aid. A mixture obtained by mixing with Er 2 O 3 powder, Yb 2 O 3 powder, Lu 2 O 3 powder or the like is used as a raw material powder. As the raw material powder, a powder having an average particle size of 10 μm or less, preferably 5 μm or less, more preferably 3 μm or less is used. The ratio of these raw material powders may be determined in consideration of the composition of the insert after sintering. Usually, the Si 3 N 4 powder is 95 to 50% by mass, the Al 2 O 3 powder is 0.5 to 20% by mass, the AlN powder is 0 to 40% by mass, and the sintering aid is 1 to 7% by mass. That's fine. 1 to 300 h prepared raw material powder mixing and pulverizing machine such as a ball mill, for example, Si 3 powder such as ethanol using a Si 3 N 4 pot having a N 4 balls by adding liquid which does not substantially dissolve Mix to produce a slurry. At this time, when the particle size of the raw material powder is large, the pulverization time is lengthened to ensure sufficient pulverization.

このスラリー中に粗粒がある場合は、スラリーを200〜500メッシュ程度のふるいにかけ粗粒を除くとよい。調製した原料粉末にマイクロワックス系等の有機バインダを原料粉末に対し1〜30質量%添加し、スプレードライ等により造粒乾燥する。得られた造粒粉末を焼成後の焼結体の形状を想定して所望の形状にプレスする。成形は射出成形、押出し成形、鋳込み成形等を応用することもできる。成形した後に成形体を脱脂をする。通常、加熱装置内において窒素等の不活性ガス雰囲気中で脱脂をする。脱脂は400〜800℃にて30〜120分程度で完了する。脱脂した成形体を1500〜1900℃、好ましくは1650〜1800℃で焼結する。焼結は2段階で実施することが好ましく、一次焼結は炭化珪素、窒化ホウ素、窒化珪素等で形成されたサヤ内で、1〜9気圧の窒素又はAr雰囲気下にて1650〜1800℃まで昇温し1〜5時間保持すればよい。2次焼結は熱間静水圧成形(HIP)によればよい。例えば、100〜5000気圧の窒素雰囲気下において1650〜1800℃で1〜5時間加熱する。   When there are coarse particles in the slurry, the slurry may be removed by sieving the slurry with a sieve of about 200 to 500 mesh. An organic binder such as micro wax is added to the prepared raw material powder in an amount of 1 to 30% by mass with respect to the raw material powder, and granulated and dried by spray drying or the like. The obtained granulated powder is pressed into a desired shape assuming the shape of the sintered body after firing. For molding, injection molding, extrusion molding, cast molding, or the like can be applied. After molding, the molded body is degreased. Usually, degreasing is performed in an inert gas atmosphere such as nitrogen in a heating apparatus. Degreasing is completed in about 30 to 120 minutes at 400 to 800 ° C. The degreased shaped body is sintered at 1500 to 1900 ° C, preferably 1650 to 1800 ° C. Sintering is preferably performed in two stages, and primary sintering is performed in a sheath formed of silicon carbide, boron nitride, silicon nitride, or the like up to 1650-1800 ° C. in a nitrogen or Ar atmosphere of 1-9 atm. What is necessary is just to heat up and hold | maintain for 1 to 5 hours. Secondary sintering may be performed by hot isostatic pressing (HIP). For example, it heats at 1650-1800 degreeC for 1 to 5 hours in 100-5000 atmospheres nitrogen atmosphere.

このようにして得た焼結体を更に熱処理してメリライト相を焼結体中に生成させる。熱処理は、炭素を含む窒素雰囲気下において1500〜1700℃で60〜240分間加熱することにより、行われる。窒素雰囲気に含まれる炭素は、熱処理される焼結体を埋め込む炭素粉末に由来する炭素であってもよく、また、熱処理する際の窒素雰囲気に混入させるメタン等の炭化水素及び炭酸ガス等の炭素含有ガスに由来する炭素であってもよい。かくして本発明における、メリライト相を含有するサイアロン焼結体が得られる。このサイアロン焼結体を図1、図3に示すようなインサートとしての形状に研磨加工して本発明のサイアロン製切削工具にすることができる。工具とするには図2、図5に示すような通常のホルダーにこのスローアウェイチップを装着すればよい。   The sintered body thus obtained is further heat-treated to produce a melilite phase in the sintered body. The heat treatment is performed by heating at 1500 to 1700 ° C. for 60 to 240 minutes in a nitrogen atmosphere containing carbon. The carbon contained in the nitrogen atmosphere may be carbon derived from carbon powder that embeds the sintered body to be heat-treated, and carbon such as hydrocarbons such as methane and carbon dioxide gas mixed in the nitrogen atmosphere at the time of heat treatment. Carbon derived from the contained gas may be used. Thus, the sialon sintered body containing the melilite phase in the present invention is obtained. This sialon sintered body can be polished into a shape as an insert as shown in FIGS. 1 and 3 to obtain the sialon cutting tool of the present invention. In order to use a tool, the throw-away tip may be mounted on a normal holder as shown in FIGS.

(1)インサートの作製
平均粒径1.0μm以下のα−Si粉末、焼結助剤として平均粒径1.0μm以下の、Y粉末、Dy粉末、Er粉末、Yb粉末、及びLu粉末、さらにAl粉末、並びにAlN粉末から表1に示す組成となるように表1に示す割合で配合して原料粉末を調製した。次に、この原料粉末をそれぞれ内壁がSi製のポットとSi製ボールとを用いて、エタノールを加えて96時間混合してスラリーを作製した。このスラリーを325メッシュのふるいで粗粒を除き、エタノールに溶解したマイクロワックス系の有機バインダを5.0質量%添加してからスプレードライして顆粒を作製した。得られた顆粒を図1に示すISO規格でSNGN120408のインサートの形状にプレス成形した後に、加熱装置内において1気圧の窒素雰囲気中で600℃にて60分脱脂を行った。脱脂した成形体の一次焼結は、窒化珪素製のサヤ内にセットし、セットした状態で1〜9気圧の窒素雰囲気下にて1700〜1800℃まで昇温し120分保持した。最後に、熱間静水圧成形(HIP)により2次焼結を行った。2次焼結は1000気圧の窒素雰囲気下において1700℃で180分加熱して2次焼結体を得た。
(1) Preparation of insert α-Si 3 N 4 powder having an average particle diameter of 1.0 μm or less, Y 2 O 3 powder, Dy 2 O 3 powder, Er 2 having an average particle diameter of 1.0 μm or less as a sintering aid O 3 powder, Yb 2 O 3 powder, Lu 2 O 3 powder, further Al 2 O 3 powder, and AlN powder were blended in the proportions shown in Table 1 to prepare the raw material powder. did. Next, the raw material powder of each inner wall by using the Si 3 N 4 made of pods and Si 3 N 4 balls, was added to ethanol and mixed for 96 hours to prepare a slurry. Coarse particles were removed from this slurry with a 325-mesh sieve, and 5.0% by mass of a microwax organic binder dissolved in ethanol was added, followed by spray drying to produce granules. The obtained granule was press-molded into the shape of an SNGN120408 insert according to the ISO standard shown in FIG. 1, and then degreased in a heating apparatus at 600 ° C. for 60 minutes in a nitrogen atmosphere. The primary sintering of the degreased compact was set in a silicon nitride sheath, and in the set state, the temperature was raised to 1700 to 1800 ° C. in a nitrogen atmosphere of 1 to 9 atm and held for 120 minutes. Finally, secondary sintering was performed by hot isostatic pressing (HIP). In the secondary sintering, a secondary sintered body was obtained by heating at 1700 ° C. for 180 minutes in a nitrogen atmosphere of 1000 atm.

この2次焼結体に熱処理を行った。熱処理は炭素を含む窒素雰囲気下に1500〜1700℃で120分加熱した。炭素源は、炭素粉末であり2次焼結体を埋め込んで使用する。   This secondary sintered body was heat-treated. The heat treatment was performed at 1500 to 1700 ° C. for 120 minutes in a nitrogen atmosphere containing carbon. The carbon source is carbon powder, which is used by embedding a secondary sintered body.

こうして得られたサイアロン焼結体を研磨加工してISO規格でSNGN120408の形状に整えて切削工具用のインサートとした。表1に実施例、参考例及び比較例のインサートの組成、性状を切削性能評価結果とともに示した。サイアロン焼結体の組成は簡易的な算出方法として、焼結原料粉末調製時の各元素を酸化物や窒化物などの化合物の組成を基準に質量%で表示した。 The thus-obtained sialon sintered body was polished and adjusted to the shape of SNGN120408 according to the ISO standard to obtain an insert for a cutting tool. Table 1 shows the compositions and properties of the inserts of Examples , Reference Examples and Comparative Examples together with the results of cutting performance evaluation. As a simple calculation method, the composition of the sialon sintered body was expressed in mass% with respect to each element at the time of preparing the sintered raw material powder based on the composition of the compound such as oxide or nitride.

(2)インサートについての測定
得られたサイアロン焼結体をアルキメデス法により密度測定し、理論密度で除して理論密度比を算出した。すべての実施例及び参考例のサンプルは理論密度比が十分高く、焼結体中にマイクロポアが残存せず緻密化していた。
(2) Measurement of insert The density of the obtained sialon sintered body was measured by the Archimedes method, and the theoretical density ratio was calculated by dividing by the theoretical density. The samples of all examples and reference examples had a sufficiently high theoretical density ratio, and the micropores were not left in the sintered body and were densified.

Z値の測定及び計算、α率の測定及び計算については前述の通りの方法にて求めた。   The measurement and calculation of the Z value and the measurement and calculation of the α rate were obtained by the method as described above.

(3)切削性能の評価
(a)切削距離
実施例、参考例及び比較例におけるSNGN120408型インサート(チャンファー0.1mm)を用いて以下の切削加工条件で切削加工を行った。切削後に、前逃げ面の最大VB摩耗量(VBGmax)が0.3mmに達した時点での切削距離で表した。
(加工条件)
・被削材:FC200(普通鋳鉄 鋳肌無し)
・形状:外径φ300mm×内径φ50mm×厚み30mm
・切削速度:500m/min
・送り速度:0.3mm/刃
・切り込み深さ:0.3mm
・切削油:乾式
(b)境界摩耗量
実施例、参考例及び比較例におけるSNGN120408型インサート(チャンファー0.05mm)を用いて以下の切削加工条件で切削加工を行った。フランク最大摩耗量を測定し、境界摩耗量(単位:mm)とした。
(加工条件)
・被削材:FC200(普通鋳鉄、両端面に鋳砂が残留)
・形状:外径φ300mm×内径φ150mm×厚み100mm
・切削速度:300m/min
・送り速度:0.2mm/刃
・切り込み深さ:1.5mm
・切削油:乾式
(3) Evaluation of cutting performance (a) Cutting distance Cutting was performed under the following cutting conditions using the SNGN120408 type insert (Chamfer 0.1 mm) in Examples , Reference Examples and Comparative Examples. It was expressed as a cutting distance when the maximum VB wear amount (VBGmax) of the front flank reached 0.3 mm after cutting.
(Processing conditions)
・ Cover cut material: FC200 (Normal cast iron, no cast skin)
・ Shape: Outer diameter 300mm x Inner diameter 50mm x Thickness 30mm
・ Cutting speed: 500 m / min
・ Feeding speed: 0.3mm / blade ・ Incision depth: 0.3mm
Cutting oil: Dry type (b) Boundary wear amount Cutting was performed under the following cutting conditions using the SNGN120408 type insert (Chamfer 0.05 mm) in Examples , Reference Examples and Comparative Examples. The maximum flank wear amount was measured and used as the boundary wear amount (unit: mm).
(Processing conditions)
Work material: FC200 (ordinary cast iron, cast sand remains on both sides)
・ Shape: Outer diameter 300mm x Inner diameter 150mm x Thickness 100mm
・ Cutting speed: 300m / min
・ Feeding speed: 0.2mm / blade ・ Incision depth: 1.5mm
・ Cutting oil: Dry type

Figure 0004716855
Figure 0004716855

表1に示されるように、本発明の実施例及び参考例に係る切削インサートは工具刃先の損傷が少なく、切削長が長い上に耐境界摩耗性にも優れていることが分かる。それに対し、比較例は切削長又は境界摩耗量が劣る。

As shown in Table 1, it can be seen that the cutting inserts according to Examples and Reference Examples of the present invention have little damage to the tool edge, have a long cutting length, and are excellent in boundary wear resistance. In contrast, the comparative example is inferior in cutting length or boundary wear.

図1は本発明のスローアウェイチップの斜視図である。FIG. 1 is a perspective view of the throw-away tip of the present invention. 図2はホルダーに本発明のスローアウェイチップを装着した外径加工用切削工具の例である。FIG. 2 is an example of a cutting tool for outside diameter processing in which the throw-away tip of the present invention is mounted on a holder. 図3は本発明のスローアウェイチップの他の例の斜視図である。FIG. 3 is a perspective view of another example of the throw-away tip of the present invention. 図4は図3のスローアウェイチップの面取り加工を示す正面図である。FIG. 4 is a front view showing chamfering of the throw-away tip of FIG. 図5はフライスカッター用ホルダーにスローアウェイチップを装着した切削工具の平面図である。FIG. 5 is a plan view of a cutting tool in which a throw-away tip is mounted on a milling cutter holder.

符号の説明Explanation of symbols

1:スローアウェイチップ
2:外径加工用ホルダー
3:押さえ金
4:刃先
5:スローアウェイチップの面取り加工部
6:フライスカッター用ホルダー
7:フライスカッター用ホルダー本体
8:スローアウェイチップ装着用カートリッジ
9:スローアウェイチップ取付け用くさび
1: Throw-away tip 2: Holder for outer diameter processing 3: Presser foot 4: Cutting edge 5: Chamfered portion of throw-away tip 6: Holder for milling cutter 7: Holder for milling cutter 8: Cartridge 9 for throw-away tip mounting : Wedge for throwaway tip mounting

Claims (3)

α−サイアロン及びβ−サイアロンからなるサイアロン相と、焼結助剤由来の希土類元素を含有し、Si6−ZAl8−Zで表されるβ−サイアロン相のZ値が0.2≦Z≦0.7であり、粒界相の一部又は全てがメリライト相であり、そのメリライト相がβ−サイアロンの含有量に対して最高X線強度比で0.3以上1.0以下の割合で含有され、サイアロン相中のα−サイアロン相の割合を示すα率が10%以上40%以下であり、室温におけるビッカース硬度が小さくても16GPaであるサイアロン焼結体で形成されて成ることを特徴とするサイアロン製切削工具。 A Z-value of a β-sialon phase comprising a sialon phase composed of α-sialon and β-sialon and a rare earth element derived from a sintering aid and represented by Si 6-Z Al Z O Z N 8-Z is 0. 2 ≦ Z ≦ 0.7, and part or all of the grain boundary phase is a melilite phase, and the melilite phase has a maximum X-ray intensity ratio of 0.3 or more with respect to the content of β-sialon. It is contained at a ratio of 0 or less, and the α ratio indicating the ratio of the α-sialon phase in the sialon phase is 10% or more and 40% or less, and is formed of a sialon sintered body having a Vickers hardness at room temperature of 16 GPa. A sialon cutting tool characterized by comprising 前記サイアロン製切削工具が鋳鉄の切削用である前記請求項1に記載のサイアロン製切削工具。   The sialon cutting tool according to claim 1, wherein the sialon cutting tool is for cutting cast iron. 前記請求項1又は2に記載のサイアロン製切削工具とこのサイアロン製切削工具を保持するホルダーとを有することを特徴とする工具。   A tool comprising the sialon cutting tool according to claim 1 or 2 and a holder for holding the sialon cutting tool.
JP2005324179A 2005-11-08 2005-11-08 Sialon cutting tool and tool equipped therewith Active JP4716855B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005324179A JP4716855B2 (en) 2005-11-08 2005-11-08 Sialon cutting tool and tool equipped therewith

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005324179A JP4716855B2 (en) 2005-11-08 2005-11-08 Sialon cutting tool and tool equipped therewith

Publications (2)

Publication Number Publication Date
JP2007130700A JP2007130700A (en) 2007-05-31
JP4716855B2 true JP4716855B2 (en) 2011-07-06

Family

ID=38152775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005324179A Active JP4716855B2 (en) 2005-11-08 2005-11-08 Sialon cutting tool and tool equipped therewith

Country Status (1)

Country Link
JP (1) JP4716855B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5481137B2 (en) * 2008-11-21 2014-04-23 日本特殊陶業株式会社 Silicon nitride / Merilite composite sintered body
JP2013502328A (en) * 2009-08-21 2013-01-24 セラムテック ゲゼルシャフト ミット ベシュレンクテル ハフツング Precision pressing and sintering of cutting inserts, especially throw-away type cutting inserts
JP5481273B2 (en) * 2010-05-14 2014-04-23 日本特殊陶業株式会社 Substrate and member using silicon nitride / melilite composite sintered body
WO2014092021A1 (en) * 2012-12-14 2014-06-19 株式会社東芝 Silicon nitride sintered body and sliding member using same
JP6776045B2 (en) * 2016-07-29 2020-10-28 日本特殊陶業株式会社 Friction stir welding tool

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE451581B (en) * 1984-04-06 1987-10-19 Sandvik Ab CERAMIC MATERIAL MAINLY BASED ON SILICON NITRIDE, ALUMINUM NITRIDE AND ALUMINUM OXIDE
JP3266200B2 (en) * 1989-01-12 2002-03-18 日本特殊陶業株式会社 Silicon nitride based sintered body
JP2696596B2 (en) * 1990-09-04 1998-01-14 日本特殊陶業株式会社 Sialon sintered body and manufacturing method thereof
JP3437380B2 (en) * 1996-07-11 2003-08-18 日本特殊陶業株式会社 Silicon nitride sintered body and method for producing the same

Also Published As

Publication number Publication date
JP2007130700A (en) 2007-05-31

Similar Documents

Publication Publication Date Title
EP2402098B2 (en) Sialon insert and cutting tool equipped therewith
JP5428118B2 (en) cBN sintered body and cBN sintered body tool
JP4716855B2 (en) Sialon cutting tool and tool equipped therewith
JP5677638B1 (en) Cutting tools
JP2008162883A (en) Ceramic material used for operation requiring robustness and cutting tool produced therefrom
JP2010264574A (en) Cutting tool
JP2006305708A (en) Sialon throw-away tip, and cutting tool
JP2004026555A (en) Cubic boron nitride-containing sintered compact and method for producing the same
JP4434938B2 (en) Sialon insert manufacturing method
JP4342975B2 (en) Sialon quality tools, cutting inserts, and cutting tools
EP0856498B1 (en) Titanium carbo-nitride complex silicon nitride tool
JP2015009327A (en) Cutting insert
JPH06329470A (en) Sintered silicon nitride and its sintered and coated material
JP2006198761A (en) Insert made of sialon, and cutting tool having it
JP2005212048A (en) Ceramics and cutting tool using the same
JP2006193353A (en) Alumina sintered body, cutting insert, and cutting tool
JP2007130699A (en) Sialon cutting tool and tool
JPS61197469A (en) Manufacture of cubic boron nitride base sintering material for cutting tool
JP4798821B2 (en) Cutting tool and manufacturing method thereof
JP2001322009A (en) Alumina ceramic cutting tool and manufacturing method therefor
JP3591799B2 (en) High toughness silicon nitride based sintered body and method for producing the same
JP2001253767A (en) Alumina-based composite sintered compact, wear-resistant member and method for manufacturing the same sintered compact
JP2004167660A (en) Ceramic tool and cutting tool
JP2008094684A (en) Silicon nitride sintered compact, cutting tool, cutting insert and tool
JPS6090873A (en) Silicon nitride sintered body for tool part

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110329

R150 Certificate of patent or registration of utility model

Ref document number: 4716855

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250