JP4704638B2 - Pulp cooking liquor and pulp manufacturing method - Google Patents

Pulp cooking liquor and pulp manufacturing method Download PDF

Info

Publication number
JP4704638B2
JP4704638B2 JP2001503731A JP2001503731A JP4704638B2 JP 4704638 B2 JP4704638 B2 JP 4704638B2 JP 2001503731 A JP2001503731 A JP 2001503731A JP 2001503731 A JP2001503731 A JP 2001503731A JP 4704638 B2 JP4704638 B2 JP 4704638B2
Authority
JP
Japan
Prior art keywords
pulp
cooking
chip
cooking liquor
liquor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001503731A
Other languages
Japanese (ja)
Inventor
達也 安藤
潤治 田中
寿彦 住野
啓吾 渡部
真 中尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Kasei Chemicals Ltd
Nippon Paper Industries Co Ltd
Original Assignee
Kawasaki Kasei Chemicals Ltd
Nippon Paper Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Kasei Chemicals Ltd, Nippon Paper Industries Co Ltd filed Critical Kawasaki Kasei Chemicals Ltd
Priority to JP2001503731A priority Critical patent/JP4704638B2/en
Application granted granted Critical
Publication of JP4704638B2 publication Critical patent/JP4704638B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C3/00Pulping cellulose-containing materials
    • D21C3/02Pulping cellulose-containing materials with inorganic bases or alkaline reacting compounds, e.g. sulfate processes
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C3/00Pulping cellulose-containing materials
    • D21C3/22Other features of pulping processes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Paper (AREA)

Description

技術分野
本発明は、リグノセルロース材料を蒸解する効果的なパルプ蒸解液およびパルプ製造方法に関し、特に、少ない薬液添加量でパルプ収率を向上させることのできる新規、有用なパルプ蒸解液およびこのパルプ蒸解液を用いるパルプ製造方法に関する。
背景技術
これまでに工業的に実施されている化学パルプの主な製造法は、木材チップのリグノセルロース材料のアルカリ性蒸解法であり、このうち、水酸化ナトリウムと硫化ナトリウムが主成分のアルカリ性蒸解液を用いるクラフト法が多く利用されている。このようなクラフト蒸解法にキノン化合物を存在させて蒸解するキノン蒸解法も広く知られている。キノン蒸解法によれば、パルプの同一カッパー価で比較した場合、パルプ収率が増加するとともに、用いられる蒸解液(使用薬液)量が減少することも知られている。
すなわち、キノン化合物が木材チップ中のセルロースおよびヘミセルロースの末端アルデヒド基を酸化し安定化させることにより、セルロースおよびヘミセルロース溶出反応であるピーリング反応を抑える。一方、それ自体は還元されてハイドロキノン型となったキノン化合物はリグニンに作用し、リグニンを還元溶出させ、それ自体は酸化されてキノン型になる。このように、キノン化合物はそれ自体の酸化還元サイクルを通じてセルロースおよびヘミセルロースを安定化させ、脱リグニンを促進させることにより、パルプの同一カッパー価で比較した場合、パルプ収率が向上するのと同時に、蒸解で必要な活性アルカリ量を減少させるという効果をもたらす。
一方、パルプ収率の向上技術として多硫化物(ポリサルファイド)蒸解法も広く知られている。多硫化物蒸解法とはクラフトパルプ蒸解に用いられる白液を酸化し、成分中の硫化物イオンを一部多硫化物イオンに変化させた蒸解液を用いる蒸解法である。このような多硫化物蒸解法によれば、セルロースおよびヘミセルロースの末端アルデヒド基が多硫化物イオンにより酸化され安定化されることにより、パルプ収率の向上をもたらす。
さらに、上記の蒸解方法を組み合わせたいわゆるPS(ポリサルファイド)−キノン蒸解法も知られている。この蒸解方法では上記で述べた効果が相乗的に現れるといわれている。つまり、PS−キノン蒸解法の効果として、同一カッパー価でのパルプ収率を向上させ、使用活性アルカリ量を減少させる。両効果により、同じ量の未晒しパルプ量を得るならば、使用薬液量が少なくて済むので回収ボイラーの負荷が減り、またカッパー価が小さくなるので後の漂白工程の負荷が減る等の効果がある。
しかし、このようなパルプ蒸解法においては、パルプ工場内の薬液回収バランスを崩すことなく、更にパルプ収率を向上させ、また薬液使用量の削減を達成できるパルプ蒸解液が望まれ、また、回収ボイラーの負荷を低減させることも望まれている。
パルプ蒸解液の改良によるパルプ収率等の効果は、用いる木材チップによりその現れ方に差があるので、標準となる木材チップを定めて検討するのが好ましい。そこで、木材チップとして学名:Fagus Crenata Blumeから選ばれるチップを選択し、通常のクラフトパルプ(KP)蒸解を行った場合と比較して述べる。たとえば、前述したキノン蒸解法の場合、得られた同一カッパー価のパルプで比較してパルプ収率が絶乾チップに対して約1%増加するとともに、用いられる蒸解液(使用薬液)量が活性アルカリ(NaO換算)として絶乾チップに対して約1%減少する。
また、前述した多硫化物蒸解法の場合、得られた同一カッパー価のパルプで比較してパルプ収率が絶乾チップに対して約1%増加するが、用いられる蒸解液(使用薬液)量も活性アルカリ(NaO換算)として絶乾チップに対して約1%増加してしまう。更に、PS(ポリサルファイド)−キノン蒸解法の場合、それぞれの効果が相乗的に現れるといわれているが、最も大きな効果が得られたとしても、得られた同一カッパー価のパルプで比較してパルプ収率が絶乾チップに対して最大で3%増加し、用いられる蒸解液(使用薬液)量が活性アルカリ(NaO換算)として絶乾チップに対して最大1.5%減少するにすぎなかった。実験室レベルでの蒸解実験であれば、パルプ収率の向上と薬液使用量の削減効果が共に大きい蒸解液が調製可能であるが、パルプ工場でそのような蒸解液を用いるには、工場内の薬品バランスを崩さないことが使用の前提となるので、従来、パルプ収率が3.5%以上増加し、活性アルカリが2%以上減少するような蒸解液は得られていない。
そこで、本発明は、少ない薬液添加量でパルプ収率を向上させ、回収ボイラーの負荷を低減させることができる新規、有用なパルプ蒸解液およびこのパルプ蒸解液を用いるパルプ製造方法を提供することを目的とする。
発明の開示
本発明は、カッパー価が10〜45のパルプを生産する蒸解法のうち、絶乾チップに対する液比が1.5〜5.0L/kgであり、最高温度が140〜180℃であり、チップが最高温度に達するまでの時間が5分以上である蒸解法に適用される蒸解液であって、以下の標準蒸解液および液比:3.0L/kg(絶乾チップ当り。なお、Lはリットルを表す、本明細書中同じ)で所定の条件下で蒸解したとき、パルプのカッパー価18の時のパルプ収率が50〜51%となるパルプが得られる木材チップ(学名:Fagus Crenata Blumeから選ばれるチップ)を標準チップとして、この標準チップを用い、同一液比で同一昇温プロファイルにおいて昇温して、カッパー価が18のパルプを得るとき、パルプ収率を3.5%以上上昇させ、対チップ活性アルカリ添加率を2%以上低下させる蒸解液であることを特徴とするパルプ蒸解液を提供する。この発明を以下第一発明という。
標準蒸解液組成:NaOH 70g/L(NaO換算)
NaS 30g/L(NaO換算)
NaCO 15g/L(NaO換算)
また、本発明は、少なくとも多硫化物イオンを含有する白液又は緑液のうち、多硫化物イオンを構成する多硫化硫黄濃度が6g/L以上で、絶乾チップ当り0.01〜1.5重量%のキノン化合物を含有することを特徴とする蒸解液を提供する。この発明を以下第二発明という。
発明を実施するための最良の形態
本発明のパルプ蒸解液によれば、蒸解で得られるパルプを同じカッパー価で比較したとき、収率の向上効果と活性アルカリ使用量の低下効果が達成される。従って回収ボイラーの負荷を低減でき、蒸解時間も短縮される。本発明は現行のすべてのパルプ蒸解システムに適用することができる。
第一発明は、カッパー価が10〜45のパルプを生産する蒸解法のうち、絶乾チップに対する液比が1.5〜5.0L/kgであり、最高温度が140〜180℃であり、チップが最高温度に達するまでの時間が5分以上である蒸解法に適用されるパルプ蒸解液である。そして、ある蒸解条件下で比較した時に所定の効果を有するようなパルプ蒸解液として規定される。すなわち、リグノセルロース材料として、学名:Fagus Crenata Blumeから選ばれるチップを、NaOH:70g/L、NaS:30g/L、NaCO:15g/L(NaO換算)の組成の蒸解液に必要に応じて蒸留水を加え、液比:3.0L/kg(絶乾チップ当り)で所定の条件下で蒸解し、得られるパルプのカッパー価が18になるような昇温プロファイル、例えば、室温から160℃まで60分で昇温して、160℃で41分間維持する条件で蒸解を行う。その時のパルプ収率が絶乾チップに対して50〜51%となるようなパルプを得ることができる木材チップを標準チップとする。
そして、この同一素材で同一形状の同じ標準チップを用い、必要に応じて蒸留水を加えて同一液比とし、同一昇温プロファイルにて昇温し、蒸解液の浸透条件、例えば、チップの形状、大きさ等が同一の条件において蒸解を行い、カッパー価18のパルプを得るようにする。具体的には蒸解液の添加量を加減して蒸解を行う。その結果得られたカッパー価18のパルプの収率を絶乾チップに対して3.5%以上上昇させ、絶乾チップ当りの活性アルカリ添加率をチップ重量に対して2%以上低下させることができるパルプ蒸解液である。
すなわち、本発明に従う蒸解液によれば、木材チップとして学名:Fagus Crenata Blumeから選ばれるチップを選択した場合に、通常のクラフトパルプ(KP)蒸解を行った場合と比較して、パルプ収率を3.5%以上向上させるという、これまでにない大きな効果と、薬液使用量の減少が活性アルカリ添加率として2%以上という大きな効果が同時に、初めて達成される。なお、第一発明において、このようにパルプ蒸解液を規定する際に使用する蒸解釜は、静止釜よりは回転可能な蒸解釜であるのが好ましい。
第一発明のパルプ蒸解液を用いて、実際に、蒸解の原料となる種々のチップを蒸解した場合、チップの種類、性状によりパルプ蒸解液の効果は大きくなったり、小さくなったりするが、通常行われているKP蒸解の条件で本発明のパルプ蒸解液を用いれば、これまで以上に、収率は必ず向上し、活性アルカリの添加率は必ず減少する。
第一発明のパルプ蒸解液は、白液と同様、水酸化ナトリウムと硫化ナトリウムを含有するが、多硫化物イオンを含有することが好ましい。ここで、多硫化物イオンとは一般式S 2−で表され単に多硫化物ともいう。多硫化硫黄とは多硫化物イオン中酸化数が0の硫黄でS 2−中(x−1)個分の硫黄をいう。また、NaS態硫黄とは多硫化物イオン中酸化数−IIの硫黄(S 2−中1個分の硫黄)と硫化物イオンの総称とする。活性アルカリ(以下適宜「AA」とも記載する)とはNaOH+NaSをNaO濃度に換算したものである。
第一発明のパルプ蒸解液は、好ましくは多硫化物イオンを含有することが好ましいが、この多硫化物イオンを含有するパルプ蒸解液の製造方法としては、例えば空気酸化法や電解法が挙げられる。空気酸化法は特開昭61−259754号公報、特開昭53−92981号公報にも記載されているように、活性炭触媒の存在下、白液等の硫化ナトリウムを含有する液を空気と接触させ、硫化物イオンを酸化させて多硫化物イオンを生成させるものである。しかし、この方法では必然的にチオ硫酸イオンが副生し、多硫化物イオンを構成する多硫化硫黄濃度を大きくすることは比較的困難である。このため、本発明においては、空気酸化法で製造してもよいが、好ましくは電解法が用いられる。
第一発明のパルプ蒸解液は6g/L以上の多硫化硫黄濃度を含有することが好ましい。このように多硫化硫黄濃度を高くすることにより、セルロースの安定化をより促進させ、パルプ収率をより向上させることができる。多硫化硫黄濃度が6g/Lに満たないとパルプ収率の向上効果が小さくなるおそれがある。より好ましくは8g/L以上である。
多硫化物イオンを含むパルプ蒸解液の製造方法の一つである電解法は、多硫化硫黄濃度が8g/L以上含有する蒸解液を製造する方法として特に好ましい。このような電解法としては、例えば本発明者らが先に開発したPCT/JP97/01456、特願平10−166374号、特願平11−51016号、特願平11−51033号等の電解法を適用することができる。電解法によれば、空気酸化法のように高濃度の多硫化硫黄濃度を製造するために反応率を上げると、選択率が低下して蒸解には無効なチオ硫酸イオンが多く生成することなく、従来の方法に比べて高い選択率で高濃度の多硫化硫黄およびNaS態硫黄を含む蒸解液を製造することができる。
それら電解法では、例えば陽極を備えた陽極室と陰極を備えた陰極室とそれら2つの部屋を区画する隔膜を有する電解槽の陽極室に硫化物イオンを含有する溶液、例えば白液や緑液を導入して電解酸化することにより多硫化物イオンを含む蒸解液が得られる。陽極としては耐アルカリ性と耐酸化性をを有することが必要で、例えば非金属では炭素材料、金属ではニッケル、コバルト、チタン等の卑金属やそれらの合金および酸化物、あるいは白金、金、ロジウム等の貴金属やそれらの合金および酸化物等を用いることができる。陽極の構造は物理的に3次元網目構造を有する多孔性構造が好ましい。
陰極としては、耐アルカリ性の材料が好ましく、ニッケル、ラネーニッケル、硫化ニッケル、鋼、ステンレス鋼などを用いることができる。形状は平板またはメッシュ状の形状のものを、一つまたは複数を多層構成にして用いる。線状の電極を複合した3次元電極を用いることもできる。
陽極室と陰極室とを隔てる膜としては、カチオン交換膜を用いるのが好ましい。カチオン交換膜は、陽極室から陰極室へはカチオンを導くが、硫化物イオンおよび多硫化物イオンの移動を妨げる。カチオン交換膜として、炭化水素系またはフッ素系の高分子に、スルホン酸基、カルボン酸基などのカチオン交換基が導入された高分子膜が好ましい。また、耐アルカリ性などの面で問題がなければ、バイポーラ膜、アニオン交換膜などを使用することもできる。このような電解槽の陽極室内で、白液または緑液の硫化物イオンの一部を酸化して多硫化物イオンを生成させ、蒸解工程に供する。
第一発明のパルプ蒸解液では、多硫化物イオンを含む場合、NaS態硫黄濃度がNaO換算で9g/L以上残存していることが好ましい。この濃度が9g/Lに満たないと多硫化物イオンが不安定になり、蒸解により得られるパルプのカッパー価が上昇したり、パルプ収率が低下するおそれがある。
第一発明の蒸解液はキノン化合物を含有することが好ましい。キノン化合物としては、具体的には、9,10−アントラキノン、2−メチル−9,10−アントラキノン、2−エチル−9,10−アントラキノン等のアルキルアントラキノン、1、4、4a、9a−テトラヒドロ−9,10−アントラキノン、1,4−ジヒドロ−9,10−アントラキノン、2−(9,10−アントラキノイル)−1−エタンスルホン酸、9,10−アントラキノン−2−スルホン酸、アミノ−9,10−アントラキノン等のキノン化合物、およびこれらの還元体(ジヒドロ体またはジヒドロ体のナトリウム塩)があげられる。
これらのキノン化合物を蒸解液に蒸解以前または蒸解直前に添加することにより、第一発明のパルプ蒸解液として好ましい蒸解液となるが、添加する状態は酸化型であるキノン体でも還元型であるハイドロキノン体でもどちらでもよい。また、添加後の状態もそのどちらでもよい。例えば、1、4、4a、9a−テトラヒドロ−9,10−アントラキノンはアルカリ性の蒸解液中では1,4−ジヒドロ−9,10−ジヒドロキシアントラセンジナトリウム塩になっている。
第一発明のパルプ蒸解液に、好ましくは含まれるキノン化合物は、絶乾チップ当り0.01〜1.5重量%になるように蒸解液に存在することが好ましい。より好ましくは0.02〜0.06重量%である。キノン化合物の存在量が絶乾チップ当り0.01重量%未満であれば、存在量が少なすぎて蒸解後パルプのカッパー価やAA使用量が低減されず、カッパー価とAA添加率およびパルプ収率の関係が改善されない。また、キノン化合物を1.5重量%を超えた量でも、それ以上の蒸解後パルプのカッパー価やAA使用量の低減およびカッパー価とパルプ収率およびAA使用量の関係の改善は認められない。
第二発明のパルプ蒸解液は、少なくとも多硫化物イオンを含有する白液又は緑液のうち、多硫化物イオンを構成する多硫化硫黄濃度が6g/L以上で、絶乾チップ当り0.01〜1.5重量%のキノン化合物を含有している。この蒸解液に含まれる多硫化物イオンの製造法は、第一発明の蒸解液の場合と同様に、空気酸化法で製造してもよいが、多硫化物イオンを構成する多硫化硫黄濃度が6g/L以上の蒸解液は、好ましくは電解法で製造される。電解法は前述のとおり実施することができる。多硫化硫黄濃度を高くすることにより、セルロースの安定化をより促進させ、パルプ収率をより向上させることができる。多硫化硫黄濃度が6g/Lに満たないとパルプ収率の向上効果が小さくなるおそれがある。より好ましくは8g/L以上である。
また、第二発明のパルプ蒸解液には、キノン化合物が絶乾チップ当り0.01〜1.5重量%になるように存在する。より好ましくは0.02〜0.06重量%である。キノン化合物の存在量が絶乾チップ当り0.01重量%未満であれば、存在量が少なすぎて蒸解後パルプのカッパー価やAA使用量が低減されず、カッパー価とAA添加率およびパルプ収率の関係が改善されない。また、キノン化合物が1.5重量%を超えた存在量でも、それ以上の蒸解後パルプカッパー価やAA使用量の低減およびカッパー価とパルプ収率およびAA使用量の関係の改善は認められない。キノン化合物の具体例や存在形態につていは前述第一発明の場合と同様である。
第二発明のパルプ蒸解液においても、第一発明と同様に、NaS態硫黄濃度がNaO換算で9g/L以上残存していることが好ましい。この濃度が9g/Lに満たないと多硫化物イオンが不安定になり、蒸解により得られるパルプのカッパー価が上昇したり、パルプ収率が低下するおそれがある。
第一および第二の発明において、キノン化合物の添加時期は、蒸解前または蒸解途中に一括添加する方法、あるいは段階的に分割して添加する方法のいずれでも有効である。ただし、キノン化合物を含む蒸解液がチップ内に十分浸透するように添加するのが好ましい。本発明の蒸解液を用い、回分式蒸解釜を用いて蒸解を行う際の液比は、絶乾チップ当り2.0〜5.0L/kgになるようにするのが好ましい。より好ましくは2.5〜4.0L/kgである。液比が2.0L/kg未満であると、蒸解液がチップに十分に浸透しないことによる蒸解効果の低下のおそれがあるので好ましくない。液比が5.0L/kgを超えると使用薬液量削減効果が低下するので好ましくない。
連続式蒸解釜を用いて蒸解を行う際には、液比は絶乾チップ当り1.5〜5.0L/kgになるようにするのが好ましい。より好ましくは2.0〜3.5L/kgである。液比が1.5L/kg未満であると、浸透段に気相部が生じ、蒸解効果が低下するおそれがあるので好ましくない。液比が5.0L/kgを超えると、使用薬液量削減効果が低下するので好ましくない。また、特にリグノセルロース材料に針葉樹チップを用いる場合は1.5〜3.5L/kg、広葉樹チップを用いる場合は2.5〜5.0L/kgであるとより好ましい。液比が1.5L/kg未満であると、アルカリ性蒸解液がチップに十分に浸透しないことによる蒸解効果が低下するおそれがあるので好ましくない。ここで液比とは、回分式蒸解釜の場合には絶乾チップ重量当りの液量のことをいうが、連続式蒸解釜においては、単位時間当りの釜への絶乾チップ流入重量と釜への液体の容積流入量の比をいう。
パルプ蒸解で通常用いられる白液の組成は、現在行われているクラフトパルプ蒸解に用いられている白液の場合、通常、アルカリ金属イオンとして2〜6mol/Lを含有し、そのうちの90%以上はナトリウムイオンであり、残りはほぼカリウムイオンである。またアニオンは、水酸化物イオン、硫化物イオン、炭酸イオンを主成分とし、硫化物イオン濃度は通常0.5〜0.8mol/Lであり、他に硫酸イオン、チオ硫酸イオン、塩素イオン、亜硫酸イオンを含む。更にカルシウム、ケイ素、アルミ、リン、マグネシウム、銅、マンガン、鉄のような微量成分を含む。緑液の組成は基本的に白液と同じである。ただし、白液は硫化ナトリウムと水酸化ナトリウムが主成分であるのに対して、緑液は硫化ナトリウムと炭酸ナトリウムが主成分である。
本発明のパルプ蒸解液によれば、リグノセルロース材料である針葉樹または広葉樹の何れの樹種でも良好な蒸解効果が得られる。例えば、針葉樹としてはCryptomeria(スギ)、Picea(エゾマツ、トウヒ、オウシュウトウヒ、シトカトウヒ等)、Pinus(ラジアータマツ、アカマツ、クロマツ等)、Thuja(ベイスギ、ネズコ等)、Tsuga(ツガ、ベイツガ等)、広葉樹ではEucalyptus(ユーカリ類)、Fagus(ブナ類)、Quercus(ナラ、カシ等)、Acacia(アカシア類)等があげられる。
実施例
以下、実施例に基づき本発明をさらに詳しく説明するが、本発明がこれらの実施例に限定されないことはもちろんである。試験法は下記のとおりである。
《試験法》
得られた未晒しパルプのパルプ収率としては、単繊維化していない粕を除去した精選パルプの収率を測定した。未晒しパルプのカッパー価は、TAPPI試験法T236hm−85に従って行った。アルカリ性蒸解液中のチオ硫酸ナトリウム、NaS態硫黄および硫黄換算での多硫化硫黄濃度の定量は特開平7−92148号公報に記載された方法に基づいて行った。
〈比較例1〉
オイルバス内で回転可能な蒸解釜を用い、学名:Fagus Crenata Blumeから選ばれた30年生前後のチップのうち、9/8インチ径丸穴篩を通過し3/16インチ径丸穴篩を通過しないチップを用い、水酸化ナトリウム70g/Lおよび硫化ナトリウム30g/L、炭酸ナトリウム15g/L(いずれもNaO換算)のモデル白液を調製し、活性アルカリ添加率を14、16、18重量%(対絶乾チップ;NaO換算)の割合で添加し、液比を絶乾パルプ重量に対してチップ持ち込み水分を合わせて3.0kg/Lになるように蒸解液と水を加えた。室温から160℃まで60分で昇温し、160℃で41分間維持した。蒸解後のカッパー価とパルプ収率は、次の通りである。

Figure 0004704638
これらのデータから、カッパー価18でのパルプ収率は50.3%、AA添加率は17.0%であった。
〈比較例2〉
比較例1と同様のチップを用い、蒸解液は比較例1の組成のモデル白液を活性炭触媒で空気酸化した多硫化物溶液を想定し、反応率60%、選択率63%を仮定し、水酸化ナトリウム70g/L、NaS態イオウ12.0g/L、炭酸ナトリウム15g/Lおよびチオ硫酸ナトリウム3.3g/L(いずれもNaO換算)、多硫化硫黄5.9g/L(硫黄換算)のモデル多硫化物蒸解液を調製した。酸化する前の白液に換算した活性アルカリ添加率を15重量%、17重量%、19重量%(対絶乾チップ;NaO換算)の割合で添加し、比較例1と同様に、液比を絶乾パルプ重量に対してチップ持ち込み水分を合わせて3.0kg/Lになるように蒸解液と水を加えた。比較例1と同様の温度条件で蒸解を行った。蒸解後のカッパー価とパルプ収率は、次の通りである。
Figure 0004704638
これらのデータから、カッパー価18でのパルプ収率は51.0%、AA添加率は17.9%であった。
〈比較例3〉
比較例1と同様のチップを用い、蒸解液は以下の構成の電解槽で以下の条件で製造した。
アノード集積体にニッケル板、アノードにニッケル発泡体(100mm×20mm×4mm、網目の平均孔径0.51mm、アノード室体積当りのアノード表面積:5600m/m、隔膜面積に対する表面積:28m/m)、カソードとして鉄のエクスパンジョンメタル、隔膜としてフッ素樹脂系カチオン交換膜とからなる2室型の電解槽を組み立てた。アノード室は高さ100mm、幅20mm、厚み4mmであり、カソード室は高さ100mm、幅20mm、厚み5mmで、隔膜の有効面積は20cmであった。比較例1で使用した白液を用い、アノード液線速度:4cm/sec、電流密度:6kA/m、電解温度:90℃にて循環電解を行い、硫化ナトリウムの反応率:55%、選択率:95%で次の組成の多硫化物蒸解液を得た。
水酸化ナトリウム :70g/L(NaO換算)
NaS態硫黄 :13.5g/L(NaO換算)
炭酸ナトリウム :15g/L(NaO換算)
チオ硫酸ナトリウム :0.8g/L(NaO換算)
多硫化硫黄 :8.1g/L(硫黄換算)
活性アルカリ添加率を15重量%、17重量%、19重量%(対絶乾チップ;NaO換算)の割合で蒸解液を添加し、比較例1と同様に、液比を絶乾パルプ重量に対してチップ持ち込み水分を合わせて3.0kg/Lになるように蒸解液と水を加えた。比較例1と同様の温度条件で蒸解を行った。蒸解後のカッパー価とパルプ収率は、次の通りである。
Figure 0004704638
これらのデータから、カッパー価18でのパルプ収率は52.3%、AA添加率は16.6%であった。
〈比較例4〉
比較例1と同様のチップを用い、蒸解液は比較例3と同様にして製造し、反応率68%、選択率95%で以下の組成の多硫化物蒸解液を得た。
水酸化ナトリウム :70g/L(NaO換算)
NaS態硫黄 :9.6g/L(NaO換算)
炭酸ナトリウム :15g/L(NaO換算)
チオ硫酸ナトリウム :1.0g/L(NaO換算)
多硫化硫黄 :10.0g/L(硫黄換算)
活性アルカリ添加率を15重量%、17重量%、19重量%(対絶乾チップ;NaO換算)の割合で蒸解液を添加し、比較例1と同様に液比を絶乾パルプ重量に対してチップ持ち込み水分を合わせて3.0kg/Lになるように蒸解液と水を加えた。比較例1と同様の温度条件で蒸解を行った。蒸解後のカッパー価とパルプ収率は、次の通りである。
Figure 0004704638
これらのデータから、カッパー価18でのパルプ収率は52.9%、AA添加率は16.2%であった。
〈比較例5〉
比較例2の蒸解液に1,4−ジヒドロ−9,10−ジヒドロキシアントラセンジナトリウム塩を絶乾チップ当り0.05重量%(アントラキノン換算)添加した蒸解液を用いた以外は比較例2と同様の実験を行った。蒸解後のカッパー価とパルプ収率は、次の通りである。
Figure 0004704638
これらのデータから、カッパー価18でのパルプ収率は53.4%、AA添加率は15.4%であった。
《実施例1》
比較例3の蒸解液に1,4−ジヒドロ−9,10−ジヒドロキシアントラセンジナトリウム塩を絶乾チップ当り0.05重量%(アントラキノン換算)添加し、活性アルカリ添加率を13重量%、15重量%、17重量%(対絶乾チップ;NaO換算)の割合で蒸解液を添加した以外は比較例3と同様の実験を行った。蒸解後のカッパー価とパルプ収率は、次の通りである。
Figure 0004704638
これらのデータから、カッパー価18でのパルプ収率は54.3%、AA添加率は14.6%であった。
《実施例2》
比較例4の蒸解液に1,4−ジヒドロ−9,10−ジヒドロキシアントラセンジナトリウム塩を絶乾チップ当り0.05重量%(アントラキノン換算)添加し、活性アルカリ添加率を13重量%、15重量%、17重量%(対絶乾チップ;NaO換算)の割合で蒸解液を添加した以外は比較例4と同様の実験を行った。蒸解後のカッパー価とパルプ収率は、次の通りである。
Figure 0004704638
これらのデータから、カッパー価18でのパルプ収率は54.9%、AA添加率は13.9%であった。
以上、実施例1、2で用いた蒸解液は、比較例1〜5で用いた蒸解液に比較して同じカッパー価のパルプで比較した場合、収率がいずれも高く、活性アルカリ添加率も低い。また、標準チップと標準蒸解条件で蒸解を行った比較例1と比べて、実施例1,2はカッパー価18のパルプで比較したとき、収率は絶乾チップに対して3.5%以上上昇し、活性アルカリ添加率も絶乾チップに対して2%以上減少している。なお、比較例1が本発明の蒸解液を規定するための標準蒸解条件の一つに位置づけられる。
以下に記載する比較例および実施例は、比較例1〜5および実施例1、2で実施した蒸解と同じ蒸解条件で同じ蒸解液を用いて、別の種類の木材に適用した例である。
〈比較例6〉
チリ産のユーカリ(学名:Eucalyptus Species)を用い、比較例1と同様の蒸解液を、その添加量を以下の活性アルカリ添加率(対絶乾チップ;NaO換算)で添加した以外は比較例1と同様の実験を行った。蒸解後のカッパー価とパルプ収率は、次の通りである。
Figure 0004704638
これらのデータから、カッパー価18でのパルプ収率は54.6%、AA添加率は14.8%であった。
〈比較例7〉
木材チップとして比較例6同様のチリユーカリチップを用い、比較例2と同様の蒸解液を、以下の活性アルカリ添加率(対絶乾チップ;NaO換算)で添加した以外は比較例2と同様の実験を行った。蒸解後のカッパー価とパルプ収率は、次の通りである。
Figure 0004704638
これらのデータから、カッパー価18でのパルプ収率は56.0%、AA添加率は15.2%であった。
〈比較例8〉
比較例6と同様の木材チップを用い、比較例3と同様の蒸解液を用い、比較例3と同様の実験を行った。蒸解後のカッパー価とパルプ収率は、次の通りである。
Figure 0004704638
これらのデータから、カッパー価18でのパルプ収率は56.8%、AA添加率は14.3%であった。
〈比較例9〉
比較例6と同様の木材チップを用い、比較例4と同様の蒸解液を用い、比較例4と同様の実験を行った。蒸解後のカッパー価とパルプ収率は、次の通りである。
Figure 0004704638
これらのデータから、カッパー価18でのパルプ収率は57.2%、AA添加率は14.0%であった。
〈比較例10〉
比較例6と同様の木材チップを用い、比較例5と同様の蒸解液を用い、比較例5と同様の実験を行った。蒸解後のカッパー価とパルプ収率は、次の通りである。
Figure 0004704638
これらのデータから、カッパー価18でのパルプ収率は58.2%、AA添加率は12.7%であった。
《実施例3》
比較例6と同様の木材チップを用い、実施例1と同様の蒸解液を用い、実施例1と同様の実験を行った。蒸解後のカッパー価とパルプ収率は、次の通りである。
Figure 0004704638
これらのデータから、カッパー価18でのパルプ収率は58.3%、AA添加率は12.3%であった。
《実施例4》
比較例6と同様の木材チップを用い、実施例2と同様の蒸解液を用い、実施例2と同様の実験を行った。蒸解後のカッパー価とパルプ収率は、次の通りである。
Figure 0004704638
これらのデータから、カッパー価18でのパルプ収率は58.6%、AA添加率は12.3%であった。
以上、比較例6〜10および実施例3、4で示したチリ産のユーカリチップの例から、比較例1〜5および実施例1、2の標準条件で規定した本発明に従う蒸解液を別種類の木材チップに適用しても効果が確認された。同じカッパー価のパルプで比較すると、比較例6〜10で用いた蒸解液よりも実施例3、4で用いた蒸解液の方がパルプ収率が高く、活性アルカリ添加率が低くなっている。
〈比較例11〉
インドネシア産アカシア(学名:Acacia mangium)を用い、比較例1と同様の蒸解液を、その添加量を以下の活性アルカリ添加率(対絶乾チップ;NaO換算)で添加した以外は比較例1と同様の実験を行った。蒸解後のカッパー価とパルプ収率は、次の通りである。
Figure 0004704638
これらのデータから、カッパー価18でのパルプ収率は49.1%、AA添加率は22.0%であった。
〈比較例12〉
比較例11と同様の木材チップを用い、比較例2と同様の蒸解液を用い、比較例2と同様の実験を行った。蒸解後のカッパー価とパルプ収率は、次の通りである。
Figure 0004704638
これらのデータから、カッパー価18でのパルプ収率は51.8%、AA添加率は21.5%であった。
〈比較例13〉
比較例11と同様の木材チップと比較例3と同様の蒸解液を用い、比較例3と同様の実験を行った。蒸解後のカッパー価とパルプ収率は、次の通りである。
Figure 0004704638
これらのデータから、カッパー価18でのパルプ収率は53.4%、AA添加率は19.5%であった。
〈比較例14〉
比較例11と同様の木材チップと比較例4と同様の蒸解液を用い、比較例4と同様の実験を行った。蒸解後のカッパー価とパルプ収率は、次の通りである。
Figure 0004704638
これらのデータから、カッパー価18でのパルプ収率は54.1%、AA添加率は19.0%であった。
〈比較例15〉
比較例11と同様の木材チップと比較例5と同様の蒸解液を用い、比較例5と同様の実験を行った。蒸解後のカッパー価とパルプ収率は、次の通りである。
Figure 0004704638
これらのデータから、カッパー価18でのパルプ収率は53.9%、AA添加率は18.7%であった。
《実施例5》
比較例11と同様の木材チップと実施例1と同様の蒸解液を用い、実施例1と同様の実験を行った。蒸解後のカッパー価とパルプ収率は、次の通りである。
Figure 0004704638
これらのデータから、カッパー価18でのパルプ収率は55.5%、AA添加率は17.4%であった。
《実施例6》
比較例11と同様の木材チップと実施例2と同様の蒸解液を用い、実施例2と同様の実験を行った。蒸解後のカッパー価とパルプ収率は、次の通りである。
Figure 0004704638
21.5 13.1 53.8
これらのデータから、カッパー価18でのパルプ収率は55.0%、AA添加率は17.6%であった。
以上、比較例11〜15および実施例5、6で示したインドネシア産アカシアチップの例から、比較例1〜5および実施例1、2の標準条件で規定した本発明に従う蒸解液を別種類の木材チップに適用しても効果が確認された。同じカッパー価のパルプで比較すると、比較例11〜15で用いた蒸解液よりも実施例5、6で用いた蒸解液の方がパルプ収率が高く、活性アルカリ添加率が低くなっている。
産業上の利用の可能性
本発明のパルプ蒸解液を用いることにより、また本パルプ蒸解液を用いるパルプ製造法により、パルプ収率を一層向上させ、カッパー価とパルプ収率の関係を更に改善することができる。すなわち、本発明によれば、同一活性アルカリ添加率におけるカッパー価を減少させ、かつ同一カッパー価におけるパルプ収率を向上させるのに優れており、併せて薬液使用量の削減効果、回収ボイラーの負荷低減効果が達成される。しかも、パルプ工場内の薬液回収バランスを崩すことなく、これらの効果を達成することができる。Technical field
The present invention relates to an effective pulp cooking liquor and pulp manufacturing method for cooking lignocellulosic materials, and in particular, a novel and useful pulp cooking liquor capable of improving pulp yield with a small amount of chemical addition, and the pulp cooking liquor. The present invention relates to a method for producing pulp.
Background art
The main production method of chemical pulp that has been industrially used so far is an alkaline cooking method of lignocellulosic material of wood chips, and among these, an alkaline cooking solution mainly composed of sodium hydroxide and sodium sulfide is used. The craft method is often used. A quinone cooking method in which a quinone compound is present in such a kraft cooking method is also widely known. According to the quinone cooking method, it is also known that when compared with the same kappa number of pulp, the yield of pulp is increased and the amount of cooking liquid (chemical solution used) is decreased.
That is, the quinone compound oxidizes and stabilizes the terminal aldehyde groups of cellulose and hemicellulose in the wood chip, thereby suppressing the peeling reaction that is an elution reaction of cellulose and hemicellulose. On the other hand, the quinone compound itself reduced to hydroquinone type acts on lignin to reduce and elute lignin, and is itself oxidized to quinone type. In this way, the quinone compound stabilizes cellulose and hemicellulose through its own redox cycle and promotes delignification, thereby improving the pulp yield when compared with the same kappa number of the pulp, This brings about the effect of reducing the amount of active alkali necessary for cooking.
On the other hand, a polysulfide cooking method is also widely known as a technique for improving the pulp yield. The polysulfide cooking method is a cooking method using a cooking solution in which white liquor used for kraft pulp cooking is oxidized and sulfide ions in the components are partially changed to polysulfide ions. According to such a polysulfide cooking method, the terminal aldehyde groups of cellulose and hemicellulose are oxidized and stabilized by polysulfide ions, thereby improving the pulp yield.
Furthermore, a so-called PS (polysulfide) -quinone cooking method combining the above cooking methods is also known. In this cooking method, it is said that the effects described above appear synergistically. That is, as an effect of the PS-quinone cooking method, the pulp yield at the same kappa number is improved and the amount of active alkali used is reduced. If the same amount of unbleached pulp is obtained due to both effects, the amount of chemical solution used can be reduced, reducing the load on the recovery boiler, and the kappa number is reduced, reducing the load on the subsequent bleaching process. is there.
However, in such a pulp cooking method, there is a demand for a pulp cooking solution that can further improve the pulp yield and achieve a reduction in the amount of chemical solution used without destroying the chemical solution collection balance in the pulp factory. It is also desired to reduce the load on the boiler.
The effect of improving the pulp cooking liquor, such as pulp yield, varies depending on the wood chips used, so it is preferable to study by determining a standard wood chip. Therefore, a chip selected from the scientific name: Fagus Crenata Blume is selected as the wood chip, and it will be described in comparison with the case of performing normal kraft pulp (KP) cooking. For example, in the case of the quinone cooking method described above, the pulp yield is increased by about 1% with respect to the absolutely dry chips as compared with the obtained pulp having the same kappa number, and the amount of cooking liquid (chemical solution used) is active. Alkali (Na2O conversion) is reduced by about 1% with respect to the absolutely dry chip.
In the case of the polysulfide cooking method described above, the pulp yield is increased by about 1% with respect to the absolutely dry chip as compared with the obtained pulp having the same kappa number, but the amount of cooking liquid (chemical solution used) used. Active alkali (Na2(O conversion) increases by about 1% with respect to the absolutely dry chip. Furthermore, in the case of PS (polysulfide) -quinone cooking method, it is said that each effect appears synergistically, but even if the largest effect is obtained, it is compared with the obtained pulp having the same kappa number. The yield increases up to 3% with respect to the absolutely dry chip, and the amount of cooking liquor (chemical used) is activated alkali (Na2It was only 1.5% less than the absolutely dry chip as O conversion). For cooking experiments at the laboratory level, it is possible to prepare cooking liquor that has a large effect on improving pulp yield and reducing the amount of chemicals used. Since it is a precondition for use that the chemical balance is not destroyed, a cooking solution in which the pulp yield increases by 3.5% or more and the active alkali decreases by 2% or more has not been obtained.
Therefore, the present invention provides a new and useful pulp cooking liquid that can improve the pulp yield with a small chemical addition amount and reduce the load on the recovery boiler, and a pulp manufacturing method using this pulp cooking liquid. Objective.
Disclosure of the invention
The present invention is a cooking method for producing pulp having a copper number of 10 to 45, the liquid ratio to the absolutely dry chips is 1.5 to 5.0 L / kg, the maximum temperature is 140 to 180 ° C., and the chips Is a cooking solution applied to the cooking method in which the time to reach the maximum temperature is 5 minutes or more, and the following standard cooking solution and liquid ratio: 3.0 L / kg (per absolutely dry chip. Wood chip (scientific name: Fagus Crenata Blume) that gives a pulp yielding a pulp yield of 50-51% when the pulp has a copper number of 18 when digested under predetermined conditions in the same manner in the present specification. Chip) is used as a standard chip, and when this standard chip is used and the temperature is increased in the same temperature rising profile at the same liquid ratio to obtain a pulp having a kappa number of 18, the pulp yield is 3.5% or more. A pulp cooking liquor characterized by being a cooking liquor that raises and lowers the rate of addition of chip active alkali by 2% or more. This invention is hereinafter referred to as the first invention.
Standard cooking solution composition: NaOH 70 g / L (Na2O conversion)
Na2S 30 g / L (Na2O conversion)
Na2CO3    15 g / L (Na2O conversion)
The present invention also provides that the concentration of sulfur polysulfide constituting the polysulfide ion is at least 6 g / L among the white liquor or green liquor containing polysulfide ions, and 0.01 to 1. There is provided a cooking liquid characterized by containing 5% by weight of a quinone compound. This invention is hereinafter referred to as the second invention.
BEST MODE FOR CARRYING OUT THE INVENTION
According to the pulp cooking liquid of the present invention, when the pulp obtained by cooking is compared with the same kappa number, the effect of improving the yield and the effect of reducing the amount of active alkali used are achieved. Accordingly, the load on the recovery boiler can be reduced, and the cooking time can be shortened. The present invention is applicable to all current pulp cooking systems.
1st invention is the cooking method which produces a pulp with a copper number of 10-45, the liquid ratio with respect to an absolutely dry chip | tip is 1.5-5.0 L / kg, and the maximum temperature is 140-180 degreeC, It is a pulp cooking solution applied to the cooking method in which the time until the chip reaches the maximum temperature is 5 minutes or more. And it is prescribed | regulated as a pulp cooking liquid which has a predetermined effect when compared under a certain cooking condition. That is, as a lignocellulosic material, a chip selected from the scientific name: Fagus Crenata Blue, NaOH: 70 g / L, Na2S: 30 g / L, Na2CO3: 15 g / L (Na2Distilled water is added to the cooking solution having a composition of O), if necessary, and the mixture is cooked under predetermined conditions at a liquid ratio of 3.0 L / kg (per absolute dry chip). Cooking is performed under such a temperature rising profile, for example, the temperature is raised from room temperature to 160 ° C. in 60 minutes and maintained at 160 ° C. for 41 minutes. A wood chip capable of obtaining a pulp having a pulp yield of 50 to 51% with respect to the absolutely dry chip is used as a standard chip.
Then, using the same standard tip with the same shape and the same material, if necessary, add distilled water to make the same liquid ratio, raise the temperature with the same temperature rise profile, and infiltrate the cooking liquid, for example, the shape of the tip The pulp is digested under the same size and the like to obtain a pulp having a kappa number of 18. Specifically, cooking is performed by adjusting the amount of cooking liquid added. As a result, the yield of pulp having a kappa number of 18 obtained can be increased by 3.5% or more with respect to the absolutely dry chip, and the active alkali addition rate per absolutely dry chip can be decreased by 2% or more with respect to the chip weight. Pulp cooking liquor that can be.
That is, according to the cooking liquid according to the present invention, when a chip selected from the scientific name: Fagus Crenata Blume is selected as a wood chip, the pulp yield is compared with the case where normal kraft pulp (KP) cooking is performed. A large effect that has never been achieved, that is, an improvement of 3.5% or more, and a large effect that a reduction in the amount of chemical solution used is 2% or more as an active alkali addition rate are achieved for the first time. In the first invention, the digester used when the pulp digester is defined in this way is preferably a rotatable digester rather than a stationary kettle.
When using the pulp cooking liquor of the first invention and actually digesting various chips used as raw materials for cooking, the effect of the pulp cooking liquor may increase or decrease depending on the type and properties of the chip. If the pulp cooking liquor of the present invention is used under the conditions of KP cooking being performed, the yield is always improved and the addition rate of the active alkali is necessarily reduced more than ever.
Like the white liquor, the pulp cooking liquid of the first invention contains sodium hydroxide and sodium sulfide, but preferably contains polysulfide ions. Here, the polysulfide ion is a general formula Sx 2-It is simply expressed as polysulfide. Sulfur polysulfide is sulfur with an oxidation number of 0 in polysulfide ions.x 2-This refers to the middle (x-1) sulfur. Na2S-type sulfur is sulfur of oxidation number -II in polysulfide ion (Sx 2-(Sulfur for one) and sulfide ion. Activated alkali (hereinafter also referred to as “AA” where appropriate) is NaOH + Na2S for Na2It is converted to O concentration.
The pulp cooking liquor of the first invention preferably contains polysulfide ions, and examples of the method for producing the pulp cooking liquor containing polysulfide ions include an air oxidation method and an electrolysis method. . As described in Japanese Patent Application Laid-Open Nos. 61-259754 and 53-92981, air oxidation is performed by contacting a liquid containing sodium sulfide such as white liquor with air in the presence of an activated carbon catalyst. And oxidizing sulfide ions to produce polysulfide ions. However, in this method, thiosulfate ions are inevitably produced as a by-product, and it is relatively difficult to increase the concentration of sulfur polysulfide constituting the polysulfide ions. For this reason, in this invention, although you may manufacture by an air oxidation method, Preferably an electrolysis method is used.
The pulp cooking liquor of the first invention preferably contains a sulfur polysulfide concentration of 6 g / L or more. By increasing the sulfur polysulfide concentration in this way, the stabilization of cellulose can be further promoted, and the pulp yield can be further improved. If the sulfur polysulfide concentration is less than 6 g / L, the effect of improving the pulp yield may be reduced. More preferably, it is 8 g / L or more.
The electrolysis method, which is one of the methods for producing a pulp cooking liquor containing polysulfide ions, is particularly preferable as a method for producing a cooking liquor containing a sulfur polysulfide concentration of 8 g / L or more. Examples of such electrolysis methods include electrolysis of PCT / JP97 / 01456, Japanese Patent Application No. 10-166374, Japanese Patent Application No. 11-51016, Japanese Patent Application No. 11-51033, etc. previously developed by the present inventors. The law can be applied. According to the electrolysis method, if the reaction rate is increased to produce a high concentration of sulfur polysulfide as in the air oxidation method, the selectivity is reduced and a large amount of thiosulfate ions that are ineffective for cooking are not generated. , High concentration sulfur polysulfide and Na with high selectivity compared to conventional methods2A cooking liquid containing S-type sulfur can be produced.
In these electrolysis methods, for example, a solution containing sulfide ions, such as a white liquor or a green liquor, in an anode chamber of an electrolytic cell having an anode chamber having an anode, a cathode chamber having a cathode, and a diaphragm partitioning the two chambers. The cooking liquor containing polysulfide ions is obtained by introducing and electrolytically oxidizing. As the anode, it is necessary to have alkali resistance and oxidation resistance. For example, a non-metal is a carbon material, a metal is a base metal such as nickel, cobalt, titanium, or an alloy or oxide thereof, or platinum, gold, rhodium, or the like. Noble metals, their alloys and oxides can be used. The anode structure is preferably a porous structure having a physically three-dimensional network structure.
As the cathode, an alkali-resistant material is preferable, and nickel, Raney nickel, nickel sulfide, steel, stainless steel, or the like can be used. The shape is a flat plate or mesh shape, and one or a plurality are used in a multilayer configuration. A three-dimensional electrode in which linear electrodes are combined can also be used.
A cation exchange membrane is preferably used as the membrane separating the anode chamber and the cathode chamber. The cation exchange membrane guides cations from the anode chamber to the cathode chamber, but prevents the movement of sulfide ions and polysulfide ions. As the cation exchange membrane, a polymer membrane in which a cation exchange group such as a sulfonic acid group or a carboxylic acid group is introduced into a hydrocarbon or fluorine polymer is preferable. If there is no problem in terms of alkali resistance, a bipolar membrane, an anion exchange membrane, etc. can be used. In the anode chamber of such an electrolytic cell, a part of sulfide ions of white liquor or green liquor is oxidized to generate polysulfide ions, which are subjected to a cooking process.
In the pulp cooking liquor of the first invention, when polysulfide ions are contained, Na2S-type sulfur concentration is Na2It is preferable that 9 g / L or more remain in terms of O. If this concentration is less than 9 g / L, polysulfide ions become unstable, and the kappa number of pulp obtained by cooking may increase or the pulp yield may decrease.
The cooking solution of the first invention preferably contains a quinone compound. Specific examples of the quinone compound include alkyl anthraquinones such as 9,10-anthraquinone, 2-methyl-9,10-anthraquinone, 2-ethyl-9,10-anthraquinone, 1, 4, 4a, 9a-tetrahydro- 9,10-anthraquinone, 1,4-dihydro-9,10-anthraquinone, 2- (9,10-anthraquinoyl) -1-ethanesulfonic acid, 9,10-anthraquinone-2-sulfonic acid, amino-9 Quinone compounds such as 1,10-anthraquinone, and their reduced forms (dihydro or dihydro sodium salts).
By adding these quinone compounds to the cooking liquor before or just before cooking, it becomes a preferred cooking liquor as the pulp cooking liquor of the first invention, but the state of addition is hydroquinone that is oxidized or reduced. Either body or either. Moreover, the state after addition may be either. For example, 1,4,4a, 9a-tetrahydro-9,10-anthraquinone is 1,4-dihydro-9,10-dihydroxyanthracene disodium salt in alkaline cooking liquor.
The quinone compound preferably contained in the pulp cooking liquor of the first invention is preferably present in the cooking liquor so as to be 0.01 to 1.5% by weight per completely dry chip. More preferably, it is 0.02 to 0.06% by weight. If the amount of the quinone compound is less than 0.01% by weight based on the absolutely dry chip, the amount of the quinone compound is too small, and the kappa number and AA use amount of the pulp after cooking are not reduced. The rate relationship is not improved. In addition, even when the amount of quinone compound exceeds 1.5% by weight, no further reduction in the kappa value of pulp after cooking and the amount of AA used, and no improvement in the relationship between the kappa number, the pulp yield and the amount of AA used is observed. .
The pulp cooking liquor of the second invention is a white liquor or a green liquor containing at least polysulfide ions, the concentration of sulfur polysulfide constituting the polysulfide ions is 6 g / L or more, and 0.01 per dry chip. Contains ˜1.5 wt% quinone compound. The method for producing polysulfide ions contained in this cooking liquor may be produced by the air oxidation method as in the case of the cooking liquor of the first invention, but the concentration of sulfur polysulfide constituting the polysulfide ions is low. A cooking solution of 6 g / L or more is preferably produced by an electrolytic method. The electrolysis method can be carried out as described above. By increasing the sulfur polysulfide concentration, the stabilization of cellulose can be further promoted, and the pulp yield can be further improved. If the sulfur polysulfide concentration is less than 6 g / L, the effect of improving the pulp yield may be reduced. More preferably, it is 8 g / L or more.
In the pulp cooking liquor of the second invention, the quinone compound is present in an amount of 0.01 to 1.5% by weight based on the absolutely dry chip. More preferably, it is 0.02 to 0.06% by weight. If the amount of the quinone compound is less than 0.01% by weight based on the absolutely dry chip, the amount of the quinone compound is too small, and the kappa number and AA use amount of the pulp after cooking are not reduced. The rate relationship is not improved. In addition, even when the quinone compound is present in an amount exceeding 1.5% by weight, no further reduction in the pulp kappa number after cooking or AA use amount, and no improvement in the relationship between the kappa number, pulp yield and AA use amount is observed. . Specific examples and forms of the quinone compound are the same as in the case of the first invention.
In the pulp cooking liquor of the second invention, Na is the same as in the first invention.2S-type sulfur concentration is Na2It is preferable that 9 g / L or more remain in terms of O. If this concentration is less than 9 g / L, polysulfide ions become unstable, and the kappa number of pulp obtained by cooking may increase or the pulp yield may decrease.
In the first and second inventions, the addition timing of the quinone compound is effective for either the batch addition method before cooking or during cooking, or the method of adding in divided steps. However, it is preferable to add so that the cooking liquid containing the quinone compound can sufficiently penetrate into the chip. It is preferable that the liquid ratio at the time of cooking using the batch type digester using the cooking liquid of the present invention is 2.0 to 5.0 L / kg per absolutely dry chip. More preferably, it is 2.5-4.0L / kg. If the liquid ratio is less than 2.0 L / kg, there is a possibility that the cooking effect may be reduced due to insufficient penetration of the cooking liquid into the chip, which is not preferable. If the liquid ratio exceeds 5.0 L / kg, the effect of reducing the amount of chemical used is reduced, which is not preferable.
When cooking using a continuous digester, the liquid ratio is preferably 1.5 to 5.0 L / kg per absolutely dry chip. More preferably, it is 2.0-3.5 L / kg. A liquid ratio of less than 1.5 L / kg is not preferable because a gas phase portion is generated in the infiltration stage and the cooking effect may be reduced. When the liquid ratio exceeds 5.0 L / kg, the effect of reducing the amount of chemical used is reduced, which is not preferable. In particular, when softwood chips are used as the lignocellulose material, 1.5 to 3.5 L / kg is more preferable, and when hardwood chips are used, 2.5 to 5.0 L / kg is more preferable. If the liquid ratio is less than 1.5 L / kg, the cooking effect due to the fact that the alkaline cooking liquid does not sufficiently penetrate into the chip may be reduced, which is not preferable. Here, the liquid ratio refers to the amount of liquid per unit dry weight in the case of a batch type digester, but in the case of a continuous digester, the weight of inflow of the dry tip into the kettle per unit time and the kettle The ratio of the volumetric inflow of liquid into
The composition of white liquor usually used in pulp cooking usually contains 2 to 6 mol / L as alkali metal ions in the case of white liquor currently used in kraft pulp cooking, of which 90% or more Is a sodium ion and the remainder is almost potassium ion. The anion mainly comprises hydroxide ions, sulfide ions, carbonate ions, and the sulfide ion concentration is usually 0.5 to 0.8 mol / L. In addition, sulfate ions, thiosulfate ions, chloride ions, Contains sulfite ions. Furthermore, trace components such as calcium, silicon, aluminum, phosphorus, magnesium, copper, manganese and iron are included. The composition of the green liquor is basically the same as that of the white liquor. However, white liquor contains sodium sulfide and sodium hydroxide as main components, while green liquor contains sodium sulfide and sodium carbonate as main components.
According to the pulp cooking liquor of the present invention, a good cooking effect can be obtained with any kind of softwood or hardwood which is a lignocellulosic material. For example, examples of coniferous trees include Cryptomeria (Sugi), Picea (Ezo pine, spruce, Spruce, Sitka spruce, etc.), Pinus (Radiata pine, Japanese red pine, Japanese black pine, etc.), Thujia (Basugii, Nezuko, etc.), Tsuga (Tsuga, Tsuga, etc.) Examples of broad-leaved trees include Eucalyptus (eucalyptus), Fagus (beech), Quercus (nara, oak, etc.), Acacia (acacia), and the like.
Example
EXAMPLES Hereinafter, although this invention is demonstrated in more detail based on an Example, it cannot be overemphasized that this invention is not limited to these Examples. The test method is as follows.
《Test method》
As the pulp yield of the obtained unbleached pulp, the yield of the carefully selected pulp from which the cocoons not made into single fibers were removed was measured. The kappa number of unbleached pulp was determined according to TAPPI test method T236hm-85. Sodium thiosulfate, Na in alkaline cooking liquor2Quantification of S-type sulfur and sulfur polysulfide concentration in terms of sulfur was performed based on the method described in JP-A-7-92148.
<Comparative example 1>
Using a digester that can rotate in an oil bath, it passes through a 9/8 inch round hole sieve and passes through a 3/16 inch diameter round hole sieve out of chips around 30th grade selected from the scientific name: Fagus Crenata Blume. Chips, sodium hydroxide 70 g / L, sodium sulfide 30 g / L, sodium carbonate 15 g / L (both Na2O white model white liquor was prepared, and the active alkali addition rate was 14, 16, 18% by weight (vs. dry chip; Na2(O conversion), and the cooking solution and water were added so that the liquid ratio was 3.0 kg / L with the chip bringing moisture with respect to the absolute dry pulp weight. The temperature was raised from room temperature to 160 ° C. in 60 minutes and maintained at 160 ° C. for 41 minutes. The kappa number and pulp yield after cooking are as follows.
Figure 0004704638
From these data, the pulp yield at a copper number of 18 was 50.3%, and the AA addition rate was 17.0%.
<Comparative example 2>
Using the same chip as in Comparative Example 1, assuming that the cooking solution is a polysulfide solution obtained by oxidizing the model white liquor of the composition of Comparative Example 1 with an activated carbon catalyst, assuming a reaction rate of 60% and a selectivity of 63%. Sodium hydroxide 70g / L, Na2S-state sulfur 12.0 g / L, sodium carbonate 15 g / L and sodium thiosulfate 3.3 g / L (all of which are Na2O converted), and a model polysulfide cooking liquor of 5.9 g / L (sulfur converted) of sulfur polysulfide was prepared. The active alkali addition rate converted to white liquor before oxidation is 15% by weight, 17% by weight, 19% by weight (against dry chips; Na2In the same manner as in Comparative Example 1, the cooking liquor and water were added so that the water ratio was 3.0 kg / L in combination with the moisture brought into the chip with respect to the weight of the absolutely dry pulp. Cooking was performed under the same temperature conditions as in Comparative Example 1. The kappa number and pulp yield after cooking are as follows.
Figure 0004704638
From these data, the pulp yield at a copper number of 18 was 51.0%, and the AA addition rate was 17.9%.
<Comparative Example 3>
A chip similar to that in Comparative Example 1 was used, and the cooking liquor was produced in an electrolytic cell having the following configuration under the following conditions.
Nickel plate for anode assembly, nickel foam for anode (100 mm × 20 mm × 4 mm, average pore diameter of mesh 0.51 mm, anode surface area per anode chamber volume: 5600 m2/ M3, Surface area relative to diaphragm area: 28m2/ M3), A two-chamber electrolytic cell comprising an iron expansion metal as a cathode and a fluororesin cation exchange membrane as a diaphragm was assembled. The anode chamber has a height of 100 mm, a width of 20 mm, and a thickness of 4 mm. The cathode chamber has a height of 100 mm, a width of 20 mm, and a thickness of 5 mm, and the effective area of the diaphragm is 20 cm.2Met. Using the white liquor used in Comparative Example 1, anolyte linear velocity: 4 cm / sec, current density: 6 kA / m2The electrolysis temperature was 90 ° C., and the polysulfide cooking solution having the following composition was obtained at a sodium sulfide reaction rate of 55% and a selectivity of 95%.
Sodium hydroxide: 70 g / L (Na2O conversion)
Na2S-state sulfur: 13.5 g / L (Na2O conversion)
Sodium carbonate: 15 g / L (Na2O conversion)
Sodium thiosulfate: 0.8 g / L (Na2O conversion)
Sulfur polysulfide: 8.1 g / L (Sulfur conversion)
The active alkali addition rate is 15% by weight, 17% by weight, 19% by weight (vs dry chips; Na2The cooking liquor is added at a ratio of O), and, as in Comparative Example 1, the cooking liquor and water are added so that the liquid ratio is 3.0 kg / L with the chips brought in to the dry pulp weight. It was. Cooking was performed under the same temperature conditions as in Comparative Example 1. The kappa number and pulp yield after cooking are as follows.
Figure 0004704638
From these data, the pulp yield at a copper number of 18 was 52.3%, and the AA addition rate was 16.6%.
<Comparative example 4>
Using the same chip as in Comparative Example 1, the cooking liquid was produced in the same manner as in Comparative Example 3, and a polysulfide cooking liquid having the following composition was obtained at a reaction rate of 68% and a selectivity of 95%.
Sodium hydroxide: 70 g / L (Na2O conversion)
Na2S-state sulfur: 9.6 g / L (Na2O conversion)
Sodium carbonate: 15 g / L (Na2O conversion)
Sodium thiosulfate: 1.0 g / L (Na2O conversion)
Sulfur polysulfide: 10.0 g / L (Sulfur conversion)
The active alkali addition rate is 15% by weight, 17% by weight, 19% by weight (against dry chips; Na2The cooking liquor was added at a ratio of O), and the cooking liquid and water were added so that the liquid ratio was 3.0 kg / L in the same manner as in Comparative Example 1 by bringing chips to the dry-dry pulp weight. . Cooking was performed under the same temperature conditions as in Comparative Example 1. The kappa number and pulp yield after cooking are as follows.
Figure 0004704638
From these data, the pulp yield at a copper number of 18 was 52.9%, and the AA addition rate was 16.2%.
<Comparative Example 5>
The same as in Comparative Example 2 except that the cooking solution of Comparative Example 2 was added with 0.05% by weight (in terms of anthraquinone) of 1,4-dihydro-9,10-dihydroxyanthracene disodium salt per anomalous chip. The experiment was conducted. The kappa number and pulp yield after cooking are as follows.
Figure 0004704638
From these data, the pulp yield at a copper number of 18 was 53.4%, and the AA addition rate was 15.4%.
Example 1
1,4-dihydro-9,10-dihydroxyanthracene disodium salt was added to the cooking solution of Comparative Example 3 at 0.05% by weight (converted to anthraquinone) per completely dry chip, and the active alkali addition rate was 13% by weight, 15% by weight. %, 17% by weight (anti-dry chip; Na2The same experiment as Comparative Example 3 was performed except that the cooking solution was added at a ratio of O). The kappa number and pulp yield after cooking are as follows.
Figure 0004704638
From these data, the pulp yield at a copper number of 18 was 54.3%, and the AA addition rate was 14.6%.
Example 2
1,4-Dihydro-9,10-dihydroxyanthracene disodium salt was added to the cooking solution of Comparative Example 4 at 0.05% by weight (in terms of anthraquinone) per completely dry chip, and the active alkali addition rate was 13% by weight, 15% by weight. %, 17% by weight (anti-dry chip; Na2The same experiment as Comparative Example 4 was performed except that the cooking solution was added at a ratio of O). The kappa number and pulp yield after cooking are as follows.
Figure 0004704638
From these data, the pulp yield at a copper number of 18 was 54.9%, and the AA addition rate was 13.9%.
As mentioned above, when the cooking liquor used in Examples 1 and 2 is compared with the pulp having the same kappa number as compared with the cooking liquor used in Comparative Examples 1 to 5, the yield is high and the active alkali addition rate is also high. Low. Moreover, compared with the comparative example 1 which cooked on the standard chip | tip and the standard cooking conditions, when Examples 1 and 2 compared with the pulp of a copper number of 18, the yield is 3.5% or more with respect to an absolutely dry chip | tip. The active alkali addition rate has increased by 2% or more with respect to the absolutely dry chip. In addition, the comparative example 1 is positioned as one of the standard cooking conditions for prescribing the cooking liquid of the present invention.
The comparative examples and examples described below are examples applied to different types of wood using the same cooking liquid under the same cooking conditions as those used in comparative examples 1 to 5 and examples 1 and 2.
<Comparative Example 6>
Using a eucalyptus (scientific name: Eucalyptus Species) from Chile, the same amount of cooking liquor as in Comparative Example 1 was added to the following active alkali addition rate (anti-dry chip; Na2An experiment similar to that of Comparative Example 1 was performed except that the addition was made in terms of O). The kappa number and pulp yield after cooking are as follows.
Figure 0004704638
From these data, the pulp yield at a copper number of 18 was 54.6%, and the AA addition rate was 14.8%.
<Comparative Example 7>
The same chili eucalyptus chips as in Comparative Example 6 were used as the wood chips, and the same cooking liquor as in Comparative Example 2 was added with the following active alkali addition rate (against dry chips; Na2An experiment similar to that of Comparative Example 2 was performed except that the addition was made in terms of O). The kappa number and pulp yield after cooking are as follows.
Figure 0004704638
From these data, the pulp yield at a copper number of 18 was 56.0%, and the AA addition rate was 15.2%.
<Comparative Example 8>
The same experiment as in Comparative Example 3 was performed using the same wood chips as in Comparative Example 6 and the same cooking liquor as in Comparative Example 3. The kappa number and pulp yield after cooking are as follows.
Figure 0004704638
From these data, the pulp yield at a copper number of 18 was 56.8%, and the AA addition rate was 14.3%.
<Comparative Example 9>
The same experiment as in Comparative Example 4 was performed using the same wood chips as in Comparative Example 6 and the same cooking liquor as in Comparative Example 4. The kappa number and pulp yield after cooking are as follows.
Figure 0004704638
From these data, the pulp yield at a copper number of 18 was 57.2%, and the AA addition rate was 14.0%.
<Comparative Example 10>
The same experiment as in Comparative Example 5 was performed using the same wood chips as in Comparative Example 6 and using the same cooking liquor as in Comparative Example 5. The kappa number and pulp yield after cooking are as follows.
Figure 0004704638
From these data, the pulp yield at a copper number of 18 was 58.2%, and the AA addition rate was 12.7%.
Example 3
The same experiment as in Example 1 was performed using the same wood chips as in Comparative Example 6 and the same cooking liquor as in Example 1. The kappa number and pulp yield after cooking are as follows.
Figure 0004704638
From these data, the pulp yield at a copper number of 18 was 58.3%, and the AA addition rate was 12.3%.
Example 4
The same experiment as in Example 2 was performed using the same wood chips as in Comparative Example 6 and the same cooking liquor as in Example 2. The kappa number and pulp yield after cooking are as follows.
Figure 0004704638
From these data, the pulp yield at a copper number of 18 was 58.6%, and the AA addition rate was 12.3%.
From the examples of Chilean eucalyptus chips shown in Comparative Examples 6 to 10 and Examples 3 and 4 above, different types of cooking liquors according to the present invention defined under the standard conditions of Comparative Examples 1 to 5 and Examples 1 and 2 The effect was confirmed even when applied to wood chips. When compared with pulps having the same kappa number, the cooking liquors used in Examples 3 and 4 have higher pulp yields and lower active alkali addition rates than the cooking liquors used in Comparative Examples 6 to 10.
<Comparative Example 11>
Using Indonesian acacia (scientific name: Acacia mangium), the same amount of cooking liquor as in Comparative Example 1 was added to the following active alkali addition rate (anti-dry chip; Na2An experiment similar to that of Comparative Example 1 was performed except that the addition was made in terms of O). The kappa number and pulp yield after cooking are as follows.
Figure 0004704638
From these data, the pulp yield at a copper number of 18 was 49.1%, and the AA addition rate was 22.0%.
<Comparative example 12>
The same experiment as in Comparative Example 2 was performed using the same wood chips as in Comparative Example 11 and the same cooking liquor as in Comparative Example 2. The kappa number and pulp yield after cooking are as follows.
Figure 0004704638
From these data, the pulp yield at a copper number of 18 was 51.8%, and the AA addition rate was 21.5%.
<Comparative Example 13>
An experiment similar to Comparative Example 3 was performed using the same wood chip as Comparative Example 11 and the same cooking liquor as Comparative Example 3. The kappa number and pulp yield after cooking are as follows.
Figure 0004704638
From these data, the pulp yield at a copper number of 18 was 53.4%, and the AA addition rate was 19.5%.
<Comparative example 14>
The same experiment as in Comparative Example 4 was performed using the same wood chips as in Comparative Example 11 and the same cooking liquor as in Comparative Example 4. The kappa number and pulp yield after cooking are as follows.
Figure 0004704638
From these data, the pulp yield at a copper number of 18 was 54.1%, and the AA addition rate was 19.0%.
<Comparative Example 15>
The same experiment as Comparative Example 5 was performed using the same wood chip as Comparative Example 11 and the same cooking liquor as Comparative Example 5. The kappa number and pulp yield after cooking are as follows.
Figure 0004704638
From these data, the pulp yield at a copper number of 18 was 53.9%, and the AA addition rate was 18.7%.
Example 5
The same experiment as in Example 1 was performed using the same wood chips as in Comparative Example 11 and the same cooking liquor as in Example 1. The kappa number and pulp yield after cooking are as follows.
Figure 0004704638
From these data, the pulp yield at a copper number of 18 was 55.5%, and the AA addition rate was 17.4%.
Example 6
The same experiment as in Example 2 was performed using the same wood chip as in Comparative Example 11 and the same cooking liquor as in Example 2. The kappa number and pulp yield after cooking are as follows.
Figure 0004704638
21.5 13.1 53.8
From these data, the pulp yield at a copper number of 18 was 55.0%, and the AA addition rate was 17.6%.
From the examples of the Indonesian acacia chips shown in Comparative Examples 11 to 15 and Examples 5 and 6, the cooking liquor according to the present invention defined by the standard conditions of Comparative Examples 1 to 5 and Examples 1 and 2 is a different kind. The effect was confirmed even when applied to wood chips. When compared with pulps having the same kappa number, the cooking liquors used in Examples 5 and 6 had higher pulp yields and lower active alkali addition rates than the cooking liquors used in Comparative Examples 11-15.
Industrial applicability
By using the pulp cooking liquor of the present invention and the pulp production method using the present pulp cooking liquor, the pulp yield can be further improved, and the relationship between the kappa number and the pulp yield can be further improved. That is, according to the present invention, it is excellent in reducing the kappa number at the same active alkali addition rate, and improving the pulp yield at the same kappa number, and at the same time, the effect of reducing the amount of chemical used, the load on the recovery boiler A reduction effect is achieved. Moreover, these effects can be achieved without destroying the chemical recovery balance in the pulp mill.

Claims (3)

カッパー価が10〜45のパルプを生産する蒸解法のうち、絶乾チップに対する液比が1.5〜5.0L/kgであり、最高温度が140〜180℃であり、チップが最高温度に達するまでの時間が5分以上である蒸解法に適用されるパルプ蒸解液であって、当該蒸解液が多硫化物イオンを含む白液であって、多硫化物イオンを構成する多硫化硫黄濃度が8g/L以上であり、かつ、Na2S態硫黄濃度がNa2O換算で9g/L以上含有し、さらに、キノン化合物を絶乾チップ当り0.01〜1.5重量%含有し、以下の標準蒸解液および液比:3.0L/kg(絶乾チップ当り)で所定の条件下で蒸解したとき、パルプのカッパー価18の時のパルプ収率が50〜51%となるパルプが得られる木材チップ(学名:Fagus Crenata Blumeから選ばれるチップ)を標準チップとして、この標準チップを用い、同一液比で同一昇温プロファイルにおいて昇温して、カッパー価が18のパルプを得るとき、パルプ収率を3.5%以上上昇させ、対チップ活性アルカリ添加率を2%以上低下させる蒸解液であることを特徴とするパルプ蒸解液。
標準蒸解液組成:NaOH 70g/L(Na2O換算)
Na2S 30g/L(Na2O換算)
Na2CO3 15g/L(Na2O換算)
Among the cooking methods for producing pulp having a copper number of 10 to 45, the liquid ratio to the absolutely dry chip is 1.5 to 5.0 L / kg, the maximum temperature is 140 to 180 ° C., and the chip is at the maximum temperature. a pulp cooking liquor time until is applied to the digestion process is at least 5 minutes is reached, the cooking liquor polysulfide ions a including white liquor, polysulfide sulfur which constitutes a polysulfide ions Concentration is 8 g / L or more, Na 2 S state sulfur concentration is 9 g / L or more in terms of Na 2 O, and quinone compound is contained in an amount of 0.01 to 1.5% by weight per absolutely dry chip. Pulp having a pulp yield of 50 to 51% when the pulp has a copper number of 18 when digested under predetermined conditions at the following standard cooking liquor and liquid ratio: 3.0 L / kg (per dry dry chip) Wood chips (scientific name: Fagus Crenata) When a chip with a kappa number of 18 is obtained by raising the temperature in the same temperature rise profile with the same liquid ratio by using this standard chip as a standard chip), the pulp yield is 3.5% or more. A pulp cooking liquor characterized by being a cooking liquor that raises and reduces the rate of addition of chip active alkali by 2% or more.
Standard cooking liquor composition: NaOH 70 g / L (Na 2 O conversion)
Na 2 S 30 g / L (Na 2 O conversion)
Na 2 CO 3 15 g / L (Na 2 O conversion)
前記パルプ蒸解液中の多硫化物イオンが電解酸化によって製造される多硫化物イオンである請求項1に記載のパルプ蒸解液。The pulp cooking liquor according to claim 1, wherein the polysulfide ions in the pulp cooking liquor are polysulfide ions produced by electrolytic oxidation. 請求項1又は2に記載のパルプ蒸解液を用いることを特徴とするパルプ製造方法。A pulp manufacturing method using the pulp cooking liquor according to claim 1 or 2 .
JP2001503731A 1999-06-15 2000-06-13 Pulp cooking liquor and pulp manufacturing method Expired - Fee Related JP4704638B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001503731A JP4704638B2 (en) 1999-06-15 2000-06-13 Pulp cooking liquor and pulp manufacturing method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP1999169002 1999-06-15
JP16900299 1999-06-15
JP2001503731A JP4704638B2 (en) 1999-06-15 2000-06-13 Pulp cooking liquor and pulp manufacturing method
PCT/JP2000/003834 WO2000077294A1 (en) 1999-06-15 2000-06-13 Digesting liquor for pulp and method for producing pulp

Publications (1)

Publication Number Publication Date
JP4704638B2 true JP4704638B2 (en) 2011-06-15

Family

ID=15878537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001503731A Expired - Fee Related JP4704638B2 (en) 1999-06-15 2000-06-13 Pulp cooking liquor and pulp manufacturing method

Country Status (3)

Country Link
JP (1) JP4704638B2 (en)
AU (1) AU5109700A (en)
WO (1) WO2000077294A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000077295A1 (en) 1999-06-15 2000-12-21 Kawasaki Kasei Chemicals Ltd. Digestion method for pulp
US9145642B2 (en) * 2009-05-26 2015-09-29 Nippon Paper Industries Co., Ltd. Cooking process of lignocellulose material

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5237803A (en) * 1975-09-05 1977-03-24 Canadian Ind Process for separating lignin from lignocellulos material
JPS5729690A (en) * 1980-07-31 1982-02-17 Sanyo Kokusaku Pulp Co Pulping of lignocellulose material
JPH08218290A (en) * 1995-02-09 1996-08-27 Mitsubishi Paper Mills Ltd Production of non-chlorine-bleaching pulp
JPH09268488A (en) * 1996-03-27 1997-10-14 Mitsubishi Paper Mills Ltd Production of kraft pulp
WO1997041295A1 (en) * 1996-04-26 1997-11-06 Asahi Glass Company Ltd. Method for producing polysulfides by electrolytic oxidation
JPH10280290A (en) * 1997-03-31 1998-10-20 Mitsubishi Paper Mills Ltd Treatment of smelt of black liquor and production of kraft pulp
JPH11100783A (en) * 1997-09-26 1999-04-13 Oji Paper Co Ltd Pulp formation from lignocellulose material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5237803A (en) * 1975-09-05 1977-03-24 Canadian Ind Process for separating lignin from lignocellulos material
JPS5729690A (en) * 1980-07-31 1982-02-17 Sanyo Kokusaku Pulp Co Pulping of lignocellulose material
JPH08218290A (en) * 1995-02-09 1996-08-27 Mitsubishi Paper Mills Ltd Production of non-chlorine-bleaching pulp
JPH09268488A (en) * 1996-03-27 1997-10-14 Mitsubishi Paper Mills Ltd Production of kraft pulp
WO1997041295A1 (en) * 1996-04-26 1997-11-06 Asahi Glass Company Ltd. Method for producing polysulfides by electrolytic oxidation
JPH10280290A (en) * 1997-03-31 1998-10-20 Mitsubishi Paper Mills Ltd Treatment of smelt of black liquor and production of kraft pulp
JPH11100783A (en) * 1997-09-26 1999-04-13 Oji Paper Co Ltd Pulp formation from lignocellulose material

Also Published As

Publication number Publication date
AU5109700A (en) 2001-01-02
WO2000077294A1 (en) 2000-12-21

Similar Documents

Publication Publication Date Title
JP4629164B2 (en) Cooking method of lignocellulosic material
JP4499280B2 (en) Bleaching chemical pulp with peracids.
JP4704639B2 (en) Pulp cooking method
JP4704638B2 (en) Pulp cooking liquor and pulp manufacturing method
JP4887900B2 (en) Method for producing bleached pulp
JPH11343106A (en) Production of polysulfide by electrolytic oxidation
RU2439232C2 (en) Method of bleaching paper pulp by final ozone treatment at high temperature
JP5515409B2 (en) Method for producing ECF bleached pulp
JP2010285697A (en) Method for producing tcf bleached pulp
USRE32943E (en) Process for cooking lignocellulosic material in the presence of hydroxyanthracenes and derivatives thereof
JP4298059B2 (en) Cooking method of lignocellulosic material
JP5526604B2 (en) ECF bleaching method
JP5471050B2 (en) TCF bleaching method
JP4454822B2 (en) Pulp manufacturing method
JP2000336589A (en) Method for recovering chemical agent in process for producing kraft method pulp
JP4298058B2 (en) Cooking method of lignocellulosic material
JPH0215669B2 (en)
JP3968973B2 (en) Production method of base paper for photographic paper
US4596630A (en) Process for the electrochemical reductive bleaching of lignocellulosic pulp
JPS63126984A (en) Delignification of lignocellulose material
USRE32825E (en) Process for the electrochemical reductive bleaching of lignocellulosic pulp
JP2021021165A (en) Method for producing bleached pulp
McGovern et al. Some experiments in sodium sulfite pulping
JPH07216771A (en) Digestion of lignocellulose material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110310

R150 Certificate of patent or registration of utility model

Ref document number: 4704638

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees