JP4711939B2 - AC electric vehicle control device - Google Patents

AC electric vehicle control device Download PDF

Info

Publication number
JP4711939B2
JP4711939B2 JP2006318342A JP2006318342A JP4711939B2 JP 4711939 B2 JP4711939 B2 JP 4711939B2 JP 2006318342 A JP2006318342 A JP 2006318342A JP 2006318342 A JP2006318342 A JP 2006318342A JP 4711939 B2 JP4711939 B2 JP 4711939B2
Authority
JP
Japan
Prior art keywords
power converter
power
synchronous
signal
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006318342A
Other languages
Japanese (ja)
Other versions
JP2008136265A (en
Inventor
亨 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2006318342A priority Critical patent/JP4711939B2/en
Publication of JP2008136265A publication Critical patent/JP2008136265A/en
Application granted granted Critical
Publication of JP4711939B2 publication Critical patent/JP4711939B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)

Description

この発明は、列車編成内に複数台のPWM方式の電力変換器を備え、高調波抑制のために各電力変換器の搬送波の位相差運転を行う交流電気車の制御装置に関し、特に、基準となる電力変換器から送出される同期電源信号が異常になった時に、従属する電力変換器においてこの異常を検出し、従属する電力変換器を運転継続するものに係る。   The present invention relates to a control device for an AC electric vehicle that includes a plurality of PWM-type power converters in a train organization and performs phase difference operation of a carrier wave of each power converter to suppress harmonics. When the synchronous power supply signal sent out from the power converter becomes abnormal, the subordinate power converter detects this abnormality and continues to operate the subordinate power converter.

列車編成内にPWM方式の電力変換器を複数台配置し、電力変換器間に適切な搬送波位相差を設けて、列車全体で発生する高調波を低減する技術は、特許文献1に記載されている。PWMを行う電力変換器間で搬送波の位相差運転を行うことにより、電力変換器が出力される高調波成分の一部が相殺され、列車全体で高調波を低減できる。搬送波の位相差運転を行うためには、各電力変換器が個別に架線交流電圧に同期した同期電源信号を検出し、これからそれぞれの電力変換器に設定された位相差により搬送波を生成する方法と、基準となる電力変換器が検出した架線電圧に同期した同期電源信号を、従属する電力変換器に送信し、従属電力変換器ではこの同期電源信号から設定された位相差により搬送波を生成する方法がある。この発明の前提としては後者の方法に係わる。   A technique for reducing harmonics generated in the entire train by arranging a plurality of PWM power converters in a train organization and providing an appropriate carrier phase difference between the power converters is described in Patent Document 1. Yes. By performing the phase difference operation of the carrier wave between the power converters that perform PWM, part of the harmonic components output from the power converter is canceled, and harmonics can be reduced in the entire train. In order to perform the phase difference operation of the carrier wave, each power converter individually detects a synchronous power supply signal synchronized with the overhead AC voltage and generates a carrier wave from the phase difference set in each power converter from this A method of transmitting a synchronous power signal synchronized with an overhead voltage detected by a reference power converter to a subordinate power converter, and generating a carrier wave by a phase difference set from the synchronous power signal in the subordinate power converter There is. The premise of the present invention relates to the latter method.

上述の内容を図と共に説明する。図3は従来の交流電気車の制御装置のブロック図を示す。図において、51は交流架線、52は交流架線51に接触するパンタグラフ、53はパンタグラフ52に接続された主変圧器、53−1はパンタグラフ52に直接接続された主変圧器53の1次巻線、53−2,53−3は主変圧器53の2次巻線、54,55はそれらの入力側がそれぞれ2次巻線53−2,53−3に接続され、それぞれの出力側が共通に接続されたパルス幅変調制御のコンバータ(PWMコンバータ)、56はPWMコンバータ54,55の共通とされた出力側の2端子間に接続された中間直流回路の平滑コンデンサ、57はPWMコンバータ54,55の出力側に接続され、かつその2入力端子間に平滑用コンデンサ56が接続された可変電圧可変周波数のインバータ(VVVFインバータ)、58はVVVFインバータの出力側に接続された車両用電動機である誘導電動機である。   The above contents will be described with reference to the drawings. FIG. 3 shows a block diagram of a conventional control apparatus for an AC electric vehicle. In the figure, 51 is an AC overhead wire, 52 is a pantograph in contact with the AC overhead wire 51, 53 is a main transformer connected to the pantograph 52, and 53-1 is a primary winding of the main transformer 53 directly connected to the pantograph 52. , 53-2 and 53-3 are secondary windings of the main transformer 53, 54 and 55 are connected to the secondary windings 53-2 and 53-3, respectively, and the output sides thereof are connected in common. The converted pulse width modulation control converter (PWM converter), 56 is a smoothing capacitor of an intermediate DC circuit connected between two common terminals on the output side of the PWM converters 54 and 55, and 57 is the PWM converter 54, 55. A variable voltage variable frequency inverter (VVVF inverter) connected to the output side and having a smoothing capacitor 56 connected between its two input terminals, 58 is a VVVF inverter An induction motor is connected to the force-side motor vehicle.

59は交流架線51の電圧を降圧するトランス(PT)、60はPT59に接続され、入力された交流電圧のゼロクロス点を検出しそのタイミング信号であるゼロクロス信号を出力する電圧検出器(ACPT)、61はACPT60に接続され、ゼロクロス信号をタイミング基準にして作成した位相制御信号をPWMコンバータ54,55へ送出してPWMコンバータを制御する制御論理部であり、その出力側がPWMコンバータ54,55に接続されている。62はPWMコンバータ54,55、平滑用コンデンサ56、VVVFインバータ57、ACPT60、制御論理部61を収納した主変換装置である。   59 is a transformer (PT) for stepping down the voltage of the AC overhead wire 51, 60 is a voltage detector (ACPT) connected to the PT 59, which detects a zero cross point of the input AC voltage and outputs a zero cross signal as its timing signal, A control logic unit 61 is connected to the ACPT 60 and sends a phase control signal created based on the zero cross signal as a timing reference to the PWM converters 54 and 55 to control the PWM converter, and its output side is connected to the PWM converters 54 and 55. Has been. Reference numeral 62 denotes a main converter that houses PWM converters 54 and 55, a smoothing capacitor 56, a VVVF inverter 57, an ACPT 60, and a control logic unit 61.

図4はPWMコンバータ54,55の動作を制御する制御ブロック図を示す。図において、70,71,72,73,74は増幅器、75は乗算器、76,77は三角波作成回路、78,79,80,81,82は減算器を示す。   FIG. 4 is a control block diagram for controlling the operation of the PWM converters 54 and 55. In the figure, 70, 71, 72, 73 and 74 are amplifiers, 75 is a multiplier, 76 and 77 are triangular wave generating circuits, and 78, 79, 80, 81 and 82 are subtractors.

次に上述の回路の動作を説明する。PWMコンバータ54,55の出力側である中間直流電圧の目標値Vdと実際の中間直流電圧値Vdとの差を減算器78でとり、その値を増幅器70で増幅した値と交流架線51と同じ周波数の単位正弦波sinωtとを乗算器75でかけあわせPWMコンバータ54,55の入力側における2次電流目標値Isを演算する。この2次電流目標値IsとPWMコンバータ54,55の実際の2次電流Is,Isとの差をそれぞれ減算器79,80でとり増幅器71,72で増幅し、それぞれ電圧の基本波ei,ei’を演算する。 Next, the operation of the above circuit will be described. The difference between the target value Vd * of the intermediate DC voltage on the output side of the PWM converters 54 and 55 and the actual intermediate DC voltage value Vd is obtained by a subtractor 78, and the value amplified by the amplifier 70 and the AC overhead line 51 A unit sine wave sinωt having the same frequency is multiplied by a multiplier 75 to calculate a secondary current target value Is * on the input side of the PWM converters 54 and 55. Differences between the secondary current target value Is * and the actual secondary currents Is 1 and Is 2 of the PWM converters 54 and 55 are respectively obtained by subtracters 79 and 80 and amplified by amplifiers 71 and 72, respectively. ei, ei 'is calculated.

ところで、PWMコンバータ54,55におけるスイッチング素子のオンオフ動作に基づき発生する高調波電流成分は主変圧器53で合成されパンタグラフ52を介して交流架線51へ流出することになるが、単相の場合、両PWMコンバータ54,55の位相制御信号となる制御位相を90°ずらすことにより交流架線51へ流出する高調波を抑制することができる。なお、3台のPWMコンバータを並列運転するとき、単相の場合は、位相制御信号となる制御位相を60°(=180°/3)ずらすことにより交流架線51へ流出する高調波を抑制することができる。   By the way, the harmonic current component generated based on the on / off operation of the switching elements in the PWM converters 54 and 55 is synthesized by the main transformer 53 and flows out to the AC overhead line 51 via the pantograph 52. The harmonics flowing out to the AC overhead wire 51 can be suppressed by shifting the control phase that is the phase control signal of both the PWM converters 54 and 55 by 90 °. When the three PWM converters are operated in parallel, in the case of a single phase, the harmonics flowing out to the AC overhead wire 51 are suppressed by shifting the control phase that is the phase control signal by 60 ° (= 180 ° / 3). be able to.

このため、図4の三角波作成回路76,77は、ACPT60からのゼロクロス信号をタイミング基準にして互いに位相をずらしたPWM用の三角波を発生する。そして、増幅器71,72からの電圧の基本波ei,ei’と三角波作成回路76,77からの三角波との差を減算器81,82でとり、その値を増幅器73,74で増幅して、PWMコンバータ54,55を動作させる位相制御信号とする。   For this reason, the triangular wave generating circuits 76 and 77 in FIG. 4 generate a triangular wave for PWM whose phases are shifted from each other with the zero cross signal from the ACPT 60 as a timing reference. Then, the difference between the fundamental wave ei, ei 'of the voltage from the amplifiers 71, 72 and the triangular wave from the triangular wave generating circuits 76, 77 is taken by the subtracters 81, 82, and the value is amplified by the amplifiers 73, 74, A phase control signal for operating the PWM converters 54 and 55 is used.

上記で作成された位相制御信号が制御論理部61からそれぞれPWMコンバータ54,55に出力され、高調波を抑制するように、PWMコンバータ54,55を動作させ、平滑用コンデンサ56を充電し、この平滑用コンデンサ56を電圧源としてVVVFインバータ57を動作させ、誘導電動機58を駆動する。そして、図3で示した回路を車両編成内に複数組備えた場合には、各組のPWMコンバータ相互間での制御位相をずらすことにより、その列車編成全体での高調波を抑制することができる。   The phase control signals created above are output from the control logic unit 61 to the PWM converters 54 and 55, respectively, so that the harmonics are suppressed, the PWM converters 54 and 55 are operated, and the smoothing capacitor 56 is charged. The VVVF inverter 57 is operated using the smoothing capacitor 56 as a voltage source to drive the induction motor 58. When a plurality of sets of the circuit shown in FIG. 3 are provided in the vehicle formation, the harmonics in the entire train formation can be suppressed by shifting the control phase between the PWM converters of each set. it can.

図3で示した回路を列車編成内に複数組備えた場合、各組の制御論理部61はそれぞれ該組のACPT60からのゼロクロス信号をタイミング基準にして所定の位相制御信号を作成することになるので、例えば、パンタグラフ52と交流架線51との接触状態のバラツキやPT59、ACPT60自体の誤差特性のバラツキによっては、各組のタイミング基準自体にずれが生じ、この結果、各組のPWMコンバータの制御位相が、列車編成全体としての高調波を抑制する最適の位相ずらし条件と一致せず、充分な高調波抑制効果が得られないことがある。   When a plurality of sets of the circuits shown in FIG. 3 are provided in the train organization, each set of control logic units 61 creates a predetermined phase control signal based on the timing of the zero cross signal from the ACPT 60 of the set. Therefore, for example, depending on variations in the contact state between the pantograph 52 and the AC overhead line 51 and variations in error characteristics of the PT 59 and the ACPT 60 themselves, a deviation occurs in the timing reference itself of each group, and as a result, the control of the PWM converters in each group is performed. The phase does not match the optimum phase shifting condition for suppressing harmonics in the entire train organization, and a sufficient harmonic suppression effect may not be obtained.

そのため、この発明の前提としては、複数台の電力変換器の内で、基準となる基準電力変換器で架線電圧から検出され送出される同期電源信号を、従属する従属電力変換器に送信し、従属電力変換器ではこの同期電源信号から設定された位相差により搬送波を生成して、高調波抑制のために各電力変換器の搬送波の位相差運転を行うようにしている。   Therefore, as a premise of the present invention, among a plurality of power converters, a synchronous power supply signal detected and transmitted from an overhead line voltage by a reference power converter serving as a reference is transmitted to a subordinate subordinate power converter, In the subordinate power converter, a carrier wave is generated based on the phase difference set from the synchronous power supply signal, and the phase difference operation of the carrier wave of each power converter is performed for harmonic suppression.

特開平8−98317号公報JP-A-8-98317

複数台のPWM方式の電力変換器を備えた列車において、基準電力変換器の制御回路が架線電圧から検出した同期電源信号を従属する複数の従属電力変換器に伝送することにより、各電力変換器の搬送波の位相差運転を行う場合に、基準電力変換器が従属電力変換器へ送出する同期電源信号が異常になる場合の動作として、同期電源信号の出力が完全に停止してしまう場合、同期電源信号の周期が異常である場合、同期電源信号の周期は正常で、かつ位相が異常である場合の3つの場合がある。同期電源信号の出力が停止する場合と周期が異常になる場合では、従属電力変換器は受信した同期電源信号の周期を計測しているため、受信した同期電源信号が異常であることを検出でき、従属電力変換器自身の制御回路で架線電圧から検出した同期電源信号に切替えることにより従属電力変換器の運転を継続することができる。   In a train equipped with a plurality of PWM power converters, each power converter is transmitted by transmitting a synchronous power signal detected by the control circuit of the reference power converter from the overhead line voltage to the subordinate subordinate power converters. When the phase difference operation of the carrier wave is performed, the operation of the synchronous power supply signal that the reference power converter sends to the subordinate power converter becomes abnormal. When the cycle of the power supply signal is abnormal, there are three cases where the cycle of the synchronous power supply signal is normal and the phase is abnormal. When the output of the synchronous power supply signal is stopped or when the cycle becomes abnormal, the subordinate power converter measures the cycle of the received synchronous power supply signal, so it can detect that the received synchronous power supply signal is abnormal. The operation of the subordinate power converter can be continued by switching to the synchronous power supply signal detected from the overhead line voltage by the control circuit of the subordinate power converter itself.

これに対し、基準電力変換器の制御マイコンが異常になったときなどには、架線電圧信号の基本波を抽出するためのバンドパスフィルタの特性が誤って設定されることがあり、周期が正常で、かつ位相が異常な同期電源信号が従属電力変換器に対して送出される場合がある。このような場合、受信した同期電源信号の周期が正常であるため、同期電源信号の異常を認識できず、誤った位相の同期電源信号に基づき電圧指令を生成する。この結果、電力変換器に必要な定電圧制御が正常に機能せず、従属電力変換器が正常であるにも関わらず運転を継続することができない。   On the other hand, when the control microcomputer of the reference power converter becomes abnormal, the characteristics of the bandpass filter for extracting the fundamental wave of the overhead line voltage signal may be set incorrectly, and the cycle is normal. In some cases, a synchronous power supply signal having an abnormal phase is sent to the subordinate power converter. In such a case, since the cycle of the received synchronous power supply signal is normal, the abnormality of the synchronous power supply signal cannot be recognized, and the voltage command is generated based on the synchronous power supply signal having an incorrect phase. As a result, the constant voltage control required for the power converter does not function normally, and the operation cannot be continued even though the subordinate power converter is normal.

この発明は、上記の問題点を解消するためになされたもので、基準電力変換器から異常な位相の同期電源信号が送出されたとき、その位相が異常であることを検出し、従属電力変換器自身で検出した同期電源信号に切替えることにより従属電力変換器の運転を継続するようにすることを目的とする。   The present invention has been made to solve the above-described problems. When a synchronous power supply signal having an abnormal phase is sent from a reference power converter, the phase is detected to be abnormal, and dependent power conversion is performed. The purpose is to continue the operation of the subordinate power converter by switching to the synchronous power supply signal detected by the converter itself.

この発明に係わる交流電気車の制御装置は、列車編成内に複数台のPWM方式の電力変換器を備え、複数台の上記電力変換器の内で、基準となる基準電力変換器で架線電圧から検出される同期電源信号を、上記基準電力変換器から従属する従属電力変換器に送信し、上記従属電力変換器ではこの同期電源信号から設定された位相差により搬送波を生成して、高調波抑制のために上記各電力変換器間で搬送波の位相差運転を行う交流電気車の制御装置において、上記基準電力変換器から送信される同期電源信号と上記従属電力変換器自身で検出した同期電源信号の位相差が設定された値以上か否かを検出する位相異常検出手段を備え、上記位相異常検出手段の異常出力により上記基準電力変換器から送信される同期電源信号が異常であると判断し、上記従属電力変換器自身で検出した同期電源信号に切替えて、上記従属電力変換器の運転を継続するようにしたものである。 The control apparatus for an AC electric vehicle according to the present invention includes a plurality of PWM power converters in a train organization, and the reference power converter serving as a reference among the plurality of power converters The detected synchronous power signal is transmitted from the reference power converter to the subordinate power converter, and the subordinate power converter generates a carrier wave based on the phase difference set from the synchronous power signal, and suppresses harmonics. In a control apparatus for an AC electric vehicle that performs a phase difference operation of a carrier wave between each of the power converters, a synchronous power signal transmitted from the reference power converter and a synchronous power signal detected by the dependent power converter itself Phase abnormality detection means for detecting whether or not the phase difference of the phase difference is greater than or equal to a set value, and it is determined that the synchronous power signal transmitted from the reference power converter is abnormal due to an abnormal output of the phase abnormality detection means , Switch to synchronous power signal detected by the slave power converter itself Ete, in which so as to continue the operation of the slave power converter.

この発明の交流電気車の制御装置によれば、基準電力変換器から送される同期電源信号の位相が異常となったとき、従属電力変換器において同期電源信号の位相が異常であることを検出し、従属電力変換器自身で検出した同期電源信号に切替えることにより上記従属電力変換器の運転を継続することができる。 According to the controller for an AC electric vehicle of the present invention, when the phase of the synchronizing supply signal that is sent from the reference power converter is abnormal, the synchronous power signal in the dependent power converter that phase is abnormal By detecting and switching to the synchronous power supply signal detected by the subordinate power converter itself, the operation of the subordinate power converter can be continued.

実施の形態1.
以下、この発明の実施の形態を図について説明する。図1はこの発明の実施の形態1における交流電気車の制御装置を示すブロック図である。なお、この発明に係わる交流電気車の電力変換装置の全体構成とその動作は、図3,図4で説明したものを援用する。図1では、従属電力変換装置による同期電源信号の異常検出、ならびに、同期電源信号の切替え装置の構成を示す。
Embodiment 1 FIG.
Embodiments of the present invention will be described below with reference to the drawings. 1 is a block diagram showing a control device for an AC electric vehicle according to Embodiment 1 of the present invention. In addition, what was demonstrated in FIG. 3, FIG. 4 is used for the whole structure and operation | movement of the power converter device of the alternating current electric vehicle concerning this invention. FIG. 1 shows a configuration of a synchronous power supply signal abnormality detection and a synchronous power supply signal switching device by a subordinate power converter.

基準電力変換器3では交流架線1aの電圧信号をACPT2aにより計測した架線電圧信号4aをアナログ・ディジタル変換器5aでディジタル・データ化し、バンドパスフィルタ6aに入力し、この出力を0クロス比較回路7aに入力し、同期電源信号8aを生成する。この同期電源信号8aは搬送波生成回路10aに入力され、あらかじめ設定された搬送波初期位相9a(単相、2電力変換器並列のときは、0°)に応じた位相差をもつキャリア(PWM用の三角波)11aを生成する。このキャリアがPWM回路12aに入力されPWM機能が実現され、コンバータ35aへのゲートオン・オフ信号(位相制御信号)が出力される。   In the reference power converter 3, the overhead line voltage signal 4a obtained by measuring the voltage signal of the AC overhead line 1a by the ACPT 2a is converted into digital data by the analog / digital converter 5a and input to the bandpass filter 6a, and this output is output to the 0 cross comparison circuit 7a. To generate a synchronous power supply signal 8a. This synchronous power supply signal 8a is input to the carrier wave generation circuit 10a, and a carrier (a PWM phase difference) having a phase difference corresponding to a preset carrier wave initial phase 9a (0 ° in the case of single phase and two power converters in parallel). (Triangular wave) 11a is generated. This carrier is input to the PWM circuit 12a to realize the PWM function, and a gate on / off signal (phase control signal) to the converter 35a is output.

また、同期電源信号8aは定電圧制御を行う制御マイコン14aに入力され、周期を検出して、その出力で架線電圧に整合する50Hz又は60Hz用フィルタ定数を切替え回路13aで設定して、その定数をバンドパスフィルタ6aに出力する。さらに、同期電源信号8aはインターフェース回路15に入力される。インターフェース回路15から送出された同期電源信号8aは、同期電源信号引き通し線16を介して、従属電力変換器17のインターフェース回路18に入力される。このインターフェース回路18の出力した基準電力変換器3が生成した同期電源信号19は、同期電源信号切替え回路21,遅延検出回路23及び周期検出回路28にそれぞれ入力される。   The synchronous power supply signal 8a is input to the control microcomputer 14a that performs constant voltage control, detects the period, sets a filter constant for 50 Hz or 60 Hz that matches the overhead line voltage by the output, and sets the constant by the switching circuit 13a. Is output to the bandpass filter 6a. Further, the synchronous power supply signal 8 a is input to the interface circuit 15. The synchronous power supply signal 8 a sent from the interface circuit 15 is input to the interface circuit 18 of the subordinate power converter 17 via the synchronous power supply signal lead-in line 16. The synchronous power supply signal 19 generated by the reference power converter 3 output from the interface circuit 18 is input to the synchronous power supply signal switching circuit 21, the delay detection circuit 23, and the cycle detection circuit 28, respectively.

基準電力変換器3が生成した同期電源信号19に異常が無い平常時では、同期電源信号19が同期電源信号切替え回路21から搬送波生成回路10bに入力され、あらかじめ設定された搬送波初期位相9b(単相、2電力変換器並列のときは、90°)に応じた位相差をもつキャリア(PWM用の三角波)11bを生成する。このキャリアがPWM回路12bに入力されPWM機能が実現され、コンバータ35bへのゲートオン・オフ信号(位相制御信号)が出力される。   In a normal state where the synchronous power signal 19 generated by the reference power converter 3 is normal, the synchronous power signal 19 is input from the synchronous power signal switching circuit 21 to the carrier wave generating circuit 10b, and a preset carrier initial phase 9b (single When the two power converters are parallel to each other, a carrier (a triangular wave for PWM) 11b having a phase difference corresponding to 90 ° is generated. This carrier is input to the PWM circuit 12b to realize the PWM function, and a gate on / off signal (phase control signal) is output to the converter 35b.

従属電力変換器17においても、基準電力変換器3と同様に架線1bの電圧信号をACPT2bにより計測した架線電圧信号4bをアナログ・ディジタル変換器5bでディジタル・データ化し、バンドパスフィルタ6bに入力し、この出力を0クロス比較回路7bに入力し、同期電源信号20を生成する。この同期電源信号20は同期電源信号切替え回路21と遅延検出回路23に入力される。遅延検出回路23では基準電力変換器から受信した同期電源信号19と従属電力変換器17自身で生成した同期電源信号20との遅延量24を検出する。   Similarly to the reference power converter 3, in the subordinate power converter 17, the overhead line voltage signal 4b obtained by measuring the voltage signal of the overhead line 1b by the ACPT 2b is converted into digital data by the analog / digital converter 5b and input to the bandpass filter 6b. The output is input to the 0-cross comparison circuit 7b, and the synchronous power supply signal 20 is generated. The synchronous power signal 20 is input to the synchronous power signal switching circuit 21 and the delay detection circuit 23. The delay detection circuit 23 detects a delay amount 24 between the synchronous power supply signal 19 received from the reference power converter and the synchronous power supply signal 20 generated by the dependent power converter 17 itself.

この遅延量24を遅延量比較回路26に入力し、あらかじめ設定したしきい値25と比較し同期電源信号19の位相が異常か否かを検出する。このとき、基準電力変換器から受信した同期電源信号19と従属電力変換器17自身で生成した同期電源信号20との進み量を検出しても良く、準電力変換器から受信した同期電源信号19と従属電力変換器17自身で生成した同期電源信号20との位相差を検出するようにしても良い。そして、遅延検出回路23と遅延量比較回路26とで位相異常検出手段を構成する。 This delay amount 24 is input to the delay amount comparison circuit 26 and compared with a preset threshold value 25 to detect whether or not the phase of the synchronous power supply signal 19 is abnormal. At this time, it may be detected advancing amount of the synchronous power signal 19 received from the reference power converter and dependent power converter 17 synchronizing power signals 20 generated by itself, synchronous power signal received from the standards the power converter 19 and the phase difference between the synchronous power signal 20 generated by the dependent power converter 17 itself may be detected. The delay detection circuit 23 and the delay amount comparison circuit 26 constitute phase abnormality detection means.

また、周期検出回路28では、基準電力変換器3から受信した同期電源信号19の周期を計測し、この周期量29を周期比較回路31に入力し、あらかじめ設定したしきい値30と比較し同期電源信号19の周期が異常か否かを検出する。そして、周期検出回路28と周期比較回路31とで周期異常検出手段を構成する。遅延量比較回路出力信号である遅延量異常信号27と周期比較回路出力信号である周期異常信号32との論理和をとった信号が基準電力変換器生成同期電源信号19と従属変換器生成同期電源信号20の切替え信号33であり、同期電源信号切替え回路21の切替え動作に使用される。なお、図1で14bは制御マイコン14aに相当する制御マイコンであり、13bは切替え回路13aに相当する切替え回路である。   Further, the period detection circuit 28 measures the period of the synchronous power supply signal 19 received from the reference power converter 3, inputs this period amount 29 to the period comparison circuit 31, compares it with a preset threshold value 30, and synchronizes with it. It is detected whether the cycle of the power signal 19 is abnormal. The cycle detection circuit 28 and the cycle comparison circuit 31 constitute cycle abnormality detection means. A signal obtained by ORing a delay amount abnormality signal 27 which is a delay amount comparison circuit output signal and a period abnormality signal 32 which is a period comparison circuit output signal is a reference power converter generation synchronous power supply signal 19 and a subordinate converter generation synchronous power supply. The switching signal 33 of the signal 20 is used for the switching operation of the synchronous power supply signal switching circuit 21. In FIG. 1, 14b is a control microcomputer corresponding to the control microcomputer 14a, and 13b is a switching circuit corresponding to the switching circuit 13a.

次に図1の動作について説明する。基準電力変換器3から受信した同期電源信号19と従属電力変換器17自身で生成した同期電源信号20との遅延量24を遅延検出回路23により検出する。この遅延量24はあらかじめ設定された遅延量しきい値25と遅延量比較回路26により比較され、しきい値より遅延量が外れたとき遅延量異常信号27が有意(異常出力)となる。また、基準電力変換器3から受信した同期電源信号19の周期が周期検出回路28により検出される。この周期量29はあらかじめ設定された周期量しきい値30と周期量比較回路31により比較され、しきい値から周期量が外れたとき周期量異常信号32が有意(異常出力)となる。   Next, the operation of FIG. 1 will be described. A delay detection circuit 23 detects a delay amount 24 between the synchronous power signal 19 received from the reference power converter 3 and the synchronous power signal 20 generated by the dependent power converter 17 itself. The delay amount 24 is compared with a preset delay amount threshold 25 by a delay amount comparison circuit 26, and when the delay amount deviates from the threshold, the delay amount abnormality signal 27 becomes significant (abnormal output). The period of the synchronous power supply signal 19 received from the reference power converter 3 is detected by the period detection circuit 28. The periodic amount 29 is compared with a predetermined periodic amount threshold 30 by a periodic amount comparison circuit 31. When the periodic amount deviates from the threshold, the periodic amount abnormal signal 32 becomes significant (abnormal output).

遅延量異常信号27と周期量異常信号32との論理和をとった信号が基準電力変換器生成同期電源信号19と従属電力変換器生成同期電源信号20の切替え信号33であり、遅延量異常信号27か周期量異常信号32のどちらかが有意であるとき、同期電源信号切替え回路21が従属電力変換器で生成した同期電源信号20側に切替わる。遅延量異常検出回路23と周期異常検出回路28を併用することにより、基準電力変換器から送出される同期電源信号19が停止する場合、同期電源信号19の周期が異常になる場合、同期電源信号の周期が正常、かつ位相が異常になる場合のいずれの異常が発生する場合でも、同期電源信号19の異常が検出でき、従属電力変換器自身で生成した同期電源信号20に切替えることにより、従属電力変換器の運転を継続することができる。   A signal obtained by ORing the delay amount abnormality signal 27 and the periodic amount abnormality signal 32 is a switching signal 33 between the reference power converter generation synchronous power supply signal 19 and the subordinate power converter generation synchronization power supply signal 20, and the delay amount abnormality signal When either 27 or the periodic amount abnormality signal 32 is significant, the synchronous power signal switching circuit 21 switches to the synchronous power signal 20 side generated by the subordinate power converter. By using the delay amount abnormality detection circuit 23 and the period abnormality detection circuit 28 together, when the synchronous power supply signal 19 sent from the reference power converter stops, when the period of the synchronous power supply signal 19 becomes abnormal, the synchronous power supply signal Even if any abnormality occurs when the period of the signal is normal and the phase becomes abnormal, the abnormality of the synchronous power supply signal 19 can be detected, and by switching to the synchronous power supply signal 20 generated by the dependent power converter itself, The operation of the power converter can be continued.

また、基準電力変換器から送出される同期電源信号と従属電力変換器自身で検出した同期電源信号の位相差が設定された値以上か否かを検出する位相異常検出手段を備え、上記位相異常検出手段の異常出力により基準電力変換器から送出される同期電源信号が異常であると判断し、従属電力変換器自身で検出した同期電源信号に切替えることにより、従属電力変換器の運転を継続することができる。   And a phase abnormality detecting means for detecting whether or not a phase difference between the synchronous power signal sent from the reference power converter and the synchronous power signal detected by the subordinate power converter itself is equal to or larger than a set value. It is determined that the synchronous power signal sent from the reference power converter is abnormal due to the abnormal output of the detecting means, and the operation of the dependent power converter is continued by switching to the synchronous power signal detected by the dependent power converter itself. be able to.

実施の形態2.
図2は実施の形態2における交流電気車の制御装置を示すブロック図で、従属電力変換装置による同期電源信号異常検出装置の構成を示す。実施の形態1では、図1において架線電圧信号4a,4bをアナログ・ディジタル変換器5a,5bによりディジタル信号データに変換し、バンドパスフィルタ6a,6b、0クロス比較回路7a,7bをディジタル回路で構成しディジタル量で処理しているが、実施の形態2では、アナログ・ディジタル変換器5a,5bを省き、バンドパスフィルタ6a,6b、0クロス比較回路7a,7bをアナログ回路で構成しアナログ量で処理している。
Embodiment 2. FIG.
FIG. 2 is a block diagram showing a control apparatus for an AC electric vehicle according to Embodiment 2, and shows a configuration of a synchronous power supply signal abnormality detection apparatus using a subordinate power converter. In the first embodiment, the overhead line voltage signals 4a and 4b in FIG. 1 are converted into digital signal data by the analog / digital converters 5a and 5b, and the bandpass filters 6a and 6b and the zero cross comparison circuits 7a and 7b are converted by digital circuits. In the second embodiment, the analog / digital converters 5a and 5b are omitted, and the band-pass filters 6a and 6b and the zero cross comparison circuits 7a and 7b are configured by analog circuits. It is processed with.

この発明の実施の形態1における交流電気車の制御装置を示すブロック図である。It is a block diagram which shows the control apparatus of the alternating current electric vehicle in Embodiment 1 of this invention. 実施の形態2における交流電気車の制御装置を示すブロック図である。FIG. 6 is a block diagram showing a control device for an AC electric vehicle in a second embodiment. 従来の交流電気車の制御装置を示すブロック図である。It is a block diagram which shows the control apparatus of the conventional alternating current electric vehicle. 従来のPWMコンバータの動作を制御する制御ブロック図を示す。The control block diagram which controls operation | movement of the conventional PWM converter is shown.

符号の説明Explanation of symbols

1a,1b 交流架線 2a,2b ACPT
3 基準電力変換器 4a,4b 架線電圧信号
5a,5b アナログ・ディジタル変換器
6a,6b バンドパスフィルタ 7a,7b 0クロス比較回路
8a 同期電源信号 9a,9b 搬送波初期位相
10a,10b 搬送波生成回路 11a,11b キャリア
12a,12b PWM回路 13a,13b 切替え回路
14a,14b 制御マイコン 15 インターフェース回路
1a, 1b AC overhead line 2a, 2b ACPT
3 Reference power converter 4a, 4b Overhead voltage signal 5a, 5b Analog to digital converter 6a, 6b Band pass filter 7a, 7b 0 Cross comparison circuit 8a Synchronous power supply signal 9a, 9b Carrier phase initial phase 10a, 10b Carrier generation circuit 11a, 11b Carrier 12a, 12b PWM circuit 13a, 13b Switching circuit 14a, 14b Control microcomputer 15 Interface circuit

16 同期電源信号引き通し線 17 従属電力変換器
18 インターフェース回路 19 基準電力変換器生成同期電源信号
20 従属電力変換器生成同期電源信号 21 同期電源信号切替え回路
22 同期電源信号 23 遅延検出回路
24 遅延量 25 しきい値
26 遅延量比較回路 27 遅延量異常信号
28 周期検出回路 29 周期量
30 しきい値 31 周期比較回路
32 周期異常信号 33 切替え信号
DESCRIPTION OF SYMBOLS 16 Synchronous power signal lead-in line 17 Subordinate power converter 18 Interface circuit 19 Reference power converter generation synchronous power supply signal 20 Subordinate power converter generation synchronous power supply signal 21 Synchronous power signal switching circuit 22 Synchronous power signal 23 Delay detection circuit 24 Delay amount 25 Threshold 26 Delay amount comparison circuit 27 Delay amount abnormality signal 28 Period detection circuit 29 Period amount 30 Threshold value 31 Period comparison circuit 32 Period abnormality signal 33 Switching signal

35a,5b コンバータ 51 交流架線
52 パンタグラフ 53 主変圧器
54,55 コンバータ 56 平滑コンデンサ
57 インバータ 58 誘導電動機
70,71,72,73,74 増幅器
75 乗算器 76,77 三角波作成回路
78,79,80,81,82 減算器
35a, 5b Converter 51 AC overhead line 52 Pantograph 53 Main transformer 54, 55 Converter 56 Smoothing capacitor 57 Inverter 58 Induction motor 70, 71, 72, 73, 74 Amplifier 75 Multiplier 76, 77 Triangular wave generating circuit 78, 79, 80, 81,82 subtractor

Claims (2)

列車編成内に複数台のPWM方式の電力変換器を備え、複数台の上記電力変換器の内で、基準となる基準電力変換器で架線電圧から検出される同期電源信号を、上記基準電力変換器から従属する従属電力変換器に送信し、上記従属電力変換器ではこの同期電源信号から設定された位相差により搬送波を生成して、高調波抑制のために上記各電力変換器間で搬送波の位相差運転を行う交流電気車の制御装置において、
上記基準電力変換器から送信される同期電源信号と上記従属電力変換器自身で検出した同期電源信号の位相差が設定された値以上か否かを検出する位相異常検出手段を備え、上記位相異常検出手段の異常出力により上記基準電力変換器から送信される同期電源信号が異常であると判断し、上記従属電力変換器自身で検出した同期電源信号に切替えて、上記従属電力変換器の運転を継続するようにした交流電気車の制御装置。
A plurality of PWM power converters are provided in the train organization, and the reference power converter detects the synchronous power signal detected from the overhead line voltage by the reference power converter serving as a reference among the plurality of power converters. send dependent power converter that depend from the vessel, in the slave power converter to generate a carrier wave by phase difference set by the synchronizing power signal, the carrier between the respective power converters for harmonic suppression In a control device for an AC electric vehicle that performs phase difference operation,
Phase abnormality detection means for detecting whether or not the phase difference between the synchronous power signal transmitted from the reference power converter and the synchronous power signal detected by the subordinate power converter itself is greater than or equal to a set value, and the phase abnormality synchronous power signal transmitted from the reference power converter is determined to be abnormal by the abnormal output detection means, switching to the synchronous power signal detected by the slave power converter itself Ete, the operation of the slave power converter A control device for an AC electric vehicle that continues.
列車編成内に複数台のPWM方式の電力変換器を備え、複数台の上記電力変換器の内で、基準となる基準電力変換器で架線電圧から検出される同期電源信号を、上記基準電力変換器から従属する従属電力変換器に送信し、上記従属電力変換器ではこの同期電源信号から設定された位相差により搬送波を生成して、高調波抑制のために上記各電力変換器間で搬送波の位相差運転を行う交流電気車の制御装置において、
上記基準電力変換器から送信される同期電源信号の周期をしきい値と比較して異常である否かを検出する周期異常検出手段、及び上記基準電力変換器から送信される同期電源信号と上記従属電力変換器自身で検出した同期電源信号の位相差が設定された値以上か否かを検出する位相異常検出手段を備え、上記周期異常検出手段及び位相異常検出手段のいずれかの異常出力により上記基準電力変換器から送信される同期電源信号が異常であると判断し、上記従属電力変換器自身で検出した同期電源信号に切替えて、上記従属電力変換器の運転を継続するようにした交流電気車の制御装置。
A plurality of PWM power converters are provided in the train organization, and the reference power converter detects the synchronous power signal detected from the overhead line voltage by the reference power converter serving as a reference among the plurality of power converters. The subordinate power converter generates a carrier wave based on the phase difference set from the synchronous power supply signal, and the subcarrier power is transmitted between the power converters to suppress harmonics. In a control device for an AC electric vehicle that performs phase difference operation,
Periodic abnormality detection means for detecting whether the period of the synchronous power supply signal transmitted from the reference power converter is abnormal by comparing with a threshold value , and the synchronous power supply signal transmitted from the reference power converter and the above Phase abnormality detection means for detecting whether or not the phase difference of the synchronous power supply signal detected by the subordinate power converter itself is equal to or greater than a set value, and by an abnormal output of either the period abnormality detection means or the phase abnormality detection means determines that the synchronization power signal transmitted from the reference power converter is abnormal, switching the synchronization power signal detected by the slave power converter itself, and so as to continue the operation of the slave power converter AC Electric vehicle control device.
JP2006318342A 2006-11-27 2006-11-27 AC electric vehicle control device Active JP4711939B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006318342A JP4711939B2 (en) 2006-11-27 2006-11-27 AC electric vehicle control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006318342A JP4711939B2 (en) 2006-11-27 2006-11-27 AC electric vehicle control device

Publications (2)

Publication Number Publication Date
JP2008136265A JP2008136265A (en) 2008-06-12
JP4711939B2 true JP4711939B2 (en) 2011-06-29

Family

ID=39560721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006318342A Active JP4711939B2 (en) 2006-11-27 2006-11-27 AC electric vehicle control device

Country Status (1)

Country Link
JP (1) JP4711939B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016074880A1 (en) * 2014-11-12 2016-05-19 Siemens Aktiengesellschaft Rail vehicle having a grid-voltage sensing unit

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101234951B1 (en) * 2008-07-31 2013-02-19 미쓰비시덴키 가부시키가이샤 Controller for ac electric vehicle
KR101855525B1 (en) 2011-01-31 2018-06-08 제이엔씨 주식회사 Polymerizable liquid crystal composition and optical anisotropic body
KR101656590B1 (en) 2011-12-12 2016-09-09 미쓰비시덴키 가부시키가이샤 Electric power conversion device
JP6393643B2 (en) * 2015-03-26 2018-09-19 株式会社日立製作所 Vehicle drive system
JP6750386B2 (en) * 2016-08-12 2020-09-02 株式会社デンソー Failure detection device for rotating electrical machine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0412602A (en) * 1990-04-27 1992-01-17 Toshiba Corp Main circuit of motor for electric railway
JPH07123501A (en) * 1993-10-28 1995-05-12 Toshiba Corp Controller for electric vehicle
JPH09154203A (en) * 1995-11-29 1997-06-10 Mitsubishi Electric Corp Controller for ac electric rolling stock

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0412602A (en) * 1990-04-27 1992-01-17 Toshiba Corp Main circuit of motor for electric railway
JPH07123501A (en) * 1993-10-28 1995-05-12 Toshiba Corp Controller for electric vehicle
JPH09154203A (en) * 1995-11-29 1997-06-10 Mitsubishi Electric Corp Controller for ac electric rolling stock

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016074880A1 (en) * 2014-11-12 2016-05-19 Siemens Aktiengesellschaft Rail vehicle having a grid-voltage sensing unit

Also Published As

Publication number Publication date
JP2008136265A (en) 2008-06-12

Similar Documents

Publication Publication Date Title
JP5207568B1 (en) Current source inverter device and control method of current source inverter device
JP4711939B2 (en) AC electric vehicle control device
JP5040287B2 (en) Three-phase AC-AC converter
US11128237B2 (en) Electrically coupling a first electrical supply network to a second electrical supply network
JP2009124836A (en) Controller of uninterrupted power supply system
CN101179255B (en) H-bridge inverter of AC motor
EP2940851B1 (en) Power conversion device and power conversion method
JP2010130788A (en) Power conversion apparatus
JP6253975B2 (en) CONVERTER DEVICE, MOTOR DRIVE DEVICE, CONVERTER DEVICE CONTROL METHOD, AND CONVERTER DEVICE CONTROL PROGRAM
JP2009060723A (en) Controller for power conversion equipment and static auxiliary power supply for vehicle
JP4591710B2 (en) AC power supply
JP5444774B2 (en) Uninterruptible power supply system
WO2016135889A1 (en) Motor drive control device and air conditioner
JP2010110179A (en) Rectifying circuit
JP6122356B2 (en) Converter control device
KR101936564B1 (en) Apparatus for controlling multilevel inverter
JP2009177901A (en) Uninterruptible power supply device
JP6365012B2 (en) Distributed power system
JP3050234B2 (en) Electric motor main circuit
JPH0898317A (en) Controller of ac electric vehicle
JPH1132485A (en) Control device of thyristor commutator
JP2006158155A (en) Power converter
JP4722106B2 (en) AC electric vehicle control device
JP4412224B2 (en) Uninterruptible power system
CN112236931B (en) Phase failure detection device for power conversion device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101029

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110315

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110322

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140401

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250