JP3437380B2 - Silicon nitride sintered body and method for producing the same - Google Patents

Silicon nitride sintered body and method for producing the same

Info

Publication number
JP3437380B2
JP3437380B2 JP18237296A JP18237296A JP3437380B2 JP 3437380 B2 JP3437380 B2 JP 3437380B2 JP 18237296 A JP18237296 A JP 18237296A JP 18237296 A JP18237296 A JP 18237296A JP 3437380 B2 JP3437380 B2 JP 3437380B2
Authority
JP
Japan
Prior art keywords
sintered body
silicon nitride
oxidation
oxide layer
nitride sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18237296A
Other languages
Japanese (ja)
Other versions
JPH1025163A (en
Inventor
康 原
一久 板倉
賢一 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP18237296A priority Critical patent/JP3437380B2/en
Publication of JPH1025163A publication Critical patent/JPH1025163A/en
Application granted granted Critical
Publication of JP3437380B2 publication Critical patent/JP3437380B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、メリライト相を含
む窒化珪素質焼結体に関する。
TECHNICAL FIELD The present invention relates to a silicon nitride sintered body containing a melilite phase.

【0002】[0002]

【従来の技術】特開平4−154666号公報には、表
面から厚さ1〜100μmの表層部のみにシリコンオキ
シナイトライド結晶層(Si22O)が存在する窒化珪
素質焼結体が記載され、かかる焼結体は高温強度及び耐
酸化性に優れることが記載されている。
2. Description of the Related Art Japanese Unexamined Patent Publication (Kokai) No. 4-154666 discloses a silicon nitride sintered body in which a silicon oxynitride crystal layer (Si 2 N 2 O) exists only in a surface layer portion having a thickness of 1 to 100 μm from the surface. It is described that such a sintered body is excellent in high temperature strength and oxidation resistance.

【0003】特開平4−292465号公報には、焼結
体表面の粒界層がJCPDSカードNo.21−145
8と同一のX線回折パターンの結晶(例えばRe2Si
5)に結晶化した窒化珪素焼結体が記載され、かかる
焼結体は高温での高強度は維持したまま低温酸化を防止
して低温での強度をも発現できることが記載されてい
る。
In Japanese Patent Laid-Open No. 4-292465, the grain boundary layer on the surface of the sintered body is JCPDS card No. 21-145
Crystals with the same X-ray diffraction pattern as that of No. 8 (for example, Re 2 Si
A silicon nitride sintered body crystallized in O 5 ) is described, and it is described that such a sintered body can exhibit low-temperature strength by preventing low-temperature oxidation while maintaining high strength at high temperature.

【0004】特開平6−100376号公報には、粒界
相がM3Al512(Mは希土類元素)の結晶相からなる
β−サイアロン質焼結体が記載され、かかる焼結体は高
温域での強度が高いことが記載されている。特開平6−
100387号公報には、窒化珪素質焼結体を1300
〜1500℃で酸素含有雰囲気中にて熱処理し、更に表
面層を0.1〜0.5mm切削除去することにより、高
温強度を向上する強化方法が記載されている。この場
合、焼結体内部の焼結助剤成分濃度が初期濃度よりも低
下し、粒界層の耐熱性が向上することにより、焼結体の
高温強度が向上する。
Japanese Unexamined Patent Publication No. 6-100376 discloses a β-sialon sintered body in which the grain boundary phase is a crystal phase of M 3 Al 5 O 12 (M is a rare earth element). It is described that the strength is high in a high temperature range. JP-A-6-
Japanese Patent Laid-Open No. 100387 describes a silicon nitride sintered body as 1300.
There is described a strengthening method for improving the high temperature strength by heat-treating at ˜1500 ° C. in an oxygen-containing atmosphere and further cutting and removing the surface layer by 0.1 to 0.5 mm. In this case, the concentration of the sintering aid component inside the sintered body is lower than the initial concentration, and the heat resistance of the grain boundary layer is improved, so that the high temperature strength of the sintered body is improved.

【0005】特開平6−227866号公報には、窒化
珪素焼結体が5〜100μmの酸化物表面層を有し、そ
のうち5μm以上の深度領域にはSiO2 が存在しない
ものが記載されている。
Japanese Unexamined Patent Publication No. 6-227866 discloses a silicon nitride sintered body having an oxide surface layer of 5 to 100 μm, of which SiO 2 does not exist in a depth region of 5 μm or more. .

【0006】[0006]

【発明が解決しようとする課題】ところで、希土類酸化
物を焼結助剤とする窒化珪素質焼結体には、粒界相とし
てメリライト相(Re23・Si34が1:1の結晶
相、Reは希土類元素)を有するものがある。メリライ
ト相は希土類を焼結助剤とする窒化珪素質焼結体では組
成、焼成条件を限定することにより比較的容易に析出さ
せることができる。また、粒界を結晶化させるので高温
特性が良くなり、たいへん有用である。このため、メリ
ライト相を有する窒化珪素質焼結体は、例えばガスター
ビンの構成部品のように高温下(900〜1000℃)
にて使用される部品に利用することが期待される。
By the way, in a silicon nitride sintered body using a rare earth oxide as a sintering aid, a melilite phase (Re 2 O 3 .Si 3 N 4 is 1: 1 as a grain boundary phase). , And Re is a rare earth element). The melilite phase can be relatively easily deposited in a silicon nitride sintered body using a rare earth element as a sintering aid by limiting the composition and firing conditions. Further, since the grain boundaries are crystallized, the high temperature characteristics are improved, which is very useful. For this reason, a silicon nitride sintered body having a melilite phase is subjected to a high temperature (900 to 1000 ° C.) like a component of a gas turbine, for example.
It is expected to be used for parts used in.

【0007】しかし、メリライト相を持つ窒化珪素質焼
結体はメリライト相を有しない窒化珪素質焼結体に比べ
て、800〜1000℃において耐酸化性が著しく劣化
する傾向にあり、メリライト相の酸化によって極端な酸
化増量の増大が起こる(図1参照)。これを低温酸化と
いう。低温酸化によるメリライト相の変化を下記式
(1)に示す。
However, the silicon nitride-based sintered body having a melilite phase tends to have a significantly deteriorated oxidation resistance at 800 to 1000 ° C. as compared with the silicon nitride-based sintered body having no melilite phase. Oxidation causes an extreme increase in oxidative weight gain (see Figure 1). This is called low temperature oxidation. The change in melilite phase due to low temperature oxidation is shown in the following formula (1).

【0008】[0008]

【化1】 [Chemical 1]

【0009】メリライト相を有する窒化珪素質焼結体が
かかる低温酸化を受けると、焼結体表面が白く変色し、
体積膨張により表面がひどく荒れてしまい、場合によっ
ては強度に影響が出てくる可能性もある。このため、メ
リライト相を持つ窒化珪素質焼結体をそのままガスター
ビンの構成部品のように高温下(900〜1000℃)
にて使用される部品に利用することは困難であった。
When the silicon nitride-based sintered body having a melilite phase is subjected to such low temperature oxidation, the surface of the sintered body turns white,
The surface may be severely roughened due to the volume expansion, and in some cases, the strength may be affected. For this reason, the silicon nitride sintered material having the melilite phase is directly subjected to high temperature (900 to 1000 ° C.) like a component part of a gas turbine.
It was difficult to use it for parts used in.

【0010】このような事情から、メリライト相を有す
る窒化珪素質焼結体において、優れた機械的特性を損な
うことなく低温酸化を防止することが望まれていたが、
上記の従来技術によってはかかる問題は解消されていな
かった。本発明は、優れた機械的特性を損なうことなく
低温酸化を防止する、メリライト相を有する窒化珪素質
焼結体を提供すること、及びその製造方法を提供するこ
とを目的とする。
Under these circumstances, it has been desired to prevent low-temperature oxidation of a silicon nitride sintered material having a melilite phase without impairing its excellent mechanical properties.
Such problems have not been solved by the above-mentioned conventional techniques. An object of the present invention is to provide a silicon nitride-based sintered body having a melilite phase, which prevents low temperature oxidation without impairing excellent mechanical properties, and a method for producing the same.

【0011】[0011]

【課題を解決するための手段、発明の実施の形態及び発
明の効果】上記課題を解決するため、請求項1記載の発
明は、メリライト相(Re23・Si34、Reは希土
類元素)を含む窒化珪素質焼結体において、膜厚1〜5
μmのSiO2 含有酸化層が焼結体表面に存在すること
を特徴とする。
Means for Solving the Problems, Embodiments of the Invention, and Effects of the Invention In order to solve the above problems, the invention according to claim 1 provides a melilite phase (Re 2 O 3 .Si 3 N 4 , Re is a rare earth element). In a silicon nitride sintered body containing an element), the film thickness is 1 to 5
A SiO 2 -containing oxide layer of μm is present on the surface of the sintered body.

【0012】この場合、SiO2 含有酸化層の厚みが1
μmより小さいと、低温酸化に耐えるに十分な保護膜と
して機能しないため、低温酸化の特性がよくならない。
一方、SiO2 含有酸化層の厚みが5μmより大きい
と、酸化物増加(酸化層形成時に高温酸化が進みすぎ
る)により強度の低下が起こり、酸化増量も増えてく
る。ここで、高温酸化における窒化珪素質焼結体の変化
を下記式(2)に示す。
In this case, the thickness of the SiO 2 -containing oxide layer is 1
If the thickness is smaller than μm, it does not function as a protective film sufficient to withstand low temperature oxidation, and the low temperature oxidation characteristics are not improved.
On the other hand, when the thickness of the SiO 2 -containing oxide layer is larger than 5 μm, the strength decreases due to the increase of oxide (the high temperature oxidation progresses too much at the time of forming the oxide layer) and the increase in oxidation amount also increases. Here, the change of the silicon nitride sintered body during high temperature oxidation is shown in the following formula (2).

【0013】[0013]

【化2】 [Chemical 2]

【0014】本発明の窒化珪素質焼結体は、焼結体表面
からのSiO2 含有酸化層の膜厚を最適化することによ
り、機械的特性(例えば強度特性)を維持したまま、8
00〜1000℃における低温酸化を顕著に防止でき、
酸化増量を大幅に低減することができるという効果を奏
するものである。
In the silicon nitride sintered material of the present invention, by optimizing the film thickness of the SiO 2 -containing oxide layer from the surface of the sintered material, the mechanical properties (for example, strength characteristics) are maintained,
It is possible to remarkably prevent low temperature oxidation at 00 to 1000 ° C,
The effect is that the increase in the amount of oxidation can be significantly reduced.

【0015】請求項2記載の発明は、請求項1記載の窒
化珪素質焼結体であって、焼結体表面からの深さが5μ
mを超えるところにはSiO2 を含む酸化層もSiO2
以外の酸化物を含む酸化層も存在しないことを特徴とす
る。焼結体表面からの深さが5μmを超えるところにS
iO2 を含む酸化層やSiO2 以外の酸化層が存在する
と、酸化物増加による強度の低下が起こりやすく、酸化
増量も増える傾向にあるため、好ましくない。
The invention according to claim 2 is the silicon nitride-based sintered body according to claim 1, wherein the depth from the surface of the sintered body is 5 μm.
oxide layer including SiO 2 is the place where more than m also SiO 2
It is characterized in that there is no oxide layer containing oxides other than. When the depth from the surface of the sintered body exceeds 5 μm, S
The presence of an oxide layer containing iO 2 or an oxide layer other than SiO 2 is not preferable because the strength tends to decrease due to an increase in oxide and the amount of oxidation increase tends to increase.

【0016】請求項3記載の発明は、請求項1又は2記
載の窒化珪素質焼結体の製造方法であって、メリライト
相を含む窒化珪素質焼結体基材を、酸化雰囲気中110
0〜1300℃で1〜10時間処理することを特徴とす
る。ここで、メリライト相を含む窒化珪素質焼結体基材
は、例えば、窒化珪素粉末と希土類元素化合物等の焼結
助剤とを混合し、次いでプレス成形、射出成形、鋳込み
成形及び押出成形等により成形し、得られた成形体を所
定の焼成条件(非酸化性雰囲気下であることが好まし
い)で焼成することにより、得ることができる。尚、窒
化珪素質焼結体基材がメリライト相を有していることは
例えばX線回折により得られる回折パターンによって確
認できる。
A third aspect of the present invention is the method for producing the silicon nitride sintered body according to the first or second aspect, wherein the silicon nitride sintered body base material containing a melilite phase is heated in an oxidizing atmosphere.
It is characterized by treating at 0 to 1300 ° C. for 1 to 10 hours. Here, the silicon nitride sintered body base material containing the melilite phase is obtained by mixing, for example, silicon nitride powder and a sintering aid such as a rare earth element compound, and then performing press molding, injection molding, cast molding, extrusion molding, or the like. It can be obtained by molding according to (1) and baking the obtained molded product under predetermined baking conditions (preferably under a non-oxidizing atmosphere). The fact that the silicon nitride sintered material substrate has a melilite phase can be confirmed by, for example, a diffraction pattern obtained by X-ray diffraction.

【0017】上記製造方法では、熱処理温度が1100
℃より低いと、低温酸化が高温酸化より優勢になり酸化
増量が増える。このとき生成するダイシリケート相(上
記式(1)参照)が体積膨張を伴い表面の荒れの原因に
なる。一方、熱処理温度が1300℃より高いと、高温
酸化による酸化増量が顕著になり表面の白色化と強度の
低下を起こす。また、熱処理時間が1時間より短いと、
酸化層厚みが1μm未満になり低温酸化低減に十分な酸
化層をつくることができない。一方、酸化時間が10時
間より長いと酸化層厚みが5μmを超え、酸化増量が著
しく増加して、強度低下を起こす。
In the above manufacturing method, the heat treatment temperature is 1100.
When the temperature is lower than ℃, the low temperature oxidation becomes more dominant than the high temperature oxidation, and the oxidation weight increase increases. The disilicate phase generated at this time (see the above formula (1)) causes volume expansion and causes the surface to become rough. On the other hand, when the heat treatment temperature is higher than 1300 ° C., the increase in oxidation due to high temperature oxidation becomes remarkable, causing whitening of the surface and deterioration of strength. If the heat treatment time is shorter than 1 hour,
Since the thickness of the oxide layer is less than 1 μm, it is impossible to form an oxide layer sufficient to reduce low temperature oxidation. On the other hand, if the oxidation time is longer than 10 hours, the thickness of the oxide layer exceeds 5 μm, the amount of increased oxidation is remarkably increased, and the strength is lowered.

【0018】尚、酸化層の膜厚は例えば周知のSEM、
XPS、EPMA等により測定することができる。ま
た、酸化層にSiO2 が含まれることは例えば焼結体表
面またはこの表面をX線回折し、得られた回折パターン
をJCPDSカードを用いる等により同定できる。
The thickness of the oxide layer is, for example, the well-known SEM,
It can be measured by XPS, EPMA, or the like. Further, the fact that the oxide layer contains SiO 2 can be identified, for example, by subjecting the surface of the sintered body or this surface to X-ray diffraction, and using the JCPDS card to the obtained diffraction pattern.

【0019】[0019]

【実施例】以下に、本発明の好適な実施例を説明する。
尚、本発明の実施の形態は、下記の実施例に何ら限定さ
れるものではなく、本発明の技術的範囲に属する限り種
々の形態を採り得ることはいうまでもない。また、本実
施例で用いた測定装置の名称及び機種名は以下の通りで
ある。 SEM(Scanning Electron Microscope:走査型電子
顕微鏡) 機種:日本電子(株)JSM−840 XPS(X-ray Photoelectron Spectroscopy:X線光
電子分光装置) 機種:日本電子(株)JPS−90MX EPMA(Electron Probe MicroAnalyzer:電子プロ
ーブマイクロアナライザー) 機種:日本電子(株)JXA−8800A XRD(X線回折) 機種:(株)理学RU−200T [実施例1〜12、比較例1〜15]下記表1に示すよ
うに、材料組成A、B、Cにつき、窒化珪素粉末にY2
3、AlN及びAl23を所定の組成となるように添
加して、30〜40時間湿式混合した。
The preferred embodiments of the present invention will be described below.
It is needless to say that the embodiment of the present invention is not limited to the following examples, and various forms can be adopted as long as they are within the technical scope of the present invention. The names and model names of the measuring devices used in this example are as follows. SEM (Scanning Electron Microscope) Model: JEOL Ltd. JSM-840 XPS (X-ray Photoelectron Spectroscopy) Model: JEOL Ltd. JPS-90MX EPMA (Electron Probe MicroAnalyzer) : Electronic probe microanalyzer) Model: JEOL JXA-8800A XRD (X-ray diffraction) Model: Rigaku RU-200T [Examples 1-12, Comparative Examples 1-15] As shown in Table 1 below. For the material compositions A, B, and C, Y 2 was added to the silicon nitride powder.
O 3 , AlN and Al 2 O 3 were added so as to have a predetermined composition and wet mixed for 30 to 40 hours.

【0020】[0020]

【表1】 [Table 1]

【0021】次に、上記のように湿式混合された窒化珪
素基配合物(材料組成A、B、Cのいずれか)をプレス
成形により50mm角、厚さ20mmの直方体状成形体
に成形し、1.5ton/cm2 の圧力でコールドアイ
ソスタティックプレス(CIP)を行った。その後、成
形体を焼成炉にて窒素雰囲気下で1700℃、4時間の
焼成を行った。
Next, the wet-mixed silicon nitride-based compound (any of the material compositions A, B, and C) as described above is molded by press molding into a rectangular parallelepiped molded body of 50 mm square and 20 mm thick, Cold isostatic pressing (CIP) was performed at a pressure of 1.5 ton / cm 2 . Then, the molded body was fired in a firing furnace in a nitrogen atmosphere at 1700 ° C. for 4 hours.

【0022】こうして得られた各材料組成A、B、Cの
窒化珪素質焼結体基材につき、JIS R−1601に
記載されている試験片形状(3×4×35mm)に加工
研磨した。この試験片につき、メリライト相のピーク比
及び室温強度を測定した。その結果を表1に示す。尚、
メリライト相のピーク比は、X線回折においてのβ窒化
珪素のピーク強度に対するメリライト相のピーク強度の
比、M(121)/β’の第1ピーク(M(121)はメリライト
のピーク高さ、β’の第1ピークはβ−Si34の最も
ピーク強度の高いピークのことでありβ窒化珪素では
The thus-obtained silicon nitride sintered material base material having each of the material compositions A, B, and C was processed and polished into a test piece shape (3 × 4 × 35 mm) described in JIS R-1601. For this test piece, the peak ratio of the melilite phase and the room temperature strength were measured. The results are shown in Table 1. still,
The peak ratio of the melilite phase is the ratio of the peak intensity of the melilite phase to the peak intensity of β-silicon nitride in X-ray diffraction, and the first peak of M (121) / β '(M (121) is the peak height of melilite, The first peak of β'is the peak with the highest peak intensity of β-Si 3 N 4 , and in β-silicon nitride

【0023】[0023]

【数1】 [Equation 1]

【0024】の2つ)である。また、室温強度は、JI
S R−1601に準拠した4点曲げを行ったときの値
である。一方、加工研磨した試験片につき、実施例1〜
12においては大気中にて1100〜1300℃、1〜
10時間の条件で熱処理を行い、比較例1〜7では熱処
理を行わず、比較例8〜15では上記条件以外の条件で
熱処理を行った(具体的には表2の熱処理条件の欄を参
照)。
2). The room temperature strength is JI
It is a value when performing 4-point bending conforming to SR-1601. On the other hand, with respect to the processed and polished test piece,
12 is 1100 to 1300 ° C in the atmosphere,
The heat treatment was performed under the condition of 10 hours, the heat treatment was not performed in Comparative Examples 1 to 7, and the heat treatment was performed under conditions other than the above conditions in Comparative Examples 8 to 15 (specifically, see the column of heat treatment conditions in Table 2). ).

【0025】そして、熱処理後の試験片を低温酸化温度
域900〜1000℃(具体的には表2の酸化条件の欄
を参照)にて大気中での100時間の酸化試験を行い、
酸化増量、及び、酸化前に対する酸化後の強度比を求め
た。その結果を表2及び表3に示す。尚、強度はJIS
R−1601に準拠した4点曲げで測定した。また、
SiO2 層の厚みは、XPS、EPMAにおいて酸素分
布を測定することにより測定した。更に、実施例1〜1
2において、焼結体表面から5μmを超える領域にはS
iO2 を含む酸化物層やSiO2 以外の酸化物を含む酸
化物層が存在しない点については、酸素分布が内部と同
様であるのと内部の組成にSiO2 以外の酸化物層成分
がX線回折でも検出されないことにより確認した。
Then, the heat-treated test piece is subjected to an oxidation test in the low temperature oxidation temperature range of 900 to 1000 ° C. (specifically, see the column of oxidation conditions in Table 2) for 100 hours in the atmosphere,
The amount of increased oxidation and the strength ratio after oxidation to before oxidation were determined. The results are shown in Tables 2 and 3. The strength is JIS
It was measured by 4-point bending in accordance with R-1601. Also,
The thickness of the SiO 2 layer was measured by measuring the oxygen distribution with XPS or EPMA. Furthermore, Examples 1 to 1
2, in the area exceeding 5 μm from the surface of the sintered body, S
The fact that there is no oxide layer containing iO 2 or an oxide layer containing oxides other than SiO 2 is that the oxygen distribution is similar to the inside, and the oxide layer components other than SiO 2 have X composition in the internal composition. It was confirmed by not being detected even by line diffraction.

【0026】[0026]

【表2】 [Table 2]

【0027】[0027]

【表3】 [Table 3]

【0028】上記表2、表3から明らかなように、実施
例1〜12では、メリライト相を含む窒化珪素質焼結体
の優れた機械的特性を損なうことなく低温酸化を防止す
ることが可能となり、例えばガスタービンの構成部品の
ように高温下(900〜1000℃)にて使用される部
品に利用できるようになった。
As is clear from Tables 2 and 3, in Examples 1 to 12, low temperature oxidation can be prevented without impairing the excellent mechanical properties of the silicon nitride sintered material containing the melilite phase. Therefore, it can be used for parts used under high temperature (900 to 1000 ° C.) such as gas turbine components.

【0029】これに対して、比較例1〜7のようにSi
2 含有酸化物層を有しない場合や、比較例8〜15の
ようにSiO2 含有酸化物層の膜厚が1〜5μmの範囲
外の場合には、機械的特性が損なわれるとか、酸化増量
が著しいという問題が生じた。
On the other hand, as in Comparative Examples 1 to 7, Si was used.
O 2 When no oxide layer is contained, or when SiO 2 is used as in Comparative Examples 8 to 15. When the film thickness of the contained oxide layer was out of the range of 1 to 5 μm, there was a problem that mechanical properties were impaired or the amount of increased oxidation was remarkable.

【図面の簡単な説明】[Brief description of drawings]

【図1】 通常の窒化珪素質焼結体(メリライト相を含
むものと含まないもの)の温度と酸化増量との関係を表
すグラフである。
FIG. 1 is a graph showing the relationship between the temperature and the oxidation amount of a normal silicon nitride sintered body (one containing a melilite phase and one not containing a melilite phase).

───────────────────────────────────────────────────── フロントページの続き (72)発明者 水野 賢一 愛知県名古屋市瑞穂区高辻町14番18号 日本特殊陶業株式会社内 (56)参考文献 特開 平4−292465(JP,A) 特開 昭62−197356(JP,A) 特開 昭61−191582(JP,A)   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Kenichi Mizuno               14-18 Takatsuji-cho, Mizuho-ku, Nagoya City, Aichi Prefecture               Nippon Special Ceramics Co., Ltd.                (56) Reference JP-A-4-292465 (JP, A)                 JP 62-197356 (JP, A)                 JP-A-61-191582 (JP, A)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 メリライト相(Re23・Si34、R
eは希土類元素)を含む窒化珪素質焼結体において、 膜厚1〜5μmのSiO2 含有酸化層が焼結体表面に存
在することを特徴とする窒化珪素質焼結体。
1. A melilite phase (Re 2 O 3 .Si 3 N 4 , R
e is a rare earth element-containing silicon nitride sintered body, wherein a SiO 2 -containing oxide layer having a film thickness of 1 to 5 μm is present on the surface of the sintered body.
【請求項2】 請求項1記載の窒化珪素質焼結体におい
て、 焼結体表面からの深さが5μmを超えるところにはSi
2 を含む酸化層もSiO2 以外の酸化物を含む酸化層
も存在しないことを特徴とする窒化珪素質焼結体。
2. The silicon nitride sintered body according to claim 1, wherein Si is present at a depth of more than 5 μm from the surface of the sintered body.
A silicon nitride-based sintered body characterized in that there is neither an oxide layer containing O 2 nor an oxide layer containing oxides other than SiO 2 .
【請求項3】 メリライト相(Re23・Si34、R
eは希土類元素)を含む窒化珪素質焼結体基材を、酸化
雰囲気中1100〜1300℃で1〜10時間処理する
ことにより、請求項1又は2記載の窒化珪素質焼結体を
得ることを特徴とする窒化珪素質焼結体の製造方法。
3. A melilite phase (Re 2 O 3 .Si 3 N 4 , R
e is a rare earth element), and a silicon nitride-based sintered body according to claim 1 or 2 is obtained by treating a silicon nitride-based sintered body base material containing an oxide atmosphere at 1100 to 1300 ° C. for 1 to 10 hours. A method of manufacturing a silicon nitride sintered body, comprising:
JP18237296A 1996-07-11 1996-07-11 Silicon nitride sintered body and method for producing the same Expired - Lifetime JP3437380B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18237296A JP3437380B2 (en) 1996-07-11 1996-07-11 Silicon nitride sintered body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18237296A JP3437380B2 (en) 1996-07-11 1996-07-11 Silicon nitride sintered body and method for producing the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2001279773A Division JP2002128567A (en) 2001-09-14 2001-09-14 Silicon nitride sintered compact and its manufacturing method

Publications (2)

Publication Number Publication Date
JPH1025163A JPH1025163A (en) 1998-01-27
JP3437380B2 true JP3437380B2 (en) 2003-08-18

Family

ID=16117165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18237296A Expired - Lifetime JP3437380B2 (en) 1996-07-11 1996-07-11 Silicon nitride sintered body and method for producing the same

Country Status (1)

Country Link
JP (1) JP3437380B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3933345B2 (en) * 1999-05-21 2007-06-20 日本特殊陶業株式会社 Heating resistor, heating resistor for ceramic heater, method for manufacturing the same, and ceramic heater
JP4716855B2 (en) * 2005-11-08 2011-07-06 日本特殊陶業株式会社 Sialon cutting tool and tool equipped therewith
CN109665850A (en) * 2019-01-09 2019-04-23 陈树 A kind of preparation method of low temperature environment high impact properties ceramic base Side fascia

Also Published As

Publication number Publication date
JPH1025163A (en) 1998-01-27

Similar Documents

Publication Publication Date Title
EP0626359B1 (en) Aluminum nitride sintered body and method for manufacturing the same
JP3437380B2 (en) Silicon nitride sintered body and method for producing the same
JP2002128567A (en) Silicon nitride sintered compact and its manufacturing method
JPH11314969A (en) High heat conductivity trisilicon tetranitride sintered compact and its production
JP2663028B2 (en) Silicon nitride sintered body
JP3454993B2 (en) Silicon nitride sintered body and method for producing the same
JP3454994B2 (en) Silicon nitride sintered body and method for producing the same
JP3398274B2 (en) Ceramic heater
JP3426823B2 (en) Silicon nitride sintered body and method for producing the same
JP3290685B2 (en) Silicon nitride based sintered body
JP3152790B2 (en) Method for producing silicon nitride based sintered body
JPH1050460A (en) Ceramic heater
JP2883248B2 (en) Silicon nitride based sintered body and method for producing the same
JPH1121175A (en) Silicon nitride sintered compact
JP3237963B2 (en) Silicon nitride sintered body and method for producing the same
JP3318466B2 (en) Silicon nitride sintered body and method for producing the same
JP2684250B2 (en) Silicon nitride sintered body and method for producing the same
JP3216973B2 (en) Silicon nitride sintered body and method for producing the same
EP0814068B1 (en) Ceramics having a low heat conductivity
JP2671539B2 (en) Method for producing silicon nitride sintered body
KR20020072440A (en) Silicon Carbide Ceramics with Improved Oxidation Resistance and Process Therefor
JPH05139840A (en) Siliceous nitride sintered compact and its production
JP2670222B2 (en) Silicon nitride sintered body and method for producing the same
JP2694369B2 (en) Silicon nitride sintered body
JP3236733B2 (en) Silicon nitride sintered body

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080606

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090606

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090606

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090606

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100606

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100606

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term