JP4691282B2 - グラファイトナノファイバ粉体の製造装置 - Google Patents

グラファイトナノファイバ粉体の製造装置 Download PDF

Info

Publication number
JP4691282B2
JP4691282B2 JP2001276710A JP2001276710A JP4691282B2 JP 4691282 B2 JP4691282 B2 JP 4691282B2 JP 2001276710 A JP2001276710 A JP 2001276710A JP 2001276710 A JP2001276710 A JP 2001276710A JP 4691282 B2 JP4691282 B2 JP 4691282B2
Authority
JP
Japan
Prior art keywords
gas
graphite nanofiber
decompression tank
graphite
attached
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001276710A
Other languages
English (en)
Other versions
JP2003082534A (ja
Inventor
阿川  義昭
昌俊 大庭
原  泰博
繁 天野
明 星野
昌司 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2001276710A priority Critical patent/JP4691282B2/ja
Publication of JP2003082534A publication Critical patent/JP2003082534A/ja
Application granted granted Critical
Publication of JP4691282B2 publication Critical patent/JP4691282B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、平面ディスプレイ(電界放出型ディスプレイ)やCRTの電子管球の代用として電子発光素子を必要とする部品に利用されたり、2次電池(例えばLi電池)の充填材や水素吸蔵の充填材として利用され得るグラファイトナノファイバ粉体の製造装置に関するものである。
【0002】
【従来の技術】
グラファイトナノファイバは、カーボンナノチューブと構造が異なり、構造としては黒鉛層面の配向が知られている。すなわちグラファイトナノファイバは、黒鉛結晶の端面が非常に多い構造であることが他の炭素材に見られない特徴といえる(文献:化学VOL.54 No.6(1999年) pp33〜35参照)。
【0003】
このようなグラファイトナノファイバ粉体の製造について本発明者らは先に2001年特願第048688号において、製鉄所やごみ焼却所などにおいて排出される少なくとも一酸化炭素を含む高温排出ガスを、減圧チャンバ内に配置した複数の鉄系金属プレートの表面上にグラファイトナノファイバを生成する方法及び装置を提案した。
【0004】
【発明が解決しようとする課題】
ところで、従来技術においては、グラファイトナノファイバを大量に製造する方法は未だ確立されてない。
【0005】
また、先に提案したグラファイトナノファイバを生成する方法及び装置では、原料ガスとして製鉄所やごみ焼却所などにおいて排出される少なくとも一酸化炭素を含む高温排出ガスを使用するため、ガス中の不純物を除去するためフィルタを使用する必要があると共にその供給ガスの温度制御がなされていないので品質の点でもばらつきが生じ得る。さらに、減圧チャンバ内に加熱装置を組み込んでいるため、装置の動作の安全上必ずしも満足できるものではない。
【0006】
そこで、本発明は、動作の安定性がよく、品質の良いグラファイトナノファイバを大量に生成、製造できるグラファイトナノファイバの製造装置を提供することを目的としている。
【0007】
【課題を解決すめための手段】
上記の目的を達成するために、本発明によれば、真空ポンプで所要のレベルに排気できる減圧槽内にガス導入系により一酸化炭素ガス及び水素ガスを供給して減圧槽内に配置したグラファイトナノファイバ付着部材にグラファイトナノファイバを成長させてグラファイトナノファイバ粉体を生成するようにしたグラファイトナノファイバ粉体の製造装置において、グラファイトナノファイバ付着部材が減圧槽内に取付けられた少なくとも一枚の鉄系のプレートから成り、鉄系のプレートを加熱する加熱機構を減圧槽の外側に設けたことを特徴としている。
【0008】
本発明の一つの実施の形態によれば、グラファイトナノファイバ付着部材は、ベースプレートに取付けられた複数の鉄系のプレートから成り得、ベースプレートは減圧槽の開口部に密封して取付けられ得、またベースプレートの外側には加熱機構が取付けられ得る。
好ましくは、ベースプレートの外側に取付けられた加熱機構はシールドボックスで包囲され、シールドボックス内の雰囲気は大気圧より高く維持され得る。
【0009】
本発明の別つの実施の形態によれば、グラファイトナノファイバ付着部材は、支持部材上に支持された複数の鉄系のプレートから成り得、加熱機構はこれらのプレートの配置された減圧槽の部分の外側に取付けられ得る。
【0010】
一酸化炭素ガスと水素ガスの両方のガスを混合して減圧槽に供給するガス導入系はガス加熱機構を備え得る。本発明の一つの実施の形態によれば、ガス加熱機構はガス導入系におけるガス配管に巻回した加熱ヒータから成り得る。代りに、ガス導入系におけるガス配管の主要部分は、外側から加熱されている減圧槽内の側壁に接触させて取付けられ得る。
【0011】
また、本発明による装置においては、グラファイトナノファイバ付着部材の下方には、一酸化炭素ガスと水素ガスの両方のガスを混合して供給するガス導入系に接続し、ガス導入系からの混合ガスをグラファイトナノファイバ付着部材に吹き付けるガス導入口が設けられ得る。そしてグラファイトナノファイバ付着部材の上方にはガスを抜き取るためのガス吸気口が設けら得る。
【0012】
さらに、本発明による装置においては、外気側から駆動されてグラファイトナノファイバ付着部材と共動し、減圧槽内の付着部材上に成長したグラファイトナノファイバをこそぎ取るこそぎ装置が設けられ得る。
【0013】
【発明の実施の形態】
以下、添付図面を参照して本発明の実施の形態について説明する。
図1は、本発明によるグラファイトナノファイバ粉体の製造装置の一つの実施の形態を示している。図1において、1は減圧槽であり、減圧槽1は仕切弁2を介して真空ポンプ3に接続され、真空環境を形成できしかも常圧(1気圧)に耐え得るように構成されている。減圧槽1は、その一側壁に開口部1aを備え、この開口部1aの内側には、グラファイトナノファイバを成長させる複数の鉄系の金属プレート4から成るグラファイトナノファイバ付着部材を支持している支持プレート5が減圧槽内壁に真空シールするためのカーボンシート6を挟んで取付けられている。また、減圧槽1における開口部1aの外側において減圧槽1の外壁には、金属プレート4を加熱するグラファイトヒータ7(以下、単にヒータと記載する)が取付けられている。ヒータ7の周りにはヒータ7を囲っているシールドボックス8が取付けられている。このシールドボックス8は、ヒータ7に電力を導入するための電力導入端子9が取付けられている。この電力導入端子9は加熱電源10に接続されている。
【0014】
また、このシールドボックス8内の雰囲気を大気圧より加圧気味に設定して減圧槽1内からガスの漏洩を防ぐ必要があるために、シールドボックス8内に窒素を充填するガス導入系が設けられている。すなわち、このガス導入系は仕切弁11a、圧力調整器11b及び窒素ボンベ11cを備え、金属製の配管で接続されている。また、シールドボックス8には、シールドボックス8内の圧力をモニタする連成計12が取付けられている。
【0015】
各金属プレート4は図2に示すように、幅a:200mm、高さb:300mm及び厚さt:3.2mmをもち、このような寸法をもつ20枚の金属プレート4が間隔p:10mmで支持プレート5に溶着されている。なお、使用する金属プレート4の上記した枚数及び寸法は単に例示のためのものであり、必要に応じて任意に設定することができる。
【0016】
減圧槽1の開口部1aを備えた一側壁に対向した別の開口部1bには試料取出用扉1cが密封して取付けられている。試料取出用扉1cを貫通して外部から駆動操作できる直線駆動機構13が設けられ、この直線駆動機構13はその内方端に、それぞれの金属プレート4上に成長したグラファイトナノファイバをこそぎ取るこそぎ装置13aを備えている。
【0017】
減圧槽1の外周には、図1に示すように、開口部1aを備えた一側壁を除いて冷媒循環パイプ14が巻回され、このパイプ14に冷水などの冷媒を循環させることにより減圧槽1を冷却するように構成されている。また減圧槽1には、減圧槽1内の圧力を計測するダイヤフラム真空計15、逆止弁16と仕切弁17のガス排出経路及びベント弁18が取付けられている。
【0018】
さらに、減圧槽1に一酸化炭素と水素を導入するガス導入系19が設けられ、このガス導入系19は、仕切弁20a、ガス流量調整器20b、仕切弁20c、圧力調整器20d及び一酸化炭素ガスボンベ20eを含む一酸化炭素ガス供給系と、仕切弁21a、ガス流量調整器21b、仕切弁21c、圧力調整器21d及び水素ガスボンベ21eを含む水素ガス供給系とを備えている。そして一酸化炭素ガス供給系及び水素ガス供給系は配管22で合流され、減圧槽1内に配列された金属プレート4の下方に配置されたガス導入ノズル23に接続されている。ガス導入ノズル23は図2に詳細に示すようにそれぞれの金属プレート4を横切る方向にのび、多数の上向きのガス噴出口23aを備えている。配管22にはガス加熱機構24が組合され、そして減圧槽1内においてガス加熱機構24と組合された配管22の部分は、減圧槽1のヒータ7が取付けられている真空側の内壁に蛇行させ密着させて取付けられている。
【0019】
金属プレート4の上方にはガス吸気口パイプ25が配置され、それの出口側は減圧槽1を貫通して減圧槽1外へのび、仕切弁26と仕切弁27とに接続されている。仕切弁26は符号Aで示すようにガス導入系19に接続され、仕切弁27は符号Bで示すように逆止弁16と仕切弁17のガス排出経路に接続されている。
【0020】
また図示装置においては、減圧槽1内の金属プレート4及びガス導入ノズル23の下方すなわち減圧槽1の底部には、金属プレート4上に成長し、こそぎ装置13aでこそぎ取られたグラファイトナノファイバ粉体を収容するトレー28が配置されている。
【0021】
このように構成した図示装置の動作について説明する。
図1の装置において、仕切弁2を開状態にし、真空ポンプ3を作動させて、減圧槽1内を0.1Torr程度に真空引きする。その後、ヒータ7にヒータ電源10から約12kWの電力を給電してヒータ7を加熱し、ヒータ7の熱輻射により支持プレート5が加熱され、熱伝導でそれぞれの金属プレート4が550℃〜600℃まで加熱される。
【0022】
この状態でガス導入系19における一酸化炭素ガスボンベ20e及び水素ガスボンベ21eの元栓を開放し、一酸化炭素ガス供給系の圧力調整器20d及び水素ガス供給系の圧力調整器21dをそれぞれ1気圧より少し高めに設定し、そして一酸化炭素ガス供給系の仕切弁20a、20c及び水素ガス供給系の仕切弁21a、21cを開放する。次に一酸化炭素ガス供給系のガス流量調整器20b及び水素ガス供給系のガス流量調整器21bを10リットル/分に調整し、配管22を介して一酸化炭素と水素を混合して減圧槽1に導入する。この時に仕切弁2は閉じられ、真空ポンプ3は停止される。
【0023】
こうして減圧槽1内の圧力が1気圧(大気圧)になった段階で、一酸化炭素ガス供給系のガス流量調整器20b及び水素ガス供給系のガス流量調整器21bにより一酸化炭素ガスの流量を1〜2リットル/分に、また水素ガスの流量を1リットル/分に調整し、そして仕切弁17を開ける。このようにして一酸化炭素、水素を垂れ流しにする。
【0024】
減圧槽1内に導入された一酸化炭素と水素の混合ガスは配管22を通ってガス導入ノズル23に至るまでに、配管22と組合さったガス加熱機構24により約400℃まで加熱され、ガス導入ノズル23の多数の上向きのガス噴出口23aから放出される。放出された混合ガスは上昇流に乗って鉄系金属プレート4の表面に沿って通過し、それにより金属プレート4の表面上にグラファイトナノファイバが成長する。金属プレート4を通過した供給ガスは、ガス吸気口パイプ25に到達し、吸引されて減圧槽1より大気側に排出される。排出されたガスは、ガス導入系19に通じる仕切弁26を閉じて、仕切弁27を介してガス排出経路に流される。
【0025】
この場合、ガスの使用効率を上げるために、ガス排出経路に通じる仕切弁27を閉じ、仕切弁26を開放してガス吸気口パイプ25を通って排出されたガスをガス導入系19に戻し、再度減圧槽1内に導入するように操作することができる。
【0026】
測定した実験データでは、金属プレート(大きさ20cm×30cm)1枚の両面に約1時間の装置の動作で10g成長した。従って図示装置では20枚のプレート全体ではグラファイトナノファイバ粉体を約200g/時間生産することができる。
1時間経過後、直線駆動機構13を駆動してこそぎ装置13aを作動させ、金属プレート4上に成長し堆積したグラファイトナノファイバをこそぎ落とし、こそぎ落とされたグラファイトナノファイバはトレー28内に落下し集められる。この作業を6時間継続して行うことにより1日約1kgのグラファイトナノファイバ粉体を生産することができる。
【0027】
その後、装置の動作を停止させるためには、ガス導入系19における全ての弁を閉じ、ヒータ7への電力供給を止め、1~2時間減圧槽1内の温度を下げ、そしてベント弁18から窒素ガスもしくは空気を導入し、ダイヤフラム真空計15のゲージ圧を測定し、減圧槽1内を大気圧に戻す。こうして大気圧に戻った段階で、減圧槽1の前扉1cを開け、トレイ28内のグラファイトナノファイバを回収する。
【0028】
装置の動作の安全上の観点から、シールドボックス8内の圧力が大気圧より少し高めになるように、窒素ボンベ11cから圧力調整器11b及び仕切弁11aを介してシールドボックス8内に充填され、万が一カーボンシール6から減圧槽1内の材料ガス(水素、一酸化炭素)が漏れ出た場合に大気側に漏れ出さないようにしている。シールドボックス8内の圧力は連成計12でモニタし、常に大気圧より窒素が漏れて下がった場合は自動的に仕切弁11aが開いて所定の圧力までシールドボックス8内に窒素ガスが充填されるようになっている。なお、減圧槽1が冷却されているため、前扉からメンテナンスでき使い易いという利点がある。
【0029】
図4及び図5は、本発明によるグラファイトナノファイバ粉体の製造装置の別の実施の形態を示している。図4において、30は減圧槽であり、減圧槽30は仕切弁31を介して真空ポンプ32に接続され、真空環境を形成できしかも常圧(1気圧)に耐え得るように構成されている。減圧槽30内には、グラファイトナノファイバを成長させる付着部材33が配置され、この付着部材33は、図5に示すように、各々幅a:200mm、高さb:300mm及び厚さt3.2mmの寸法をもつ20枚の金属プレート33aを二本の支持バー33b上に10mmの間隔pをあけて減圧槽30の長手方向軸線に平行にすなわち図示実施の形態では垂直方向に配列固定して構成されている。なお、この場合も使用する金属プレート33aの上記した枚数及び寸法は単に例示のためのものであり、必要に応じて任意に設定することができる。
【0030】
金属プレート33aの配置された減圧槽30の部位の外側において減圧槽30の外壁には、金属プレート33aを加熱するセラミックヒータ(以下単にヒータと記載する)34が巻回されて取付けられている。ヒータ34の周りにはヒータ34を囲って断熱材35が取付けられている。ヒータ34は図1に示す装置と同様に加熱電源(図示していない)に接続されている。
【0031】
減圧槽30の頂璧を貫通して外部から駆動操作できる直線駆動機構36が設けられ、この直線駆動機構36はその内方端に、それぞれの金属プレート4上に成長したグラファイトナノファイバをこそぎ取るこそぎ装置36aを備えている。また減圧槽30の頂璧には、減圧槽30内の圧力を計測するダイヤフラム真空計37が取付けられ、減圧槽30の底璧にはベント弁38が取付けられている。また、減圧槽30には逆止弁39と仕切弁40を備えたガス排出経路が接続されている。
【0032】
また、減圧槽30に一酸化炭素と水素を導入するガス導入系41は、仕切弁42a、ガス流量調整器42b、仕切弁42c、圧力調整器42d及び一酸化炭素ガスボンベ42eを含む一酸化炭素ガス供給系と、仕切弁43a、ガス流量調整器43b、仕切弁43c、圧力調整器43d及び水素ガスボンベ43eを含む水素ガス供給系とを備えている。一酸化炭素ガス供給系及び水素ガス供給系は配管44で合流され、減圧槽30内に配列された金属プレート33aの下方に配置されたガス導入ノズル45に接続されている。ガス導入ノズル45は図示したようにそれぞれの金属プレート4を横切る方向にのび、多数の上向きのガス噴出孔45aを備えている。配管44にはガス加熱機構46が組合され、ガス加熱機構46は、ヒータ34が取り付けられている減圧槽30の部分の内壁に螺旋状に取付けられている。
【0033】
金属プレート33aの上方にはガス吸気口パイプ47が配置され、それの出口側は減圧槽30を貫通して減圧槽30外へのび、逆止弁39と仕切弁40を備えたガス排出経路に接続されている。
【0034】
また図示装置においては、減圧槽30内のガス導入ノズル45の下方には、下部断熱部材48が設けられ、また減圧槽30内のガス吸気口パイプ47の上方には、上部断熱部材49が設けられている。これらの断熱部材は、それぞれ直線駆動機構48a、49aによって外部から直線駆動される。
【0035】
さらに、減圧槽30の底部には、減圧槽30内の金属プレート4上に成長し、こそぎ装置36aでこそぎ取られたグラファイトナノファイバ粉体を収容するトレー50が配置されている。トレー50内に集められたグラファイトナノファイバ粉体を回収するため減圧槽30の下部はそれ自体開放できるか又は下部に開放可能な扉(図示していない)が設けられている。
【0036】
このように構成した図4及び図5に示す装置の動作は図1〜図3に示す装置の動作と実質的に同様にである。
すなわち、図4の装置において、仕切弁31を開状態にし、真空ポンプ32を作動させて、減圧槽30内を0.1Torr程度に真空引きする。その後、ヒータ34に通電してヒータ34を加熱し、減圧槽30内の金属プレート33aを熱輻射により550℃〜600℃まで加熱する。
【0037】
この状態でガス導入系41における一酸化炭素ガスボンベ42e及び水素ガスボンベ43eの元栓を開放し、一酸化炭素ガス供給系の圧力調整器42d及び水素ガス供給系の圧力調整器43dをそれぞれ1気圧より少し高めに設定し、そして一酸化炭素ガス供給系の仕切弁42a、42c及び水素ガス供給系の仕切弁43a、43cを開放する。次に、一酸化炭素ガス供給系のガス流量調整器42b及び水素ガス供給系のガス流量調整器43bを10リットル/分に調整し、配管44を介して一酸化炭素と水素を混合して減圧槽30に導入する。この時に仕切弁31は閉じられ、真空ポンプ32は停止される。
【0038】
こうして減圧槽30内の圧力が1気圧(大気圧)になった段階で、一酸化炭素ガス供給系のガス流量調整器42b及び水素ガス供給系のガス流量調整器43bによって一酸化炭素ガスの流量を1〜2リットル/分に、また水素ガスの流量を1リットル/分に調整し、そして仕切弁40を開放する。このようにして一酸化炭素、水素を垂れ流しにする。減圧槽1内に導入された一酸化炭素と水素の混合ガスは配管44を通ってガス導入ノズル45に至るまでに、ガス加熱機構46により約400℃まで加熱され、ガス導入ノズル45の多数の上向きのガス噴出孔45aから放出される。放出された混合ガスは上昇流に乗って鉄系金属プレート33aの表面に沿って通過し、それにより各金属プレート33aの表面上にグラファイトナノファイバが成長する。各金属プレート33aを通過した供給ガスは、ガス吸気口パイプ47に到達し、吸引されて減圧槽30より大気側に排出される。排出されたガスは逆止弁39と仕切弁40を備えたガス排出経路を通って排出される。
【0039】
この場合も、測定した実験データによれば、金属プレート(大きさ20cm×30cm)1枚の両面に約1時間の装置の動作で10g成長した。従って図示装置では20枚のプレート全体ではグラファイトナノファイバ粉体を約200g/時間生産することができる。このようにして1時間の装置の運転経過後、下部断熱部材48及び上部断熱部材49を移動して退避させ、直線駆動機構36を駆動してこそぎ装置36aを作動させ、各金属プレート33a上に成長し堆積したグラファイトナノファイバをこそぎ落とし、こそぎ落とされたグラファイトナノファイバはトレー50内に落下し集められる。この作業を6時間継続して行うことにより1日約1kgのグラファイトナノファイバ粉体を生産することができる。
【0040】
その後、装置の動作を停止させるためには、ガス導入系41における全ての弁を閉じ、ヒータ34への電力供給を止め、1~2時間減圧槽30内の温度を下げた後、ベント弁38から窒素ガスもしくは空気を導入し、ダイヤフラム真空計37のゲージ圧を測定し、減圧槽30内を大気圧に戻す。こうして大気圧に戻った段階で、減圧槽30の下部を開け、トレイ50内のグラファイトナノファイバを回収する。
【0041】
【発明の効果】
以上説明してきたように、本発明によるグラファイトナノファイバ粉体の製造装置においては、グラファイトナノファイバを成長させる付着部材が減圧槽内に取付けられた少なくとも一枚の鉄系のプレートから成り、鉄系のプレートを加熱する加熱機構を減圧槽の外側に設けたことにより、装置を安全に作動するこができると共に、品質の良いグラファイトナノファイバを大量に生成、製造することができるようになる。
【0042】
ベースプレートの外側に取付けられた加熱機構をシールドボックスで包囲し、シールドボックス内の雰囲気を大気圧より高く維持するように構成した場合には、減圧槽内からガスの漏洩が防止でき、使用原料ガスの無駄を省けると共に装置を安定して効率良く運転することができるようになる。
【0043】
また、本発明によるグラファイトナノファイバ粉体の製造装置においては、 一酸化炭素ガスと水素ガスの両方のガスを混合して減圧槽に供給するガス供給系にガス加熱機構を設けることによって、付着部材上でしっかりと触媒反応が進むことになり、その結果品質の良いグラファイトナノファイバを成長させることができるようになる。
【0044】
また、本発明によるグラファイトナノファイバ粉体の製造装置において、ガス加熱機構をガス供給系におけるガス配管に巻回した加熱ヒータで構成した場合には、一酸化炭素ガスと水素ガスの混合ガスを効率よく加熱できる。
【0045】
また、本発明によるグラファイトナノファイバ粉体の製造装置において、一酸化炭素ガスと水素ガスの両方のガスを混合して供給するガス供給系に接続し、ガス供給系からの混合ガスを付着部材に吹き付けるガス導入口が付着部材の下方に設けられている場合には、加熱された混合ガスを付着部材に効率良く吹き付けることができ、付着部材上におけるグラファイトナノファイバの成長を効率良く行うことができるようになり、量産性を促進することができる。
【0046】
また、本発明によるグラファイトナノファイバ粉体の製造装置において、付着部材の上方にガスを抜き取るためのガス吸気口を設けた場合には、付着部材の下方に設けたガス導入口と共働して混合ガスを付着部材の下方部分から上方部分に向う上昇流として付着部材の表面に沿って流すことができ、付着部材上におけるグラファイトナノファイバの成長を効率良く行うことができるようになり、量産性を促進することができる。
【0047】
また、本発明によるグラファイトナノファイバ粉体の製造装置において、外気側から駆動されて付着部材と共動し、減圧槽内の付着部材上に成長したグラファイトナノファイバをこそげ取るこそげ装置を設けることにより、付着部材上に成長したグラファイトナノファイバを効率良く回収することができ、量産性を促進することができる。
【図面の簡単な説明】
【図1】本発明によるグラファイトナノファイバ粉体の製造装置の一実施の形態を示す概略線図。
【図2】図1に示す装置における金属プレートとガス導入機構との関連構成を示す概略拡大部分斜視図。
【図3】図1に示す装置におけるこそぎ装置を拡大して示し、a)は部分平面図、b)は部分正面図、c)は側面図。
【図4】本発明によるグラファイトナノファイバ粉体の製造装置の別の実施の形態を示す概略線図。
【図5】図4に示す装置における金属プレートの構成を示す拡大部分斜視図。
【符号の説明】
1 :減圧槽
1a:開口部
1b:別の開口部
1c:試料取出用扉
2 :仕切弁
3 :真空ポンプ
4 :金属プレート
5 :支持プレート
6 :カーボンシート
7 :グラファイトヒータ
8 :シールドボックス
9 :電力導入端子
10:加熱電源
11a:仕切弁
11b:圧力調整器
11c:窒素ボンベ
12:連成計
13:直線駆動機構
13a:こそぎ装置
14:冷媒循環パイプ
15:ダイヤフラム真空計
16:逆止弁
17:仕切弁
18:ベント弁
19:ガス導入系
20a:仕切弁
20b:ガス流量調整器
20c:仕切弁
20d:圧力調整器
20e:一酸化炭素ガスボンベ
21a:仕切弁
21b:ガス流量調整器
21c:仕切弁
21d:圧力調整器
21e:水素ガスボンベ
22:配管
23:ガス導入ノズル
23a:上向きのガス噴出口
24:ガス加熱機構
25:ガス吸気口パイプ
26:仕切弁
27:仕切弁
28:トレー

Claims (10)

  1. 真空ポンプで所要のレベルに排気できる減圧槽内にガス導入系により一酸化炭素ガス及び水素ガスを供給して減圧槽内に配置したグラファイトナノファイバ付着部材にグラファイトナノファイバを成長させてグラファイトナノファイバ粉体を生成するようにしたグラファイトナノファイバ粉体の製造装置において、グラファイトナノファイバ付着部材が減圧槽内に取付けられた少なくとも一枚の鉄系のプレートから成り、鉄系のプレートを加熱する加熱機構を減圧槽の外側に設けたことを特徴とするグラファイトナノファイバ粉体の製造装置。
  2. グラファイトナノファイバ付着部材が、ベースプレートに取付けられた複数の鉄系のプレートから成り、ベースプレートが減圧槽の開口部に密封して取付けられ、またベースプレートの外側に加熱機構が取付けられている請求項1に記載のグラファイトナノファイバ粉体の製造装置。
  3. ベースプレートの外側に取付けられた加熱機構がシールドボックスで包囲され、シールドボックス内の雰囲気を大気圧より高く維持している請求項2に記載のグラファイトナノファイバ粉体の製造装置。
  4. グラファイトナノファイバ付着部材が、支持部材上に支持された複数の鉄系のプレートから成り、加熱機構がこれらのプレートの配置された減圧槽の部分の外側に取付けられている請求項1に記載のグラファイトナノファイバ粉体の製造装置。
  5. 一酸化炭素ガスと水素ガスの両方のガスを混合して減圧槽に供給するガス導入系がガス加熱機構を備えている請求項1に記載のグラファイトナノファイバ粉体の製造装置。
  6. ガス加熱機構がガス導入系におけるガス配管に巻回した加熱ヒータから成っている請求項5に記載のグラファイトナノファイバ粉体の製造装置。
  7. 一酸化炭素ガスと水素ガスの両方のガスを混合して供給するガス供給系に接続し、ガス導入系からの混合ガスを付着部材に吹き付けるガス導入口が付着部材の下方に設けられている請求項5に記載のグラファイトナノファイバ粉体の製造装置。
  8. 付着部材の上方にガスを抜き取るためのガス吸気口が設けられている請求項5に記載のグラファイトナノファイバ粉体の製造装置。
  9. 外気側から駆動されて付着部材と共動し、減圧槽内の付着部材上に成長したグラファイトナノファイバをこそぎ取るこそぎ装置が設けられている請求項1に記載のグラファイトナノファイバ粉体の製造装置。
  10. ガス導入系におけるガス配管の主要部分が減圧槽内の側壁に接触させて取付けられている請求項1に記載のグラファイトナノファイバ粉体の製造装置。
JP2001276710A 2001-09-12 2001-09-12 グラファイトナノファイバ粉体の製造装置 Expired - Lifetime JP4691282B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001276710A JP4691282B2 (ja) 2001-09-12 2001-09-12 グラファイトナノファイバ粉体の製造装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001276710A JP4691282B2 (ja) 2001-09-12 2001-09-12 グラファイトナノファイバ粉体の製造装置

Publications (2)

Publication Number Publication Date
JP2003082534A JP2003082534A (ja) 2003-03-19
JP4691282B2 true JP4691282B2 (ja) 2011-06-01

Family

ID=19101371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001276710A Expired - Lifetime JP4691282B2 (ja) 2001-09-12 2001-09-12 グラファイトナノファイバ粉体の製造装置

Country Status (1)

Country Link
JP (1) JP4691282B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007091481A (ja) * 2005-09-26 2007-04-12 Sonac Kk カーボンナノファイバの製造方法およびその方法を実施するためのカーボンナノファイバ製造装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000216104A (ja) * 1999-01-26 2000-08-04 Sony Corp 気相成長装置と気相成長方法
JP2001081564A (ja) * 1999-07-27 2001-03-27 Cheol Jin Lee 化学気相蒸着装置およびこれを用いたカーボンナノチューブ合成方法
JP2002249931A (ja) * 2001-02-23 2002-09-06 Ulvac Japan Ltd グラファイトナノファイバ粉体生成方法及び装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000216104A (ja) * 1999-01-26 2000-08-04 Sony Corp 気相成長装置と気相成長方法
JP2001081564A (ja) * 1999-07-27 2001-03-27 Cheol Jin Lee 化学気相蒸着装置およびこれを用いたカーボンナノチューブ合成方法
JP2002249931A (ja) * 2001-02-23 2002-09-06 Ulvac Japan Ltd グラファイトナノファイバ粉体生成方法及び装置

Also Published As

Publication number Publication date
JP2003082534A (ja) 2003-03-19

Similar Documents

Publication Publication Date Title
US7935175B2 (en) Apparatus for trapping carbon nanotube and system and method for producing the carbon nanotube
US9175388B2 (en) Reaction chamber with removable liner
CN103547712B (zh) 制造结晶硅锭的设备
JP2007161579A (ja) カーボンナノチューブの合成装置及び方法
CN113847806B (zh) 烧结炉及烧结装置
US11272584B2 (en) Electric induction melting and holding furnaces for reactive metals and alloys
US9543063B2 (en) Continuous hydrogen pulverization method and production device of rare earth permanent magnetic alloy
JP4691282B2 (ja) グラファイトナノファイバ粉体の製造装置
KR20040025833A (ko) 불소가스 발생장치
Hu et al. Vacuum and wall conditioning system on EAST
CN104105662B (zh) B2f4制造方法
JP2005281864A (ja) 可変ポンプ配列を有する真空処理装置
WO2012107518A2 (en) System for cooling medium introduction into a container
KR100732518B1 (ko) 탄소나노튜브 합성을 위한 장치
JPH10172978A (ja) 基板処理装置
KR20070064108A (ko) 탄소나노튜브 합성을 위한 장치 및 방법
KR100698591B1 (ko) 토우치 어셈블리 및 이를 이용한 형광램프 제조장치
KR100666358B1 (ko) 탄소 나노 튜브 생성 시스템
JP3958698B2 (ja) 分子線エピタキシャル成長装置のクリーニング方法、分子線エピタキシャル成長装置およびその装置を用いる基板の製造方法
JPH058473Y2 (ja)
CN213454880U (zh) 热处理装置
KR100656940B1 (ko) 탄소나노튜브 합성을 위한 장치
CN218443369U (zh) 一种高镍正极材料降温装置及降温组件
KR100942457B1 (ko) 탄소나노튜브 생산 설비 및 그 설비에 사용되는 합성기판
JPH09286668A (ja) バッチ式熱処理炉

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110126

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110221

R150 Certificate of patent or registration of utility model

Ref document number: 4691282

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term