JP4709608B2 - ラジカル処理装置 - Google Patents

ラジカル処理装置 Download PDF

Info

Publication number
JP4709608B2
JP4709608B2 JP2005224413A JP2005224413A JP4709608B2 JP 4709608 B2 JP4709608 B2 JP 4709608B2 JP 2005224413 A JP2005224413 A JP 2005224413A JP 2005224413 A JP2005224413 A JP 2005224413A JP 4709608 B2 JP4709608 B2 JP 4709608B2
Authority
JP
Japan
Prior art keywords
gas
treated water
water tank
exhaust
radical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005224413A
Other languages
English (en)
Other versions
JP2007038110A (ja
Inventor
崇文 飯島
伸次 小林
享 江幡
貴恵 久保
隆昭 村田
裕二 沖田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2005224413A priority Critical patent/JP4709608B2/ja
Publication of JP2007038110A publication Critical patent/JP2007038110A/ja
Application granted granted Critical
Publication of JP4709608B2 publication Critical patent/JP4709608B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treating Waste Gases (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

本発明は、浄水処理,産業廃水処理,医療排水等の水処理に適用するラジカル処理装置に関する。
近年、塩素を利用した水処理方法以外に、オゾンの酸化反応を利用した水処理技術が注目されている。両方法とも、化学的に強い酸化力を利用して水中に溶存する有機物質を分解することができる。
一般的に、それらの酸化力は、塩素が1.4電子ボルトであるのに対し、オゾンは2.07電子ボルトと高い。また、塩素は高分子で形成される有機物と反応するとクロロフェノール類やトリハロメタン、ハロ酢酸、ハロケトン、ハロアセトニトリルなど消毒副生成物が生成される。これらの一部は、発がん性物である可能性が示唆されており、それ自身も人体に有害物質である。
これに対して、オゾンは酸素原子のみで構成されており、環境への影響が少ないため、近年ではオゾンによる水処理法が普及してきている。しかし一方で、オゾンはダイオキシンや農薬、環境ホルモンなどの難分解性有機物質との反応速度が遅く、これらを分解処理することは困難である。
そこで、化学反応を利用して難分解性有機物を分解処理するために、オゾンよりも酸化力の高い化学物質を使用する方法がある。酸化力は高いほどよく、具体的にはヒドロキシルラジカル(OHラジカル)や、酸素原子ラジカル(Oラジカル)は、酸化力がそれぞれ2.85電子ボルト、2.42電子ボルトであり、オゾンより高い。さらに、有機物質に対する反応速度定数も、オゾンより高い。このため、ダイオキシンなどの難分解性物質をすばやく分解することが可能である。ここで、OHラジカルやOラジカルなどを総称して、以下単にラジカルと表記する。
このラジカルは、水分の多いガス中で放電を発生させることにより得られる。先行技術としては、例えばコロナ放電を利用した有害物質を浄化する浄化方法が提案されている(例えば、特許文献1を参照)。
特開2001−70946号公報
前述したように、OHラジカルは、水分の多いガス中で発生させることにより得られるが、反応性が非常に高く、発生した後すぐに消滅する。従って、OHラジカルが水中に溶存する難分解性物質を分解するには、発生後、すぐに水中へ溶け込む必要がある。一方で、水中に溶解したOHラジカルは、さらに消滅確率が高くなる。このため、一般的に、放電による水処理は効率が低く、システムの安定した運転が困難であるいう問題点があった。
そこで、本発明の目的は、処理水槽内で放電により発生するラジカルによる水処理効率を向上し、安定した運転が可能なラジカル処理装置を提供することにある。
本発明の観点に従ったラジカル処理装置は、処理水を収容するための処理水槽と、放電用高電圧電源から供給される高電圧により、前記処理水の水面上で放電する放電用電極と、前記放電との反応によりラジカルを発生するためのガスを前記処理水槽内に供給するガス供給手段と、前記処理水槽の内部に残留するガスを外部に排出するための排気口を有し、前記処理水槽の内部のガス圧力を調整するための排気調整手段とを備えた構成である。
本発明によれば、処理水槽内のガス圧力を調整することで放電用電極からの放電の安定化を図ることにより、放電により発生するラジカルによる水処理効率を向上し、安定した運転が可能なラジカル処理装置を提供することができる。
以下図面を参照して、本発明の実施形態を説明する。
[第1の実施形態]
図1は、第1の実施形態に関するラジカル処理装置の構成を示す図である。
ラジカル処理装置は、処理水槽1及び放電用電極を有する。処理水槽1は、処理対象水2を貯水する一種のタンクである。処理水槽1に導入される処理水2は、例えば、難分解性有機物や廃棄物、最終処分場の浸出水、ダイオキシン類、工場の排水、家庭排水等を含有した排水としている。なお、通常では、処理水槽1内では、処理対象水2は攪拌されている。
処理水槽1の内部には、放電用電極が配置されている。放電用電極は、処理対象水2の水面20上に配置されて、中空円筒構造で先端部が放電部40である複数の高電圧電極(ピン電極)4を有する。放電部40は、処理対象水2の水面20に対向している。また、放電用電極は、処理対象水2の水中に配置された接地電極3を有する。
放電用電極は、高電圧電極4と接地電極3との間に、電源5から高電圧が印加されることにより、高電圧電極4の放電部40から例えばコロナ放電を発生する。また、放電用電極は、例えばステンレス材質からなる処理水槽1とは絶縁部6を介して取り付けられている。ここで、電源5は、例えば高電圧パルスを発生するパルス電源でもよい。
処理水槽1の上部には、酸素を含むガス、例えば水分を含む空気であるラジカル処理用ガス(以下単にガスと表記する)70を流入するためのガス流入管7が設けられている。なお、ガス70は、水分を含まない空気でも良いが、水分を含む方がラジカル処理の効率上の観点から望ましい。
さらに、処理水槽1には、水槽1の内部のガス圧を一定に調整するための排気調整機構8が配置されている。排気調整機構8は、相対的に処理水槽1の上部で、放電を発生する放電部40及び処理水2の水面20から離れた位置に配置された排気口からなる。排気口は、ガス流入管7の口径より大きく、バルブ8Aによりガス排出量を調整できるように構成されている。また、排気口は、放電部40の接地側に配置されている。
以下、本実施形態のラジカル処理に関する作用効果を説明する。
まず、ガス流入管7から水分を含む空気等のガス70を、処理水槽1の内部に流入させる。ガス70は、処理水槽1の内部圧力に応じて、高電圧電極4の中空部を通じて放電部40から、処理対象水2の水面20上に吹き付けられる。
一方、電源5から高電圧電極4と接地電極3との間に高電圧が印加されると、高電圧電極4の先端部にある放電部40では、コロナ放電などの放電が発生する。この放電とガス70との反応により、OHラジカル(以下単にラジカルと表記する場合がある)が発生し、処理対象水2に溶け込む。以下、このようなラジカル処理について、詳細に説明する。
一般的に、放電が酸素(O原子)を含有する雰囲気中で発生した場合、放電内では電子eと気体分子との衝突により、基底状態の酸素原子O(3P)や励起状態のO原子O(1D)が発生する。即ち、下記のような化学式(1)が成立する。
e+O→O(1D)+O(3P)…(1)
このO(1D)が水分子と反応すると、下記の化学式(2)に示すように、ヒドロキシラジカル(OHラジカル)が発生する。
O(1D)+HO→2OH…(2)
また、O(3P)原子からは、O2分子と中性分子Mとの3体衝突により、下記の化学式(3)に示すように、オゾンOが発生する。
O(3P)+O+M→O+M…(3)
さらに、水分子に直接電子衝突することによっても、下記の化学式(4)に示すように、H原子およびOHラジカルが発生する。
e+HO→H+OH…(4)
OHラジカルからは、下記の化学式(5)に示すように、過酸化水素Hも発生する。
OH+OH→H…(5)
このようにして生成されたO原子、OHラジカル、オゾンおよび過酸化水素が、熱運動、拡散、ガス流により処理水2中へ溶け込むことによって、ラジカル処理がなされることになる。
ここで、直接処理では、放電から発生したOHラジカルが処理水2中へと溶解し、直ぐに難分解性有機物と反応し、下記の化学式(6)に示すように、水HOと二酸化炭素COと過酸化水素に分解する。
OH+R→HO+CO+H…(6)
これに対して、間接処理では、放電から発生したオゾンと過酸化水素との反応により、OHラジカルが発生し、難分解性有機物を分解する。
過酸化水素は水中に溶解すると、下記の化学式(7)に示すように、解離してHO と水素イオンHを形成する。
⇔HO +H…(7)
発生したHO はOと反応し、下記の化学式(8)に示すように、O とHOラジカルを形成する。
HO +O→O +HO…(8)
発生したHOは解離し、下記の化学式(9)に示すように、O とHを形成する。
HO⇔O +H…(9)
発生したO はオゾンと反応し、下記の化学式(10)に示すように、O を形成する。
+O→O +O…(10)
はHと反応し、下記の化学式(11)に示すように、HOを形成する。
+H→HO…(11)
HOは解離し、下記の化学式(12)に示すように、OHラジカルを形成する。
HO→OH+O…(12)
以上のように本実施形態のラジカル処理装置では、直接処理および間接処理の2段階方式によるラジカル処理で、処理水2の分解処理が行われる。
ここで、ラジカル処理装置は、ラジカル処理中に、ガス流入管7からガス70を処理水槽1の内部に連続的に流入させるが、処理水槽1の内部圧力を一定に保持するために、排気調整機構8の排気口から内部ガスを外部に排出して内部圧力を調整する。排気口からは、ガス流入管7から供給されたガス70の一部以外に、主としてラジカル処理後に残存するガスが排出される。
即ち、ガス流入管7から供給されたガス70の大部分は、処理水槽1の内部圧力に応じて、放電部40及び処理水2の水面20上に吹き付けられている。従って、処理水2の水面20上では、放電部40からの放電とガス70との反応によりラジカルが発生し、処理水2の中に溶け込む。
ここで、排気調整機構8の排気口から、処理水槽1の内部に残留するガスを排出して、処理水槽1の内部圧力が一定に維持されるように調整を行なう。放電部40は、前述したように、電源5から高電圧が印加されて放電を発生する。この放電に要する電圧は、図6に示すように、放電部40の近傍のガス圧力に依存する関係を有する。即ち、ガス圧力が高過ぎると、同一電圧では放電が発生し難い状態となる。従って、ガス圧力が極端に低いほぼ真空状態を除いて、ガス圧力が相対的に低いほうが、同一電圧では放電が発生しやすくなる。
従って、排気調整機構8により放電部40の近傍のガス圧力を調整することで、放電部40は相対的に低い電圧で放電を発生し、十分に供給されるガス70との反応により高い効率でのラジカル処理雅可能となる。また、図6に示すような特性に基づいて、内部ガスの調整により、放電部40に印加する電圧を安定化できるため、結果として装置の安定した運転を実現することができる。
[第2の実施形態]
図2は、第2の実施形態に関するラジカル処理装置の構成を示す図である。
本実施形態では、排気調整機構8は、排気口80,82及びダクト81から構成されている。内部ガスの導入口である排気口80は、図2に示すように、高電圧電極4の近傍に配置されている。また、処理水槽1の外部に配置された排気口82は、バルブ82Aにより外部に排出する排気量が調整されるように構成されている。
なお、排気機構以外の構成は、前述の図1に示す第1の実施形態と同様のため、同一符号を付して説明を省略する。
排気調整機構8は、前述のように、高電圧電極4からの放電とガス流入管7からのガス70との反応によるラジカル処理後に、処理水槽1内に残存するガスを排気口80,ダクト81、排気口82を通じて外部に排出する。
このような構成であれば、排気調整機構8により放電部40の近傍のガス圧力を調整することで、放電部40は、相対的に低い電圧で放電を発生し、十分に供給されるガス70との反応により高い効率でのラジカル処理が可能となる。この場合、特に放電部40の近傍では、放電により残留ガスの温度が高くなるため、残留ガスは排気口80及びダクト81内を上昇しやすい状態となる。このため、排気調整機構8により残留ガスの排気を効率的に行なうことが可能となる。また、図6に示すような特性に基づいて、内部ガスの調整により、放電部40に印加する電圧を安定化できるため、結果として装置の安定した運転を実現することができる。
[第3の実施形態]
図3は、第3の実施形態に関するラジカル処理装置の構成を示す図である。
本実施形態では、排気調整機構8は、排気口80,ダクト81及びポンプ9から構成されている。ポンプ9は、コントローラ300により制御される。ポンプ9は、例えばステンレス材質のような耐腐食性の材質から構成されている。
コントローラ300は、処理水槽1内に設けられた圧力センサ310から出力される検出信号を入力して、処理水槽1内の内部圧力を監視している。また、コントローラ300は、ガス発生器700の出力側に設けられたガス圧力計710及びガス流量計720からの各検出信号を入力して、ガス発生器700からガス流入管7を通じて供給されるガス70の圧力及び流量を監視している。
なお、これらの以外の構成は、前述の図1に示す第1の実施形態と同様のため、同一符号を付して説明を省略する。
本実施形態の排気調整機構8は、図3に示すように、内部ガスの導入口である排気口80が高電圧電極4の近傍に配置されている。排気調整機構8は、前述のように、高電圧電極4からの放電とガス流入管7からのガス70との反応によるラジカル処理後に、処理水槽1内に残存するガスを排気口80及びダクト81を通じて外部に排出する。
ここで、本実施形態では、コントローラ300は、圧力センサ310からの検出信号により、処理水槽1内の内部圧力を監視している。コントローラ300は、処理水槽1内の内部圧力が所定の基準値を超えて高くなると、ポンプ9を制御して処理水槽1内に残存するガスを排気口80及びダクト81を通じて外部に排出させるように制御する。これにより、コントローラ300は、処理水槽1内の圧力を一定に維持することができる。また、コントローラ300は、排気調整機構8のポンプ9を制御することにより、処理水槽1内の圧力を大気圧以下にすることもできる。
以上の構成により、処理水槽1内の内部圧力を調整できることにより、放電部40は、相対的に低い電圧で放電を発生し、十分に供給されるガス70との反応で高い効率のラジカル処理を行なうことができる。また、図6に示すような特性に基づいて、内部ガスの調整により、放電部40に印加する電圧を安定化できるため、結果として装置の安定した運転を実現することができる。
さらに、コントローラ300は、ガス発生器700からのガス70の圧力の監視結果に基づいて、処理水槽1内に供給するガス供給側の圧力が低下した場合に、ポンプ9を制御することにより、処理水槽1内の圧力を大気圧以下にする。これにより、相対的にガス供給側の圧力を高くして、十分なガス70を放電部40及び処理水2の水面20上に供給することができる。
[第4の実施形態]
図4は、第4の実施形態に関するラジカル処理装置の構成を示す図である。
本実施形態では、排気調整機構8は、排気口80,ダクト81及びガス処理部10から構成されている。排気口80には、外部に排出する排気量を調整するためのバルブ82Aが設けられている。
ガス処理部10は、処理水槽1内から排気口80及びダクト81を通じて排出される残留ガスを処理するための触媒、活性炭、あるいはヒータ(加熱器)のいずれか、あるいはそれらの組み合わせを有する。具体的には、触媒は、例えば残留ガスに含まれるオゾンを除去するためのマンガン系触媒である。また、活性炭も、例えばオゾン分解に有効な材質の活性炭である。ガス処理部10は、ヒータのみでもよく、このヒータによる加熱で残留ガスに含まれるオゾンを分解する。
なお、これら以外の構成は、前述の図1に示す第1の実施形態と同様のため、同一符号を付して説明を省略する。
本実施形態の構成であれば、排気調整機構8により処理水槽1内の内部圧力を一定に維持できるため、放電部40は、相対的に低い電圧で放電を発生し、十分に供給されるガス70との反応により高い効率でのラジカル処理が可能となる。また、図6に示すような特性に基づいて、内部ガスの調整により、放電部40に印加する電圧を安定化できるため、結果として装置の安定した運転を実現することができる。
さらに、本実施形態の排気調整機構8は、ガス処理部10により、処理水槽1内の残留ガスに含まれるオゾンを除去又は分解して、無害なガスに処理した後に、処理水槽1の外部に排気することができる。
[第5の実施形態]
図5は、第5の実施形態に関するラジカル処理装置の構成を示す図である。
本実施形態では、排気調整機構8は、排気口80,ダクト81及びガス循環機構から構成されている。
本実施形態の排気調整機構8は、図5に示すように、内部ガスの導入口である排気口80が高電圧電極4の近傍に配置されている。排気調整機構8は、前述のように、高電圧電極4からの放電とガス流入管7からのガス70との反応によるラジカル処理後に、処理水槽1内に残存するガスを排気口80及びダクト81を通じて外部に排出する。
本実施形態は、排気調整機構8に接続されたガス循環機構を有する。ガス循環機構は、ガス送出部11、及びガス流入管7に接続して排気ガスを戻すための循環用ダクト12を有する。ガス送出部11は、前述のガス処理部10及びファン110を有する。
なお、本実施形態では、排気調整機構8以外に、処理水槽1の上部には、排気調整用のバルブ510を含む排気口500が設けられている。
なお、これら以外の構成は、前述の図1に示す第1の実施形態と同様のため、同一符号を付して説明を省略する。
本実施形態の構成であれば、前述のように、排気調整機構8または排気口500により放電部40の近傍のガス圧力を調整することで、放電部40は相対的に低い電圧で放電を発生し、十分に供給されるガス70との反応により高い効率でのラジカル処理雅可能となる。また、図6に示すような特性に基づいて、内部ガスの調整により、放電部40に印加する電圧を安定化できるため、結果として装置の安定した運転を実現することができる。
さらに、本実施形態では、排気調整機構8により排出されるガスは、ガス送出部11に送られて、ガス処理部10により特にオゾンが除去又は分解された後に、ファン110により循環用ダクト12に送られる。この循環用ダクト12はガス流入管7に接続されているため、処理槽1内部の残留ガスの一部又は全部が、供給用ガス70として戻される。このようなガス循環処理により、排気されるガスの一部又は全部を供給用ガスとして戻すことが可能となるため、ガス70の使用効率を向上することができる。従って、ガス70の使用コストを低減化できることで、ラジカル処理装置の運転コストを低減できる。
なお、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。
本発明の第1の実施形態に関するラジカル処理装置の構成を説明するための図。 第2の実施形態に関するラジカル処理装置の構成を説明するための図。 第3の実施形態に関するラジカル処理装置の構成を説明するための図。 第4の実施形態に関するラジカル処理装置の構成を説明するための図。 第5の実施形態に関するラジカル処理装置の構成を説明するための図。 第1の実施形態に関する内部ガス圧力と放電電圧との関係を示す図。
符号の説明
1…処理水槽、2…処理対象水、3…接地電極、4…高電圧電極、5…電源、
6…絶縁部材、7…ガス流入管、8…排気調整機構、9…ポンプ、10…ガス処理部、
11…ガス送出部、12…循環用ダクト、40…放電部、70…ガス、
80,82,500…排気口、81…ダクト、82A,510…バルブ、
110…ファン、300…コントローラ、310…圧力センサ、700…ガス発生器、
710…ガス圧力計、720…ガス流量計。

Claims (12)

  1. 処理水を収容するための処理水槽と、
    放電用高電圧電源から供給される高電圧により、前記処理水の水面上で放電する放電用電極と、
    前記放電との反応によりラジカルを発生するためのガスを前記処理水槽内に供給するガス供給手段と、
    前記処理水槽の内部に残留するガスを外部に排出するための排気口を有し、前記処理水槽の内部のガス圧力を調整するための排気調整手段と
    を具備したことを特徴とするラジカル処理装置。
  2. 前記排気調整手段は、
    前記ガス供給手段に含まれるガス供給用導入口の口径より相対的に大きい口径の前記排気口を有し、
    前記排気口からのガス排出量を調整するための調整手段を有することを特徴とする請求項1に記載のラジカル処理装置。
  3. 前記排気調整手段は、
    前記排気口が前記放電用電極及び前記処理水の水面から離れた位置に配置されていることを特徴とする請求項1または請求項2のいずれか1項に記載のラジカル処理装置。
  4. 前記排気調整手段は、
    前記排気口が放電用電極の近傍に配置されて、前記排気口からダクトを介して前記処理水槽の外部に前記ガスを排出するように構成されていることを特徴とする請求項1に記載のラジカル処理装置。
  5. 前記排気調整手段は、
    排気用ポンプ手段を有し、当該排気用ポンプにより前記排気口から取り入れた前記ガスを、前記処理水槽の外部に排出するように構成されていることを特徴とする請求項1から請求項4のいずれか1項に記載のラジカル処理装置。
  6. 前記排気用ポンプ手段は、耐腐食性材質からなるポンプを有することを特徴とする請求項5に記載のラジカル処理装置。
  7. 前記排気調整手段は、
    前記排気口から取り入れた前記残留ガスを前記処理水槽の外部に排出するための排気用ポンプと、
    前記処理水槽の内部圧力を検出するためのセンサ手段と、
    前記センサ手段により検出された前記内部圧力に基づいて、前記排気用ポンプを制御して、前記処理水槽内のガス圧力を調整するための制御手段と
    を有することを特徴とする請求項1に記載のラジカル処理装置。
  8. 前記ガス供給手段から前記処理水槽に供給されるガス圧力を監視するガス供給側センサ手段を有し、
    前記制御手段は、
    前記ガス供給側センサ手段により検出されたガス圧力に基づいて、前記排気用ポンプを制御して、前記処理水槽内のガス圧力を低下させるように調整し、相対的に前記ガス供給手段からのガス圧力を高くするように制御することを特徴とする請求項1に記載のラジカル処理装置。
  9. 前記排気調整手段は、
    前記排気口から排気されるガスから不要な成分を除去又は分解処理するための触媒、活性炭、あるいは加熱手段のいずれか又はそれらの組み合わせを有するガス処理部を含むことを特徴とする請求項1から請求項8のいずれか1項に記載のラジカル処理装置。
  10. 前記ガス処理部は、
    前記排気口から排気されるガスからオゾンを除去又は分解処理するための触媒、活性炭、あるいは加熱手段のいずれか又はそれらの組み合わせを有する構成であることを特徴とする請求項9に記載のラジカル処理装置。
  11. 前記排気調整手段により前記処理水槽の外部に排出されたガスを、前記処理水槽の内部に戻すガス循環手段を更に有することを特徴とする請求項1から請求項9のいずれか1項に記載のラジカル処理装置。
  12. 前記ガス循環手段は、
    前記排気口から排気されるガスから不要な成分を除去又は分解処理するためのガス処理部と、
    前記ガス処理部により処理されたガスを、前記ガス供給手段に含まれて、前記処理水槽にガスを導入するための導入部まで戻すための循環機構と
    を有することを特徴とする請求項11に記載のラジカル処理装置。
JP2005224413A 2005-08-02 2005-08-02 ラジカル処理装置 Expired - Fee Related JP4709608B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005224413A JP4709608B2 (ja) 2005-08-02 2005-08-02 ラジカル処理装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005224413A JP4709608B2 (ja) 2005-08-02 2005-08-02 ラジカル処理装置

Publications (2)

Publication Number Publication Date
JP2007038110A JP2007038110A (ja) 2007-02-15
JP4709608B2 true JP4709608B2 (ja) 2011-06-22

Family

ID=37796584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005224413A Expired - Fee Related JP4709608B2 (ja) 2005-08-02 2005-08-02 ラジカル処理装置

Country Status (1)

Country Link
JP (1) JP4709608B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101020925B1 (ko) * 2010-05-17 2011-03-09 주식회사 이온팜스 이온수 제조장치
WO2012157248A1 (ja) 2011-05-17 2012-11-22 パナソニック株式会社 プラズマ発生装置およびプラズマ発生方法
CN102838187A (zh) * 2011-06-22 2012-12-26 深圳市鑫翔隆环保科技有限公司 一种用于水处理的设备
JP2013128909A (ja) * 2011-12-22 2013-07-04 Tokyo Institute Of Technology 液体処理装置
KR101418385B1 (ko) * 2014-03-11 2014-07-11 문영근 고전압 방전과 미세 기포를 이용한 폐수 정화 처리 시스템
US10710908B2 (en) 2015-12-24 2020-07-14 Mitsubishi Electric Corporation Water treatment device and water treatment method

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4850563A (ja) * 1971-11-01 1973-07-17
JPS5637091A (en) * 1979-08-30 1981-04-10 Yukichi Asakawa Treating method for water
JPH03237979A (ja) * 1989-09-18 1991-10-23 House Food Ind Co Ltd 高電圧パルスによる殺菌方法
JPH09206555A (ja) * 1996-01-31 1997-08-12 Takuma Co Ltd 有機ハロゲン化合物の処理方法および処理装置
JP2000288547A (ja) * 1999-04-05 2000-10-17 Taiyo Kagaku Kogyo Kk 廃水の浄化処理方法及びその装置
JP2001010808A (ja) * 1999-06-24 2001-01-16 Kobe Steel Ltd 高酸化性水の生成方法及び装置
JP2001009463A (ja) * 1999-06-24 2001-01-16 Kobe Steel Ltd 水中放電法及び装置
JP2001070946A (ja) * 1999-09-01 2001-03-21 Himeka Engineering Kk コロナ放電を利用した浄化方法および装置
JP2003080058A (ja) * 2001-09-10 2003-03-18 Yaskawa Electric Corp 反応性ガスの発生方法およびその発生装置
JP2003080059A (ja) * 2001-09-10 2003-03-18 Yaskawa Electric Corp 反応性ガスを用いた物質処理方法およびその装置
JP2003320373A (ja) * 2002-04-26 2003-11-11 Toshiba Corp ラジカル処理装置
JP2005218890A (ja) * 2004-02-03 2005-08-18 Toshiba Corp ラジカル処理システム
JP2005296909A (ja) * 2004-03-16 2005-10-27 Toshiba Corp 水処理システム
JP2006187743A (ja) * 2005-01-07 2006-07-20 Toshiba Corp ラジカル処理装置

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4850563A (ja) * 1971-11-01 1973-07-17
JPS5637091A (en) * 1979-08-30 1981-04-10 Yukichi Asakawa Treating method for water
JPH03237979A (ja) * 1989-09-18 1991-10-23 House Food Ind Co Ltd 高電圧パルスによる殺菌方法
JPH09206555A (ja) * 1996-01-31 1997-08-12 Takuma Co Ltd 有機ハロゲン化合物の処理方法および処理装置
JP2000288547A (ja) * 1999-04-05 2000-10-17 Taiyo Kagaku Kogyo Kk 廃水の浄化処理方法及びその装置
JP2001010808A (ja) * 1999-06-24 2001-01-16 Kobe Steel Ltd 高酸化性水の生成方法及び装置
JP2001009463A (ja) * 1999-06-24 2001-01-16 Kobe Steel Ltd 水中放電法及び装置
JP2001070946A (ja) * 1999-09-01 2001-03-21 Himeka Engineering Kk コロナ放電を利用した浄化方法および装置
JP2003080058A (ja) * 2001-09-10 2003-03-18 Yaskawa Electric Corp 反応性ガスの発生方法およびその発生装置
JP2003080059A (ja) * 2001-09-10 2003-03-18 Yaskawa Electric Corp 反応性ガスを用いた物質処理方法およびその装置
JP2003320373A (ja) * 2002-04-26 2003-11-11 Toshiba Corp ラジカル処理装置
JP2005218890A (ja) * 2004-02-03 2005-08-18 Toshiba Corp ラジカル処理システム
JP2005296909A (ja) * 2004-03-16 2005-10-27 Toshiba Corp 水処理システム
JP2006187743A (ja) * 2005-01-07 2006-07-20 Toshiba Corp ラジカル処理装置

Also Published As

Publication number Publication date
JP2007038110A (ja) 2007-02-15

Similar Documents

Publication Publication Date Title
US20100239473A1 (en) Apparatus for decomposing organic matter with radical treatment method using electric discharge
JP4322728B2 (ja) 水処理システム
RU2540427C2 (ru) Усовершенствованное устройство и способ удаления загрязнений из воздуха
JP4709608B2 (ja) ラジカル処理装置
KR101266157B1 (ko) 가스 채널을 구비한 수중 모세관 플라즈마 장치
JP2007307486A (ja) ラジカル処理システム
WO2007138773A1 (ja) 水処理装置
JP2008006336A (ja) 水浄化装置
JP2006187743A (ja) ラジカル処理装置
JP2005074311A (ja) 空気清浄機および空気清浄方法
JP2010022991A (ja) 液体処理装置および液体処理方法
JP2007149590A (ja) ラジカル処理装置
JP4646685B2 (ja) イオン性液体によるハロゲン化有機化合物の除去方法と除去装置
JP2005218890A (ja) ラジカル処理システム
KR20200080525A (ko) 플라즈마 기술 기반 스마트 저장 시스템과 저장 방법
JP2005013858A (ja) 高電圧パルスを利用した排水処理装置及び該方法
JP3537995B2 (ja) 廃水処理方法
JP3803590B2 (ja) 過酸化水素の残留濃度制御装置
WO2020021635A1 (ja) 水処理システム及び水処理方法
JP2006280999A (ja) 有機ヒ素の無害化方法
JP3547573B2 (ja) 水処理方法
JPH11347576A (ja) 水処理方法及び水処理装置
JP2002307083A (ja) 促進酸化処理装置
JPH11267670A (ja) 光触媒を用いた処理装置
JP2003126685A (ja) 環境汚染物質の分解方法及び装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100729

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110318

LAPS Cancellation because of no payment of annual fees