JP4710027B2 - Cross-linked fuel cell electrolyte membrane - Google Patents

Cross-linked fuel cell electrolyte membrane Download PDF

Info

Publication number
JP4710027B2
JP4710027B2 JP2004157570A JP2004157570A JP4710027B2 JP 4710027 B2 JP4710027 B2 JP 4710027B2 JP 2004157570 A JP2004157570 A JP 2004157570A JP 2004157570 A JP2004157570 A JP 2004157570A JP 4710027 B2 JP4710027 B2 JP 4710027B2
Authority
JP
Japan
Prior art keywords
ion exchange
membrane
exchange membrane
formula
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004157570A
Other languages
Japanese (ja)
Other versions
JP2005336338A (en
Inventor
勝 吉田
徹也 八巻
雅春 浅野
知之 村上
総治 西山
俊光 橘
Original Assignee
独立行政法人 日本原子力研究開発機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人 日本原子力研究開発機構 filed Critical 独立行政法人 日本原子力研究開発機構
Priority to JP2004157570A priority Critical patent/JP4710027B2/en
Publication of JP2005336338A publication Critical patent/JP2005336338A/en
Application granted granted Critical
Publication of JP4710027B2 publication Critical patent/JP4710027B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Conductive Materials (AREA)
  • Fuel Cell (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Description

本発明は、固体高分子型燃料電池に適した電解質膜の架橋剤に関する。優れた耐久性を有する燃料電池の提供を可能にする。   The present invention relates to an electrolyte membrane cross-linking agent suitable for a polymer electrolyte fuel cell. A fuel cell having excellent durability can be provided.

固体高分子電解質型燃料電池はエネルギー密度が高いことから、家庭用コージェネ電源や携帯機器用電源、電気自動車の電源、簡易補助電源として期待されている。この燃料電池では電解質として、長寿命で耐久性を有する高分子イオン交換膜が必要である。   Solid polymer electrolyte fuel cells have high energy density, and are expected to be used as household cogeneration power supplies, portable equipment power supplies, electric vehicle power supplies, and simple auxiliary power supplies. In this fuel cell, a polymer ion exchange membrane having a long life and durability is required as an electrolyte.

固体高分子型燃料電池においては、イオン交換膜はプロトンを伝導するための電解質として作用し、燃料である水素やメタノールと酸素とを直接混合させないための隔膜としての役割も有する。このようなイオン交換膜としては、大きな電流を長期間流すので膜の化学的な安定性、特に酸性水溶液中での安定性(耐酸性)、過酸化ラジカル等に対する耐性(耐酸化性)や耐熱性が優れていること、電気抵抗の低いことが要求される。一方、隔膜としての役割から、膜の力学的な強度が強いこと及び寸法安定性が優れていること、燃料である水素ガスやメタノール及び酸素ガスについてガス透過性の低いことなどが要求される。   In the polymer electrolyte fuel cell, the ion exchange membrane functions as an electrolyte for conducting protons, and also functions as a diaphragm for preventing direct mixing of hydrogen or methanol and oxygen as fuel. As such an ion exchange membrane, a large current is passed over a long period of time, so the chemical stability of the membrane, particularly in aqueous acid (acid resistance), resistance to peroxide radicals (oxidation resistance) and heat resistance It is required to have excellent properties and low electrical resistance. On the other hand, due to the role as a diaphragm, it is required that the mechanical strength of the film is strong and that the dimensional stability is excellent, and that the gas such as hydrogen gas, methanol, and oxygen gas that are fuels have low gas permeability.

このような要求特性をある程度満たすイオン交換膜としてデュポン社により開発されたパーフルオロスルホン酸膜「ナフィオン(デュポン社登録商標)」などが一般に用いられてきた。   A perfluorosulfonic acid membrane “Nafion (registered trademark of DuPont)” developed by DuPont as an ion exchange membrane that satisfies such required characteristics to some extent has been generally used.

しかしながら、パーフルオロスルホン酸膜等の従来のフッ素系高分子イオン交換膜は、化学的な安定性には優れているが、架橋構造を有していないので、湿潤状態では膨潤するため寸法安定性が不十分で、特にメタノールを燃料とする場合にはアルコール類に対する膜の膨潤が起き、メタノールのクロスオーバーが燃料電池特性の低下を来たす。   However, conventional fluoropolymer ion exchange membranes such as perfluorosulfonic acid membranes are excellent in chemical stability, but do not have a cross-linked structure, so that they swell in a wet state and thus have dimensional stability. In particular, when methanol is used as a fuel, the membrane swells with alcohols, and methanol crossover causes deterioration of fuel cell characteristics.

湿潤状態での膨潤を抑制したイオン交換膜として、ポリオレフィンや含フッ素樹脂基材マトリックスに、スチレンモノマーを放射線グラフト反応により導入し、次いでスルホン化することにより合成したイオン交換膜は燃料電池用イオン交換膜として検討され、さらに、予め架橋した基材を採用することも提案されている。(特許文献1)
また、多孔質基材にイオン交換樹脂を含浸した電解質膜も提案されているが、燃料電池運転中にイオン交換樹脂が膨潤し、また長時間の運転中に溶解をするため出力が低下するなどの欠点を有する。(特許文献2)
特開2001−348439号公報 特開平8−329962号公報
An ion exchange membrane synthesized by introducing a styrene monomer into a polyolefin or fluororesin substrate matrix by radiation graft reaction and then sulfonating as an ion exchange membrane with suppressed swelling in a wet state. It has also been proposed to employ a substrate that has been studied as a membrane and has been previously crosslinked. (Patent Document 1)
In addition, an electrolyte membrane in which a porous substrate is impregnated with an ion exchange resin has been proposed, but the ion exchange resin swells during fuel cell operation, and the output decreases due to dissolution during a long operation. Have the disadvantages. (Patent Document 2)
JP 2001-348439 A JP-A-8-329962

本発明は、燃料電池に使用される高分子イオン交換膜における最大の欠点である湿潤状態で膨潤し、その結果、燃料ガスや酸素が対極へ透過したり、膜の力学的な強度が弱いこと及び寸法安定性が劣るという問題点を克服するためになされたものであり、電解質膜に有用である。   The present invention swells in a wet state, which is the biggest drawback of polymer ion exchange membranes used in fuel cells. As a result, fuel gas and oxygen permeate to the counter electrode, and the mechanical strength of the membrane is weak. The present invention was made to overcome the problem of poor dimensional stability, and is useful for an electrolyte membrane.

本発明は、陽イオン交換膜が下記の化学式(1)で示された化合物によって架橋することを見出してなされたものである。
化学式(1) I-(CX2)n-I、X=HもしくはF(n=1〜10)
具体的には、カルボン酸基、スルホン酸基、リン酸基などの陽イオン交換基に近接する主鎖の炭素が化学式(1)で示される架橋剤と反応して架橋構造を形成するものと思料される。
The present invention has been made by finding that a cation exchange membrane is crosslinked by a compound represented by the following chemical formula (1).
Chemical formula (1) I- (CX 2 ) n -I, X = H or F (n = 1 to 10)
Specifically, a main chain carbon adjacent to a cation exchange group such as a carboxylic acid group, a sulfonic acid group, or a phosphoric acid group reacts with a crosslinking agent represented by the chemical formula (1) to form a crosslinked structure. I think.

本発明の高分子イオン交換膜は、高い耐酸性、耐酸化性、面積膨潤を抑制された燃料電池膜である。   The polymer ion exchange membrane of the present invention is a fuel cell membrane with high acid resistance, oxidation resistance, and area swelling suppressed.

本発明に使用できる架橋剤として、上記化学式(1)で示されるものが有用である。XはFの方が、反応性が高く使いやすい。
nは1〜10が好ましく、10以上になると、架橋剤の分子量が大きくなり、格別のメリットはない。具体例として、I-(CF2)n-I系列では、ジヨードフルオロメタン(n=1)、1,2-ジヨードテトラフルオロエタン(n=2)、1,4-ジヨードオクタフルオロブタン(n=4)、1,6-ジヨードドデカフルオロヘキサン(n=6)などが挙げられる。また、I-(CH2)n-I系列では、ジヨードメタン(n=1)、1,2-ジヨードエタン(n=2)、1,5-ジヨードペンタン(n=5)、1,6-ジヨードヘキサン(n=6)、1,8-ジヨードオクタン(n=8)、1,10-ジヨードデカン(n=10)などが挙げられる。
As the crosslinking agent that can be used in the present invention, those represented by the above chemical formula (1) are useful. X is more reactive and easier to use.
n is preferably from 1 to 10, and when it is 10 or more, the molecular weight of the cross-linking agent increases, and there is no particular merit. As specific examples, in the I- (CF 2 ) n -I series, diiodofluoromethane (n = 1), 1,2-diiodotetrafluoroethane (n = 2), 1,4-diiodooctafluorobutane (N = 4), 1,6-diiodododecafluorohexane (n = 6) and the like. In the I- (CH 2 ) n -I series, diiodomethane (n = 1), 1,2-diiodoethane (n = 2), 1,5-diiodopentane (n = 5), 1,6-diiodo Examples include iodohexane (n = 6), 1,8-diiodooctane (n = 8), 1,10-diiododecane (n = 10), and the like.

架橋剤として、エポキシ、イソシアネート、金属を使用すると、架橋は可能であるが、イオン交換基が架橋反応で消費されるので、導電率が低下してしまう。本発明の架橋剤は架橋反応しても、イオン交換基が消費されないので、導電率の低下が少ないことが特長である。   When epoxy, isocyanate, or metal is used as the crosslinking agent, crosslinking is possible, but the conductivity is lowered because the ion exchange groups are consumed in the crosslinking reaction. The crosslinking agent of the present invention is characterized in that since the ion exchange group is not consumed even when a crosslinking reaction is carried out, the decrease in conductivity is small.

本発明に使用できる陽イオン交換膜として、パーフルオロスルホン酸樹脂、ポリオレフィンやフッ素樹脂にスチレンを放射線グラフト後スルホン酸基やカルボン酸基を導入したもの、耐熱性樹脂にスルホン酸基やリン酸基、カルボン酸基を導入したもの、スチレンスルホン酸樹脂が使用できる。燃料電池膜に導入されるイオン交換基は高い導電率を得るためにスルホン酸基を有するものが多い
本発明において、架橋反応はイオン交換膜に溶剤で希釈溶解した化学式(1)で示される架橋剤を含浸膨潤状態でγ線や電子線のような放射線や紫外線を照射することで達成される。この際、溶剤をアルコールなどの極性溶剤を選択すると、イオン交換膜に架橋剤が浸透しやすいので、好適である。波長が300nm以上の紫外線を使用する際は、光開始剤を添加すると反応が促進される。
Examples of cation exchange membranes that can be used in the present invention include perfluorosulfonic acid resins, polyolefins and fluororesins in which styrene is radiation-grafted and then introduced with sulfonic acid groups and carboxylic acid groups, and heat resistant resins with sulfonic acid groups and phosphoric acid groups A carboxylic acid group-introduced styrene sulfonic acid resin can be used. Many ion exchange groups introduced into the fuel cell membrane have a sulfonic acid group in order to obtain high conductivity. In the present invention, the crosslinking reaction is a crosslinking represented by the chemical formula (1) diluted and dissolved in the ion exchange membrane with a solvent. This is achieved by irradiating radiation or ultraviolet rays such as γ rays or electron beams in an impregnated and swollen state of the agent. In this case, if a polar solvent such as alcohol is selected as the solvent, it is preferable because the crosslinking agent easily penetrates into the ion exchange membrane. When ultraviolet rays having a wavelength of 300 nm or more are used, the reaction is promoted by adding a photoinitiator.

本発明において、架橋反応はベンゾイルパーオキサイドや、アゾイソブチルニトリルで代表される過酸化物触媒を配合して、加熱することでも達成される。
以上のように、本発明の燃料電池用電解質膜は、架橋させることで優れた耐酸性やメタノール透過阻止性を有するという特徴を有する。
In the present invention, the crosslinking reaction can also be achieved by blending a benzoyl peroxide or a peroxide catalyst typified by azoisobutyl nitrile and heating.
As described above, the electrolyte membrane for fuel cells of the present invention is characterized by having excellent acid resistance and methanol permeation blocking properties by crosslinking.

以下、本発明の電解膜の特性を評価するために、その耐酸化性、耐酸性及び面積膨潤性を検討するが、それらの定義は次のとおりである。
(1)耐酸化性(%)
60℃で16時間真空乾燥後の膜の重量をW0とし、80℃の3%過酸化水素溶液で24時間処理した膜の乾燥後重量をW1とする。
Hereinafter, in order to evaluate the characteristics of the electrolytic membrane of the present invention, its oxidation resistance, acid resistance, and area swellability are examined, and their definitions are as follows.
(1) Oxidation resistance (%)
The weight of the film after vacuum drying at 60 ° C. for 16 hours is defined as W 0, and the weight after drying of the film treated with 3% hydrogen peroxide solution at 80 ° C. for 24 hours is defined as W 1 .

耐酸化性=100(W1/W0
(2)耐酸性(%)
イオン交換膜を室温で水中に保存しておき、それを80 ℃の0.1 M硫酸水溶液に24時間浸漬した。浸漬前後における膜のイオン交換容量の比を百分率で表したものを耐酸性(%)とする。浸漬前のイオン交換容量をI0とし、浸漬後のイオン交換容量をI1とする。
Oxidation resistance = 100 (W 1 / W 0 )
(2) Acid resistance (%)
The ion exchange membrane was stored in water at room temperature and immersed in a 0.1 M sulfuric acid aqueous solution at 80 ° C. for 24 hours. The ratio of the ion exchange capacity of the membrane before and after immersion in percentage is defined as acid resistance (%). The ion exchange capacity before immersion is I 0, and the ion exchange capacity after immersion is I 1 .

耐酸性 = 100(I1/I0
(3)面積膨潤度
乾燥時の面積をS0とし、80℃水中での面積をS1とする。
Acid resistance = 100 (I 1 / I 0 )
(3) Area swelling degree Let S 0 be the area during drying, and S 1 be the area in 80 ° C. water.

面積膨潤度=100(S1/S0Area swelling degree = 100 (S 1 / S 0 )

以下、本発明を実施例及び比較例により説明するが、本発明はこの実施例に限定されるものではない。 Hereinafter, although an example and a comparative example explain the present invention, the present invention is not limited to this example.

(実施例1)
架橋ポリテトラフルオロエチレン(PTFE)フィルムを得るために以下の照射を行った。厚さ50μm、面積12 x 15cmのPTFEフィルム(日東電工製、品番No. 900)をヒーター付きのSUS製オートクレーブ照射容器(内径4cm、高さ30cm)に入れ、容器内を脱気後に0.5気圧のアルゴンガスを充填した。その後、電気ヒーターで加熱してフィルムの温度を340 ℃として、60Co線源からのγ 線を線量率3 kGy/hで線量100 kGy照射した。照射後、容器を冷却してフィルムを取り出した。
Example 1
In order to obtain a crosslinked polytetrafluoroethylene (PTFE) film, the following irradiation was performed. A PTFE film (Nitto Denko, product number No. 900) with a thickness of 50 μm and an area of 12 x 15 cm is placed in a SUS autoclave irradiation container (inner diameter: 4 cm, height: 30 cm) equipped with a heater. Filled with argon gas. Thereafter, the film was heated with an electric heater so that the film temperature was 340 ° C., and γ rays from a 60 Co radiation source were irradiated at a dose rate of 3 kGy / h and a dose of 100 kGy. After irradiation, the container was cooled and the film was taken out.

この架橋PTFEフィルム 4cm角をコック付きのガラス製セパラブル容器(内径1.5cm、高さ15cm)に入れて脱気後、1気圧のアルゴンガスを充填した。この状態で架橋PTFEフィルムに、再び30 kGyのγ線を室温で照射した。引き続いて、このガラス容器中に予め脱気しておいた40vol%(体積百分率)トルエン希釈のスチレン溶液20 mlを入れ、フィルムを浸漬した。容器を密閉し、容器内をアルゴンに置換した後、50℃にして48時間反応させた。反応後、トルエンで洗浄し乾燥した。グラフト率は15%であった。   This crosslinked PTFE film 4 cm square was put in a glass separable container (inner diameter 1.5 cm, height 15 cm) with a cock, and after deaeration, it was filled with 1 atm of argon gas. In this state, the crosslinked PTFE film was irradiated again with 30 kGy of γ rays at room temperature. Subsequently, 20 ml of 40 vol% (volume percentage) toluene-diluted styrene solution that had been degassed in advance was placed in the glass container, and the film was immersed therein. The vessel was sealed and the inside of the vessel was replaced with argon, and then reacted at 48 ° C. for 48 hours. After the reaction, it was washed with toluene and dried. The graft rate was 15%.

得られたグラフト重合膜をスルホン化するため、1,2-ジクロロエタンで希釈した0.2 Mのクロロスルホン酸に50℃で6時間反応させた後、水洗し、イオン交換膜を得た。
得られたイオン交換膜4cm角を1,4-ジヨードオクタフルオロブタン0.5gとエタノール5mlの混合溶液中に浸漬し、膜内部に1,4-ジヨードオクタフルオロブタンを飽和吸着させた。この吸着膜をチャック付のポリエチレン袋に入れ、アルゴン置換の後、300kVの電子線を50KGy照射することで、イオン交換膜を架橋した。
In order to sulfonate the obtained graft polymerized membrane, 0.2 M chlorosulfonic acid diluted with 1,2-dichloroethane was reacted at 50 ° C. for 6 hours, and then washed with water to obtain an ion exchange membrane.
The obtained 4 cm square ion exchange membrane was immersed in a mixed solution of 0.5 g of 1,4-diiodooctafluorobutane and 5 ml of ethanol, and 1,4-diiodooctafluorobutane was saturated and adsorbed inside the membrane. This adsorption film was put in a polyethylene bag with a chuck, and after argon substitution, the ion exchange film was crosslinked by irradiating it with 50 kgy of a 300 kV electron beam.

本実施例で得られた膜の耐酸化性、及び耐酸性を測定し、表1に示す。   The oxidation resistance and acid resistance of the film obtained in this example were measured and are shown in Table 1.

(実施例2)
厚さ50μmのナフィオン112を実施例1)と同様な条件で架橋した。
(Example 2)
Nafion 112 having a thickness of 50 μm was crosslinked under the same conditions as in Example 1).

(実施例3)
実施例1)において、1,4-ジヨードオクタフルオロブタンを1,5-ジヨードペンタン(n=5)に変更する以外は同様な条件で架橋した。
(Example 3)
In Example 1), crosslinking was carried out under the same conditions except that 1,4-diiodooctafluorobutane was changed to 1,5-diiodopentane (n = 5).

参考例4)
厚さ85μm厚のPTFE多孔質膜(日東電工製、品名NTF−1133)にデュポン社から市販されているナフィオン溶液(5重量%)の含浸、乾燥を5回繰り返し、ナフィオン樹脂が883g/m含浸した電解質膜を作成した。次に架橋するため、1,2−ジヨードテトラフルオロエタン20g、ベンゾイルパーオキサイド0.4gをエタノール80gに溶解した溶液に電解質膜を浸漬し、70℃で、5時間架橋反応した。得られた架橋電解質膜はメタノールで5回洗浄した。
( Reference Example 4)
Impregnation and drying of Nafion solution (5% by weight) commercially available from DuPont on a PTFE porous membrane (product name: NTF-1133, manufactured by Nitto Denko) having a thickness of 85 μm was repeated 5 times, and the Nafion resin was 883 g / m 2. An impregnated electrolyte membrane was prepared. Next, in order to crosslink, the electrolyte membrane was immersed in a solution obtained by dissolving 20 g of 1,2-diiodotetrafluoroethane and 0.4 g of benzoyl peroxide in 80 g of ethanol, and subjected to a crosslinking reaction at 70 ° C. for 5 hours. The obtained crosslinked electrolyte membrane was washed 5 times with methanol.

(比較例1)
比較例1では、実施例1においてイオン交換基を架橋していないイオン交換膜(イオン交換基に近接する主鎖の炭素が化学式(1)で示される架橋剤で架橋されていないイオン交換膜)を使用して評価した。
(Comparative Example 1)
In Comparative Example 1, the ion exchange membrane in which the ion exchange group is not crosslinked in Example 1 (ion exchange membrane in which the main chain carbon adjacent to the ion exchange group is not crosslinked by the crosslinking agent represented by the chemical formula (1)) Was used to evaluate.

(比較例2)
ナフィオン112をそのまま評価した。
表1より、本発明の高い有効性が実証された。
(Comparative Example 2)
Nafion 112 was evaluated as is.
Table 1 demonstrates the high effectiveness of the present invention.

Figure 0004710027
Figure 0004710027

Claims (5)

フッ素系高分子基材に放射線照射によりグラフト鎖を導入し、スルホン酸基を導入してなるフッ素系高分子イオン交換膜、又はスルホン酸基を有するフッ素系高分子イオン交換膜を式(1):
I−(CX−I
式中、X=HもしくはF(n=1〜10)
で表される架橋剤の存在下で放射線照射して、当該イオン交換膜の高分子主鎖を架橋することを特徴とする、燃料電池用電解質膜の製造方法。
A fluorine polymer ion exchange membrane obtained by introducing a graft chain into a fluorine polymer substrate by irradiation and introducing a sulfonic acid group or a fluorine polymer ion exchange membrane having a sulfonic acid group is represented by the formula (1) :
I- (CX 2) n -I
In the formula, X = H or F (n = 1 to 10)
A method for producing an electrolyte membrane for a fuel cell, wherein the polymer main chain of the ion exchange membrane is crosslinked by irradiation in the presence of a crosslinking agent represented by the formula:
前記架橋剤は、ジヨードフルオロメタン(n=1)、1,2−ジヨードテトラフルオロエタン(n=2)、1,4−ジヨードオクタフルオロブタン(n=4)、1,6−ジヨードドデカフルオロヘキサン(n=6)、ジヨードメタン(n=1)、1,2−ジヨードエタン(n=2)、1,5−ジヨードペンタン(n=5)、1,6−ジヨードヘキサン(n=6)、1,8−ジヨードオクタン(n=8)、1,10−ジヨードデカン(n=10)から選択される、請求項1に記載の製造方法。   The crosslinking agent includes diiodofluoromethane (n = 1), 1,2-diiodotetrafluoroethane (n = 2), 1,4-diiodooctafluorobutane (n = 4), 1,6-di Iodododecafluorohexane (n = 6), diiodomethane (n = 1), 1,2-diiodoethane (n = 2), 1,5-diiodopentane (n = 5), 1,6-diiodohexane (n = 6), 1,8-diiodooctane (n = 8), 1,10-diiododecane (n = 10). 前記架橋剤は極性溶剤で希釈溶解されている、請求項1又は2に記載の製造方法。   The manufacturing method according to claim 1 or 2, wherein the crosslinking agent is diluted and dissolved with a polar solvent. フッ素系高分子基材に放射線照射によりグラフト鎖を導入し、スルホン酸基を導入してなるフッ素系高分子イオン交換膜、又はスルホン酸基を有するフッ素系高分子イオン交換膜を式(1):
I−(CX−I
式中、X=HもしくはF(n=1〜10)
で表される架橋剤の存在下で放射線照射して、当該イオン交換膜の高分子主鎖を架橋して得られる燃料電池用電解質膜。
A fluorine polymer ion exchange membrane obtained by introducing a graft chain into a fluorine polymer substrate by irradiation and introducing a sulfonic acid group or a fluorine polymer ion exchange membrane having a sulfonic acid group is represented by the formula (1) :
I- (CX 2) n -I
In the formula, X = H or F (n = 1 to 10)
An electrolyte membrane for a fuel cell obtained by irradiating with radiation in the presence of a crosslinking agent represented by the formula, and crosslinking the polymer main chain of the ion exchange membrane.
前記架橋剤は、ジヨードフルオロメタン(n=1)、1,2−ジヨードテトラフルオロエタン(n=2)、1,4−ジヨードオクタフルオロブタン(n=4)、1,6−ジヨードドデカフルオロヘキサン(n=6)、ジヨードメタン(n=1)、1,2−ジヨードエタン(n=2)、1,5−ジヨードペンタン(n=5)、1,6−ジヨードヘキサン(n=6)、1,8−ジヨードオクタン(n=8)、1,10−ジヨードデカン(n=10)から選択される、請求項4に記載の燃料電池用電解質膜。   The crosslinking agent includes diiodofluoromethane (n = 1), 1,2-diiodotetrafluoroethane (n = 2), 1,4-diiodooctafluorobutane (n = 4), 1,6-di Iodododecafluorohexane (n = 6), diiodomethane (n = 1), 1,2-diiodoethane (n = 2), 1,5-diiodopentane (n = 5), 1,6-diiodohexane (n = 6), 1,8-diiodooctane (n = 8), 1,10-diiododecane (n = 10), The electrolyte membrane for fuel cells according to claim 4.
JP2004157570A 2004-05-27 2004-05-27 Cross-linked fuel cell electrolyte membrane Expired - Fee Related JP4710027B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004157570A JP4710027B2 (en) 2004-05-27 2004-05-27 Cross-linked fuel cell electrolyte membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004157570A JP4710027B2 (en) 2004-05-27 2004-05-27 Cross-linked fuel cell electrolyte membrane

Publications (2)

Publication Number Publication Date
JP2005336338A JP2005336338A (en) 2005-12-08
JP4710027B2 true JP4710027B2 (en) 2011-06-29

Family

ID=35490251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004157570A Expired - Fee Related JP4710027B2 (en) 2004-05-27 2004-05-27 Cross-linked fuel cell electrolyte membrane

Country Status (1)

Country Link
JP (1) JP4710027B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160181643A1 (en) * 2013-08-06 2016-06-23 Audi Ag Method for fabricating electrolyte membrane using in-situ cross-linking

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002114824A (en) * 2000-10-04 2002-04-16 Daikin Ind Ltd Fluorine-containing elastomer
JP2003533560A (en) * 2000-05-19 2003-11-11 ウンベルシテート シュトゥットガルト インスティチュート フュア ヘミシェ フェアファーレンステヒーク Covalent and ionic bond crosslinked polymers and polymer membranes

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10209784A1 (en) * 2001-09-01 2003-12-04 Univ Stuttgart Inst Fuer Chemi Oligomers and polymers containing sulfinate groups and process for their preparation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003533560A (en) * 2000-05-19 2003-11-11 ウンベルシテート シュトゥットガルト インスティチュート フュア ヘミシェ フェアファーレンステヒーク Covalent and ionic bond crosslinked polymers and polymer membranes
JP2002114824A (en) * 2000-10-04 2002-04-16 Daikin Ind Ltd Fluorine-containing elastomer

Also Published As

Publication number Publication date
JP2005336338A (en) 2005-12-08

Similar Documents

Publication Publication Date Title
JP4568848B2 (en) Fluororesin ion exchange membrane having a wide range of ion exchange capacities and method for producing the same
JP4682358B2 (en) Method for producing functional inorganic / graft polymer hybrid ion exchange membrane and electrolyte membrane for fuel cell
JP5010799B2 (en) Electrolyte membrane and polymer electrolyte fuel cell using the same
JPH09102322A (en) Solid polymeric electrolyte film for fuel cell and its manufacture
JP2006344552A (en) Cross-link type electrolyte membrane and its manufacturing method
JP5376485B2 (en) POLYMER ELECTROLYTE MEMBRANE COMPRISING ALKYL GRAFT CHAIN AND PROCESS FOR PRODUCING THE SAME
JP4986219B2 (en) Electrolyte membrane
US20090169952A1 (en) Direct organic fuel cell proton exchange membrane and method of manufacturing the same
JP2003261697A (en) Fluoropolymer ion exchanger membrane having excellent oxidation resistance and widely ranging ion exchange capacity and manufacturing method thereof
JP2004059752A (en) Electrolyte membrane for fuel cell comprising crosslinked fluororesin base
JP4854284B2 (en) Method for producing polymer electrolyte membrane
JP3932338B2 (en) Electrolyte membrane for fuel cell made of fluoropolymer ion exchange membrane
JP4576620B2 (en) Method for producing nanostructure control polymer ion exchange membrane
JP4670074B2 (en) Fuel cell electrolyte membrane with excellent acid resistance
US7714027B2 (en) Crosslinked aromatic polymer electrolyte membrane and method for producing same
JP4822389B2 (en) Electrolyte membrane with excellent oxidation resistance
JP4219656B2 (en) Electrolyte membrane for fuel cell
JP2005063778A (en) Electrolyte film for fuel cell excellent in oxidation resistance
JP4710027B2 (en) Cross-linked fuel cell electrolyte membrane
JP2009151938A (en) Solid polymer electrolyte membrane for fuel cell and fuel cell
JP5305283B2 (en) Production method of polymer electrolyte membrane for fuel cell, electrolyte membrane thereof, and membrane electrode assembly for fuel cell using the membrane
JP2005142014A (en) Electrolyte membrane for fuel cells superior in acid resistance
JP4692714B2 (en) Method for producing solid polymer electrolyte membrane for fuel cell
JP4574514B2 (en) Proton conducting membrane and method for producing the same
JP4851769B2 (en) Electrolyte membrane and direct methanol solid polymer fuel cell

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060223

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070509

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100922

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110225

LAPS Cancellation because of no payment of annual fees