JP4687255B2 - Steel plate manufacturing method - Google Patents

Steel plate manufacturing method Download PDF

Info

Publication number
JP4687255B2
JP4687255B2 JP2005168994A JP2005168994A JP4687255B2 JP 4687255 B2 JP4687255 B2 JP 4687255B2 JP 2005168994 A JP2005168994 A JP 2005168994A JP 2005168994 A JP2005168994 A JP 2005168994A JP 4687255 B2 JP4687255 B2 JP 4687255B2
Authority
JP
Japan
Prior art keywords
rolling
cooling
hot
reduction
rough
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005168994A
Other languages
Japanese (ja)
Other versions
JP2006341274A (en
Inventor
高志 黒木
勝 三宅
保博 曽谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005168994A priority Critical patent/JP4687255B2/en
Publication of JP2006341274A publication Critical patent/JP2006341274A/en
Application granted granted Critical
Publication of JP4687255B2 publication Critical patent/JP4687255B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Metal Rolling (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は、超微細なフェライト組織を有する鋼板の製造方法に関するものである。   The present invention relates to a method for producing a steel sheet having an ultrafine ferrite structure.

近年、自動車の軽量化、建築物の高層化等のニーズに対応し鋼材の高強度化が求められている。一般的に鋼材の強度を上げると靭性が低下するが、結晶粒微細化による強化の場合、靭性を低下させずに強度を向上させることが可能であり、種々の結晶粒微細化技術が提案されている。   In recent years, there has been a demand for increasing the strength of steel materials in response to needs such as weight reduction of automobiles and high-rise buildings. In general, increasing the strength of steel materials decreases toughness, but in the case of strengthening by grain refinement, it is possible to improve strength without reducing toughness, and various grain refinement techniques have been proposed. ing.

その一つとして、大圧下加工を行うことにより結晶粒が微細化することが知られており、その際には、例えば平均粒径3〜4μm以下の超微細粒組織を得るためには、1パスで50%以上の圧下が必要であるといわれている。   As one of them, it is known that crystal grains are refined by carrying out processing under large pressure. In this case, in order to obtain an ultrafine grain structure having an average grain size of 3 to 4 μm or less, for example, 1 It is said that a reduction of 50% or more is necessary in the pass.

例えば、Ar3変態点以上の温度で、50%以上のアンビル圧縮加工を行い、ついで冷却することにより平均粒径3μm以下のフェライトを母相とする超微細組織鋼を製造する方法が示されている(例えば、特許文献1参照。)。 For example, it shows a method of producing an ultrafine structure steel having a ferrite having an average particle diameter of 3 μm or less as a parent phase by performing anvil compression processing of 50% or more at a temperature not lower than the Ar 3 transformation point and then cooling. (For example, refer to Patent Document 1).

また、Ar3変態点近傍で合計圧下率80%以上の圧延を行い、微細粒高強度熱延鋼帯を製造する方法が示されている(例えば、特許文献2参照。)。
特開平11−92861号公報 特開昭58−123823号公報
In addition, a method of producing a fine-grained high-strength hot-rolled steel strip by performing rolling at a total rolling reduction of 80% or more in the vicinity of the Ar 3 transformation point (see, for example, Patent Document 2).
Japanese Patent Laid-Open No. 11-92861 JP 58-123823 A

しかしながら、上記の特許文献1、2に記載の方法では、それを熱延鋼板の製造ラインに適用して超微細組織を有する鋼板を製造しようとした場合に、圧延設備に多大な負荷がかかることは必須である。その結果、操業管理や設備保全の面で重大な問題を生じる可能性がある。   However, in the methods described in Patent Documents 1 and 2 described above, when an attempt is made to produce a steel sheet having an ultrafine structure by applying it to a hot-rolled steel sheet production line, a great load is applied to the rolling equipment. Is essential. As a result, serious problems may occur in terms of operation management and facility maintenance.

本発明は、上記のような事情に鑑みてなされたものであり、熱延鋼板の製造ラインにおいて、圧延設備に多大な負荷をかけることなく、最終フェライト粒径が3μm以下となる微細フェライト組織を有する鋼板を製造することができる鋼板の製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and in a production line for hot-rolled steel sheets, a fine ferrite structure having a final ferrite grain size of 3 μm or less without imposing a great load on rolling equipment. It aims at providing the manufacturing method of the steel plate which can manufacture the steel plate which has.

本発明者等は、上記課題を解決すべく鋭意検討を行った結果、熱延鋼板の製造ラインにおいて、熱間鋼(粗圧延工程後の粗バーまたは薄スラブ)に対する仕上圧延後の冷却条件を適切に調整することにより、圧延設備に多大な負荷をかけるような大圧下圧延を行わずとも、微細なフェライト組織を有する鋼板の製造が可能であることを見出した。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have determined the cooling conditions after finish rolling for hot steel (coarse bar or thin slab after rough rolling process) in a hot-rolled steel sheet production line. It has been found that by adjusting appropriately, it is possible to produce a steel sheet having a fine ferrite structure without carrying out a large rolling reduction that places a great load on the rolling equipment.

本発明は、上記の知見に基づいてなしたものであり、以下の特徴を有する。   The present invention has been made based on the above findings and has the following characteristics.

[1]熱間スラブに粗圧延機により複数パスの板厚方向の圧下を加えて粗バーとする粗圧延工程と、該粗バーをAr 変態点以上の温度から、Ae 変態点以下の温度に冷却する急速冷却工程と、該冷却により変態完了した粗バーを加熱してオーステナイトへ逆変態させる急速加熱工程と、該加熱した粗バーを、Ar変態点以上の温度にて1パスあるいは複数パスの板厚方向の圧下を加えて鋼板とする仕上圧延工程と、前記仕上圧延工程の後、0.4秒以内に冷却を開始し、700℃/秒以上の冷却速度で(Ae変態点−200℃)以下の温度へ鋼板を冷却する急速冷却工程とを有することを特徴とする鋼板の製造方法。 [1] A rough rolling step in which a hot rolling slab is subjected to a plurality of passes in the plate thickness direction by a rough rolling machine to form a rough bar, and the rough bar is heated to a temperature not lower than the Ar 3 transformation point and not higher than the Ae 1 transformation point. A rapid cooling step of cooling to a temperature, a rapid heating step of heating the coarse bar that has been transformed by the cooling to reversely transform it into austenite, and the heated coarse bar at a temperature equal to or higher than the Ar 3 transformation point. After the finishing rolling step of applying a reduction in the plate thickness direction of a plurality of passes to form a steel plate, cooling is started within 0.4 seconds after the finishing rolling step, and at a cooling rate of 700 ° C./second or more (Ae 3 transformation) A rapid cooling step of cooling the steel sheet to a temperature of point −200 ° C. or lower.

]熱間スラブに板厚方向の圧下を加えて粗バーとする粗圧延工程における板厚方向の圧下を加える手段の少なくとも一部として、熱間スラブを上下に挟んだ金型で圧下する鍛造型圧下装置を用いることを特徴とする前記[1]に記載の鋼板の製造方法。 [ 2 ] The hot slab is squeezed with a die sandwiching the hot slab vertically as at least part of the means for applying the rolling reduction in the plate thickness direction in the rough rolling process by applying a reduction in the thickness direction to the hot slab. The method for producing a steel plate according to [1 ], wherein a forging die reduction device is used.

本発明によれば、熱延鋼板の製造ラインにおいて、圧延設備に多大な負荷をかけることなく、最終フェライト粒径が3μm以下となる微細なフェライト組織を有する鋼板を製造することが可能である。   ADVANTAGE OF THE INVENTION According to this invention, it is possible to manufacture the steel plate which has a fine ferrite structure | tissue whose final ferrite particle size is set to 3 micrometers or less, without imposing big load on a rolling mill in the production line of a hot-rolled steel plate.

本発明の実施形態を以下に説明する。   Embodiments of the present invention will be described below.

(第1の実施形態)
本発明の第1の実施形態は、本発明において微細なフェライト組織を有する鋼板を製造するための基本となる考え方を示すためのものである。
(First embodiment)
The first embodiment of the present invention is intended to illustrate the basic idea for manufacturing a steel sheet having a fine ferrite structure in the present invention.

図2は、本発明の第1の実施形態において用いる熱延鋼板の製造設備の説明図であり、連続鋳造設備にて鋳造された熱間スラブから熱延鋼板を製造する設備である。   FIG. 2 is an explanatory view of a hot-rolled steel sheet manufacturing facility used in the first embodiment of the present invention, which is a facility for manufacturing a hot-rolled steel plate from a hot slab cast in a continuous casting facility.

図2に示す熱延鋼板の製造設備は、連続鋳造装置1により鋳造された熱間スラブ3を所定の板厚まで減厚する仕上圧延機7と、仕上圧延直後の熱延鋼板に所定の温度まで急速冷却を施す急速冷却装置8と、急速冷却後の熱延鋼板の巻取り温度を調整するための冷却装置9と、熱延鋼板を巻取るためのコイラー10とを備えている。   The hot-rolled steel sheet manufacturing equipment shown in FIG. 2 includes a finishing mill 7 for reducing the thickness of the hot slab 3 cast by the continuous casting apparatus 1 to a predetermined plate thickness, and a predetermined temperature on the hot-rolled steel sheet immediately after the finish rolling. A rapid cooling device 8 that performs rapid cooling, a cooling device 9 for adjusting the winding temperature of the hot-rolled steel sheet after rapid cooling, and a coiler 10 for winding the hot-rolled steel sheet.

ここで、急速冷却装置8は、仕上圧延後のオーステナイトの再結晶、回復が進行し、オーステナイト組織が粒成長により粗大化してしまうことを防ぐため、極力仕上圧延機7の出側直近に配置することが望ましい。   Here, the rapid cooling device 8 is disposed as close as possible to the exit side of the finish rolling mill 7 as much as possible in order to prevent recrystallization and recovery of the austenite after finish rolling and the austenite structure from becoming coarse due to grain growth. It is desirable.

また、材質調整の観点からは、コイラー10に巻取る際の温度も重要であり、そのために、ここでは、コイラー10の直前に巻取り温度調整用の冷却装置9を配置している。   Further, from the viewpoint of adjusting the material, the temperature at the time of winding around the coiler 10 is also important. For this reason, the cooling device 9 for adjusting the winding temperature is disposed immediately before the coiler 10.

なお、本実施形態における連続鋳造後の熱間スラブ3は、約30〜50mmの板厚の薄スラブであり、連続鋳造装置1から直送される。   In addition, the hot slab 3 after the continuous casting in the present embodiment is a thin slab having a thickness of about 30 to 50 mm, and is sent directly from the continuous casting apparatus 1.

上記のように構成された熱延鋼板の製造設備を用いて、微細なフェライト組織を有する鋼板を製造する手順を以下に述べる。   A procedure for manufacturing a steel sheet having a fine ferrite structure using the hot-rolled steel sheet manufacturing equipment configured as described above will be described below.

(1.1)まず、鋳造後直送された熱間スラブ3に、Ar3変態点以上の温度(通常は1100〜1250℃)において、仕上圧延機7により1パスまたは複数パスの板厚方向の圧下を加えて、所定の板厚の鋼板へ仕上圧延する(仕上圧延工程)。
なお、図2では、複数台の圧延スタンドからなる仕上圧延機にて仕上圧延するようになっているが、スラブ厚から仕上板厚への圧下量等に応じて、1台の圧延スタンドからなる仕上圧延機にて仕上圧延する場合もある。
(1.1) First, the hot slab 3 directly fed after casting is subjected to a one-pass or multiple-pass thickness direction by a finishing mill 7 at a temperature equal to or higher than the Ar 3 transformation point (usually 1100 to 1250 ° C.). A reduction is applied and finish rolling to a steel plate having a predetermined thickness (finish rolling step).
In FIG. 2, finish rolling is performed by a finishing mill composed of a plurality of rolling stands. However, according to the amount of reduction from the slab thickness to the finishing plate thickness, etc., it is composed of one rolling stand. In some cases, finish rolling is performed by a finish rolling mill.

(1.2)次に、仕上圧延機7で仕上圧延された鋼板に対して、仕上圧延機7出側に位置する急速冷却装置8にて、仕上圧延終了後0.4秒以内に冷却を開始し、700℃/秒以上の冷却速度で、(Ae3変態点−200℃)以下の温度へ冷却する(急速冷却工程)。 (1.2) Next, the steel sheet finish-rolled by the finish rolling mill 7 is cooled within 0.4 seconds after finishing rolling by the rapid cooling device 8 located on the exit side of the finish rolling mill 7. Start and cool to a temperature of (Ae 3 transformation point−200 ° C.) or less at a cooling rate of 700 ° C./second or more (rapid cooling step).

(1.3)最後に、急速冷却装置8で急速冷却された鋼板について、冷却装置9にて所定の巻取り温度となるように調整冷却を行い、コイラー10にて巻取る(巻取り工程)。
なお、冷却装置9による調整冷却は必ずしも必要ではなく、急速冷却装置8単独で材質造り込み上に必要な所定温度への冷却が可能である場合には、急速冷却装置8での冷却後に直接巻取ってもよい。
(1.3) Finally, the steel sheet rapidly cooled by the rapid cooling device 8 is adjusted and cooled by the cooling device 9 so as to reach a predetermined winding temperature, and wound by the coiler 10 (winding step). .
Regulated cooling by the cooling device 9 is not necessarily required. If the rapid cooling device 8 alone can cool the material to a predetermined temperature required for material formation, the direct cooling after the cooling by the rapid cooling device 8 is possible. You may take it.

上記のようにして、Ar3変態点以上の温度にて1パスまたは複数パスの板厚方向の圧下を加える仕上圧延によって圧延された鋼板に対して、仕上圧延終了後0.4秒以内に冷却を開始し、700℃/秒以上の冷却速度で、(Ae3変態点−200℃)以下の温度まで冷却することにより、オーステナイト再結晶粒の成長または回復の進行が抑制されるとともに、フェライト変態が促進され、フェライトの粒成長が抑制される。これにより、平均粒径が3μm以下の微細フェライト組織が得られる。さらに、冷却停止温度を(Ae3変態点−250℃)より低くすると、微細なフェライト組織が得られるだけでなく、フェライトとパーライトやベイナイトまたはマルテンサイトの混相組織を得ることもでき、各種の機械的性質を満足する鋼板の製造も可能である。これに対して、冷却停止温度が(Ae3変態点−200℃)より高い場合は、冷却停止後のフェライトの粒成長が無視できなくなり、所望の微細フェライト組織が得られない。図1は、上記のような冷却停止温度とフェライト粒径の関係の一例を示すものである。 As described above, the steel sheet rolled by finish rolling that applies a reduction in the thickness direction of one pass or multiple passes at a temperature equal to or higher than the Ar 3 transformation point is cooled within 0.4 seconds after finishing the finish rolling. Is started at a cooling rate of 700 ° C./sec or more to a temperature of (Ae 3 transformation point−200 ° C.) or less, and the progress of growth or recovery of austenite recrystallized grains is suppressed, and ferrite transformation Is promoted, and ferrite grain growth is suppressed. Thereby, a fine ferrite structure having an average particle diameter of 3 μm or less is obtained. Furthermore, when the cooling stop temperature is lower than (Ae 3 transformation point −250 ° C.), not only a fine ferrite structure can be obtained, but also a mixed phase structure of ferrite and pearlite, bainite or martensite can be obtained. It is also possible to produce steel plates that satisfy the desired properties. On the other hand, when the cooling stop temperature is higher than (Ae 3 transformation point −200 ° C.), ferrite grain growth after the cooling stop cannot be ignored, and a desired fine ferrite structure cannot be obtained. FIG. 1 shows an example of the relationship between the cooling stop temperature and the ferrite grain size as described above.

なお、仕上圧延終了後の冷却開始時間は、再結晶粒の成長または回復の進行の抑制のため、0.4秒より短ければ短いほど好ましい。また、冷却速度は、フェライト変態の促進、粒成長抑制のため、700℃/秒より速ければ速いほど好ましい。   The cooling start time after finishing rolling is preferably shorter than 0.4 seconds in order to suppress the progress of recrystallization grain growth or recovery. Further, the cooling rate is preferably as high as possible at 700 ° C./second or more in order to promote ferrite transformation and suppress grain growth.

以上のようにして、この実施形態においては、圧延設備に多大な負荷をかける大圧下圧延を行わずとも、平均粒径が3μm以下の微細フェライト組織を有する鋼板を得ることができる。   As described above, in this embodiment, a steel sheet having a fine ferrite structure with an average grain size of 3 μm or less can be obtained without performing large-pressure rolling that places a great load on the rolling equipment.

(第2の実施形態)
本発明の第2の実施形態として、前述の第1の実施形態におけるよりもさらに微細なフェライト組織を有する鋼板が製造される場合について述べる。すなわち、第1の実施形態に比べて板厚の厚い熱間スラブを用い、スラブ厚から仕上板厚までの圧下量を大きくすることによって、仕上圧延後のオーステナイトがより細粒化されるようにしたものである。
(Second Embodiment)
As a second embodiment of the present invention, a case will be described in which a steel sheet having a finer ferrite structure than that in the first embodiment is manufactured. That is, by using a hot slab having a thick plate thickness as compared with the first embodiment, and increasing the reduction amount from the slab thickness to the finished plate thickness, the austenite after finish rolling is made finer. It is a thing.

図3は、本発明の第2の実施形態において用いる熱延鋼板の製造設備の説明図であり、連続鋳造設備にて鋳造された熱間スラブから熱延鋼板を製造する設備である。   FIG. 3 is an explanatory view of a hot-rolled steel sheet manufacturing facility used in the second embodiment of the present invention, which is a facility for manufacturing a hot-rolled steel plate from a hot slab cast in a continuous casting facility.

図3に示す熱延鋼板の製造設備は、連続鋳造装置1により鋳造された後、直送または加熱炉2にて再加熱された熱間スラブ3を所定の板厚の粗バーに圧延する粗圧延機4と、粗圧延直後の粗バーに急速冷却を施す急速冷却装置(第1急速冷却装置)5と、急速冷却された粗バーに所定の温度まで急速加熱を施す急速加熱装置6と、この急速加熱された粗バーを所定の板厚まで減厚する仕上圧延機7と、仕上圧延直後の熱延鋼板に所定の温度まで急速冷却を施す急速冷却装置(第2急速冷却装置)8と、急速冷却後の熱延鋼板の巻取り温度を調整するための冷却装置9と、熱延鋼板を巻取るためのコイラー10とを備えている。   The hot-rolled steel sheet manufacturing facility shown in FIG. 3 is a rough rolling process in which a hot slab 3 which is cast directly by a continuous casting apparatus 1 and then reheated in a heating furnace 2 is rolled into a rough bar having a predetermined plate thickness. A rapid cooling device (first rapid cooling device) 5 for rapidly cooling the rough bar immediately after the rough rolling, a rapid heating device 6 for rapidly heating the rapidly cooled rough bar to a predetermined temperature, A finishing mill 7 for reducing the rapidly heated rough bar to a predetermined sheet thickness; a rapid cooling device (second rapid cooling device) 8 for rapidly cooling the hot-rolled steel sheet immediately after the finish rolling to a predetermined temperature; A cooling device 9 for adjusting the winding temperature of the hot-rolled steel sheet after rapid cooling and a coiler 10 for winding the hot-rolled steel sheet are provided.

ここで、粗圧延機4は、1台または複数台の圧延機により熱間スラブ3を所定の厚さの粗バーへ圧延するものである。また、熱間スラブの幅を調整するための幅圧下装置が加熱炉3と粗圧延機4の間あるいは粗圧延機4の圧延機間にあってもよい。   Here, the rough rolling mill 4 rolls the hot slab 3 into a rough bar having a predetermined thickness by one or a plurality of rolling mills. Further, a width reduction device for adjusting the width of the hot slab may be provided between the heating furnace 3 and the rough rolling mill 4 or between the rolling mills of the rough rolling mill 4.

また、第1急速冷却装置5は、粗圧延直後の粗バーに急速冷却を行う装置である。この急速冷却装置5は、粗圧延直後に急速冷却を行うことができるように、粗圧延機4の出側直近に配置することが望ましい。   Moreover, the 1st rapid cooling apparatus 5 is an apparatus which performs rapid cooling to the rough bar immediately after rough rolling. It is desirable that the rapid cooling device 5 be disposed in the immediate vicinity of the exit side of the rough rolling mill 4 so that rapid cooling can be performed immediately after the rough rolling.

急速加熱装置6は、短時間で粗バーを80℃/秒以上の昇温速度にて急速加熱できるように、通常、温度制御性のよい誘導加熱装置を用いる。また、粗バーのエッジを加熱するために、急速加熱装置6に隣接してエッジヒーターを設置してもよい。そして、第1急速冷却装置5と急速加熱装置6の間には、特に粗バー尾端部の温度低下を防止するための保熱カバーを設置してもよい。さらに、急速加熱装置6での加熱出力の制御は、急速加熱装置6の前後にそれぞれ設けられた温度計11a、11bにより計測された粗バーの表面温度から断面平均温度を算出し、粗バー全長および全厚に亘りAc3変態点以上となるように、且つ、仕上圧延でのパススケジュールと圧延速度を考慮して、仕上圧延機出口にて所定の仕上温度が確保できるように、粗バーの先端から尾端にかけて加熱出力を調整すればよい。 The rapid heating apparatus 6 normally uses an induction heating apparatus with good temperature controllability so that the rough bar can be rapidly heated at a temperature increase rate of 80 ° C./second or more in a short time. An edge heater may be installed adjacent to the rapid heating device 6 in order to heat the edges of the coarse bar. And between the 1st rapid cooling apparatus 5 and the rapid heating apparatus 6, you may install the heat retention cover for preventing especially the temperature fall of a rough bar tail end part. Furthermore, the control of the heating output in the rapid heating device 6 is performed by calculating the average cross-sectional temperature from the surface temperature of the rough bar measured by the thermometers 11a and 11b provided before and after the rapid heating device 6, respectively. In addition, in order to ensure a predetermined finishing temperature at the exit of the finishing mill in consideration of the pass schedule and rolling speed in finishing rolling so that the Ac 3 transformation point is exceeded over the entire thickness, The heating output may be adjusted from the tip to the tail.

第2急速冷却装置8は、仕上圧延終了直後の熱延鋼板に急速冷却を行うための装置であり、仕上圧延後のオーステナイトの再結晶、回復が進行し、オーステナイト組織が粒成長により粗大化してしまうことを防ぐため、極力仕上圧延機7の出側直近に配置することが望ましい。   The second rapid cooling device 8 is a device for rapidly cooling the hot-rolled steel sheet immediately after completion of finish rolling, and recrystallization and recovery of austenite after finish rolling proceeds, and the austenite structure becomes coarse due to grain growth. In order to prevent this, it is desirable to arrange as close as possible to the exit side of the finishing mill 7 as much as possible.

また、材質調整の観点からは、コイラー10に巻取る際の温度も重要であり、そのために、ここでは、コイラー10の直前に巻取り温度調整用の冷却装置9を配置している。   Further, from the viewpoint of adjusting the material, the temperature at the time of winding around the coiler 10 is also important. For this reason, the cooling device 9 for adjusting the winding temperature is disposed immediately before the coiler 10.

図4は、本発明の第2の実施形態において用いる他の熱延鋼板の製造設備の説明図である。   FIG. 4 is an explanatory diagram of another hot-rolled steel sheet manufacturing facility used in the second embodiment of the present invention.

図4に示す熱延鋼板の製造設備は、図3に示す熱延鋼板の製造設備とほぼ同様の構成であるが、粗圧延機4の下流に、粗圧延機4で圧延後の熱間スラブ3に対して1回あたりの圧下率が50%以上の板厚方向の圧下を加えることのできる板厚圧下プレス装置12を備えている点が異なっている。   The hot-rolled steel sheet manufacturing facility shown in FIG. 4 has substantially the same configuration as the hot-rolled steel sheet manufacturing facility shown in FIG. 3, but the hot slab after being rolled by the roughing mill 4 downstream of the roughing mill 4. 3 is different in that a plate thickness reduction press device 12 that can apply a reduction in the plate thickness direction with a reduction rate of 50% or more per time is provided.

ここで、板厚圧下プレス装置12は、熱間スラブ3を上下に挟んだ金型で圧下する鍛造型圧下装置であり、熱間スラブ3を順次送り出しながら金型を開閉するプレス動作を繰返し行い、熱間スラブ3の全長を所望の厚さへ加工する装置である。このような板厚圧下プレス装置によれば、圧延ロールを用いた従来の粗圧延とは異なり噛み込み限界がないため、1回当たりの圧下率が制約されず任意の大圧下も可能である。このような大圧下が可能な板厚圧下プレス装置を複数台設けてもよいし、粗圧延機4を用いずに板厚圧下プレス装置のみとしてもよい。   Here, the plate thickness reduction press device 12 is a forging die reduction device that reduces a hot slab 3 with a die sandwiched between the upper and lower sides, and repeatedly performs a pressing operation to open and close the die while feeding the hot slab 3 sequentially. This is an apparatus for processing the entire length of the hot slab 3 to a desired thickness. According to such a plate thickness reduction press apparatus, unlike the conventional rough rolling using a rolling roll, there is no biting limit, so that the reduction rate per one time is not restricted and arbitrary large reduction is possible. A plurality of sheet thickness reduction press devices capable of such a large reduction may be provided, or only the sheet thickness reduction press device may be provided without using the rough rolling mill 4.

なお、図3、図4において、連続鋳造後の熱間スラブ3は、約90〜300mmの板厚であり、連続鋳造装置1から直送されるか、または加熱炉2にて再加熱される。   3 and 4, the hot slab 3 after continuous casting has a thickness of about 90 to 300 mm, and is sent directly from the continuous casting apparatus 1 or reheated in the heating furnace 2.

上記のように構成された熱延鋼板の製造設備を用いて、より微細なフェライト組織を有する鋼板を製造する手順を以下に述べる。なお、この実施形態においては、第1急速冷却装置5と急速加熱装置6は使用しないので停止しておく。   A procedure for manufacturing a steel sheet having a finer ferrite structure using the hot-rolled steel sheet manufacturing equipment configured as described above will be described below. In this embodiment, the first rapid cooling device 5 and the rapid heating device 6 are not used and are stopped.

(2−1)まず、鋳造後、直送または加熱炉2にて再加熱された熱間スラブ3に、Ar3変態点以上の温度(通常は1100〜1250℃)において、粗圧延機4により1パスまたは複数パスの板厚方向の圧下を加えて、板厚が30〜50mm程度の粗バーとする(粗圧延工程)。
その際、圧下量や圧下によって与えられる歪分布の均一度等を考慮して、粗圧延機4による圧延パス数が決定される。また、これらのパス数は、粗圧延機4の圧延機設置台数や、リバースさせる回数により調整することができる。
なお、図4に示した製造設備を用いる場合には、粗圧延機4によりスラブ3を所定の板厚まで圧延した後、さらに板厚圧下プレス装置12により圧下率50%以上の板厚圧下を加えて、板厚30〜50mm程度の粗バーとする。
(2-1) First, a hot slab 3 directly cast or reheated in a heating furnace 2 after casting is subjected to 1 by a roughing mill 4 at a temperature equal to or higher than the Ar 3 transformation point (usually 1100 to 1250 ° C.). A pass or a plurality of passes in the plate thickness direction is applied to form a rough bar having a plate thickness of about 30 to 50 mm (rough rolling step).
At that time, the number of rolling passes by the roughing mill 4 is determined in consideration of the amount of reduction and the uniformity of strain distribution given by the reduction. The number of passes can be adjusted by the number of rolling mills installed in the rough rolling mill 4 and the number of times of reverse rolling.
In the case of using the manufacturing equipment shown in FIG. 4, after rolling the slab 3 to a predetermined plate thickness by the rough rolling mill 4, the plate thickness reduction with a reduction rate of 50% or more is further performed by the plate thickness reduction press device 12. In addition, a rough bar having a thickness of about 30 to 50 mm is used.

(2.2)次に、粗バーに、Ar3変態点以上の温度において、仕上圧延機7により1パスまたは複数パスの板厚方向の圧下を加えて、所定の板厚の鋼板へ仕上圧延する(仕上圧延工程)。 (2.2) Next, the rough bar is subjected to rolling in the plate thickness direction of one pass or a plurality of passes by a finish rolling machine 7 at a temperature equal to or higher than the Ar 3 transformation point, and finish rolling to a steel plate having a predetermined plate thickness. (Finish rolling process).

(2.3)次に、仕上圧延機7で仕上圧延された鋼板に対して、仕上圧延機7出側に位置する急速冷却装置8にて、仕上圧延終了後0.4秒以内に冷却を開始し、700℃/秒以上の冷却速度で、(Ae3変態点−200℃)以下の温度へ冷却する(急速冷却工程)。 (2.3) Next, the steel plate finish-rolled by the finish rolling mill 7 is cooled within 0.4 seconds after finishing rolling by the rapid cooling device 8 located on the exit side of the finish rolling mill 7. Start and cool to a temperature of (Ae 3 transformation point−200 ° C.) or less at a cooling rate of 700 ° C./second or more (rapid cooling step).

(2.4)最後に、急速冷却装置8で急速冷却された鋼板について、冷却装置9にて所定の巻取り温度となるように調整冷却を行い、コイラー10にて巻取る(巻取り工程)。
なお、冷却装置9による調整冷却は必ずしも必要ではなく、急速冷却装置8単独で材質造り込み上に必要な所定温度への冷却が可能である場合には、急速冷却装置8での冷却後に直接巻取ってもよい。
(2.4) Finally, the steel sheet rapidly cooled by the rapid cooling device 8 is adjusted and cooled by the cooling device 9 so as to reach a predetermined winding temperature, and wound by the coiler 10 (winding step). .
Regulated cooling by the cooling device 9 is not necessarily required. If the rapid cooling device 8 alone can cool the material to a predetermined temperature required for material formation, the direct cooling after the cooling by the rapid cooling device 8 is possible. You may take it.

上記のようにして、比較的板厚の厚いスラブを用い、スラブ厚から仕上板厚までの圧下量を大きくすることによって、仕上圧延後のオーステナイトが第1の実施形態におけるよりも細粒化される。さらに、板厚圧下プレス装置12による圧下率50%以上の板厚圧下を加えて粗バーを得ることによって、仕上圧延後のオーステナイトがより一層細粒化される。   As described above, by using a slab having a relatively thick plate thickness and increasing the reduction amount from the slab thickness to the finished plate thickness, the austenite after finish rolling is made finer than in the first embodiment. The Furthermore, the austenite after finish rolling is further refined by applying a plate thickness reduction of 50% or more by the plate thickness reduction press device 12 to obtain a coarse bar.

その結果、この実施形態においては、圧延設備に多大な負荷をかける大圧下圧延を行うことなく、第1の実施形態におけるよりもさらに微細なフェライト組織を有する鋼板を製造することができ、さらに板厚圧下プレス装置による大圧下を施すことでより一層微細なフェライト組織を有する鋼板を製造することができる。   As a result, in this embodiment, a steel sheet having a finer ferrite structure than that in the first embodiment can be manufactured without performing large-pressure rolling that places a great load on the rolling equipment. A steel sheet having a finer ferrite structure can be produced by applying a large reduction with a thick reduction press.

(第3の実施形態)
本発明の第3の実施形態として、前述の第2の実施形態におけるよりもさらに一層微細なフェライト組織を有する鋼板が製造される場合について述べる。すなわち、第2の実施形態における粗圧延工程と仕上圧延工程の間で、粗バーに対して急速冷却・急速加熱をする変態・逆変態処理を施すことにより、仕上圧延後のオーステナイトをより一層細粒化するようにしたものである。
(Third embodiment)
As a third embodiment of the present invention, a case where a steel plate having a finer ferrite structure than that in the second embodiment is manufactured will be described. That is, between the rough rolling process and the finish rolling process in the second embodiment, the rough bar is subjected to transformation / reverse transformation treatment for rapid cooling and rapid heating to further refine the austenite after the finish rolling. It is intended to be granulated.

この実施形態においても、図3に示す熱延鋼板の製造設備あるいは図4に示す熱延鋼板の製造設備を用いる。そして、連続鋳造後の熱間スラブ3は、約90〜300mmの板厚であり、連続鋳造装置1から直送されるか、または加熱炉2にて再加熱される。   Also in this embodiment, the hot-rolled steel plate manufacturing equipment shown in FIG. 3 or the hot-rolled steel plate manufacturing equipment shown in FIG. 4 is used. The hot slab 3 after continuous casting has a thickness of about 90 to 300 mm, and is sent directly from the continuous casting apparatus 1 or reheated in the heating furnace 2.

以下に、図3あるいは図4に示す熱延鋼板の製造設備を用いて、より一層微細なフェライト組織を有する鋼板を製造する手順を述べる。   Hereinafter, a procedure for manufacturing a steel sheet having a finer ferrite structure using the hot-rolled steel sheet manufacturing equipment shown in FIG. 3 or 4 will be described.

(3.1)まず、鋳造後、直送または加熱炉2にて再加熱された熱間スラブ3を、Ar3変態点以上の温度(通常は1100〜1250℃)において、粗圧延機4により1パスまたは複数パスの板厚方向の圧下を加えて、板厚が30〜50mm程度の粗バーとする(粗圧延工程)。
なお、図4に示した製造設備を用いる場合には、粗圧延機4により熱間スラブ3を所定の板厚まで圧延した後、さらに板厚圧下プレス装置12により圧下率50%以上の板厚圧下を加えて、板厚30〜50mm程度の粗バーとする。
(3.1) First, a hot slab 3 directly cast or reheated in a heating furnace 2 after casting is heated by a rough rolling mill 4 at a temperature equal to or higher than the Ar 3 transformation point (usually 1100 to 1250 ° C.). A pass or a plurality of passes in the plate thickness direction is applied to form a rough bar having a plate thickness of about 30 to 50 mm (rough rolling step).
In the case of using the manufacturing equipment shown in FIG. 4, after the hot slab 3 is rolled to a predetermined thickness by the rough rolling mill 4, the sheet thickness is reduced by 50% or more by the sheet thickness reduction press device 12. The reduction is applied to obtain a rough bar having a plate thickness of about 30 to 50 mm.

(3.2)次に、第1急速冷却装置5を用いて、直ちに粗バーをAr3変態点以上の温度からAe1変態点以下の温度に急速冷却して、フェライト−パーライト変態を完了させる(第1急速冷却工程)。
ここで、フェライト−パーライト変態を完了させるのは、逆変態によるオーステナイト化の初期に残留オーステナイト組織があると、新たなオーステナイトの核生成が行われにくいためである。さらに、冷却速度が速いほど、変態析出核の数が多くなり、また粒成長も防げるため、15℃/秒を超える冷却速度で急速冷却することが望ましい。また、特に上限は設けないが、冷却速度は大きいほど好ましい。この冷却までの時間は、長過ぎるとオーステナイトが粗大化してしまうため粗圧延直後に行うことが好ましい。具体的には粗圧延後10秒以内に冷却開始することが望ましい。これによって、微細組織を有する粗バーを得ることができる。
(3.2) Next, using the first rapid cooling device 5, the coarse bar is immediately rapidly cooled from the temperature above the Ar 3 transformation point to the temperature below the Ae 1 transformation point, thereby completing the ferrite-pearlite transformation. (First rapid cooling step).
Here, the reason why the ferrite-pearlite transformation is completed is that, if there is a retained austenite structure in the early stage of austenitization by reverse transformation, it is difficult to nucleate new austenite. Furthermore, since the number of transformation precipitation nuclei increases as the cooling rate increases, and grain growth can be prevented, it is desirable to rapidly cool at a cooling rate exceeding 15 ° C./second. Moreover, although there is no upper limit in particular, the larger the cooling rate, the better. If the time until this cooling is too long, austenite becomes coarse, so it is preferable to carry out immediately after rough rolling. Specifically, it is desirable to start cooling within 10 seconds after rough rolling. As a result, a coarse bar having a fine structure can be obtained.

(3.3)次に、急速加熱装置6装置を用いて、粗バーを80℃/秒以上の昇温速度でAc3変態点以上に加熱して、オーステナイトへの逆変態を誘起させる(急速加熱工程)。
これにより、逆変態細粒オーステナイト組織が得られる。なお、この急速加熱は、仕上圧延の直前に行うのが好ましい。仕上圧延までの時間が長くなると、逆変態により生じた細粒オーステナイト組織が粒成長により粗大化してしまうためである。具体的には、逆変態後(急速加熱終了後)10秒以内に仕上圧延を開始することが望ましい。また、急速加熱終了温度は(Ac3変態点+50℃)以下が好ましい。高温で保持する時間が長くなると、逆変態により生じた細粒オーステナイト組織が粒成長により粗大化してしまうためである。これによって、仕上圧延前のオーステナイト組織を細粒化させることができ、それに応じて仕上圧延後のオーステナイト組織も細粒化する。
(3.3) Next, using the rapid heating apparatus 6, the coarse bar is heated to the Ac 3 transformation point or higher at a temperature rising rate of 80 ° C./second or more to induce reverse transformation to austenite (rapid Heating step).
Thereby, a reverse transformation fine grain austenite structure is obtained. The rapid heating is preferably performed immediately before finish rolling. This is because if the time until finish rolling becomes longer, the fine-grained austenite structure generated by reverse transformation becomes coarse due to grain growth. Specifically, it is desirable to start finish rolling within 10 seconds after reverse transformation (after completion of rapid heating). The rapid heating end temperature is preferably (Ac 3 transformation point + 50 ° C.) or less. This is because if the time for holding at high temperature becomes longer, the fine-grained austenite structure produced by the reverse transformation becomes coarse due to grain growth. Thereby, the austenite structure before finish rolling can be refined, and the austenite structure after finish rolling is also refined accordingly.

(3.4)次に、粗バーに、Ar3変態点以上の温度において、仕上圧延機7により1パスまたは複数パスの板厚方向の圧下を加えて、所定の板厚の鋼板へ仕上圧延する(仕上圧延工程)。 (3.4) Next, the rough bar is subjected to one-pass or multiple-pass reduction in the plate thickness direction at a temperature equal to or higher than the Ar 3 transformation point, and finish-rolled to a steel plate having a predetermined plate thickness. (Finish rolling process).

(3.5)次に、仕上圧延機7で仕上圧延された鋼板に対して、仕上圧延機7出側に位置する第2急速冷却装置8にて、仕上圧延終了後0.4秒以内に冷却を開始し、700℃/秒以上の冷却速度で、(Ae3変態点−200℃)以下の温度へ冷却する(第2急速冷却工程)。 (3.5) Next, with respect to the steel sheet finish-rolled by the finish rolling mill 7, within the second rapid cooling device 8 located on the exit side of the finish rolling mill 7 within 0.4 seconds after finishing rolling. Cooling is started, and cooling is performed at a cooling rate of 700 ° C./second or more to a temperature of (Ae 3 transformation point−200 ° C.) or less (second rapid cooling step).

(3.6)最後に、第2急速冷却装置8で急速冷却された鋼板について、冷却装置9にて所定の巻取り温度となるように調整冷却を行い、コイラー10にて巻取る(巻取り工程)。
なお、冷却装置9による調整冷却は必ずしも必要ではなく、第2急速冷却装置8単独で材質造り込み上に必要な所定温度への冷却が可能である場合には、急速冷却装置8での冷却後に直接巻取ってもよい。
(3.6) Finally, the steel sheet rapidly cooled by the second rapid cooling device 8 is adjusted and cooled by the cooling device 9 so as to reach a predetermined winding temperature, and wound by the coiler 10 (winding) Process).
It should be noted that the adjustment cooling by the cooling device 9 is not necessarily required. If the second rapid cooling device 8 alone can cool the material to a predetermined temperature required for building in the material, after the cooling by the rapid cooling device 8 It may be taken up directly.

上記のようにして、粗バーに対して変態・逆変態処理を施すことによって、仕上圧延後のオーステナイトが第2の実施形態におけるよりも一層細粒化される。   As described above, by performing transformation / reverse transformation treatment on the coarse bar, the austenite after the finish rolling is made finer than in the second embodiment.

その結果、この実施形態においては、圧延設備に多大な負荷をかける大圧下圧延を行うことなく、第2の実施形態におけるよりもさらに一層微細なフェライト組織を有する鋼板を製造することができ、さらに板厚圧下プレス装置による大圧下を施すことでより一層微細なフェライト組織を有する鋼板を製造することができる。   As a result, in this embodiment, it is possible to produce a steel sheet having a much finer ferrite structure than in the second embodiment, without performing large-pressure rolling that places a great load on the rolling equipment, A steel plate having a finer ferrite structure can be produced by applying a large reduction by a plate thickness reduction press.

なお、連続鋳造後のスラブ3の厚さが約50mm以下の薄スラブを用い、前記(3.2)から開始することもできる。その場合でも、本実施形態の変態・逆変態処理による細粒化効果が得られ、第1の実施形態におけるよりも微細なフェライト組織を有する鋼板を製造することができる。   In addition, it can also start from said (3.2) using the thin slab whose thickness of the slab 3 after continuous casting is about 50 mm or less. Even in such a case, the effect of refining by the transformation / reverse transformation treatment of the present embodiment can be obtained, and a steel sheet having a finer ferrite structure than that of the first embodiment can be manufactured.

なお、本発明の鋼板の製造方法に供する鋼の成分については、特に限定されるものではないが、Cは、主に熱延鋼板の強度を確保するために必要な元素であり、またその含有量が少ないと結晶粒微細化効果を得にくくなる。従って、Cは0.06mass%以上含有することが好ましい。一方、Cが0.25mass%を超えると、鋼材の靭性、加工性および溶接性を劣化させるため、0.25mass%以下とすることが好ましい。その他の元素については、本発明の効果を妨げない限り、通常の炭素鋼に含有される範囲で添加することができる。なお、P、S、N等の不可避的不純物については、低い方が好ましいが、通常の高強度鋼板の範囲内であれば含まれていてもよい。   In addition, although it does not specifically limit about the component of the steel used for the manufacturing method of the steel plate of this invention, C is an element required in order to mainly ensure the intensity | strength of a hot-rolled steel plate, and its containing When the amount is small, it is difficult to obtain the effect of crystal grain refinement. Therefore, C is preferably contained in an amount of 0.06 mass% or more. On the other hand, when C exceeds 0.25 mass%, the toughness, workability, and weldability of the steel material are deteriorated. Therefore, the C content is preferably 0.25 mass% or less. Other elements can be added as long as they do not interfere with the effects of the present invention as long as they are contained in ordinary carbon steel. In addition, inevitable impurities such as P, S, and N are preferably low, but may be included as long as they are within the range of a normal high-strength steel sheet.

本発明の実施例を以下に述べる。   Examples of the present invention are described below.

化学成分としてmass%で、C:0.14%、Si:0.02%、Mn:0.64%、P:0.018%、S:0.005%、sol.Al:0.036%、N:0.005%を含有する鋼を溶製した。この鋼を用いて、以下の製造条件でスラブから鋼板を製造した。なお、この鋼のAe3変態点は875℃、Ae1温度は723℃であった。 The chemical component is mass%, C: 0.14%, Si: 0.02%, Mn: 0.64%, P: 0.018%, S: 0.005%, sol. A steel containing Al: 0.036% and N: 0.005% was melted. Using this steel, a steel plate was manufactured from a slab under the following manufacturing conditions. The steel had an Ae 3 transformation point of 875 ° C. and an Ae 1 temperature of 723 ° C.

参考例1は、前述の第1の実施形態に基づくものであり、図2に示す熱延鋼板の製造設備を用いて、厚さ30mmのスラブ3を仕上圧延機7にてAr変態点以上で仕上板厚2mmまで圧延し、仕上圧延終了直後0.4秒で急速冷却装置8による冷却を開始し、900℃/秒の冷却速度にて630℃まで急速冷却を行い、コイラー10で巻取った。 Reference Example 1 is based on the first embodiment described above. Using the hot-rolled steel sheet manufacturing facility shown in FIG. 2, a slab 3 having a thickness of 30 mm is processed at an Ar 3 transformation point or higher by a finishing mill 7. Then, the sheet is rolled to a finishing plate thickness of 2 mm, and cooling is started by the rapid cooling device 8 in 0.4 seconds immediately after finishing rolling, and is rapidly cooled to 630 ° C. at a cooling rate of 900 ° C./second, and wound by the coiler 10. It was.

参考例2は、前述の第2の実施形態に基づくものであり、図3に示す熱延鋼板の製造設備を用いて、厚さ250mmのスラブ3を加熱炉2にて1200℃に加熱し、粗圧延機4で7パスの圧下を加えて板厚30mmの粗バーとした後、この粗バーを仕上圧延機7にてAr変態点以上で仕上板厚2mmまで圧延し、仕上圧延終了直後0.4秒で急速冷却装置8による冷却を開始し、900℃/秒の冷却速度にて630℃まで急速冷却を行い、コイラー10で巻取った。 Reference Example 2 is based on the second embodiment described above, and the slab 3 having a thickness of 250 mm is heated to 1200 ° C. in the heating furnace 2 using the hot-rolled steel sheet manufacturing equipment shown in FIG. After applying a 7-pass reduction with a roughing mill 4 to form a rough bar with a thickness of 30 mm, the rough bar is rolled with a finishing mill 7 to a finishing plate thickness of 2 mm above the Ar 3 transformation point and immediately after finishing rolling. Cooling by the rapid cooling device 8 was started in 0.4 seconds, rapid cooling was performed to 630 ° C. at a cooling rate of 900 ° C./second, and the coiler 10 wound up.

参考例3は、前述の第2の実施形態に基づくものであり、図4に示す熱延鋼板の製造設備を用いて、厚さ250mmのスラブ3を加熱炉2にて1200℃に加熱し、粗圧延機4で5パスの圧下を加えて板厚100mmまで圧延し、さらに板厚圧下プレス装置12にて1回あたりの圧下率が70%の圧下を加えて板厚30mmの粗バーとした後、この粗バーを仕上圧延機7にてAr変態点以上で仕上板厚2mmまで圧延し、仕上圧延終了直後0.4秒で急速冷却装置8による冷却を開始し、900℃/秒の冷却速度にて628℃まで急速冷却を行い、コイラー10で巻取った。 Reference Example 3 is based on the second embodiment described above, and the slab 3 having a thickness of 250 mm is heated to 1200 ° C. in the heating furnace 2 using the hot-rolled steel sheet manufacturing equipment shown in FIG. The rough rolling machine 4 applied 5 passes of rolling to roll the sheet to 100 mm, and the sheet thickness reducing press apparatus 12 applied a rolling reduction of 70% per round to obtain a rough bar with a plate thickness of 30 mm. Thereafter, this rough bar was rolled to a finishing plate thickness of 2 mm at the Ar 3 transformation point or higher by the finishing mill 7, and cooling by the rapid cooling device 8 was started in 0.4 seconds immediately after finishing rolling, and 900 ° C./second. Rapid cooling to 628 ° C. was performed at a cooling rate, and the coiler 10 was wound up.

本発明例4は、前述の第3の実施形態に基づくものであり、図3に示す熱延鋼板の製造設備を用いて、厚さ250mmのスラブ3を加熱炉2にて1200℃に加熱し、粗圧延機4で7パスの圧下を加えて板厚30mmの粗バーとした後、1000℃の粗バーを第1急速冷却装置5により20℃/秒の冷却速度にて650℃まで急速冷却しフェライト−パーライト変態を完了させ、急速加熱装置6により80℃/秒の昇温速度にて900℃まで急速加熱を行って逆変態を生じさせて、仕上圧延機7にて仕上板厚2mmまで圧延し、仕上圧延終了直後0.3秒で第2急速冷却装置8による冷却を開始し、700℃/秒の冷却速度にて626℃まで急速冷却を行い、コイラー10で巻取った。   Invention Example 4 is based on the above-described third embodiment, and the slab 3 having a thickness of 250 mm is heated to 1200 ° C. in the heating furnace 2 by using the hot-rolled steel sheet manufacturing equipment shown in FIG. After applying a 7-pass reduction with a roughing mill 4 to obtain a rough bar having a thickness of 30 mm, the first rapid cooling device 5 rapidly cools the rough bar at 1000 ° C. to 650 ° C. at a cooling rate of 20 ° C./second. Ferrite-pearlite transformation is completed, rapid heating is performed to 900 ° C. at a heating rate of 80 ° C./second by the rapid heating device 6 to cause reverse transformation, and the finishing sheet thickness is up to 2 mm in the finishing mill 7. Rolling was started, and cooling by the second rapid cooling device 8 was started in 0.3 seconds immediately after finishing rolling, rapid cooling was performed to 626 ° C. at a cooling rate of 700 ° C./second, and the coiler 10 was wound up.

本発明例5は、前述の第3の実施形態に基づくものであり、図4に示す熱延鋼板の製造設備を用いて、厚さ250mmのスラブ3を加熱炉2にて1200℃に加熱し、粗圧延機4で5パスの圧下を加えて板厚100mmまで圧延し、さらに板厚圧下プレス装置12にて1回あたりの圧下率が70%の圧下を加えて板厚30mmの粗バーとし、粗圧延終了後5秒で第1急速冷却装置5による粗バーの冷却を開始して、1050℃の粗バーを15℃/秒の冷却速度にて610℃まで急速冷却しフェライト−パーライト変態を完了させ、急速加熱装置6により90℃/秒の昇温速度にて880℃まで急速加熱を行って逆変態を生じさせて、仕上圧延機7にて仕上板厚2mmまで圧延し、仕上圧延終了直後0.4秒で第2急速冷却装置8による冷却を開始し、800℃/秒の冷却速度にて625℃まで急速冷却を行い、コイラー10で巻取った。   Invention Example 5 is based on the third embodiment described above, and the slab 3 having a thickness of 250 mm is heated to 1200 ° C. in the heating furnace 2 using the hot-rolled steel sheet manufacturing equipment shown in FIG. Then, the rough rolling machine 4 applies 5 passes of rolling and rolls to a plate thickness of 100 mm, and the plate thickness reduction press device 12 applies a reduction of 70% per roll to form a rough bar with a plate thickness of 30 mm. 5 seconds after the completion of the rough rolling, the cooling of the coarse bar by the first rapid cooling device 5 is started, and the coarse bar at 1050 ° C. is rapidly cooled to 610 ° C. at a cooling rate of 15 ° C./second, and the ferrite-pearlite transformation Completed, rapidly heated to 880 ° C. at a heating rate of 90 ° C./second by the rapid heating device 6 to cause reverse transformation, rolled to a finishing plate thickness of 2 mm by the finishing mill 7, and finished finishing rolling Immediately after that, the second rapid cooling device 8 cools in 0.4 seconds. Was started, performs a rapid cooling to 625 ℃ at a cooling rate of 800 ℃ / sec, was wound up in the coiler 10.

これに対して、比較例1として、仕上圧延後の冷却速度を300℃/秒とした。他は参考例1と同じ条件である。 On the other hand, as Comparative Example 1, the cooling rate after finish rolling was set to 300 ° C./second. Other conditions are the same as in Reference Example 1 .

比較例2として、仕上圧延終了直後2秒で急速冷却装置8による冷却を開始した。他は参考例1と同じ条件である。 As Comparative Example 2, cooling by the rapid cooling device 8 was started in 2 seconds immediately after finishing rolling. Other conditions are the same as in Reference Example 1 .

比較例3として、圧延後の急速冷却装置8による冷却の停止温度を850℃とした。他は参考例1と同じ条件である。 As Comparative Example 3, the cooling stop temperature by the rapid cooling device 8 after rolling was set to 850 ° C. Other conditions are the same as in Reference Example 1 .

以上の条件によって製造した鋼板において、ASTM切断法により評価した結晶粒の平均粒径は以下の如くであった。   In the steel sheet manufactured under the above conditions, the average grain size of the crystal grains evaluated by the ASTM cutting method was as follows.

参考例1では平均粒径が2.5μmと微細なフェライト組織が得られた。また、参考例2では平均粒径が1.9μm、参考例3では平均粒径が1.8μmとより微細なフェライト組織が得られた。そして、本発明例4では平均粒径が1.5μm、本発明例5では平均粒径が1.4μmとより一層微細なフェライト組織が得られた。 In Reference Example 1 , a fine ferrite structure with an average particle diameter of 2.5 μm was obtained. The average particle size in Reference Example 2 is 1.9 .mu.m, the mean particle size in Reference Example 3 was obtained finer ferrite and 1.8 .mu.m. In Example 4 of the present invention, an average particle size of 1.5 μm was obtained, and in Example 5 of the present invention, an average particle size of 1.4 μm was obtained.

このように、参考例1〜3、本発明例4、5ではいずれも最終フェライト粒径が3μm以下となる微細フェライト組織を有する鋼板を提供可能である。 Thus, in Reference Examples 1 to 3 and Invention Examples 4 and 5 , it is possible to provide a steel sheet having a fine ferrite structure in which the final ferrite particle size is 3 μm or less.

そして、参考例2、3と本発明例4、5におけるように、スラブ厚から仕上板厚までの圧下量を大きくすることによって、最終フェライト粒径をより微細化することが可能となる。つまり、薄スラブを直接仕上圧延する参考例1よりも、スラブを仕上圧延前に粗圧延を実施する参考例2、3と本発明例4、5の方が最終フェライト粒径を微細化することが可能となる。 Then, as in Reference Examples 2 and 3 and Invention Examples 4 and 5 , the final ferrite particle size can be further refined by increasing the reduction amount from the slab thickness to the finished plate thickness. That is, the reference ferrites 2 and 3 and the inventive examples 4 and 5 in which the rough rolling is performed before the finish rolling of the slab is made finer than the reference example 1 in which the thin slab is directly finish rolled. Is possible.

さらに、本発明例4、本発明例5におけるように、仕上圧延工程に先立ち、急速冷却・急速加熱をする変態・逆変態処理工程を追加することにより、最終フェライト粒径を一層微細化することが可能となる。   Further, as in Invention Example 4 and Invention Example 5, prior to the finish rolling process, the final ferrite grain size can be further refined by adding a transformation / reverse transformation treatment step for rapid cooling and rapid heating. Is possible.

また、参考例3、本発明例5におけるように、仕上圧延工程に先立つ粗圧延工程において、噛み込み限界がなく任意の大歪加工が可能な板厚圧下プレス装置を用いることにより、粗圧延機のみを用いる場合に比べて、最終フェライト粒径をより微細化することも可能となる。 Further, as in Reference Example 3 and Invention Example 5, in the rough rolling step preceding the finish rolling step, a rough rolling mill is used by using a plate thickness reduction press device that has no biting limit and can perform arbitrary large strain processing. Compared with the case of using only the final ferrite, the final ferrite grain size can be further refined.

これに対して、比較例1では、仕上圧延後の急速冷却における冷却速度が、本発明で規定する冷却速度(700℃/秒以上)に比べて300℃/秒と遅かったことから、再結晶、回復の抑制が十分でなくフェライト変態が十分促進されなかったため、平均フェライト粒径が4.5μmであった。   On the other hand, in Comparative Example 1, the cooling rate in rapid cooling after finish rolling was 300 ° C./second slower than the cooling rate (700 ° C./second or more) defined in the present invention. Further, since the suppression of recovery was not sufficient and the ferrite transformation was not sufficiently promoted, the average ferrite particle size was 4.5 μm.

また、比較例2では、仕上圧延終了から急速冷却開始までの時間が、本発明で規定する時間(0.4秒以内)に比べて2秒と長かったことから、再結晶、回復の抑制が十分でなくフェライト変態が十分促進されなかったため、平均フェライト粒径が4.4μmであった。   Further, in Comparative Example 2, the time from the finish rolling to the start of rapid cooling was 2 seconds longer than the time defined within the present invention (within 0.4 seconds), so recrystallization and recovery were suppressed. Since the ferrite transformation was not sufficiently promoted, the average ferrite particle size was 4.4 μm.

また、比較例3では、仕上圧延後の急速冷却における冷却停止温度が、本発明で規定する冷却停止温度((Ae3変態点−200℃)以下)に比べて850℃と高かったことから、急速冷却によるフェライト変態促進が十分でなく、平均フェライト粒径が5.5μmであった。 In Comparative Example 3, the cooling stop temperature in the rapid cooling after finish rolling was as high as 850 ° C. compared to the cooling stop temperature defined in the present invention ((Ae 3 transformation point −200 ° C.) or lower). The ferrite transformation was not sufficiently accelerated by rapid cooling, and the average ferrite particle size was 5.5 μm.

以上の結果から、本発明の有用性が確認された。   From the above results, the usefulness of the present invention was confirmed.

冷却停止温度とフェライト粒径の関係の一例を示す図である。It is a figure which shows an example of the relationship between cooling stop temperature and a ferrite particle size. 本発明の第1の実施形態において用いる熱延鋼板の製造設備の説明図である。It is explanatory drawing of the manufacturing equipment of the hot-rolled steel plate used in the 1st Embodiment of this invention. 本発明の第2、第3の実施形態において用いる熱延鋼板の製造設備の説明図である。It is explanatory drawing of the manufacturing equipment of the hot rolled sheet steel used in the 2nd, 3rd embodiment of this invention. 本発明の第2、第3の実施形態において用いる他の熱延鋼板の製造設備の説明図である。It is explanatory drawing of the manufacturing equipment of the other hot-rolled steel plate used in the 2nd, 3rd embodiment of this invention.

符号の説明Explanation of symbols

1 連続鋳造装置
2 加熱炉
3 スラブ
4 粗圧延機
5 急速冷却装置(第1急速冷却装置)
6 急速加熱装置
7 仕上圧延機
8 急速冷却装置(第2急速冷却装置)
9 冷却装置
10 コイラー
11a、11b 温度計
12 板厚圧下プレス装置
DESCRIPTION OF SYMBOLS 1 Continuous casting apparatus 2 Heating furnace 3 Slab 4 Rough rolling mill 5 Rapid cooling apparatus (1st rapid cooling apparatus)
6 Rapid heating device 7 Finishing mill 8 Rapid cooling device (second rapid cooling device)
9 Cooling device 10 Coiler 11a, 11b Thermometer 12 Plate thickness reduction press device

Claims (2)

熱間スラブに粗圧延機により複数パスの板厚方向の圧下を加えて粗バーとする粗圧延工程と、該粗バーをAr 変態点以上の温度から、Ae 変態点以下の温度に冷却する急速冷却工程と、該冷却により変態完了した粗バーを加熱してオーステナイトへ逆変態させる急速加熱工程と、該加熱した粗バーを、Ar変態点以上の温度にて1パスあるいは複数パスの板厚方向の圧下を加えて鋼板とする仕上圧延工程と、前記仕上圧延工程の後、0.4秒以内に冷却を開始し、700℃/秒以上の冷却速度で(Ae変態点−200℃)以下の温度へ鋼板を冷却する急速冷却工程とを有することを特徴とする鋼板の製造方法。 A rough rolling process in which a hot rolling slab is subjected to a plurality of passes in the plate thickness direction by a rough rolling machine to form a rough bar, and the rough bar is cooled from a temperature above the Ar 3 transformation point to a temperature below the Ae 1 transformation point. A rapid cooling step in which the coarse bar that has been transformed by the cooling is heated to reversely transform it into austenite, and the heated coarse bar is subjected to one or more passes at a temperature not lower than the Ar 3 transformation point. After the finish rolling step in which reduction in the plate thickness direction is applied to form a steel plate, and after the finish rolling step, cooling is started within 0.4 seconds, and at a cooling rate of 700 ° C./second or more (Ae 3 transformation point −200 And a rapid cooling step for cooling the steel sheet to the following temperature. 熱間スラブに板厚方向の圧下を加えて粗バーとする粗圧延工程における板厚方向の圧下を加える手段の少なくとも一部として、熱間スラブを上下に挟んだ金型で圧下する鍛造型圧下装置を用いることを特徴とする請求項1に記載の鋼板の製造方法。 Forging die reduction in which a hot slab is pressed with a die sandwiching the hot slab vertically as at least part of the means for applying a reduction in the plate thickness direction in the rough rolling process by applying a reduction in the plate thickness direction to the hot slab. method for producing a steel sheet according to claim 1, characterized by using the device.
JP2005168994A 2005-06-09 2005-06-09 Steel plate manufacturing method Expired - Fee Related JP4687255B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005168994A JP4687255B2 (en) 2005-06-09 2005-06-09 Steel plate manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005168994A JP4687255B2 (en) 2005-06-09 2005-06-09 Steel plate manufacturing method

Publications (2)

Publication Number Publication Date
JP2006341274A JP2006341274A (en) 2006-12-21
JP4687255B2 true JP4687255B2 (en) 2011-05-25

Family

ID=37638625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005168994A Expired - Fee Related JP4687255B2 (en) 2005-06-09 2005-06-09 Steel plate manufacturing method

Country Status (1)

Country Link
JP (1) JP4687255B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8404060B2 (en) 2007-02-02 2013-03-26 Nippon Steel & Sumitomo Metal Corporation Method for manufacturing hot-rolled sheet having fine-grained ferrite, and hot-rolled sheet
CN103924152A (en) * 2014-04-22 2014-07-16 迁安轧一钢铁集团有限公司 Method for producing hot-rolled steel strips
CN105478472A (en) * 2014-09-19 2016-04-13 鞍钢股份有限公司 Hot rolling method for wide and thin size high-strength cold-rolled base plate for automobile

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004058149A (en) * 2002-06-07 2004-02-26 Jfe Steel Kk Method of manufacturing hot-rolled steel strip
JP2004143503A (en) * 2002-10-23 2004-05-20 Sumitomo Metal Ind Ltd Method for producing hot rolled steel sheet

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004058149A (en) * 2002-06-07 2004-02-26 Jfe Steel Kk Method of manufacturing hot-rolled steel strip
JP2004143503A (en) * 2002-10-23 2004-05-20 Sumitomo Metal Ind Ltd Method for producing hot rolled steel sheet

Also Published As

Publication number Publication date
JP2006341274A (en) 2006-12-21

Similar Documents

Publication Publication Date Title
WO2011148490A1 (en) Steel sheet, and process for production thereof
KR20120096036A (en) Process to manufacture grain-oriented electrical steel strip and grain-oriented electrical steel produced thereby
JP2016516590A (en) Method for manufacturing a metal strip
JP4874369B2 (en) Continuous machining heat treatment line for medium to high carbon steel wire
JP6620522B2 (en) Hot rolled steel strip for non-oriented electrical steel sheet and method for producing non-oriented electrical steel sheet
JP4687255B2 (en) Steel plate manufacturing method
JP3915460B2 (en) High strength hot rolled steel sheet and method for producing the same
JP4412418B2 (en) Method for producing hot-rolled steel sheet having fine ferrite structure, and hot-rolled steel sheet
JP5350254B2 (en) Process for producing flat steel products from aluminum alloyed multiphase steels
JP2007046128A (en) Method for manufacturing hot-rolled steel sheet having fine ferrite structure
JP4415914B2 (en) Method for producing hot-rolled steel sheet having fine ferrite structure
US7288158B2 (en) Manufacturing process for producing high strength steel product with improved formability
JP3995822B2 (en) Method for producing high purity ferritic stainless steel sheet with excellent ridging resistance
JP2005169454A (en) Steel strip manufacturing equipment and method
JPS61166923A (en) Manufacture of electrical steel sheet having superior soft magnetic characteristic
JP2004090065A (en) Heavy reduction rolling method and method for manufacturing hot-rolled steel strip by using the same
JP2007146222A (en) Method for producing steel sheet
TWI779692B (en) Manufacturing method and equipment row of grain-oriented electrical steel sheet
JP4314800B2 (en) Manufacturing method of hot-rolled steel strip
JP2006334599A (en) Method for producing steel sheet
JP4670538B2 (en) Method for producing hot-rolled steel sheet having fine ferrite structure
JP2004167523A (en) Hot rolling method and hot rolling line
JP2840459B2 (en) Manufacturing method of hot rolled steel sheet with excellent deep drawability
JP4191806B2 (en) Method for producing non-oriented electrical steel sheet
JP2005171313A (en) Method for producing steel plate

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060921

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110131

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees