JP4599664B2 - Production method of polyhydric alcohol - Google Patents

Production method of polyhydric alcohol Download PDF

Info

Publication number
JP4599664B2
JP4599664B2 JP2000192471A JP2000192471A JP4599664B2 JP 4599664 B2 JP4599664 B2 JP 4599664B2 JP 2000192471 A JP2000192471 A JP 2000192471A JP 2000192471 A JP2000192471 A JP 2000192471A JP 4599664 B2 JP4599664 B2 JP 4599664B2
Authority
JP
Japan
Prior art keywords
extract
polyhydric alcohol
extractant
extraction
extracted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000192471A
Other languages
Japanese (ja)
Other versions
JP2002003422A (en
Inventor
暎之 二宮
俊雄 渡辺
淳 岩本
副武 宮下
将史 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2000192471A priority Critical patent/JP4599664B2/en
Priority to US09/874,276 priority patent/US7087800B2/en
Priority to DE60130708T priority patent/DE60130708T2/en
Priority to EP01113870A priority patent/EP1167330B1/en
Priority to TW090115390A priority patent/TW521070B/en
Priority to KR1020010036488A priority patent/KR100763098B1/en
Priority to CNB01121841XA priority patent/CN1325453C/en
Publication of JP2002003422A publication Critical patent/JP2002003422A/en
Application granted granted Critical
Publication of JP4599664B2 publication Critical patent/JP4599664B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はポリエステル樹脂、アルキッド樹脂、ポリウレタン樹脂、ポリカーボネート樹脂、可塑剤、潤滑油、界面活性剤、化粧品の基剤、反応性モノマーなどの原料として有用な多価アルコールの製造法に関する。
【0002】
【従来の技術】
多価アルコールを製造する一般的な方法(米国特許第3,935,274号、特開昭61−18741号)として、反応工程、反応生成液からの多価アルコールの抽出工程、抽剤分離工程、精製蒸留工程が挙げられる。反応工程では、塩基性触媒存在下、脂肪族アルデヒドとホルムアルデヒドとのアルドール縮合反応、続いて交叉カニツアロ反応の二段反応で行う方法が知られている。
【0003】
この反応生成液は、必要に応じて濃縮工程で濃縮された後、抽出工程で公知の方法(特公昭52−30486号、特公昭44−10767号)により、ギ酸塩と多価アルコールに分けられる。次に、抽剤分離工程で多価アルコールを含む抽出液から抽剤が分離され、得られた粗多価アルコールは、精製蒸留工程で精製される。例えば、アルコール、ケトン類等の溶剤で抽出し、抽剤分離した場合には、この粗多価アルコール中には、0.5%〜2%のギ酸塩が残存している。このギ酸塩が多価アルコール精製蒸留中に加熱されることにより塩基性化合物になり、これが引き金となって多価アルコールの熱分解を引き起こす。このため、このままでは蒸留できない。従って、リン酸等の酸を加えてギ酸塩を不活性化させた後に、回分式にて蒸留精製する方法(特公昭63−139141号)が一般的である。
【0004】
【発明が解決しようとする課題】
近年、多価アルコールの用途は多岐に及んでいる。最近特にUV硬化型多価アルコールの原料等では、従来以上の高純度品が要求されるようになった。しかしながら回分式の蒸留では品質が留分により一定しないため、高純度品の要求を満足するには、連続式蒸留により安定した品質を得る必要がある。
前述のように、従来から用いられているようなアルコール、ケトン類で反応生成液を抽出した場合、粗多価アルコール中に0.5%以上ギ酸塩が残存するため、ギ酸塩の不活性化のために酸を加える。この場合、連続式で蒸留精製を行なうと、蒸留塔内や、ボトムにギ酸塩の析出があり、閉塞等が起きるので、安定した運転が出来ない。このため蒸留精製が回分式となり、製品の品質にばらつきが生じる。また、アルコール、ケトン類で抽出した場合、多価アルコールの抽出率が悪く、コスト高となり、さらに副生するギ酸塩の品質の悪化にもなる。
【0005】
一方、脂肪族アルデヒドを抽剤として用いると多価アルコールの抽出率と多価アルコールからのギ酸塩の除去率が共に高くなる。例えば特公平4−17169号には、ブチルアルデヒド類を使用する方法が記載されており、この場合、抽剤分離した粗多価アルコール中の残存ギ酸塩を0.3%以下に抑えることが出来る。この粗多価アルコールであれば、連続蒸留が可能であるが、そのもの自体が反応性に富む脂肪族アルデヒドを抽剤として用いるので、抽剤分離時のため蒸留する際に、常圧下での蒸留では多価アルコールと抽剤アルデヒドのアセタールが大量に副生する。例えば、脂肪族アルデヒドがノルマルブチルアルデヒド(以下NBALと称す)で多価アルコールがトリメチロールプロパン(以下TMPと称す)の場合、(3)式で示されるTMP・NBALアセタールが副生し、また、NBAL同士も反応して(4)式で示されるNBALアルドールが副生する。また、減圧低温での蒸留ではこれらアセタール類の副生はないものの溶剤の回収率が低いために実用的ではない。
【0006】
【化3】

Figure 0004599664
【化4】
Figure 0004599664
【0007】
本発明の目的は、脂肪族アルデヒドとホルムアルデヒドを反応させて多価アルコールを製造する方法において、抽剤に脂肪族アルデヒドを用いて反応生成液より多価アルコールを抽出してもアセタール化合物やアルドール化合物の副生が少なく、高純度多価アルコールを高収率で得る方法を提供することである。
【0008】
【課題を解決するための手段】
本発明者らは、上記課題を解決するために鋭意検討した結果、抽出溶剤に脂肪族アルデヒドを用いて反応生成液より多価アルコールを抽出するに際し、抽出液のpHを調整してから抽剤を分離することにより、副生物の生成が少なく高純度多価アルコールが得られることを見出し本発明に到達した。
即ち本発明は、塩基性触媒存在下で(1)式に示される脂肪族アルデヒドとホルムアルデヒドとを反応させて多価アルコールを製造する方法において、反応生成液から目的の多価アルコールを分離する際に、(2)式に示されるアルデヒドを抽剤に用いて抽出を行なった後、塩基性水溶液で当該抽出液を水洗し、抽出液のpHを調整してから該抽剤を分離することを特徴とする多価アルコールの製造法である。
【0009】
【化5】
Figure 0004599664
【化6】
Figure 0004599664
【0010】
【発明の実施の形態】
本発明で使用されるホルムアルデヒドはホルムアルデヒド水溶液でも固形のパラホルムアルデヒドでもよい。
ホルムアルデヒドの使用量は、目的とする多価アルコールによって異なる。例えば、原料である(1)式のR1がエチル基でR2が水素であるNBALとホルムアルデヒドとを反応させてTMPを製造する場合のホルムアルデヒドの使用量は、NBAL1モルに対し3.0〜6.0モルであり、好ましくは3.05〜4.0モルである(理論モル比=3.0)。また、(1)式のR1、R2ともにメチル基であるイソブチルアルデヒド(以下IBALと称す)とホルムアルデヒドとを反応させてネオペンチルグリコール(以下NPGと称す)を製造する場合のホルムアルデヒドの使用量はIBAL1モルに対し2.0〜5.0モルであり、好ましくは2.05〜3.0モルである(理論モル比=2.0)。
【0011】
本発明においてアルドール縮合反応および交叉カニツアロ反応における塩基性触媒は、トリメチルアミン、トリエチルアミン等のアミン類、ナトリウム、カリウム、リチウム、カルシウム、およびアンモニウムの水酸化物塩、又、炭酸塩、炭酸水素塩又は、その混合物の何れでもよいが、工業的に実施するにはナトリウム塩、カルシウム塩が一般的である。
【0012】
塩基性触媒の使用量は、原料の脂肪族アルデヒドに対し、1.0〜2.0倍モル量である。副生物を抑えて、高選択率に目的の多価アルコールを得るためには、反応条件等に合わせて調整する必要がある。
得られた反応生成液は、ギ酸でpH6.5〜7.0程度に中和した後に、過剰のホルムアルデヒドを回収することと効率良く抽出するために、脱ホルムアルデヒドと濃縮をすることが好ましく、この時、ギ酸塩の濃度が15〜25%になるように濃縮する。
【0013】
本発明では、反応生成液、好ましくはその濃縮液から抽出によって目的の多価アルコールとギ酸塩とを分離する。
ここで、使用する抽剤は(2)式に示されるアルデヒドである。具体的には、NBAL、IBAL、プロピルアルデヒド等であり、これらを2種類以上混合して用いてもよい。
【0014】
【化7】
Figure 0004599664
【0015】
抽剤の使用量は、使用するアルデヒドや条件によって異なるが、通常は濃縮液に対し1.0〜4.0重量倍、好ましくは1.5〜2.5重量倍である。
【0016】
抽出で用いる抽出機は、攪拌効率が良いものが用いられ、多段式の槽でも良いが、付帯設備が多くなるため、一塔式の振動式カラム型が効率的である。また、抽出液側に水洗槽を設けて抽出液を水洗することで効率良くギ酸塩を除去できる。
抽出、水洗温度は20℃〜45℃が良く、好ましくは25℃〜35℃である。20℃以下では多価アルコールの抽剤への溶解度が低く、分離効率が良くない。45℃以上では、抽剤アルデヒド同士のアルドール縮合が起きやすい。
【0017】
次いで抽出液から抽剤を分離する際に抽剤アルデヒドと目的多価アルコールのアセタール、また、抽剤アルデヒド同士のアルドールが副生されやすいので、これを防ぐ方策として抽出液のpHを6.0〜9.0、好ましくは6.5〜8.0に調整する。pH6.0以下ではアセタールが大量に副生する。pH9.0以上では抽剤アルデヒドのアルドール縮合が起きやすい。
尚、ここで抽出液の液性を評価する際にpH計で得られた値を使用することができる。本来、pH値は水溶液中の水素イオン濃度より定義されるものであり、水溶液の酸性・塩基性度を評価するものであるが、本発明での有機溶媒の液性としての酸性・塩基性度の評価にも、適用可能である。
このpHを調整する方法は、抽出機に供給する反応生成液または濃縮液にアルカリを添加してもよいが、むしろ、抽出後に水洗槽で調整することが好ましい。ここでいう水洗槽とは、抽出液を水で水洗して抽出液中に残存するギ酸塩の大部分取り除くための槽である。調整するアルカリは、アルドール縮合反応および交叉カニツアロ反応に用いた塩基性触媒が望ましく、水酸化物塩、炭酸塩、炭酸水素塩又は、その混合物の何れかが好ましい。
【0018】
抽剤の分離は、蒸留塔で行なう方法が一般的であるが、その供給方法は、あらかじめ予熱器で使用抽剤の沸点以上で短時間加熱し、蒸留塔上段部にフラッシュさせ、大部分のアルデヒドを瞬時に気化させることが好ましい。この時、加熱時間が長すぎるとアセタールの副生量が増加する。また、アルデヒドを蒸留塔下部に落とさないために、蒸留塔下部に水もしくはスチームを抽出液に対して重量で0.1〜1.0倍量供給する。この効果によって、アセタールの副生が減少する。
【0019】
【実施例】
次に実施例により、本発明をさらに具体的に説明する。但し本発明は、以下の実施例により何ら制限されるものではない。
尚、本実施例および比較例において、抽出機としては、振動式カラム型である、住友重機(株)製カールカラム抽出機を使用した。
【0020】
実施例1
(NBALとホルムアルデヒドからTMPを製造)
容量30Lの反応槽に40重量%ホルムアルデヒド水溶液7207g(96.0モル)と水8110g仕込み、撹拌下に温度を40℃まで昇温した。この中に50重量%水酸化ナトリウム水溶液2520g(31.5モル)とNBAL2163g(30.0モル)を一定速度で30分間かけて添加した。この間の温度は40℃から徐々に上昇させ最高温度60℃に制御させた。添加終了後、温度60℃に制御して15分間反応を継続した。
反応終了後、反応生成液20000gを分析した結果、TMPを17.5重量%含んでおり、TMP収率は87.1モル%であった。
【0021】
この反応生成液をギ酸でpH7.0に中和した後、加圧蒸留装置300kPaで2倍濃縮した。この濃縮液の組成は、TMP35.0重量%、ギ酸ナトリウム21.4重量%であった。
この濃縮液を抽出機により連続抽出を行なった。抽料として濃縮液を1000g/hrで抽出機の上段へ供給し、抽剤としてNBALを2000g/hrで下段へ供給した。抽出機内の温度は30℃に制御し、抽出カラム塔頂より抽出液を、塔底より抽残液を抜き出した。得られた抽出液を撹拌下の容量1Lの水洗槽に0.5重量%炭酸水素ナトリウム水溶液280g/hrとともに供給し、水洗槽内温度を30℃に保った。水洗槽に付属したデカンタの上層より抽出液を抜き出した。また、デカンタ下層液を抜き出し、濃縮液とともに抽出機上段へ供給した。定常状態での各液の流量は、抽出カラム塔頂よりの抽出液:2584g/hr、抽残液:656g/hr、水洗後の抽出液:2624g/hr、デカンタ下層液:240g/hrであった。
【0022】
一連の連続工程を15時間継続し、抽出液の分析を行なった。抽出液の組成は、TMP13.3%、ギ酸ナトリウム80ppm、水10.3%であった。また、抽出液のpHは8.5であり、アセタールは130ppm、アルドールは1500ppmであった。尚、抽残液の組成は、ギ酸ナトリウム32.6%、TMP530ppm、NBAL0.6%であった。この時のギ酸ナトリウム除去率は99.9%、TMP抽出率は99.9%であった。
この抽出液を予熱器で70℃まで加熱し、抽剤回収蒸留塔上段に2624g/hrでフラッシュ供給し、また蒸留塔下部よりスチームを500g/hrで供給した。留出液を2760g/hrで、缶出液を364g/hrで抜き出した。留出液中のアルド−ルの量は0.14%(TMP基準で1.25%)であった。缶出液中のアセタールの量は原料NBAL基準で0.24%であった。ここで言う原料NBAL基準とは、原料NBAL全体に対するアセタールを生成するために消費されるNBALの割合である。また、この缶出液を連続蒸留で精製することにより、GC純度99.9%の高純度TMPが98%の収率で得られた。(GC:ガスクロマトグラフィー)
【0023】
比較例1
実施例1における濃縮液を抽出機により連続抽出を行なった。抽料として濃縮液を1000g/hrで抽出機の上段へ供給し、抽剤としてNBALを2000g/hrで下段へ供給した。抽出機内の温度は30℃に制御し、抽出カラム塔頂より抽出液を、塔底より抽残液を抜き出した。得られた抽出液をアルカリ添加せずに撹拌下の容量1Lの水洗槽に水280g/hrとともに供給し、水洗槽内温度を30℃に保った。水洗槽に付属したデカンタの上層より抽出液を抜き出した。また、デカンタ下層液を抜き出し、濃縮液とともに抽出機上段へ供給した。定常状態での各液の流量は、抽出カラム塔頂よりの抽出液:2584g/hr、抽残液:656g/hr、水洗後の抽出液:2624g/hr、デカンタ下層液:240g/hrであった。
【0024】
一連の連続工程を15時間継続し、抽出液の分析を行なった。抽出液の組成は、TMP13.0%、ギ酸ナトリウム130ppm、水10.6%であった。尚、抽出液のpHは4.5であり、アセタールは5100ppm、アルドールが3200ppmであった。
この抽出液を、抽剤回収蒸留塔上段に2624g/hrで供給した。留出液を2206g/hrで、缶出液を418g/hrで抜き出した。留出液中のアルド−ルの量は0.25%(TMP基準で2.23%)であった。缶出液中のアセタールの量は原料NBALで15.3%であった。
【0025】
比較例2
実施例1における濃縮液を抽出機により連続抽出を行なった。抽料として濃縮液を1000g/hrで抽出機の上段へ供給し、抽剤としてメチルイソプロピルケトンを2000g/hrで下段へ供給した。抽出機内の温度は50℃に制御し、抽出カラム塔頂より抽出液を、塔底より抽残液を抜き出した。尚、得られた抽出液を撹拌下の容量1Lの水洗槽にアルカリ添加しない水280g/hrとともに供給し、水洗槽内温度を60℃に保った。水洗槽に付属したデカンタの上層より抽出液を抜き出した。また、デカンタ下層液を抜き出し、濃縮液とともに抽出機上段へ供給した。定常状態での各液の流量は、抽出カラム塔頂よりの抽出液:2564g/hr、抽残液:676g/hr、水洗後の抽出液:2604g/hr、デカンタ下層液:240g/hrであった。
【0026】
一連の連続工程を15時間継続し、抽出液の分析を行なった。抽出液の組成は、TMP13.1%、ギ酸ナトリウム130ppm、水10.3%であった。
この抽出液を、抽剤回収蒸留塔上段に2604g/hrで供給した。留出液を2181g/hrで、缶出液を423g/hrで抜き出した。この缶出液中のギ酸ナトリウムは、0.78%であった。この缶出液1000gにリン酸5.9g添加し、150℃、10kPa以下において2時間で加熱し、ギ酸ナトリウムの不活性化処理を行った。この処理液について回分式蒸留を行ない、GC純度97.5%のTMPが86%の収率で得られた。
【0027】
【発明の効果】
上記実施例からも明らかなように、本発明により抽出溶剤に脂肪族アルデヒドを用いて反応生成液を抽出するに際し、抽出液のpHを調整してから抽剤を分離することにより、副生物の生成が少なく、連続蒸留が可能となり、高純度の多価アルコールが得られる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a polyhydric alcohol useful as a raw material for polyester resins, alkyd resins, polyurethane resins, polycarbonate resins, plasticizers, lubricating oils, surfactants, cosmetic bases, reactive monomers and the like.
[0002]
[Prior art]
As a general method for producing a polyhydric alcohol (US Pat. No. 3,935,274, JP-A-61-18741), a reaction step, a polyhydric alcohol extraction step from a reaction product solution, and an extract separation step And a purification distillation step. In the reaction step, there is known a method in which an aldol condensation reaction between an aliphatic aldehyde and formaldehyde is carried out in the presence of a basic catalyst, followed by a two-stage reaction of a crossover cannula reaction.
[0003]
This reaction product solution is concentrated in the concentration step as necessary, and then separated into formate and polyhydric alcohol in the extraction step by a known method (Japanese Examined Patent Publication Nos. 52-30486 and 44-10767). . Next, the extract is separated from the extract containing the polyhydric alcohol in the extract separation step, and the obtained crude polyhydric alcohol is purified in the purification distillation step. For example, when extracted with a solvent such as alcohol and ketones and separated as an extractant, 0.5% to 2% of formate remains in the crude polyhydric alcohol. When this formate is heated during the polyhydric alcohol purification distillation, it becomes a basic compound, which triggers thermal decomposition of the polyhydric alcohol. For this reason, it cannot be distilled as it is. Therefore, a method of distilling and purifying batchwise after adding an acid such as phosphoric acid to inactivate the formate (Japanese Patent Publication No. 63-139141) is generally used.
[0004]
[Problems to be solved by the invention]
In recent years, the use of polyhydric alcohol has been widespread. Recently, in particular, raw materials for UV curable polyhydric alcohols have been required to have higher purity products. However, in batch distillation, the quality is not constant depending on the fraction, so that it is necessary to obtain stable quality by continuous distillation in order to satisfy the requirements for high purity products.
As described above, when the reaction product solution is extracted with alcohols and ketones as conventionally used, formate is inactivated because 0.5% or more of formate remains in the crude polyhydric alcohol. Add acid for. In this case, if the distillation purification is carried out continuously, formate precipitates are deposited in the distillation column and at the bottom, and clogging occurs, so that stable operation cannot be performed. For this reason, distillation purification becomes a batch type, resulting in variations in product quality. Moreover, when extracted with alcohol and ketones, the extraction rate of polyhydric alcohol is poor, the cost is high, and the quality of by-product formate is deteriorated.
[0005]
On the other hand, when an aliphatic aldehyde is used as an extractant, both the extraction rate of polyhydric alcohol and the removal rate of formate from polyhydric alcohol are increased. For example, Japanese Patent Publication No. 4-17169 describes a method using butyraldehydes, and in this case, the residual formate in the crude polyhydric alcohol separated from the extractant can be suppressed to 0.3% or less. . With this crude polyhydric alcohol, continuous distillation is possible, but since an aliphatic aldehyde that itself is highly reactive is used as the extractant, distillation under normal pressure is performed when distilling for the purpose of separating the extractant. Then, a large amount of polyhydric alcohol and extractant aldehyde acetal are by-produced. For example, when the aliphatic aldehyde is normal butyraldehyde (hereinafter referred to as NBAL) and the polyhydric alcohol is trimethylolpropane (hereinafter referred to as TMP), TMP / NBAL acetal represented by the formula (3) is by-produced, NBALs also react with each other, and NBAL aldol represented by the formula (4) is by-produced. Further, although distillation at reduced pressure and low temperature does not produce these acetals, it is not practical because of the low solvent recovery rate.
[0006]
[Chemical 3]
Figure 0004599664
[Formula 4]
Figure 0004599664
[0007]
An object of the present invention is to produce a polyhydric alcohol by reacting an aliphatic aldehyde with formaldehyde, and an acetal compound or aldol compound even if the polyhydric alcohol is extracted from the reaction product solution using an aliphatic aldehyde as the extractant. It is an object of the present invention to provide a method for obtaining a high-purity polyhydric alcohol in a high yield.
[0008]
[Means for Solving the Problems]
As a result of intensive investigations to solve the above problems, the present inventors have adjusted the pH of the extract solution after extracting the polyhydric alcohol from the reaction product solution using an aliphatic aldehyde as an extraction solvent. As a result, it was found that a high-purity polyhydric alcohol can be obtained with little by-product formation.
That is, the present invention provides a method for producing a polyhydric alcohol by reacting an aliphatic aldehyde represented by the formula (1) with formaldehyde in the presence of a basic catalyst, and separating the target polyhydric alcohol from a reaction product solution. In addition, after performing extraction using the aldehyde represented by the formula (2) as the extract, the extract is washed with a basic aqueous solution, and the extract is adjusted after adjusting the pH of the extract. It is the manufacturing method of the polyhydric alcohol characterized.
[0009]
[Chemical formula 5]
Figure 0004599664
[Chemical 6]
Figure 0004599664
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The formaldehyde used in the present invention may be an aqueous formaldehyde solution or solid paraformaldehyde.
The amount of formaldehyde used varies depending on the target polyhydric alcohol. For example, the amount of formaldehyde used in the production of TMP by reacting formaldehyde with NBAL in which R 1 of the formula (1) is an ethyl group and R 2 is hydrogen is 3.0 to 1 mol of NBAL. 6.0 mol, preferably 3.05 to 4.0 mol (theoretical molar ratio = 3.0). In addition, the amount of formaldehyde used in the production of neopentyl glycol (hereinafter referred to as NPG) by reacting isobutyraldehyde (hereinafter referred to as IBAL), which is a methyl group with R 1 and R 2 in formula (1), and formaldehyde. Is 2.0 to 5.0 mol, preferably 2.05 to 3.0 mol (theoretical molar ratio = 2.0) with respect to 1 mol of IBAL.
[0011]
In the present invention, the basic catalyst in the aldol condensation reaction and the cross cannula reaction is an amine such as trimethylamine or triethylamine, a hydroxide salt of sodium, potassium, lithium, calcium, or ammonium, or a carbonate, bicarbonate or Any of the mixtures may be used, but sodium salt and calcium salt are common for industrial implementation.
[0012]
The usage-amount of a basic catalyst is 1.0-2.0 times mole amount with respect to the aliphatic aldehyde of a raw material. In order to suppress the by-products and obtain the desired polyhydric alcohol with high selectivity, it is necessary to adjust according to the reaction conditions.
The resulting reaction product solution is preferably neutralized with formic acid to a pH of about 6.5 to 7.0, and then subjected to formaldehyde removal and concentration in order to recover excess formaldehyde and extract efficiently. Concentrate to a formate concentration of 15-25%.
[0013]
In the present invention, the desired polyhydric alcohol and formate are separated from the reaction product solution, preferably the concentrated solution, by extraction.
Here, the extractant to be used is an aldehyde represented by the formula (2). Specifically, they are NBAL, IBAL, propyl aldehyde, etc., and two or more of these may be mixed and used.
[0014]
[Chemical 7]
Figure 0004599664
[0015]
The amount of the extractant to be used varies depending on the aldehyde to be used and conditions, but is usually 1.0 to 4.0 times by weight, preferably 1.5 to 2.5 times by weight of the concentrated solution.
[0016]
As the extractor used in the extraction, one having good stirring efficiency may be used, and a multistage tank may be used. However, since ancillary facilities increase, a single-column vibration column type is efficient. Further, formate can be efficiently removed by providing a water washing tank on the extract side and washing the extract with water.
The extraction and washing temperature is preferably 20 ° C to 45 ° C, and preferably 25 ° C to 35 ° C. Below 20 ° C., the solubility of the polyhydric alcohol in the extractant is low and the separation efficiency is not good. Above 45 ° C, aldol condensation between extractant aldehydes tends to occur.
[0017]
Next, when separating the extract from the extract, the acetal of the extract aldehyde and the target polyhydric alcohol and the aldol between the extract aldehydes are easily produced as by-products. As a measure to prevent this, the pH of the extract is adjusted to 6.0. To 9.0, preferably 6.5 to 8.0. At pH 6.0 or less, a large amount of acetal is by-produced. Above pH 9.0, the aldol condensation of the extractant aldehyde tends to occur.
In addition, when evaluating the liquid property of an extract here, the value obtained with the pH meter can be used. Originally, the pH value is defined by the hydrogen ion concentration in the aqueous solution, and evaluates the acidity / basicity of the aqueous solution, but the acidity / basicity as the liquidity of the organic solvent in the present invention. It is also applicable to the evaluation of
In this method of adjusting the pH, alkali may be added to the reaction product solution or concentrated solution supplied to the extractor, but it is preferable to adjust the pH in a washing tank after extraction. The water washing tank here is a tank for washing most of the formate remaining in the extract by washing the extract with water. The alkali to be adjusted is preferably a basic catalyst used in the aldol condensation reaction and the cross cannula reaction, and is preferably any one of a hydroxide salt, a carbonate, a bicarbonate, or a mixture thereof.
[0018]
Separation of the extractant is generally carried out in a distillation column, but the supply method is preheating for a short time above the boiling point of the extractant used in advance, and flushing it to the upper stage of the distillation column. It is preferred to vaporize the aldehyde instantaneously. At this time, if the heating time is too long, the amount of acetal by-product increases. In order not to drop the aldehyde in the lower part of the distillation tower, water or steam is supplied to the lower part of the distillation tower in an amount of 0.1 to 1.0 times by weight with respect to the extract. This effect reduces acetal by-products.
[0019]
【Example】
Next, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples.
In this example and comparative example, as the extractor, a vibrating column type curl column extractor manufactured by Sumitomo Heavy Industries, Ltd. was used.
[0020]
Example 1
(Manufacturing TMP from NBAL and formaldehyde)
A reactor of 30 L capacity was charged with 7207 g (96.0 mol) of 40% by weight aqueous formaldehyde solution and 8110 g of water, and the temperature was raised to 40 ° C. with stirring. To this, 2520 g (31.5 mol) of 50 wt% sodium hydroxide aqueous solution and 2163 g (30.0 mol) of NBAL were added at a constant rate over 30 minutes. During this period, the temperature was gradually increased from 40 ° C. and controlled to a maximum temperature of 60 ° C. After completion of the addition, the reaction was continued for 15 minutes while controlling the temperature at 60 ° C.
As a result of analyzing 20000 g of the reaction product solution after the completion of the reaction, it contained 17.5% by weight of TMP and the yield of TMP was 87.1 mol%.
[0021]
The reaction product solution was neutralized with formic acid to pH 7.0, and then concentrated twice with a pressure distillation apparatus of 300 kPa. The composition of this concentrate was 35.0 wt% TMP and 21.4 wt% sodium formate.
This concentrated solution was continuously extracted with an extractor. The concentrated solution was supplied to the upper stage of the extractor at 1000 g / hr as the extract, and NBAL was supplied to the lower stage at 2000 g / hr as the extractant. The temperature in the extractor was controlled at 30 ° C., and the extract was extracted from the top of the extraction column and the extraction residue was extracted from the bottom. The obtained extract was supplied to a 1 L water washing tank under stirring together with 280 g / hr of a 0.5 wt% aqueous sodium hydrogen carbonate solution, and the temperature in the water washing tank was kept at 30 ° C. The extract was extracted from the upper layer of the decanter attached to the washing tank. Moreover, the lower decanter liquid was extracted and supplied to the upper stage of the extractor together with the concentrated liquid. The flow rate of each liquid in the steady state was: extract from the top of the extraction column: 2584 g / hr, extraction residual liquid: 656 g / hr, extract after washing: 2624 g / hr, decanter lower layer liquid: 240 g / hr. It was.
[0022]
A series of continuous steps was continued for 15 hours, and the extract was analyzed. The composition of the extract was TMP 13.3%, sodium formate 80 ppm, and water 10.3%. The pH of the extract was 8.5, acetal was 130 ppm, and aldol was 1500 ppm. In addition, the composition of the extraction liquid was 32.6% sodium formate, 530 ppm TMP, and 0.6% NBAL. At this time, the sodium formate removal rate was 99.9%, and the TMP extraction rate was 99.9%.
This extract was heated to 70 ° C. with a preheater, flushed to the upper stage of the extractant collection distillation column at 2624 g / hr, and steam was fed from the bottom of the distillation column at 500 g / hr. The distillate was extracted at 2760 g / hr and the bottoms were extracted at 364 g / hr. The amount of aldol in the distillate was 0.14% (1.25% based on TMP). The amount of acetal in the bottoms was 0.24% based on the raw material NBAL. The raw material NBAL standard mentioned here is the ratio of NBAL consumed to produce acetal with respect to the whole raw material NBAL. Further, by purifying the bottoms by continuous distillation, high purity TMP having a GC purity of 99.9% was obtained in a yield of 98%. (GC: Gas chromatography)
[0023]
Comparative Example 1
The concentrated solution in Example 1 was continuously extracted with an extractor. The concentrated solution was supplied to the upper stage of the extractor at 1000 g / hr as the extract, and NBAL was supplied to the lower stage at 2000 g / hr as the extractant. The temperature in the extractor was controlled at 30 ° C., and the extract was extracted from the top of the extraction column and the extraction residue was extracted from the bottom. The obtained extract was supplied together with 280 g / hr of water to a 1 L capacity washing tank under stirring without adding an alkali, and the temperature in the washing tank was kept at 30 ° C. The extract was extracted from the upper layer of the decanter attached to the washing tank. Moreover, the lower decanter liquid was extracted and supplied to the upper stage of the extractor together with the concentrated liquid. The flow rate of each liquid in the steady state was: extract from the top of the extraction column: 2584 g / hr, extraction residual liquid: 656 g / hr, extract after washing: 2624 g / hr, decanter lower layer liquid: 240 g / hr. It was.
[0024]
A series of continuous steps was continued for 15 hours, and the extract was analyzed. The composition of the extract was 13.0% TMP, 130 ppm sodium formate, and 10.6% water. The pH of the extract was 4.5, acetal was 5100 ppm, and aldol was 3200 ppm.
This extract was supplied to the upper stage of the extractant collecting distillation column at 2624 g / hr. The distillate was extracted at 2206 g / hr and the bottoms were extracted at 418 g / hr. The amount of aldol in the distillate was 0.25% (2.23% based on TMP). The amount of acetal in the bottoms was 15.3% with the raw material NBAL.
[0025]
Comparative Example 2
The concentrated solution in Example 1 was continuously extracted with an extractor. The concentrated solution was supplied to the upper stage of the extractor at 1000 g / hr as the extract, and methyl isopropyl ketone was supplied to the lower stage at 2000 g / hr as the extractant. The temperature in the extractor was controlled at 50 ° C., and the extract was extracted from the top of the extraction column and the extraction residue was extracted from the bottom. The obtained extract was supplied to a 1 L capacity washing tank under stirring together with 280 g / hr of water not added with alkali, and the temperature in the washing tank was kept at 60 ° C. The extract was extracted from the upper layer of the decanter attached to the washing tank. Moreover, the lower decanter liquid was extracted and supplied to the upper stage of the extractor together with the concentrated liquid. The flow rate of each liquid in the steady state was: extraction liquid from the top of the extraction column: 2564 g / hr, extraction residual liquid: 676 g / hr, extracted liquid after washing: 2604 g / hr, decanter lower layer liquid: 240 g / hr. It was.
[0026]
A series of continuous steps was continued for 15 hours, and the extract was analyzed. The composition of the extract was TMP 13.1%, sodium formate 130 ppm, and water 10.3%.
This extract was supplied to the upper stage of the extractant collecting distillation column at 2604 g / hr. The distillate was extracted at 2181 g / hr and the bottoms were extracted at 423 g / hr. The sodium formate in the bottoms was 0.78%. To 1000 g of this bottoms, 5.9 g of phosphoric acid was added and heated at 150 ° C. and 10 kPa or less for 2 hours to inactivate sodium formate. This treatment solution was subjected to batch distillation, and TMP with a GC purity of 97.5% was obtained in a yield of 86%.
[0027]
【The invention's effect】
As is clear from the above examples, when extracting the reaction product liquid using aliphatic aldehyde as the extraction solvent according to the present invention, the extract is separated after adjusting the pH of the extract liquid, Production is low, continuous distillation is possible, and high-purity polyhydric alcohol is obtained.

Claims (3)

塩基性触媒存在下で(1)式に示される脂肪族アルデヒドとホルムアルデヒドとを反応させて多価アルコールを製造する方法において、反応生成液から目的の多価アルコールを分離する際に、(2)式に示されるアルデヒドを抽剤に用いて抽出を行なった後、塩基性水溶液で当該抽出液を水洗し、抽出液のpHを6.0〜9.0に調整してから該抽剤を分離することを特徴とする多価アルコールの製造法。
Figure 0004599664
Figure 0004599664
In the method for producing a polyhydric alcohol by reacting an aliphatic aldehyde represented by the formula (1) with formaldehyde in the presence of a basic catalyst, when separating the target polyhydric alcohol from the reaction product liquid, (2) Extraction is performed using the aldehyde represented by the formula as an extractant, and then the extract is washed with a basic aqueous solution and the pH of the extract is adjusted to 6.0 to 9.0, and then the extract is separated. A process for producing a polyhydric alcohol, characterized in that:
Figure 0004599664
Figure 0004599664
抽出液からの抽剤の分離に際して、予め抽出液を予熱し、蒸留塔上段にフラッシュさせる請求項1に記載の多価アルコールの製造法。The method for producing a polyhydric alcohol according to claim 1, wherein the extract is preheated and flushed to the upper stage of the distillation column when the extractant is separated from the extract. 抽出液からの抽剤の分離を、蒸留塔ボトムに水またはスチームを導入しながら行なう請求項1に記載の多価アルコールの製造法。The method for producing a polyhydric alcohol according to claim 1, wherein the extractant is separated from the extract while introducing water or steam into the bottom of the distillation column.
JP2000192471A 2000-06-27 2000-06-27 Production method of polyhydric alcohol Expired - Lifetime JP4599664B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2000192471A JP4599664B2 (en) 2000-06-27 2000-06-27 Production method of polyhydric alcohol
US09/874,276 US7087800B2 (en) 2000-06-27 2001-06-06 Process for producing a polyol
EP01113870A EP1167330B1 (en) 2000-06-27 2001-06-07 Process for producing a polyol
DE60130708T DE60130708T2 (en) 2000-06-27 2001-06-07 Process for the preparation of a polyol
TW090115390A TW521070B (en) 2000-06-27 2001-06-26 Process for producing a polyol
KR1020010036488A KR100763098B1 (en) 2000-06-27 2001-06-26 Process for producing a polyol
CNB01121841XA CN1325453C (en) 2000-06-27 2001-06-27 Method for preparing polylol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000192471A JP4599664B2 (en) 2000-06-27 2000-06-27 Production method of polyhydric alcohol

Publications (2)

Publication Number Publication Date
JP2002003422A JP2002003422A (en) 2002-01-09
JP4599664B2 true JP4599664B2 (en) 2010-12-15

Family

ID=18691599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000192471A Expired - Lifetime JP4599664B2 (en) 2000-06-27 2000-06-27 Production method of polyhydric alcohol

Country Status (1)

Country Link
JP (1) JP4599664B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5711934A (en) * 1980-06-26 1982-01-21 Koei Chem Co Ltd Production of ditrimethylolalkane or dipentaerythritol in high ratio as by-product
JPH0417169B2 (en) * 1984-10-12 1992-03-25 Mitsubishi Gas Chemical Co

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3812598B2 (en) * 1994-10-20 2006-08-23 三菱瓦斯化学株式会社 Method for producing polyhydric alcohol

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5711934A (en) * 1980-06-26 1982-01-21 Koei Chem Co Ltd Production of ditrimethylolalkane or dipentaerythritol in high ratio as by-product
JPH0417169B2 (en) * 1984-10-12 1992-03-25 Mitsubishi Gas Chemical Co

Also Published As

Publication number Publication date
JP2002003422A (en) 2002-01-09

Similar Documents

Publication Publication Date Title
JP4712864B2 (en) Method for producing trimethylolpropane
US6692616B2 (en) Method for purifying trimethylolpropane, which is produced by hydrogenation, by means of continuous distillation
EP1167330B1 (en) Process for producing a polyol
EP0799815B1 (en) Process for producing ditrimethylolpropane
JP5434595B2 (en) Method for producing ditrimethylolpropane
US6080896A (en) Process for producing polyhydric alcohol
JP3812598B2 (en) Method for producing polyhydric alcohol
EP0895978B1 (en) Process for producing polyhydric alcohol
US4608443A (en) Method for the preparation of 1,4-butandial
JP4599664B2 (en) Production method of polyhydric alcohol
JP4635300B2 (en) Method for producing polyol
JP4691756B2 (en) Production method of polyol
JP4561939B2 (en) Production method of polyhydric alcohol
JP4117413B2 (en) Process for producing 2,2'-bis (hydroxymethyl) alkanal and 2,2'-bis (hydroxymethyl) alkanoic acid
JP2002226426A (en) Method for producing dimethylolbutanoic acid
JP2007070339A (en) Method for producing high-purity hydroxypivalaldehyde and/or its dimer
JP2002003419A (en) Method for producing polyhydric alcohol
JP2011021039A (en) Method for producing polyol
US9061985B2 (en) Method for concentrating aqueous 3-hydroxy-2,2-dimethylpropanal solution
JP2946944B2 (en) Method for producing alkylaminophenols
JPH11130719A (en) Purification of dimethylolalkanal
JPH11228478A (en) Production of dimethylolalkanal
JPWO2013005636A1 (en) Method for producing ditrimethylolpropane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100615

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100831

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100913

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4599664

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

EXPY Cancellation because of completion of term