JP4691756B2 - Production method of polyol - Google Patents

Production method of polyol Download PDF

Info

Publication number
JP4691756B2
JP4691756B2 JP2000192470A JP2000192470A JP4691756B2 JP 4691756 B2 JP4691756 B2 JP 4691756B2 JP 2000192470 A JP2000192470 A JP 2000192470A JP 2000192470 A JP2000192470 A JP 2000192470A JP 4691756 B2 JP4691756 B2 JP 4691756B2
Authority
JP
Japan
Prior art keywords
water
polyol
extraction
extract
extractant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000192470A
Other languages
Japanese (ja)
Other versions
JP2002003421A (en
Inventor
暎之 二宮
俊雄 渡辺
淳 岩本
副武 宮下
将史 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2000192470A priority Critical patent/JP4691756B2/en
Priority to US09/874,276 priority patent/US7087800B2/en
Priority to DE60130708T priority patent/DE60130708T2/en
Priority to EP01113870A priority patent/EP1167330B1/en
Priority to TW090115390A priority patent/TW521070B/en
Priority to KR1020010036488A priority patent/KR100763098B1/en
Priority to CNB01121841XA priority patent/CN1325453C/en
Publication of JP2002003421A publication Critical patent/JP2002003421A/en
Application granted granted Critical
Publication of JP4691756B2 publication Critical patent/JP4691756B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はポリエステル樹脂、アルキッド樹脂、ポリウレタン樹脂、ポリカーボネート樹脂、可塑剤、潤滑油、界面活性剤、化粧品の基剤、反応性モノマーなどの原料として有用なポリオールの製造方法に関する。
【0002】
【従来の技術】
ポリオールを製造する方法として塩基性触媒存在下、脂肪族アルデヒドとホルムアルデヒドとのアルドール縮合反応、続いて交叉カニツアロ反応の二段反応で行う方法が知られている(米国特許第3,935,274号、特開昭61−18741号)。
この反応液は、必要に応じて濃縮した後、抽出工程で公知の方法(特公昭52−30486号、特公昭44−10767号等)により、ギ酸塩水溶液とポリオールに分けられる。次に抽剤回収工程でポリオールを含む抽出液から抽剤が分離され、得られた粗ポリオールは、精製蒸留工程で精製される。
【0003】
【発明が解決しようとする課題】
近年、ポリオールの用途は多岐に及んでいる。特にUV硬化型ポリオールの原料等では、従来以上の高純度品が要求されるようになっている。
抽出工程ではアルコール類、ケトン類等が用いられるが、このような溶剤で抽出した場合、粗ポリオール中に0.5%〜2%のギ酸塩が残存する。このギ酸塩がポリオール精製蒸留中に加熱されることにより塩基性化合物になり、これが引き金となってポリオールの熱分解を引き起こし、ポリオール製品の品質が悪化する。
【0004】
抽出後に抽出液を水洗することにより抽出液中の残存ギ酸塩の低減を図れる。
ただし、洗浄水中には一定量のポリオールが含まれるため洗浄水は再使用することが望ましい。
洗浄水を抽出工程に戻す場合、そのまま抽料である濃縮液と混合して抽出を行なうと抽料の水濃度が増加し、抽出効率が低下する。これを回避するために反応液の濃縮を行なうが、これが過剰であるとギ酸塩の析出によるラインの閉塞等の問題が起り、運転操作が困難となる。
一方、洗浄水を反応液の濃縮工程に戻す場合、抽剤を含んだままであると抽剤の変質やポリオールとの副反応が起きる。
本発明の目的は、脂肪族アルデヒドとホルムアルデヒドとを塩基性触媒存在下で反応させてポリオールを製造する方法において、安定した運転でポリオールとギ酸塩を効率的に分離する方法を提供することである。
【0005】
【課題を解決するための手段】
本発明者らは、上記課題を解決するために鋭意検討した結果、抽出液の洗浄水から抽剤および水の一部を留去した後に抽出工程に戻すことにより効率的かつ安定した運転が可能であることを見出し本発明に到達した。
即ち本発明は、(i)式で示される脂肪族アルデヒドとホルムアルデヒドとを塩基性触媒存在下で反応させてポリオールを製造するに際して、
(1)蒸留により反応液から水および未反応ホルムアルデヒドを分離する濃縮工程、
(2)抽剤によってポリオールを抽出する抽出工程、
(3)抽出液を水洗し、ポリオールを含む油層と水層とに分離する水洗工程、
(4)分離した水層から抽剤および水を留去する抽剤除去工程
を有し、抽剤除去工程で分離された缶出液を抽出工程に戻すことを特徴とするポリオールの製造法である。
【化2】

Figure 0004691756
【0006】
【発明の実施の形態】
本発明の原料である脂肪族アルデヒドとしては、(i)式のR1がエチル基でR2が水素であるノルマルブチルアルデヒド(以下、NBALと称す)、R1、R2が共にメチル基であるイソブチルアルデヒド(以下、IBALと称す)などが挙げられ、原料の脂肪族アルデヒドに対応するポリオール、例えばNBALからはトリメチロールプロパン(以下、TMPと称す)、IBALからはネオペンチルグリコール(以下、NPGと称す)が製造される。
使用されるホルムアルデヒドはホルムアルデヒド水溶液でも固形のパラホルムアルデヒドでもよい。ホルムアルデヒドの使用量は目的とするポリオールによって異なる。
例えば、NBALからTMPを製造する場合は、NBAL1モルに対し3.0〜6.0モルであり、好ましくは3.05〜4.0モルであり(理論モル比=3.0)、またIBALからNPGと称す)を製造する場合はIBAL1モルに対し2.0〜5.0モルであり、好ましくは2.05〜2.2モルである(理論モル比=2.0)。
【0007】
本発明において脂肪族アルデヒドとホルムアルデヒドとのアルドール縮合反応および交叉カニツアロ反応における塩基性触媒としては、トリメチルアミン、トリエチルアミン等のアミン類、ナトリウム、カリウム、リチウム、カルシウム、およびアンモニウムの水酸化物塩、炭酸塩、炭酸水素塩や、それらの混合物が用いられるが、工業的にはナトリウム塩やカルシウム塩が一般的である。
塩基性触媒の使用量は、原料の脂肪族アルデヒドに対し、1.0〜2.0倍モル量である。副生物を抑えて、高選択率に目的のポリオールを得るためには、反応条件等に合わせて調整する必要がある。
【0008】
本発明では先ず反応液をぎ酸でpH6.5〜7.0に中和した後、濃縮工程で反応液を蒸留法により濃縮し、水および未反応ホルムアルデヒドを分離する。濃縮工程の操作圧は100〜400kPaである。ただし、未反応のホルムアルデヒドが1%以下の場合は減圧下での濃縮でも良い。この時、ギ酸塩の濃度が15〜25%になるように濃縮する。
【0009】
次に抽出工程で濃縮液から抽出によって目的のポリオールと副生したギ酸塩とを分離する。
ここで、使用する抽剤はNBAL、IBAL、プロピルアルデヒド等のアルデヒド類、メチルエチルケトン、メチルイソブチルケトン等のケトン類、または、イソブチルアルコール等のアルコール類、あるいは酢酸ブチルエステル等のエステル類であり、これらを単独または2種類以上混合して用いることができる。
抽剤の使用量は濃縮液量に対し1.0〜4.0重量倍、好ましくは1.5〜2.5重量倍である。抽出で用いる抽出機は、使用する抽剤によって異なるが、アルデヒド類の場合、多段の振動式カラム型抽出機が効率的である。
【0010】
本発明では抽出工程後、抽出液中のギ酸塩は、1000〜3000ppm含まれている。水洗工程で抽出液を水で洗浄することで抽出液中のギ酸塩を50〜300ppm程度まで効率良く除去する。水洗槽にはデカンターを設置し、ポリオールを含む油層(上層)とポリオールとギ酸塩を含む洗浄水(下層)を二層分離する。
水洗する際の水使用量は、使用する抽剤や条件によって異なるが、抽出液に対し0.01〜1.0重量倍、好ましくは0.02〜0.1重量倍である。
抽出工程および水洗工程の温度は、抽剤がアルデヒド類である場合には20℃〜45℃、他の抽剤の場合には20℃〜80℃である。
【0011】
洗浄後の洗浄水にはポリオールとギ酸塩、そして若干の抽剤が含まれている。この洗浄水を濃縮液とともに抽出工程に戻すと、抽料中の水濃度が1〜10%上がり抽出効率が下がってしまう。このことから該洗浄水を抽剤除去工程で抽剤および水を留去した後、抽出工程に戻す。この時、抽剤除去を行った缶出液の水濃度を20〜80%にする。この抽剤除去工程の操作圧は−50〜100kPaである。
【0012】
次に図面により本発明を説明する。図1は本発明を実施するための工程図の一例である。図1において、経路2より脂肪族アルデヒド、経路3よりホルムアルデヒド、経路4より塩基性触媒をそれぞれ反応器1に供給し、アルドール縮合次いでカニッツアロ反応を行なう。反応生成液は、経路5より濃縮塔6に供給し、過剰のホルムアルデヒドと水を経路7より留出させ、濃縮液を経路8より抽出塔9に供給する。抽剤を経路10より供給し、抽残液を経路12より抜き出す。経路11より抽出液を水洗槽13に供給し、水を経路14より供給する。二層分離を行ない経路15より抽出液(上層)を抜き出し、経路16より洗浄液(下層)を抽剤除去塔17に供給する。経路18より溶剤および水を留去する。缶出液は経路19より抜き出し、経路5と混合して抽出塔9に供給する。
【0013】
【実施例】
次に実施例により、本発明をさらに具体的に説明する。但し本発明は、以下の実施例により制限されるものではない。
尚、本実施例および比較例において、抽出機には振動式カラム型の住友重機社製カールカラム抽出機を使用した。
【0014】
実施例1
(NBALとホルムアルデヒドからTMPを製造)
容量30Lの反応槽に40重量%ホルムアルデヒド水溶液7207g(96.0モル)と水8110g仕込み、撹拌下に温度を40℃まで昇温した。この中に50重量%水酸化ナトリウム水溶液2520g(31.5モル)とNBAL2163g(30.0モル)を一定速度で30分間かけて添加した。この間の温度は40℃から徐々に上昇させ最高温度60℃に制御させた。添加終了後、温度60℃に制御して15分間反応を継続した。
反応終了後、得られた反応液20000gを分析した結果、TMPを17.5重量%含んでおり、この時のTMP選択率は87.1モル%であった。
【0015】
この反応液をギ酸でpH7に中和した後に、加圧蒸留装置に2000g/hrで供給し、300kPaで濃縮液が反応液の1/2となるように濃縮した。
次に該濃縮液を抽出機により連続抽出を行なった。抽料として濃縮液を1000g/hrで抽出機の上段へ供給し、抽剤としてNBALを2000g/hrで下段へ供給した。抽出機内の温度は30℃に制御し、抽出カラム塔頂より抽出液を、塔底より抽残液を抜き出した。得られた抽出液を撹拌下の容量1Lの水洗槽に水280g/hrと共に供給し、水洗槽内温度を30℃に保った。水洗槽に付属したデカンタの上層より抽出液を抜き出した。また、デカンタ下層液を抜き出した。定常状態での各液の流量は、抽出カラム塔頂よりの抽出液が2379g/hr、抽残液が656g/hr、水洗後の抽出液が2419g/hr、デカンタ下層液が240g/hrであった。
この下層液を5段蒸留塔に供給し、留出液を205g/hrで、缶出液を35g/hrで抜き出した。缶出液は濃縮液と共に抽出機上段に供給した。
【0016】
一連の操作を5時間継続し、抽出液および抽残液の分析をしたところ、抽出液組成はTMPが13.3%、ギ酸ナトリウムが80ppm、水が10.7%であり、抽残液組成はギ酸ナトリウムが32.6%、TMPが530ppm、であった。缶出液組成は、TMP41.1%、ギ酸ナトリウム13.7%、水45.2%であった。この時のギ酸ナトリウム除去率は99.9%、TMP抽出率は99.9%である。
【0017】
比較例1
実施例1で得られた反応液を加圧蒸留装置に2000g/hrで供給し、0.3MPaで反応液が1/2となるように濃縮した。
この濃縮液を抽出機により連続抽出を行なった。抽料として濃縮液を1000g/hrで抽出機の上段へ供給し、抽剤としてNBALを2000g/hrで下段へ供給した。抽出機内の温度は30℃に制御し、抽出カラム塔頂より抽出液を、塔底より抽残液を抜き出した。得られた抽出液を撹拌下で容量1Lの水洗槽に水280g/hrとともに供給し、水洗槽内温度を30℃に保った。水洗槽に付属したデカンタの上層より抽出液を抜き出した。また、デカンタ下層液を抜き出し、濃縮液と共に抽出機上段へ供給した。定常状態での各液の流量は、抽出カラム塔頂よりの抽出液が2584g/hr、抽残液が656g/hr、水洗後の抽出液が2624g/hr、デカンタ下層液が240g/hrであった。
【0018】
一連の連続操作を5時間継続し、抽出液および抽残液の分析をしたところ、抽出液組成はTMPが13.1%、ギ酸ナトリウムが900ppm、水が10.3%であり、抽残液組成はギ酸ナトリウムが31.3%、TMPが1.26%であった。この時のギ酸ナトリウム除去率は98.9%、TMP抽出率は97.5%となる。ギ酸ナトリウムが多く含まれているため、抽出液から抽剤を留去した粗TMPは連続蒸留することが出来なかった。
この比較例ではデカンタ下層液からの抽剤および水の留去を行わずに抽出工程に循環したために、抽料が希釈され、抽出工程が不安定となり、抽出液の残存ギ酸ナトリウムがより増加した。また、抽残液のギ酸ナトリウム中に混入するTMPが多いことが分かる。
【0019】
【発明の効果】
以上の実施例からも明らかなように、本発明によりポリオールの抽出液を洗浄し、該洗浄水から抽剤および水を留去した後に抽出工程に循環することにより、抽出工程でポリオール抽出率、ギ酸塩除去率ともに高い効率的な抽出が可能となり、連続精製蒸留が可能となり、高品質のポリオールが安定して得られるようになる。
【図面の簡単な説明】
【図1】本発明を実施するための工程図の一例である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a polyol useful as a raw material for polyester resins, alkyd resins, polyurethane resins, polycarbonate resins, plasticizers, lubricating oils, surfactants, cosmetic bases, reactive monomers and the like.
[0002]
[Prior art]
As a method for producing a polyol, there is known a method in which an aldol condensation reaction between an aliphatic aldehyde and formaldehyde is performed in the presence of a basic catalyst, followed by a two-stage reaction of a crossover cannula reaction (US Pat. No. 3,935,274). JP, 61-18741, A).
This reaction solution is concentrated as necessary, and then separated into an aqueous formate solution and a polyol by a known method (Japanese Examined Patent Publication No. 52-30486, Japanese Examined Publication No. 44-10767, etc.) in an extraction step. Next, an extractant is isolate | separated from the extract containing a polyol by an extractant collection process, and the obtained crude polyol is refine | purified at a refinement | purification distillation process.
[0003]
[Problems to be solved by the invention]
In recent years, the use of polyols has been diverse. In particular, raw materials for UV curable polyols and the like are required to have higher purity than the conventional products.
Alcohols, ketones, and the like are used in the extraction process, but when extracted with such a solvent, 0.5% to 2% of formate remains in the crude polyol. When this formate is heated during the polyol purification distillation, it becomes a basic compound, which triggers the thermal decomposition of the polyol and deteriorates the quality of the polyol product.
[0004]
The remaining formate in the extract can be reduced by washing the extract with water after extraction.
However, since the washing water contains a certain amount of polyol, it is desirable to reuse the washing water.
When washing water is returned to the extraction process, if extraction is performed by directly mixing with the concentrated concentrate, the water concentration of the extract increases and the extraction efficiency decreases. In order to avoid this, the reaction solution is concentrated, but if this is excessive, problems such as blockage of the line due to precipitation of formate will occur, making operation difficult.
On the other hand, when returning the washing water to the reaction liquid concentration step, if the extractant is still contained, the extractant is denatured and a side reaction with the polyol occurs.
An object of the present invention is to provide a method for efficiently separating a polyol and a formate salt in a stable operation in a method for producing a polyol by reacting an aliphatic aldehyde and formaldehyde in the presence of a basic catalyst. .
[0005]
[Means for Solving the Problems]
As a result of intensive studies to solve the above-mentioned problems, the present inventors are able to perform efficient and stable operation by distilling the extractant and a part of the water from the wash water of the extract and returning it to the extraction process. The present invention has been found.
That is, in the present invention, a polyol is produced by reacting an aliphatic aldehyde represented by the formula (i) with formaldehyde in the presence of a basic catalyst.
(1) A concentration step for separating water and unreacted formaldehyde from the reaction solution by distillation,
(2) an extraction step of extracting a polyol with an extractant;
(3) A water washing step of washing the extract with water and separating it into an oil layer and a water layer containing a polyol,
(4) A method for producing a polyol, comprising an extract removing step for distilling the extract and water from the separated aqueous layer, and returning the bottoms separated in the extract removing step to the extraction step. is there.
[Chemical 2]
Figure 0004691756
[0006]
DETAILED DESCRIPTION OF THE INVENTION
The aliphatic aldehyde as a raw material of the present invention, (i) expression of normal butyraldehyde R 1 is R 2 is hydrogen ethyl group (hereinafter, referred to as NBAL), R 1, R 2 are both a methyl group Specific isobutyraldehyde (hereinafter referred to as IBAL) and the like, polyols corresponding to the starting aliphatic aldehyde, such as trimethylolpropane (hereinafter referred to as TMP) from NBAL, and neopentyl glycol (hereinafter referred to as NPG) from IBAL. Is manufactured).
The formaldehyde used may be an aqueous formaldehyde solution or solid paraformaldehyde. The amount of formaldehyde used depends on the intended polyol.
For example, when producing TMP from NBAL, it is 3.0-6.0 mol with respect to 1 mol of NBAL, preferably 3.05-4.0 mol (theoretical molar ratio = 3.0), and IBAL Is referred to as NPG) from 2.0 to 5.0 mol, preferably 2.05 to 2.2 mol (theoretical molar ratio = 2.0).
[0007]
In the present invention, the basic catalyst in the aldol condensation reaction and the cross cannula reaction of an aliphatic aldehyde and formaldehyde includes amines such as trimethylamine and triethylamine, sodium, potassium, lithium, calcium, and ammonium hydroxide salts and carbonates. Carbonic acid salts and mixtures thereof are used, and industrially, sodium salts and calcium salts are common.
The usage-amount of a basic catalyst is 1.0-2.0 times mole amount with respect to the aliphatic aldehyde of a raw material. In order to suppress the by-product and obtain the target polyol with high selectivity, it is necessary to adjust according to the reaction conditions.
[0008]
In the present invention, the reaction solution is first neutralized with formic acid to pH 6.5 to 7.0, and then concentrated in a concentration step by distillation to separate water and unreacted formaldehyde. The operation pressure in the concentration step is 100 to 400 kPa. However, when the unreacted formaldehyde is 1% or less, concentration under reduced pressure may be used. At this time, it concentrates so that the concentration of formate may be 15-25%.
[0009]
Next, in the extraction step, the target polyol and by-product formate are separated from the concentrate by extraction.
The extractant used here is aldehydes such as NBAL, IBAL and propyl aldehyde, ketones such as methyl ethyl ketone and methyl isobutyl ketone, alcohols such as isobutyl alcohol, and esters such as butyl acetate. Can be used alone or in admixture of two or more.
The amount of the extractant used is 1.0 to 4.0 times by weight, preferably 1.5 to 2.5 times by weight the amount of the concentrate. Although the extractor used for extraction differs depending on the extractant used, in the case of aldehydes, a multistage vibrating column type extractor is efficient.
[0010]
In this invention, 1000-3000 ppm of formate in an extract is contained after an extraction process. The formate in the extract is efficiently removed to about 50 to 300 ppm by washing the extract with water in the water washing step. A decanter is installed in the water washing tank, and an oil layer (upper layer) containing polyol and a wash water (lower layer) containing polyol and formate are separated into two layers.
The amount of water used when washing with water varies depending on the extractant and conditions used, but is 0.01 to 1.0 times by weight, preferably 0.02 to 0.1 times by weight of the extract.
The temperature of the extraction step and the water washing step is 20 ° C. to 45 ° C. when the extractant is an aldehyde, and 20 ° C. to 80 ° C. when other extractant is used.
[0011]
The washing water after washing contains polyol, formate, and some extractant. If this washing water is returned to the extraction step together with the concentrate, the water concentration in the extract will increase by 1 to 10% and the extraction efficiency will decrease. Accordingly, the washing water is returned to the extraction step after the extraction agent and water are distilled off in the extraction agent removal step. At this time, the water concentration of the bottoms from which the extractant has been removed is set to 20 to 80%. The operation pressure in this extractant removing step is −50 to 100 kPa.
[0012]
Next, the present invention will be described with reference to the drawings. FIG. 1 is an example of a process chart for carrying out the present invention. In FIG. 1, an aliphatic aldehyde is supplied from the route 2, formaldehyde is supplied from the route 3, and a basic catalyst is supplied from the route 4 to the reactor 1, and aldol condensation and Kanitz allo reaction are performed. The reaction product liquid is supplied to the concentration tower 6 from the path 5, excess formaldehyde and water are distilled from the path 7, and the concentrated liquid is supplied to the extraction tower 9 from the path 8. The extractant is supplied from the path 10 and the extraction residual liquid is extracted from the path 12. The extract is supplied from the path 11 to the washing tank 13 and the water is supplied from the path 14. Two-layer separation is performed, and the extract (upper layer) is extracted from the path 15, and the cleaning liquid (lower layer) is supplied to the extractant removal tower 17 from the path 16. The solvent and water are distilled off from the path 18. The bottoms is extracted from the path 19, mixed with the path 5, and supplied to the extraction tower 9.
[0013]
【Example】
Next, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples.
In the examples and comparative examples, a vibrating column type curl column extractor manufactured by Sumitomo Heavy Industries, Ltd. was used as the extractor.
[0014]
Example 1
(Manufacturing TMP from NBAL and formaldehyde)
A reactor of 30 L capacity was charged with 7207 g (96.0 mol) of 40% by weight aqueous formaldehyde solution and 8110 g of water, and the temperature was raised to 40 ° C. with stirring. To this, 2520 g (31.5 mol) of 50 wt% sodium hydroxide aqueous solution and 2163 g (30.0 mol) of NBAL were added at a constant rate over 30 minutes. During this period, the temperature was gradually increased from 40 ° C. and controlled to a maximum temperature of 60 ° C. After completion of the addition, the reaction was continued for 15 minutes while controlling the temperature at 60 ° C.
As a result of analyzing 20000 g of the obtained reaction liquid after completion of the reaction, it contained 17.5% by weight of TMP, and the TMP selectivity at this time was 87.1 mol%.
[0015]
After neutralizing this reaction liquid to pH 7 with formic acid, it was supplied to a pressure distillation apparatus at 2000 g / hr, and it concentrated so that a concentrate might become 1/2 of the reaction liquid at 300 kPa.
Next, the concentrated solution was continuously extracted with an extractor. The concentrated solution was supplied to the upper stage of the extractor at 1000 g / hr as the extract, and NBAL was supplied to the lower stage at 2000 g / hr as the extractant. The temperature in the extractor was controlled at 30 ° C., and the extract was extracted from the top of the extraction column and the extraction residue was extracted from the bottom. The obtained extract was supplied to a 1 L capacity washing tank under stirring together with 280 g / hr of water, and the temperature in the washing tank was kept at 30 ° C. The extract was extracted from the upper layer of the decanter attached to the washing tank. Moreover, the decanter lower layer liquid was extracted. The flow rate of each liquid in the steady state was 2379 g / hr for the extraction liquid from the top of the extraction column, 656 g / hr for the extraction residual liquid, 2419 g / hr for the extraction liquid after washing with water, and 240 g / hr for the lower decanter liquid. It was.
This lower layer liquid was supplied to a 5-stage distillation column, and the distillate was extracted at 205 g / hr and the bottoms at 35 g / hr. The bottoms were supplied to the upper stage of the extractor together with the concentrate.
[0016]
A series of operations was continued for 5 hours, and the extract and the extract residue were analyzed. The extract composition was 13.3% TMP, 80 ppm sodium formate, and 10.7% water, and the extract composition Was 32.6% sodium formate and 530 ppm TMP. The bottoms composition was 41.1% TMP, 13.7% sodium formate, and 45.2% water. At this time, the sodium formate removal rate is 99.9%, and the TMP extraction rate is 99.9%.
[0017]
Comparative Example 1
The reaction liquid obtained in Example 1 was supplied to a pressure distillation apparatus at 2000 g / hr, and was concentrated so that the reaction liquid became 1/2 at 0.3 MPa.
This concentrated solution was continuously extracted with an extractor. The concentrated solution was supplied to the upper stage of the extractor at 1000 g / hr as the extract, and NBAL was supplied to the lower stage at 2000 g / hr as the extractant. The temperature in the extractor was controlled at 30 ° C., and the extract was extracted from the top of the extraction column and the extraction residue was extracted from the bottom. The obtained extract was supplied together with 280 g / hr of water to a 1 L capacity washing tank under stirring, and the temperature in the washing tank was kept at 30 ° C. The extract was extracted from the upper layer of the decanter attached to the washing tank. Moreover, the lower decanter liquid was extracted and supplied to the upper stage of the extractor together with the concentrated liquid. The flow rate of each liquid in the steady state was 2584 g / hr for the extraction liquid from the top of the extraction column, 656 g / hr for the extraction residual liquid, 2624 g / hr for the extraction liquid after washing with water, and 240 g / hr for the lower decanter liquid. It was.
[0018]
A series of continuous operations was continued for 5 hours, and the extract and the extracted residue were analyzed. As a result, the extract composition was 13.1% TMP, 900 ppm sodium formate, and 10.3% water. The composition was 31.3% sodium formate and 1.26% TMP. At this time, the sodium formate removal rate is 98.9%, and the TMP extraction rate is 97.5%. Since a large amount of sodium formate was contained, the crude TMP obtained by distilling the extractant from the extract could not be continuously distilled.
In this comparative example, since the extractant and water were not distilled off from the decanter lower layer liquid and circulated to the extraction process, the extract was diluted, the extraction process became unstable, and the residual sodium formate in the extract increased more. . Moreover, it turns out that there is much TMP mixed in the sodium formate of an extraction liquid.
[0019]
【The invention's effect】
As is clear from the above examples, the polyol extraction liquid is washed according to the present invention, and the extractant and water are distilled off from the washing water and then recycled to the extraction step. Highly efficient extraction with a high formate removal rate is possible, continuous purification distillation is possible, and high-quality polyols can be stably obtained.
[Brief description of the drawings]
FIG. 1 is an example of a process chart for carrying out the present invention.

Claims (2)

(i)式で示される脂肪族アルデヒドとホルムアルデヒドとを塩基性触媒存在下で反応させてポリオールを製造するに際して、(1)蒸留により反応液から水および未反応ホルムアルデヒドを分離する濃縮工程、(2)抽剤によってポリオールを抽出する抽出工程、(3)前記抽出工程により得られた抽出液を水洗し、ポリオールを含む油層と水層とに分離する水洗工程、(4)分離した水層から抽剤および水を留去する抽剤除去工程を有し、抽剤除去工程で分離された缶出液を抽出工程に戻すことを特徴とするポリオールの製造法。
Figure 0004691756
(I) When producing a polyol by reacting an aliphatic aldehyde represented by the formula with formaldehyde in the presence of a basic catalyst, (1) a concentration step for separating water and unreacted formaldehyde from the reaction solution by distillation; (2 ) An extraction step for extracting the polyol with the extractant; (3) a water wash step for washing the extract obtained by the extraction step into an oil layer and a water layer containing the polyol; and (4) extraction from the separated aqueous layer. A method for producing a polyol, comprising: an extractant removing step for distilling off the agent and water, and returning the bottoms separated in the extractant removing step to the extract step.
Figure 0004691756
抽出工程に戻す缶出液中の水濃度が20〜80重量%である請求項1に記載のポリオールの製造法 The method for producing a polyol according to claim 1, wherein the concentration of water in the bottoms returned to the extraction step is 20 to 80% by weight .
JP2000192470A 2000-06-27 2000-06-27 Production method of polyol Expired - Fee Related JP4691756B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2000192470A JP4691756B2 (en) 2000-06-27 2000-06-27 Production method of polyol
US09/874,276 US7087800B2 (en) 2000-06-27 2001-06-06 Process for producing a polyol
EP01113870A EP1167330B1 (en) 2000-06-27 2001-06-07 Process for producing a polyol
DE60130708T DE60130708T2 (en) 2000-06-27 2001-06-07 Process for the preparation of a polyol
TW090115390A TW521070B (en) 2000-06-27 2001-06-26 Process for producing a polyol
KR1020010036488A KR100763098B1 (en) 2000-06-27 2001-06-26 Process for producing a polyol
CNB01121841XA CN1325453C (en) 2000-06-27 2001-06-27 Method for preparing polylol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000192470A JP4691756B2 (en) 2000-06-27 2000-06-27 Production method of polyol

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010246566A Division JP2011021039A (en) 2010-11-02 2010-11-02 Method for producing polyol

Publications (2)

Publication Number Publication Date
JP2002003421A JP2002003421A (en) 2002-01-09
JP4691756B2 true JP4691756B2 (en) 2011-06-01

Family

ID=18691598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000192470A Expired - Fee Related JP4691756B2 (en) 2000-06-27 2000-06-27 Production method of polyol

Country Status (1)

Country Link
JP (1) JP4691756B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100837523B1 (en) * 2006-03-07 2008-06-12 주식회사 엘지화학 Method for Preparing Trimethylolpropane

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5679632A (en) * 1979-12-04 1981-06-30 Mitsubishi Gas Chem Co Inc Preparation of polyhydric alcohol

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3956406A (en) * 1974-10-04 1976-05-11 Eastman Kodak Company Purification of trimethylolpropane

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5679632A (en) * 1979-12-04 1981-06-30 Mitsubishi Gas Chem Co Inc Preparation of polyhydric alcohol

Also Published As

Publication number Publication date
JP2002003421A (en) 2002-01-09

Similar Documents

Publication Publication Date Title
JP4712864B2 (en) Method for producing trimethylolpropane
EP1167330B1 (en) Process for producing a polyol
EP0799815B1 (en) Process for producing ditrimethylolpropane
US6080896A (en) Process for producing polyhydric alcohol
JP3812598B2 (en) Method for producing polyhydric alcohol
JP4635300B2 (en) Method for producing polyol
JP4003018B2 (en) Production method of polyhydric alcohol
JP4691756B2 (en) Production method of polyol
EP0465853B1 (en) Method for producing 4-hydroxybutyl (meth)acrylate
JP2011021039A (en) Method for producing polyol
JP4561939B2 (en) Production method of polyhydric alcohol
JP4599664B2 (en) Production method of polyhydric alcohol
JPH02265654A (en) Minimization of catalyst loss during manufacture of alcohol
JP4117413B2 (en) Process for producing 2,2'-bis (hydroxymethyl) alkanal and 2,2'-bis (hydroxymethyl) alkanoic acid
JP2002003419A (en) Method for producing polyhydric alcohol
JP3958865B2 (en) Method for producing dimethylolalkanoic acid
JP6270476B2 (en) Method for producing ditrimethylolpropane
JPH11130719A (en) Purification of dimethylolalkanal
JPH11228478A (en) Production of dimethylolalkanal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100421

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100623

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101102

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4691756

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees