JP4702515B2 - Tetragonal barium titanate fine particle powder and production method thereof - Google Patents

Tetragonal barium titanate fine particle powder and production method thereof Download PDF

Info

Publication number
JP4702515B2
JP4702515B2 JP2004103188A JP2004103188A JP4702515B2 JP 4702515 B2 JP4702515 B2 JP 4702515B2 JP 2004103188 A JP2004103188 A JP 2004103188A JP 2004103188 A JP2004103188 A JP 2004103188A JP 4702515 B2 JP4702515 B2 JP 4702515B2
Authority
JP
Japan
Prior art keywords
barium titanate
particle powder
particles
tetragonal
barium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004103188A
Other languages
Japanese (ja)
Other versions
JP2005289668A (en
Inventor
晴己 黒川
竜次 藤田
祐司 三島
精二 岡崎
英知 宇根本
弘一郎 神田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP2004103188A priority Critical patent/JP4702515B2/en
Publication of JP2005289668A publication Critical patent/JP2005289668A/en
Application granted granted Critical
Publication of JP4702515B2 publication Critical patent/JP4702515B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

本発明は、凝集が抑制され、分散性に優れるとともに結晶性が高いチタン酸バリウム微粒子粉末を得ることを目的とするとともに、経済的、且つ工業的に有利なチタン酸バリウム微粒子粉末の製造方法に関するものである。   The present invention relates to a method for producing a barium titanate fine particle powder which is suppressed in aggregation, has excellent dispersibility and has high crystallinity, and is economically and industrially advantageous. Is.

近年、各種電子機器の小型化、高性能化及び軽量化に伴い、電子機器部品、例えば積層コンデンサなどの誘電材料に用いられるチタン酸バリウム粒子粉末についても特性改善が要求されている。   In recent years, with the reduction in size, performance, and weight of various electronic devices, there is a demand for improvement in characteristics of barium titanate particles used in dielectric materials such as electronic device parts, such as multilayer capacitors.

周知の通り、積層コンデンサには高い誘電率を有するペロブスカイト化合物のチタン酸バリウム粒子粉末が多用されており、積層コンデンサに用いられるチタン酸バリウム粒子粉末は、凝集がなく分散性に優れ、結晶性が高いことが強く要求されている。   As is well known, multilayer capacitors use a perovskite compound barium titanate particle powder having a high dielectric constant, and the barium titanate particle powder used in the multilayer capacitor has no aggregation and excellent dispersibility and crystallinity. High is strongly demanded.

殊に、正方晶のチタン酸バリウムは、強誘電体として用いられ、セラミックコンデンサ、ポジティブサーミスター、高周波振動子などの電子部品に用いられる   In particular, tetragonal barium titanate is used as a ferroelectric material and used in electronic components such as ceramic capacitors, positive thermistors, and high-frequency vibrators.

例えば、温度依存性の少ない積層コンデンサを作製するとき、チタン酸バリウム原料粉体の粒成長を抑制する場合がある。その際、高容量コンデンサを得るために、原料粉体の状態で正方晶である必要がある。   For example, when producing a multilayer capacitor with little temperature dependence, grain growth of the barium titanate raw material powder may be suppressed. At that time, in order to obtain a high-capacitance capacitor, it is necessary that the raw material powder is tetragonal.

また、分散性に優れた粒子粉末とするためには、球状、殊に、可及的に真球状であることが望まれる。   Further, in order to obtain a particle powder having excellent dispersibility, it is desired to be spherical, particularly as spherical as possible.

チタン酸バリウム粒子粉末の製造法としては、チタン化合物とバリウム化合物を混合して1000℃以上の高温で焼成する固相反応及び溶液中でバリウムとチタンを反応させる湿式反応が知られている。   Known methods for producing barium titanate particles include a solid phase reaction in which a titanium compound and a barium compound are mixed and baked at a high temperature of 1000 ° C. or higher, and a wet reaction in which barium and titanium are reacted in a solution.

前記固相反応で得られるチタン酸バリウム粒子粉末は、平均粒子径が大きいので、焼成した粉末を粉砕して用いることから、粒度分布が悪く分散に適しているとは言い難いものであった。   Since the barium titanate particle powder obtained by the solid phase reaction has a large average particle size, it is difficult to say that the calcined powder is pulverized and has a poor particle size distribution and is suitable for dispersion.

一般に、正方晶のチタン酸バリウム粒子粉末を得るためには、「準安定な立方晶から安定な正方晶へ変わる温度は約800℃以上である」(BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, Vol.47(5), 1168−1171(1974)なる記載の通り、高温で加熱処理して結晶化させる必要があった。   In general, in order to obtain tetragonal barium titanate particle powder, “the temperature at which the metastable cubic crystal changes to the stable tetragonal crystal is about 800 ° C. or higher” (BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, Vol. 47). (5), 1168-1171 (1974), it was necessary to heat-treat at high temperature and to crystallize.

従来、チタン酸バリウム粒子粉末を固相反応によって製造する方法(特許文献1)、湿式反応によって製造する方法(特許文献2〜5)等の各方法が知られている。   Conventionally, various methods such as a method for producing barium titanate particle powder by a solid phase reaction (Patent Document 1) and a method for producing a powder by wet reaction (Patent Documents 2 to 5) are known.

特開2001−316114号公報JP 2001-316114 A 特開昭61−31345号公報JP 61-31345 A 特開平7−277710号公報Japanese Patent Laid-Open No. 7-277710 WO00/35811号公報WO00 / 35811 特開2002−211926号公報JP 2002-221926 A

前記諸特性を満たすチタン酸バリウムは現在最も要求されているところであるが、経済的且つ工業的な製造法では未だ得られていない。   Barium titanate that satisfies the above-mentioned properties is currently most demanded, but has not yet been obtained by an economical and industrial production method.

即ち、前出特許文献1には、混合された炭酸バリウムと酸化チタンを低酸素分圧で熱処理を行い、チタン酸バリウム粒子を得る方法が記載されているが、後出比較例に示す通り、高温熱処理品は粒子形状が多角形であり、粒子間焼結が存在するため、必ずしも高分散性とは言い難いものである。   That is, in the above-mentioned Patent Document 1, a method of obtaining a barium titanate particle by performing a heat treatment of mixed barium carbonate and titanium oxide at a low oxygen partial pressure is described. The high-temperature heat-treated product has a polygonal shape and has inter-particle sintering, so it is not necessarily highly dispersible.

また、前出特許文献2には、水熱反応でチタン酸バリウム粒子粉末を製造することが記載されているが、結晶性及び一次粒子の凝集状態については考慮されておらず、分散性に優れるとは言い難いものである。   In addition, in the above-mentioned Patent Document 2, it is described that barium titanate particle powder is produced by a hydrothermal reaction. However, the crystallinity and the aggregation state of primary particles are not taken into consideration, and the dispersibility is excellent. It is hard to say.

また、前出特許文献3には、一次粒子径と二次粒子径が同程度であるチタン酸バリウム粒子粉末が記載されているが、得られるチタン酸バリウム粒子粉末は立方晶であり、結晶性が高いとは言い難いものである。   Further, Patent Document 3 described above describes a barium titanate particle powder having the same primary particle size and secondary particle size, but the obtained barium titanate particle powder is cubic and crystalline. Is hard to say.

また、前出特許文献4には、ブルーカイト型酸化チタンとバリウムを含むアルカリ性溶液を加熱処理してチタン酸バリウム微粉末合成を生成しているが、得られる粉末は立方晶系であり、結晶性が高いとは言い難いものである。   In the above-mentioned Patent Document 4, an alkaline solution containing brookite-type titanium oxide and barium is heat-treated to produce a fine barium titanate powder synthesis, but the resulting powder is cubic and crystalline. It is hard to say that the nature is high.

また、前出特許文献5には、水熱反応で立方晶チタン酸バリウム粒子粉末を製造した後、仮焼して正方晶系チタン酸バリウム粒子粉末を得ることが記載されているが、結晶化させるために仮焼温度を高くする必要があり、粒子間の焼結が起こり分散性に優れるとは言い難いものである。   Further, in the above-mentioned Patent Document 5, it is described that cubic barium titanate particle powder is produced by hydrothermal reaction and then calcined to obtain tetragonal barium titanate particle powder. In order to achieve this, it is necessary to raise the calcining temperature, and it is difficult to say that sintering between particles occurs and the dispersibility is excellent.

そこで、本発明は、凝集がなく分散性に優れ、しかも誘電特性に優れている球状チタン酸バリウム微粒子粉末を経済的、且つ工業的に有利に製造することを技術的課題とする。   In view of the above, an object of the present invention is to economically and industrially produce spherical barium titanate fine particles having no aggregation, excellent dispersibility, and excellent dielectric properties.

前記技術的課題は、次の通りの本発明によって達成できる。   The technical problem can be achieved by the present invention as follows.

即ち、本発明は、一次粒子の平均一次粒子径が20〜150nmであって球形度が1.00〜1.18であり、平均一次粒子径と平均二次粒子径との比が0.7以上5未満であることを特徴とする正方晶系チタン酸バリウム微粒子粉末である。   That is, according to the present invention, the average primary particle diameter of the primary particles is 20 to 150 nm, the sphericity is 1.00 to 1.18, and the ratio of the average primary particle diameter to the average secondary particle diameter is 0.7. This is a tetragonal barium titanate fine particle powder characterized by being less than 5.

また、本発明は、バリウム塩水溶液にチタン化合物含有水溶液を添加し、pH調整及び加熱処理して、立方晶系のチタン酸バリウム粒子を生成させ、該立方晶系のチタン酸バリウム粒子を含有する反応溶液を1倍を超えて10倍以下に濃縮し、100〜250℃の温度範囲で水熱処理を行うことを特徴とする前記正方晶系チタン酸バリウム微粒子粉末の製造法である。   Further, the present invention adds a titanium compound-containing aqueous solution to a barium salt aqueous solution, adjusts pH and heat-treats to generate cubic barium titanate particles, and contains the cubic barium titanate particles. In the method for producing tetragonal barium titanate fine particles, the reaction solution is concentrated to more than 1 to 10 times and hydrothermally treated in a temperature range of 100 to 250 ° C.

また、本発明は、バリウム塩水溶液にチタン化合物含有水溶液を添加し、pH調整及び加熱処理して、立方晶系のチタン酸バリウム粒子を生成させ、該立方晶系のチタン酸バリウム粒子を含有する反応溶液を1倍を超えて10倍以下に濃縮し、100〜250℃の温度範囲で水熱処理を行った後、500〜900℃の温度範囲で仮焼することを特徴とする前記正方晶系チタン酸バリウム微粒子粉末の製造法である。   Further, the present invention adds a titanium compound-containing aqueous solution to a barium salt aqueous solution, adjusts pH and heat-treats to generate cubic barium titanate particles, and contains the cubic barium titanate particles. The tetragonal system characterized in that the reaction solution is concentrated to more than 1 to 10 times, hydrothermally treated in a temperature range of 100 to 250 ° C., and then calcined in a temperature range of 500 to 900 ° C. This is a method for producing fine barium titanate powder.

本発明に係る正方晶系チタン酸バリウム微粒子粉末は、球状であって、一次粒子径と二次粒子径が同程度であるので、容易に単分散することができるとともに、正方晶であることから誘電特性にも優れたものである。   Since the tetragonal barium titanate fine particle powder according to the present invention is spherical and has the same primary particle size and secondary particle size, it can be easily monodispersed and is tetragonal. It also has excellent dielectric properties.

また、本発明に係る正方晶系チタン酸バリウム微粒子粉末の製造法によれば、高濃度反応の水熱処理法で経済的且つ工業的に有利な製法であり、凝集が抑制され分散性に優れるとともに、高い結晶性を有するチタン酸バリウム粒子粉末を得ることができる。   In addition, according to the method for producing tetragonal barium titanate fine particles according to the present invention, it is an economically and industrially advantageous production method with a high concentration reaction hydrothermal treatment, and the aggregation is suppressed and the dispersibility is excellent. Thus, barium titanate particles having high crystallinity can be obtained.

本発明の構成を詳述すれば、次の通りである。   The configuration of the present invention will be described in detail as follows.

本発明に係る正方晶系チタン酸バリウム微粒子粉末の平均一次粒子径(r1)は20〜150nmである。20nm未満のチタン酸バリウム微粒子粉末は現製法で工業的に製造することが困難である。150nmを超えるチタン酸バリウム微粒子粉末の結晶性を高めるには、さらに高い水熱処理温度が必要となり、工業的とは言い難い。好ましくは25〜145nm、より好ましくは30〜140nmである。   The average primary particle diameter (r1) of the tetragonal barium titanate fine particle powder according to the present invention is 20 to 150 nm. It is difficult to produce barium titanate fine particle powder of less than 20 nm industrially by the present production method. In order to increase the crystallinity of the barium titanate fine particle powder exceeding 150 nm, a higher hydrothermal treatment temperature is required, which is not industrial. Preferably it is 25-145 nm, More preferably, it is 30-140 nm.

本発明に係る正方晶系チタン酸バリウム微粒子粉末の球形度(長軸径/短軸径)は1.00〜1.18である。球形度が1.18を超える場合には球状とは言い難く、分散性が低下する。好ましくは1.00〜1.15、より好ましくは1.00〜1.10である。   The sphericity (major axis diameter / minor axis diameter) of the tetragonal barium titanate fine particle powder according to the present invention is 1.00 to 1.18. When the sphericity exceeds 1.18, it cannot be said that it is spherical, and the dispersibility is lowered. Preferably it is 1.00-1.15, More preferably, it is 1.00-1.10.

本発明に係る正方晶系チタン酸バリウム微粒子粉末は結晶系が正方晶である。結晶系が立方晶の場合には、結晶性が不十分なために、チタン酸バリウム粒子粉末の電気的特性や物理的特性が低下する。   The tetragonal barium titanate fine particle powder according to the present invention has a tetragonal crystal system. When the crystal system is a cubic system, the crystallinity is insufficient, so that the electrical characteristics and physical characteristics of the barium titanate particle powder are deteriorated.

本発明に係る正方晶系チタン酸バリウム微粒子粉末の結晶性は、格子定数のa軸長(a)及びc軸長(c)を用いて格子定数比c/aで示した場合に、1.0020〜1.0100が好ましい。格子定数比c/aが1に近いほど結晶系が立方晶に近いことを示すものである。格子定数比c/aは1.0040〜1.0100であることがより好ましい。   The crystallinity of the tetragonal barium titanate fine particle powder according to the present invention is as follows when the lattice constant ratio c / a is expressed by using the lattice constant a-axis length (a) and c-axis length (c). 0020 to 1.0100 are preferred. The closer the lattice constant ratio c / a is to 1, the closer the crystal system is to cubic. The lattice constant ratio c / a is more preferably 1.040 to 1.0100.

本発明に係る正方晶系チタン酸バリウム微粒子粉末の平均二次粒子径(D50)は14〜750nmが好ましい。平均二次粒子径が14nm未満の正方晶系チタン酸バリウム微粒子粉末を工業的に得ることは困難である。750nmを越える場合には高分散とは言い難い。より好ましくは19〜300nmである。 The average secondary particle diameter (D 50 ) of the tetragonal barium titanate fine particles according to the present invention is preferably 14 to 750 nm. It is difficult to industrially obtain tetragonal barium titanate fine particles having an average secondary particle diameter of less than 14 nm. If it exceeds 750 nm, it is difficult to say high dispersion. More preferably, it is 19-300 nm.

本発明に係る正方晶系チタン酸バリウム微粒子の平均一次粒子径(r1)と平均二次粒子径(D50)との比(D50/r)は0.7〜5.0である。二次粒子は一次粒子の凝集体であることから、一次粒子径と二次粒子径との比の下限値は理論的には1.0であるが、測定上の誤差及び精度を考慮すると0.7程度である。また、平均一次粒子径と平均二次粒子径との比(D50/r)が5.0を超えると高分散とは言い難い。好ましくは0.9〜3.0、より好ましくは0.95〜2.0である。 The ratio (D 50 / r 1 ) of the average primary particle diameter (r1) and the average secondary particle diameter (D 50 ) of the tetragonal barium titanate fine particles according to the present invention is 0.7 to 5.0. Since the secondary particles are aggregates of primary particles, the lower limit of the ratio between the primary particle size and the secondary particle size is theoretically 1.0, but 0 in consideration of measurement errors and accuracy. .7 or so. Further, when the ratio of the average primary particle diameter to the average secondary particle diameter (D 50 / r 1 ) exceeds 5.0, it cannot be said that high dispersion is achieved. Preferably it is 0.9-3.0, More preferably, it is 0.95-2.0.

本発明に係る正方晶系チタン酸バリウム微粒子粉末のバリウムとチタンの組成比(Ba/Ti)は0.99〜1.01が好ましく、より好ましくは可及的に1.0に近いものであり、異相を含まないものである。Ba/Ti比が前記範囲外の場合には、目的とする高い誘電特性を有するチタン酸バリウム粒子粉末を得ることが困難となる。   The composition ratio (Ba / Ti) of barium and titanium of the tetragonal barium titanate fine particle powder according to the present invention is preferably 0.99 to 1.01, more preferably as close to 1.0 as possible. , Which does not include foreign phases. When the Ba / Ti ratio is out of the above range, it becomes difficult to obtain a target barium titanate particle powder having high dielectric properties.

本発明に係る正方晶系チタン酸バリウム微粒子粉末の比表面積は5〜70m/gが好ましい。5m/g未満の場合には、粒子粉末が粗大となり、粒子相互間で焼結が生じた粒子となっており、バインダを混合する場合に、分散性が損なわれやすい。比表面積値が70m/gを超える場合には、サイズ効果のため結晶性が低下し、立方晶となる。 The specific surface area of the tetragonal barium titanate fine particle powder according to the present invention is preferably 5 to 70 m 2 / g. In the case of less than 5 m 2 / g, the particle powder becomes coarse and particles are sintered between the particles, and the dispersibility is easily impaired when the binder is mixed. When the specific surface area value exceeds 70 m 2 / g, the crystallinity is lowered due to the size effect, resulting in a cubic crystal.

次に、本発明に係る正方晶系チタン酸バリウム微粒子粉末の製造法について述べる。   Next, a method for producing tetragonal barium titanate fine particles according to the present invention will be described.

本発明に係る正方晶系チタン酸バリウム微粒子粉末は、過剰バリウム塩溶液にチタン化合物含有溶液を添加混合してpH調整し、立方晶系のチタン酸バリウム粒子を生成させ、次いで、該チタン酸バリウム粒子を含むアルカリ性溶液を1倍超えて10倍以下に濃縮した後、100〜250℃の温度範囲で水熱処理を行い、余剰成分を水洗して得ることができる。   The tetragonal barium titanate fine particle powder according to the present invention is prepared by adding a titanium compound-containing solution to an excess barium salt solution and adjusting the pH to produce cubic barium titanate particles, and then producing the barium titanate particles. It can be obtained by concentrating the alkaline solution containing particles to 1-fold and 10-fold or less, then performing hydrothermal treatment in a temperature range of 100 to 250 ° C., and washing excess components with water.

バリウム塩水溶液としては、水酸化バリウム、塩化バリウム及び硝酸バリウム等を使用することができる。水酸化バリウム以外はアルカリ性水溶液により中和し塩基性として使用することが好ましい。   As the barium salt aqueous solution, barium hydroxide, barium chloride, barium nitrate and the like can be used. Other than barium hydroxide, it is preferable to neutralize with an alkaline aqueous solution and use as basic.

本発明におけるチタン化合物含有溶液は、チタン塩水溶液をアルカリ性水溶液で中和、或いは加水分解して得ることができるチタン酸塩であり、それらを熱処理して酸化チタンを溶媒に邂膠したものでも可能である。チタン塩水溶液としては、四塩化チタン、硫酸チタニル及びチタンアルコキシド等を使用することができる。   The titanium compound-containing solution in the present invention is a titanate obtained by neutralizing or hydrolyzing a titanium salt aqueous solution with an alkaline aqueous solution, and can be obtained by heat-treating the titanium oxide in a solvent. It is. As the titanium salt aqueous solution, titanium tetrachloride, titanyl sulfate, titanium alkoxide and the like can be used.

アルカリ性水溶液としては、水酸化ナトリウム水溶液、水酸化カリウム水溶液、水酸化バリウム、アンモニア水等を使用することができる。   As alkaline aqueous solution, sodium hydroxide aqueous solution, potassium hydroxide aqueous solution, barium hydroxide, aqueous ammonia, etc. can be used.

アルカリ性水溶液の添加量は、前記チタンのモル数に対して0.1〜10が好ましい。   The addition amount of the alkaline aqueous solution is preferably 0.1 to 10 with respect to the number of moles of titanium.

チタンとバリウムの仕込み組成(Ba/Ti)は、バリウムが過剰となるように混合するものであり、1.0〜4.0が好ましい。1.0未満の場合にはチタン酸バリウム核粒子の生成収率が低下し、4.0を越える場合には、過剰バリウムの水洗が困難となり、バリウムの回収、再利用を行わない限り、経済的且つ環境的に好ましくない。より好ましくは1.0〜3.0である。   The charged composition (Ba / Ti) of titanium and barium is such that barium is excessive, and is preferably 1.0 to 4.0. If it is less than 1.0, the production yield of barium titanate core particles is reduced, and if it exceeds 4.0, it becomes difficult to wash excess barium with water, and it is economical unless barium is recovered and reused. And environmentally unfavorable. More preferably, it is 1.0-3.0.

立方晶系のチタン酸バリウム粒子生成させる反応溶液は、pHが9〜14が好ましく、温度範囲は50〜95℃が好ましい。   The reaction solution for generating cubic barium titanate particles preferably has a pH of 9 to 14 and a temperature range of 50 to 95 ° C.

立方晶系のチタン酸バリウム粒子生成させる反応溶液の反応濃度はチタン化合物換算で0.1〜0.7mol/Lが好ましい。0.1mol/L未満の場合、収率が低く工業的ではなく、0.7mol/L以上の場合、バリウム塩水溶液中のバリウムの溶解度が低いため、Ba(OH)が析出し、均一な液相反応を行うことが困難である。 The reaction concentration of the reaction solution for producing cubic barium titanate particles is preferably 0.1 to 0.7 mol / L in terms of titanium compound. If it is less than 0.1 mol / L, the yield is low and not industrial, and if it is 0.7 mol / L or more, the solubility of barium in the barium salt aqueous solution is low, so that Ba (OH) 2 is precipitated and uniform. It is difficult to perform a liquid phase reaction.

反応中は窒素をフローさせて、バリウム化合物と空気中の炭酸ガス等とが反応しないようにする必要がある。   It is necessary to flow nitrogen during the reaction so that the barium compound does not react with carbon dioxide in the air.

立方晶系のチタン酸バリウム粒子は平均一次粒子径が20〜150nmの球状粒子であることが好ましい。   The cubic barium titanate particles are preferably spherical particles having an average primary particle diameter of 20 to 150 nm.

本発明においては、前記立方晶チタン酸バリウム粒子粉末を含有するスラリーに対し濃縮処理を行う。濃縮処理では、1倍を超えて10倍以下となるように行う。1倍以下の場合には、濃縮した効果がない。10倍を超える場合には、濃縮及び水熱処理が困難である。好ましくは2〜5倍である。   In the present invention, the slurry containing the cubic barium titanate particle powder is concentrated. In the concentration treatment, the concentration treatment is performed so as to be more than 1 time and 10 times or less. In the case of 1 times or less, there is no concentrated effect. When it exceeds 10 times, concentration and hydrothermal treatment are difficult. Preferably it is 2 to 5 times.

濃縮後の反応溶液の濃度は0.5〜1.5mol/Lが好ましい。   The concentration of the reaction solution after concentration is preferably 0.5 to 1.5 mol / L.

次いで、前記立方晶系のチタン酸バリウム粒子を含む反応溶液を水熱処理する。水熱処理の反応温度は100〜250℃が好ましい。100℃未満の場合には、緻密な球状チタン酸バリウム粒子を得ることが困難となる。250℃を超える場合、水熱容器の設計が困難である。好ましくは120〜200℃である。   Next, the reaction solution containing the cubic barium titanate particles is hydrothermally treated. The reaction temperature of the hydrothermal treatment is preferably 100 to 250 ° C. When the temperature is lower than 100 ° C., it is difficult to obtain dense spherical barium titanate particles. When it exceeds 250 ° C., it is difficult to design a hydrothermal container. Preferably it is 120-200 degreeC.

水熱処理後の粒子は、常法に従って水洗、乾燥する。水洗することによって、過剰のバリウムを洗い流すことができる。また、不純物であるNa、K、及びClなども同時に除去することができる。   The particles after hydrothermal treatment are washed with water and dried according to a conventional method. By washing with water, excess barium can be washed away. In addition, impurities such as Na, K, and Cl can be removed at the same time.

また、本発明においては、水熱反応後の正方晶系チタン酸バリウム微粒子粉末を500〜900℃の温度範囲で熱処理してもよい。熱処理を行うことによって、より結晶性に優れるチタン酸バリウム粒子粉末が得られる。なお、熱処理後、粉砕・解砕処理を行ってもよい。   Moreover, in this invention, you may heat-process the tetragonal-type barium titanate fine particle powder after a hydrothermal reaction in the temperature range of 500-900 degreeC. By performing the heat treatment, a barium titanate particle powder having better crystallinity can be obtained. In addition, you may perform a grinding | pulverization / disintegration process after heat processing.

<作用>
本発明に係る正方晶系チタン酸バリウム微粒子粉末が、粒子形状が球状であって、高い結晶性を有すると共に、分散性に優れる理由として本発明者は下記のとおり推定している。
<Action>
The inventor presumes that the tetragonal barium titanate fine particle powder according to the present invention has a spherical particle shape, high crystallinity, and excellent dispersibility as follows.

即ち、本発明において、球状粒子であって正方晶系のチタン酸バリウム粒子粉末が得られたのは、立方晶チタン酸バリウム粒子粉末を含有するスラリーを濃縮した後、水熱反応することによって、立方晶チタン酸バリウム粒子粉末の形骸を維持したまま、結晶系を正方晶に変態させることができたことによるものと本発明者は推定している。
しかも、本発明に係るチタン酸バリウム粒子粉末は、一次粒子径と二次粒子径とが同程度であるので、凝集粒子がほとんど存在しておらず、一次粒子が単独で挙動することが可能である。
従って、一次粒子が球状であって、しかも、凝集粒子がほとんど存在しないことによって、分散性に優れたチタン酸バリウム粒子粉末とすることができたものである。
That is, in the present invention, the spherical particles and the tetragonal barium titanate particle powder were obtained by concentrating the slurry containing the cubic barium titanate particle powder and then hydrothermally reacting. The inventor presumes that the crystal system could be transformed into a tetragonal crystal while maintaining the shape of the cubic barium titanate particles.
Moreover, since the barium titanate particles according to the present invention have the same primary particle size and secondary particle size, there are almost no aggregated particles, and the primary particles can behave independently. is there.
Therefore, since the primary particles are spherical and there are almost no agglomerated particles, it is possible to obtain barium titanate particles having excellent dispersibility.

また、本発明においては、球状であって分散性に優れたチタン酸バリウム粒子粉末を熱処理するので、熱処理を行っても焼結が抑制されており、分散性に優れたチタン酸バリウム粒子粉末が得られる。   Further, in the present invention, since the spherical barium titanate particle powder having excellent dispersibility is heat-treated, sintering is suppressed even when the heat treatment is performed, and the barium titanate particle powder having excellent dispersibility is obtained. can get.

本発明の代表的な実施の形態は、次の通りである。   A typical embodiment of the present invention is as follows.

本発明において、「一次粒子」とは電子顕微鏡等で観察可能な単独で存在することができる最小粒子を表し、「二次粒子」とは複数の一次粒子が凝集又は融着して形成された溶媒中での挙動する上での最小粒子を意味する。   In the present invention, “primary particles” represent the smallest particles that can be present alone, which can be observed with an electron microscope or the like, and “secondary particles” are formed by aggregation or fusion of a plurality of primary particles. Means the smallest particle to behave in a solvent.

粒子粉末の平均一次粒子径(r)は、走査型電子顕微鏡((株)日立製作所S−4300)によって観察した写真(倍率5万倍)について、約200個の粒子から粒子径を計測した。また、球形度は、前記電子顕微鏡写真から測定した粒子の長軸径/短軸径で示した。 The average primary particle diameter (r 1 ) of the particle powder was measured from about 200 particles in a photograph (magnification 50,000 times) observed with a scanning electron microscope (Hitachi, Ltd. S-4300). . The sphericity is indicated by the major axis diameter / minor axis diameter of the particles measured from the electron micrograph.

結晶構造は、「X線回折装置 RADIIA」(理学電機工業(株)製)(管球:Cu)を使用し、2θが10〜86°の範囲で測定し、Rietveld解析を用いて格子定数比(c/a)を算出した。   The crystal structure is measured by using “X-ray diffractometer RADIIA” (manufactured by Rigaku Denki Kogyo Co., Ltd.) (tube: Cu), 2θ is measured in the range of 10 to 86 °, and the lattice constant ratio is measured using Rietveld analysis. (C / a) was calculated.

平均二次粒子径(D50)は、チタン酸バリウム粒子粉末100mgをヘキサメタリン酸ナトリウム水溶液(濃度0.2wt%)に分散させ、動的光散乱法(「NIKKISO MICROTRAC UPA150:日機装社製」)又はレーザー回折・散乱法(「NIKKISO MICROTRAC HRA、MODEL9320−X100:日機装社製」)を用いて、各粒子粉末の体積換算の粒度分布から平均二次粒子径D50を測定した。ここで、D50とは粒子粉末の全体積を100%とし、粒子径に対する累積割合を求めたときの累積割合が50%となる粒子径である。 The average secondary particle size (D 50 ) was determined by dispersing 100 mg of barium titanate particle powder in an aqueous solution of sodium hexametaphosphate (concentration 0.2 wt%) and using a dynamic light scattering method (“NIKKISO MICROTRAC UPA150: manufactured by Nikkiso Co., Ltd.)” or laser diffraction scattering method ( "NIKKISO MICROTRAC HRA, MODEL9320-X100: manufactured by Nikkiso Co., Ltd.") was used to measure the average secondary particle diameter D 50 of the particle size distribution expressed in terms of volume of each particle powder. Here, D 50 is a particle diameter at which the cumulative ratio when the total volume of the particle powder is 100% and the cumulative ratio with respect to the particle diameter is determined is 50%.

Ba/Ti組成比は、「蛍光X線分析装置Simultix12」(理学電機(株)製)を使用して測定した。   The Ba / Ti composition ratio was measured using a “fluorescence X-ray analyzer Simultix12” (manufactured by Rigaku Corporation).

比表面積値はBET法により測定した値で示した。   The specific surface area value was indicated by a value measured by the BET method.

<チタン酸バリウム粒子粉末の製造>
実施例1
水酸化バリウム八水塩(関東化学(株)製、97%Ba(OH)・8HO試薬特級)2.54kgを水に溶解、精製し、温度75℃、pH12.5で窒素雰囲気の反応容器中に保持した。次に、含水酸化チタン(硫酸チタニルを熱加水分解で作製したものTiO・HO)481gを水に邂逅し含水酸化チタンスラリーを作製し、前記水酸化バリウム水溶液に5分間かけて投入した。該混合溶液を75℃で3時間かけて立方晶系チタン酸バリウムを生成した。該粒子沈殿させ、2.4倍に濃縮し、120℃で8時間水熱処理を行い、室温まで冷却した後、ヌッチェで濾液にBaイオンが認められなくなるまで水洗し、濾過、乾燥を行って正方晶系チタン酸バリウム微粒子粉末を得た。
<Production of barium titanate particle powder>
Example 1
Barium hydroxide octahydrate (Kanto Chemical Co., Ltd., 97% Ba (OH) 2 · 8H 2 O reagent special grade) was 2.54kg dissolved in water and purified, the temperature 75 ° C., in a nitrogen atmosphere at pH12.5 Hold in the reaction vessel. Next, 481 g of hydrous titanium oxide (TiO 2 · H 2 O produced by thermal hydrolysis of titanyl sulfate) was poured into water to produce a hydrous titanium oxide slurry, which was added to the barium hydroxide aqueous solution over 5 minutes. . The mixed solution produced cubic barium titanate at 75 ° C. for 3 hours. The particles are precipitated, concentrated 2.4 times, hydrothermally treated at 120 ° C. for 8 hours, cooled to room temperature, washed with Nutsche until no Ba ions are observed in the filtrate, filtered and dried to square Crystalline barium titanate fine particle powder was obtained.

得られたチタン酸バリウム粒子粉末は平均一次粒子径(r)が35nmであって、球形度が1.08の球状粒子であり、Ba/Tiモル比が1.001、格子定数比c/aが1.0044であった。平均二次粒子径(D50)は60nmであり、一次粒子径と二次粒子径との比は1.70であった。 The obtained barium titanate particle powder is a spherical particle having an average primary particle diameter (r 1 ) of 35 nm, a sphericity of 1.08, a Ba / Ti molar ratio of 1.001, a lattice constant ratio of c / a was 1.0044. The average secondary particle diameter (D 50 ) was 60 nm, and the ratio of the primary particle diameter to the secondary particle diameter was 1.70.

実施例2〜5、比較例1〜3:
チタン塩化合物の種類及び添加量、バリウム塩の溶液の種類及び添加量、濃縮の程度、水熱処理の反応温度を種々変化させた以外は、前記実施例1と同様にしてチタン酸バリウム粒子粉末を得た。
Examples 2-5, Comparative Examples 1-3:
The barium titanate particle powder was prepared in the same manner as in Example 1 except that the type and addition amount of the titanium salt compound, the type and addition amount of the barium salt solution, the degree of concentration, and the reaction temperature of the hydrothermal treatment were variously changed. Obtained.

このときの製造条件を表1に、得られたチタン酸バリウム粒子粉末の諸特性を表2に示す。   The production conditions at this time are shown in Table 1, and various characteristics of the obtained barium titanate particle powder are shown in Table 2.

なお、比較例2は実施例4における水熱処理前の立方晶チタン酸バリウム粒子粉末である。   Comparative Example 2 is a cubic barium titanate particle powder before hydrothermal treatment in Example 4.

表2に示すとおり、本発明に係るチタン酸バリウム粒子粉末は、平均一次粒子径と平均二次粒子径とがほぼ同程度であるので、凝集しておらず、分散性に優れていることが確認された。   As shown in Table 2, since the average primary particle diameter and the average secondary particle diameter of the barium titanate particles according to the present invention are approximately the same, they are not aggregated and have excellent dispersibility. confirmed.

実施例8及び9、比較例3
実施例4のチタン酸バリウム粒子粉末を種々の温度で熱処理を行った。このときの製造条件及び得られたチタン酸バリウム粒子粉末の諸特性を表3に示す。なお、実施例8は、実施例4のチタン酸バリウム粒子粉末を600℃で仮焼後、粉砕したものであり、実施例9は、実施例4のチタン酸バリウム粒子粉末を800℃で仮焼後、粉砕したものであり、比較例3は、実施例4のチタン酸バリウム粒子粉末を1000℃で仮焼後、粉砕したものである。
Examples 8 and 9, Comparative Example 3
The barium titanate particle powder of Example 4 was heat-treated at various temperatures. Table 3 shows the production conditions and various characteristics of the obtained barium titanate particles. In Example 8, the barium titanate particle powder of Example 4 was calcined at 600 ° C. and then pulverized. In Example 9, the barium titanate particle powder of Example 4 was calcined at 800 ° C. The comparative example 3 was obtained by calcining the barium titanate particle powder of Example 4 after calcining at 1000 ° C.

本発明に係るチタン酸バリウム粒子粉末は、凝集が抑制され分散性に優れるとともに、高い結晶性を有するので、各種誘電材料に好適に用いることができる。   The barium titanate particles according to the present invention can be suitably used for various dielectric materials because aggregation is suppressed and the dispersibility is excellent and the crystallinity is high.

実施例1で得られたチタン酸バリウム粒子粉末の粒子形状を示す透過型電子顕微鏡写真(50,000倍)Transmission electron micrograph showing the particle shape of the barium titanate particle powder obtained in Example 1 (50,000 times)

Claims (3)

正方晶系チタン酸バリウム微粒子であって、一次粒子の平均一次粒子径が20〜150nmであって球形度が1.00〜1.18であり、平均一次粒子径と平均二次粒子径との比が0.7以上2以下であることを特徴とする正方晶系チタン酸バリウム微粒子粉末。

Tetragonal barium titanate fine particles having an average primary particle diameter of 20 to 150 nm and a sphericity of 1.00 to 1.18, and having an average primary particle diameter and an average secondary particle diameter of A tetragonal barium titanate fine particle powder having a ratio of 0.7 or more and 2 or less .

バリウム塩水溶液にチタン化合物含有水溶液を添加し、pH調整及び加熱処理して、立方晶系のチタン酸バリウム粒子を生成させ、該立方晶系のチタン酸バリウム粒子を含有する反応溶液を1倍を超えて10倍以下に濃縮し、100〜250℃の温度範囲で水熱処理を行うことを特徴とする請求項1記載の正方晶系チタン酸バリウム微粒子粉末の製造法。 Titanium compound-containing aqueous solution is added to barium salt aqueous solution, pH adjustment and heat treatment are performed to produce cubic barium titanate particles, and the reaction solution containing cubic barium titanate particles is multiplied by 1 The method for producing tetragonal barium titanate fine particle powder according to claim 1, wherein the heat treatment is carried out in a temperature range of 100 to 250 ° C. バリウム塩水溶液にチタン化合物含有水溶液を添加し、pH調整及び加熱処理して、立方晶系のチタン酸バリウム粒子を生成させ、該立方晶系のチタン酸バリウム粒子を含有する反応溶液を1倍を超えて10倍以下に濃縮し、100〜250℃の温度範囲で水熱処理を行った後、500〜900℃の温度範囲で仮焼することを特徴とする請求項1記載の正方晶系チタン酸バリウム微粒子粉末の製造法。

Titanium compound-containing aqueous solution is added to barium salt aqueous solution, pH adjustment and heat treatment are performed to produce cubic barium titanate particles, and the reaction solution containing cubic barium titanate particles is multiplied by 1 The tetragonal titanic acid according to claim 1, wherein the tetragonal titanic acid is concentrated to more than 10 times, hydrothermally treated in a temperature range of 100 to 250 ° C, and calcined in a temperature range of 500 to 900 ° C. Production method of barium fine particle powder.

JP2004103188A 2004-03-31 2004-03-31 Tetragonal barium titanate fine particle powder and production method thereof Expired - Lifetime JP4702515B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004103188A JP4702515B2 (en) 2004-03-31 2004-03-31 Tetragonal barium titanate fine particle powder and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004103188A JP4702515B2 (en) 2004-03-31 2004-03-31 Tetragonal barium titanate fine particle powder and production method thereof

Publications (2)

Publication Number Publication Date
JP2005289668A JP2005289668A (en) 2005-10-20
JP4702515B2 true JP4702515B2 (en) 2011-06-15

Family

ID=35323056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004103188A Expired - Lifetime JP4702515B2 (en) 2004-03-31 2004-03-31 Tetragonal barium titanate fine particle powder and production method thereof

Country Status (1)

Country Link
JP (1) JP4702515B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070098803A1 (en) * 2005-10-27 2007-05-03 Primet Precision Materials, Inc. Small particle compositions and associated methods
JP5091685B2 (en) * 2006-01-30 2012-12-05 日本化学工業株式会社 External additive for toner and method for producing the same
KR101298833B1 (en) * 2006-01-30 2013-08-23 니폰 가가쿠 고교 가부시키가이샤 External additive for toner and process for producing the same
JP4827011B2 (en) * 2006-03-10 2011-11-30 Tdk株式会社 Ceramic powder, dielectric paste using the same, multilayer ceramic electronic component, and manufacturing method thereof
JP2007243026A (en) * 2006-03-10 2007-09-20 Tdk Corp Ceramic powder and conductive paste using the same, laminated ceramic electronic component, and manufacturing method thereof
JP5267775B2 (en) * 2008-03-26 2013-08-21 戸田工業株式会社 Dispersion of fine barium titanate powder and method for producing the same
KR100921352B1 (en) 2009-03-12 2009-10-15 한화석유화학 주식회사 Process for preparing fine barium titanate based composite oxide
KR20120099979A (en) 2011-03-02 2012-09-12 삼성전기주식회사 Method of manufacturing ceramic powder having perovskite structure and ceramic powder having perovskite structure manufactured using the same
JP5484506B2 (en) * 2012-03-30 2014-05-07 太陽誘電株式会社 Ceramic powder and multilayer ceramic capacitor
JP5629719B2 (en) 2012-03-30 2014-11-26 太陽誘電株式会社 Ceramic powder and multilayer ceramic capacitor
JP6635031B2 (en) * 2014-06-13 2020-01-22 戸田工業株式会社 Barium titanate fine particle powder, dispersion and coating film
KR102577491B1 (en) * 2015-03-05 2023-09-12 도다 고교 가부시끼가이샤 Barium titanate particle powder, dispersion and coating film containing the powder

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05330824A (en) * 1991-04-19 1993-12-14 Teika Corp Barium titanate and its production
JPH07232923A (en) * 1993-09-03 1995-09-05 Chon Internatl Co Ltd Method for synthesizing crystalline ceramic powder of perovskite compound
JPH11116242A (en) * 1997-10-17 1999-04-27 Tdk Corp Production of powdery barium titanate
JP2002211926A (en) * 2000-11-13 2002-07-31 Toda Kogyo Corp Spherical barium titanate particulate powder and method for producing the same
JP2005272295A (en) * 2004-02-26 2005-10-06 Dowa Mining Co Ltd Tetragonal barium titanate particles, method for manufacturing the same and ceramic capacitor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2617151B1 (en) * 1987-06-29 1990-10-12 Solvay PROCESS FOR THE MANUFACTURE OF MIXED METAL OXIDE POWDER, AND MIXED METAL OXIDE POWDERS

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05330824A (en) * 1991-04-19 1993-12-14 Teika Corp Barium titanate and its production
JPH07232923A (en) * 1993-09-03 1995-09-05 Chon Internatl Co Ltd Method for synthesizing crystalline ceramic powder of perovskite compound
JPH11116242A (en) * 1997-10-17 1999-04-27 Tdk Corp Production of powdery barium titanate
JP2002211926A (en) * 2000-11-13 2002-07-31 Toda Kogyo Corp Spherical barium titanate particulate powder and method for producing the same
JP2005272295A (en) * 2004-02-26 2005-10-06 Dowa Mining Co Ltd Tetragonal barium titanate particles, method for manufacturing the same and ceramic capacitor

Also Published As

Publication number Publication date
JP2005289668A (en) 2005-10-20

Similar Documents

Publication Publication Date Title
EP1798200B1 (en) Process for producing perovskite compound powder
JP4401237B2 (en) Method for producing barium titanate
JP6368246B2 (en) Method for producing coated barium titanate fine particles
US20070202036A1 (en) Production Of Barium Titanate Compounds
JP6583637B2 (en) Strontium titanate fine particle powder and method for producing the same
US7871595B2 (en) Fine barium titanate particles
JP2007137759A (en) Barium titanate particulate powder and dispersion
JP4702515B2 (en) Tetragonal barium titanate fine particle powder and production method thereof
JP5445412B2 (en) Method for producing composite oxide powder
JP2002211926A (en) Spherical barium titanate particulate powder and method for producing the same
WO2008102785A9 (en) Amorphous fine-particle powder, process for production thereof and perovskite-type barium titanate powder made by using the same
KR101158953B1 (en) Method for producing composition
JP5353728B2 (en) Method for producing the composition
JP2005075700A (en) Method for manufacturing composition
JP2011116645A (en) Calcium titanate and method for producing the same
JP4356552B2 (en) Method for producing perovskite compound powder
JPH06305729A (en) Fine powder of perovskite type compound and its production
KR100933094B1 (en) Method for producing ultrafine barium titanate using solid phase reaction method
JP4638766B2 (en) Method for producing barium titanyl oxalate and method for producing barium titanate
JP5765506B1 (en) Method for producing barium titanate powder
JP2005089294A (en) Method for disintegrating agglomerated inorganic compound particle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100506

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110222

R150 Certificate of patent or registration of utility model

Ref document number: 4702515

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140318

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350