JP4684549B2 - Ferrite coated particulate manufacturing equipment - Google Patents

Ferrite coated particulate manufacturing equipment Download PDF

Info

Publication number
JP4684549B2
JP4684549B2 JP2003411218A JP2003411218A JP4684549B2 JP 4684549 B2 JP4684549 B2 JP 4684549B2 JP 2003411218 A JP2003411218 A JP 2003411218A JP 2003411218 A JP2003411218 A JP 2003411218A JP 4684549 B2 JP4684549 B2 JP 4684549B2
Authority
JP
Japan
Prior art keywords
ferrite
particulate matter
coated
reaction solution
particulate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003411218A
Other languages
Japanese (ja)
Other versions
JP2005175102A (en
Inventor
興邦 高畑
龍矢 千葉
幸一 近藤
栄▲吉▼ ▲吉▼田
正紀 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2003411218A priority Critical patent/JP4684549B2/en
Publication of JP2005175102A publication Critical patent/JP2005175102A/en
Application granted granted Critical
Publication of JP4684549B2 publication Critical patent/JP4684549B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明は、粒子状物に対するフェライト被覆方法及びそのためのフェライト製造装置とに関する。   The present invention relates to a ferrite coating method for particulate matter and a ferrite manufacturing apparatus therefor.

基体表面にフェライト膜を形成する方法としては、フェライト粒子状物とバインダとを混合した組成物を塗布する方法、またはスパッタ等の物理的な付着による方法等の種々の方法が提案されている。   As a method for forming a ferrite film on the surface of a substrate, various methods such as a method of applying a composition in which ferrite particulates and a binder are mixed, or a method of physical adhesion such as sputtering have been proposed.

これに対し、近年基体表面にフェライトの結晶を成長させる方法(以下、フェライトメッキ法)が提案された。   On the other hand, in recent years, a method of growing ferrite crystals on the substrate surface (hereinafter referred to as a ferrite plating method) has been proposed.

フェライトメッキとは、例えば、特許文献1に示されているように、固体表面に、金属イオンとして少なくとも第1鉄イオンを含む水溶液を接触させ、固体表面にFe2+またはこれと他の水酸化金属イオンを吸着させ、続いて吸着したFe2+を酸化させることにより、Fe3+を得、これが水溶液中の水酸化金属イオンとの間でフェライト結晶化反応を起こし、これによって固体表面にフェライト膜を形成することをいう。 For example, as disclosed in Patent Document 1, ferrite plating is a method in which an aqueous solution containing at least ferrous ions as metal ions is brought into contact with a solid surface, and Fe 2+ or this and other metal hydroxides are brought into contact with the solid surface. Ions are adsorbed, and then the adsorbed Fe 2+ is oxidized to obtain Fe 3+ , which causes a ferrite crystallization reaction with metal hydroxide ions in an aqueous solution, thereby forming a ferrite film on the solid surface. To do.

フェライトメッキは、膜を形成しようとする固体が前述した水溶液に対して耐性があれは何でも良い。更に、水溶液を介した反応であるため、温度が比較的低温(常温〜水溶液の沸点以下)でスピネル型フェライト膜を形成できるという特徴がある。そのため、他のフェライト膜作製技術に比べて、固体の限定範囲が小さい。   The ferrite plating may be anything as long as the solid to form a film is resistant to the aqueous solution described above. Further, since the reaction is via an aqueous solution, the spinel ferrite film can be formed at a relatively low temperature (normal temperature to the boiling point of the aqueous solution). Therefore, the limited range of solids is small compared to other ferrite film manufacturing techniques.

また、特許文献2には、前述のフェライトメッキ膜を粒子状物に応用する提案がなされている。特許文献2によれば、金属イオンとして少なくとも第1鉄イオンと粒子状物を含む脱酸素溶液に酸化剤溶液を添加して、粒子状物表面にフェライト膜を生成することが提案されている。   Patent Document 2 proposes to apply the above-described ferrite plating film to a particulate material. According to Patent Document 2, it is proposed that an oxidant solution is added to a deoxygenated solution containing at least ferrous ions and particulate matter as metal ions to form a ferrite film on the particulate matter surface.

しがし、特許文献2において、粒子状物のフェライト被覆は単一の反応容器中で行われており、単一時間に多量の粒子状物をフェライト被覆することには問題がある。   However, in Patent Document 2, the ferrite coating of the particulate matter is performed in a single reaction vessel, and there is a problem in coating a large amount of the particulate matter in a single time.

フェライト被覆した粒子状物は、例えば、樹脂、金属、金属酸化物、有機顔料、セルロース、合成高分子材料、セラミックス等々種々考えられるが、量産化を考慮した場合には単一時間に多量の粒子物を効率良くフェライト被覆する必要がある。   There are various types of ferrite-coated particulate materials, such as resins, metals, metal oxides, organic pigments, cellulose, synthetic polymer materials, ceramics, etc., but considering mass production, a large amount of particles can be obtained in a single time. It is necessary to efficiently coat the object with ferrite.

更に、単一時間に多量のフェライト被覆粒子状物を得ようとした場合、粒子状物に対する均一なフェライト被覆膜を得るためには、少なくとも第一鉄イオンを含む反応液、少なくとも酸化剤もしくは少なくとも酸素を含んだ酸化媒体、及び粒子状物を効率よく撹伴しなければならない。
特公昭63−15990号公報 特開昭63−65085号公報
Furthermore, when obtaining a large amount of ferrite-coated particulate matter in a single time, in order to obtain a uniform ferrite-coated film for the particulate matter, a reaction solution containing at least ferrous ions, at least an oxidizing agent or It is necessary to efficiently stir the oxidizing medium containing at least oxygen and the particulate matter.
Japanese Examined Patent Publication No. 63-15990 JP-A-63-65085

そこで、本発明の技術的課題は、粒子状物に対するフェライト被覆において、かかる従来の欠点を解消して、工業的な生産性を増し、均一に被覆されたフェライト被覆粒子物の製造装置を提供することにある。   Therefore, the technical problem of the present invention is to provide a manufacturing apparatus for uniformly coated ferrite-coated particles, which eliminates the conventional drawbacks in ferrite coating on particulates, increases industrial productivity. There is.

本発明者等は、種々検討の結果、少なくとも第一鉄イオンを含む反応液、少なくとも酸化剤、もしくは少なくとも酸素を含んだ酸化媒体を基体に接触させる機構、フェライト層で被覆される粒子状物が装置内部に連続しで供給、回収される機構、及び少なくとも第一鉄イオンを含む反応液、少なくとも酸化剤、もしくは少なくとも酸素を含んだ酸化媒体、及び粒子状物が超音波により攪拌される機構を備えたフェライト被覆粒子状物の製造装置によって、フェライト被覆粒子状物の工業的な生産性が向上し、また粒子状物がフェライトによって均一に被覆可能であることを見出した。   As a result of various studies, the present inventors have found that a reaction solution containing at least ferrous ions, a mechanism for bringing an oxidizing medium containing at least an oxidizing agent or at least oxygen into contact with a substrate, and a particulate matter coated with a ferrite layer A mechanism for continuously supplying and recovering the inside of the apparatus, and a mechanism for stirring the reaction liquid containing at least ferrous ions, the oxidizing medium containing at least an oxidizing agent, or at least oxygen, and the particulate matter by ultrasonic waves. It was found that the industrial productivity of the ferrite-coated particulate matter was improved by the ferrite-coated particulate production apparatus provided, and that the particulate matter could be uniformly coated with ferrite.

即ち、本発明によれば、粒子状物を供給し、前記粒子状物の表面をフェライトめっき膜で被覆し、表面が前記フェライトめっき膜で被覆された粒子状物を回収するこれらの操作を連続的に行うフェライト被覆粒子状物の製造装置であって、前記製造装置は少なくとも第一鉄イオンを含む反応液、少なくとも酸化剤もしくは少なくとも酸素を含んだ酸化媒体を流下、噴霧、もしくは液滴の滴下によって前記反応液及び前記酸化媒体を前記粒子状物に接触させて当該粒子状物と直接反応させて、前記粒子状物の表面をフェライトめっき膜で被覆する機構と、前記反応液、前記酸化媒体、及び粒子状物を超音波により攪拌し、前記粒子状物の表面を均一にフェライトめっき膜で被覆するための攪拌手段を備えることを特徴とするフェライト被覆粒子状物の製造装置が得られる。 That is, according to the present invention, these operations of supplying particulate matter, covering the surface of the particulate matter with a ferrite plating film, and recovering the particulate matter whose surface is covered with the ferrite plating film are continuously performed. an apparatus for producing a manner performing ferrite-coated particulates, the reaction solution producing apparatus comprising at least ferrous ions, flowing down the oxidizing medium containing at least an oxidant or at least oxygen, spraying or dripping of droplets, wherein the reaction solution and the oxidizing medium is contacted with said particulate material is reacted directly with the particulate material by a mechanism for coating the surface of the particulate matter in the ferrite plating film, the reaction solution, the oxidizing medium , and particulate was stirred by ultrasonic, ferrite coated particles, wherein the obtaining Bei and stirring means for coating with uniform ferrite-plated film surface of the particulate material Jo of manufacturing device can be obtained.

本発明によれば、少なくとも第一鉄イオンを含む反応液、少なくとも酸化剤、もしくは少なくとも酸素を含んだ酸化媒体を基体に接触させる機構、及びフェライト層で被覆される粒子状物が装置内部に連続しで供給、回収される機構を備えることによって、工業的な生産性を向上したフェライト被覆粒子状物の製造装置が得られる。   According to the present invention, a reaction solution containing at least ferrous ions, a mechanism for bringing an oxidizing medium containing at least an oxidizing agent or at least oxygen into contact with a substrate, and particulate matter coated with a ferrite layer are continuously provided inside the apparatus. By providing the mechanism that is supplied and recovered, an apparatus for producing a ferrite-coated particulate matter with improved industrial productivity can be obtained.

また、本発明によれば、少なくとも第一鉄イオンを含む反応液、少なくとも酸化剤、もしくは少なくとも酸素を含んだ酸化媒体を基体に接触させる機構、フェライト層で被覆される粒子状物が装置内部に連続しで供給、回収される機構、及び少なくとも第一鉄イオンを含む反応液、少なくとも酸化剤、もしくは少なくとも酸素を含んだ酸化媒体及び粒子状物が超音波により攪拌される機構を備えたフェライト被覆粒子状物の製造装置によって、表面がフェライトで均一に覆われたフェライト被覆粒子状物が得られる。以上により、本発明の工業的な利用価値は大である。   Further, according to the present invention, the reaction solution containing at least ferrous ions, the mechanism for contacting at least the oxidizing agent or the oxidizing medium containing at least oxygen with the substrate, and the particulate matter coated with the ferrite layer are placed inside the apparatus. Ferrite coating with a mechanism that continuously supplies and recovers, and a mechanism in which a reaction solution containing at least ferrous ions, at least an oxidizing agent, or an oxidizing medium containing at least oxygen and particulate matter are agitated by ultrasonic waves. By the particulate material manufacturing apparatus, a ferrite-coated particulate material whose surface is uniformly covered with ferrite is obtained. As described above, the industrial utility value of the present invention is great.

まず、本発明を更に詳しく説明する。   First, the present invention will be described in more detail.

本発明のフェライト被覆粒子状物の製造装置では、少なくとも第1鉄イオンを含む反応液、少なくとも酸化剤、もしくは、少なくとも酸素を含んだ酸化媒体を基体に接触させる機構、及びフェライト層で被覆される粒子状物が装置内部に連続しで供給、回収される機構を備えることによって、工業的な生産性を向上させるものである。   In the apparatus for producing a ferrite-coated particulate matter according to the present invention, the reaction liquid containing at least ferrous ions, the mechanism for bringing the oxidizing medium containing at least an oxidizing agent or at least oxygen into contact with the substrate, and the ferrite layer are coated. Industrial productivity is improved by providing a mechanism in which particulate matter is continuously supplied and recovered inside the apparatus.

さらに、詳しく述べると、本発明のフェライト被覆粒子状物の製造装置では、第一鉄イオンを含む反応液、少なくとも酸化剤、少なとも酸素を含んだ酸化媒体を基体に接触させる機構、フェライト層で被覆される粒子状物が装置内部に連続して供給、回収される機構、及び少なくとも第一鉄イオンを含む反応液、少なくとも酸化剤、もしくは、少なくとも酸素を含んだ酸化媒体、及び粒子状物が超音波により攪拌される機構を備えることによって、表面がフェライトで均一に覆われたフェライト被覆粒子状物を得るものである。   More specifically, in the ferrite coated particulate matter manufacturing apparatus of the present invention, a reaction solution containing ferrous ions, a mechanism for contacting an oxidizing medium containing at least an oxidizing agent and at least oxygen, and a substrate, a ferrite layer A mechanism for continuously supplying and recovering the particulate matter to be coated inside the apparatus, and a reaction solution containing at least ferrous ions, an oxidizing medium containing at least an oxidizing agent, or an oxidizing medium containing at least oxygen, and a particulate matter. By providing a mechanism that is stirred by ultrasonic waves, a ferrite-coated particulate material whose surface is uniformly covered with ferrite is obtained.

次に、本発明のフェライト被覆粒子状物の製造装置を図を用いて更に詳細に説明する。   Next, the apparatus for producing a ferrite-coated particulate material according to the present invention will be described in more detail with reference to the drawings.

図1は本発明のフェライトメッキ膜製造装置の概略構成を示す図である。図1においては、メッキポット(容器)1内部が見えるように、メッキポット1を仮想線で示してある。メッキポット1の中心には、中心シャフト2が配置されている。中心シャフト2には、螺旋状の回転羽3が固定されており、中心シャフト2が回転するとメッキポット1内部で回転羽3も同時に回転する。これらは、供給及び回収が連続的におこなわれる機構を構成する。   FIG. 1 is a diagram showing a schematic configuration of a ferrite plating film manufacturing apparatus of the present invention. In FIG. 1, the plating pot 1 is indicated by a virtual line so that the inside of the plating pot (container) 1 can be seen. A central shaft 2 is disposed at the center of the plating pot 1. A spiral rotating blade 3 is fixed to the center shaft 2, and when the center shaft 2 rotates, the rotating blade 3 also rotates at the same time inside the plating pot 1. These constitute a mechanism in which supply and recovery are continuously performed.

粒子状物は供給口4から供給され、回転羽3が回転することで、ポット内部を順次排出口5へ攪拌されながら送られる。メッキポット1には、少なくとも第1鉄イオンを含む反応液、少なくとも酸化剤もしくは少なくとも酸素を含んだ酸化媒体をポット内部へ供給する少なくとも酸化剤、少なとも酸素を含んだ酸化媒体を基体に接触させる機構としての供給ノズル6,7が配置され、ポット内部を攪拌されながら送られる粒子状物に反応液、酸化媒体を適宜供給することで、粒子状物の表面にフェライト層が形成される。これらは基体に流下して接触させる構成であるが、噴霧や液滴の滴下であっても良いことは勿論である。更に、粒子状物、反応液、酸化媒体は、攪拌手段である超音波ホーン8によって均一に攪拌される。尚、超音波ホーンの設置位置、本数は必要に応じて適宜調整することが出来る。 Particulate matter is supplied from the supply port 4, and the rotary blade 3 rotates, so that the inside of the pot is sequentially sent to the discharge port 5 while being stirred. The plating pot 1 is brought into contact with a substrate with a reaction solution containing at least ferrous ions, at least an oxidizing agent containing at least an oxidizing agent or at least oxygen, and at least an oxidizing medium containing at least oxygen. Supply nozzles 6 and 7 serving as a mechanism are arranged, and a ferrite layer is formed on the surface of the particulate matter by appropriately supplying the reaction solution and the oxidizing medium to the particulate matter fed while being stirred inside the pot. These are configured to flow down and contact the substrate, but of course, spraying or dropping of droplets may be used. Further, the particulate matter, the reaction liquid, and the oxidation medium are uniformly stirred by the ultrasonic horn 8 that is a stirring means. The installation position and number of ultrasonic horns can be adjusted as necessary.

それでは、本発明の製造の具体例を述べる。   Then, the specific example of manufacture of this invention is described.

(例)
純水1リットル(以下、Lと示す)に対して、FeCl・4HOを10g、NiCl・6HOを2.39g、ZnClを0.27gそれぞれ溶解した反応液を作製した。別の溶液として、純水1Lに対してNaNOを2g溶解した酸化液を作製した。
(Example)
1 liter of pure water (hereinafter, referred to as L) with respect to prepare FeCl 2 · 4H 2 O and 10g, NiCl 2 · 6H 2 O and 2.39 g, the reaction solution obtained by dissolving ZnCl 2 0.27 g respectively. As another solution, an oxidizing solution in which 2 g of NaNO 2 was dissolved in 1 L of pure water was prepared.

これらの溶液を用いて、図1に示したような装置を用いフェライト膜を作製した。フェライト膜の作製は、以下の手順で行った。 Using these solutions, a ferrite film was produced using an apparatus as shown in FIG. The ferrite film was produced according to the following procedure.

粒子状物は平均粒径100μmのカルボニルFe粒子とし、内容積1Lのメッキポット1に連続して供給した。Fe粒子を供給するメッキポット1内部の温度は90℃で一定に保ち、またポット1内には、窒素ガスを1.5L/minで供給しで非酸化性雰囲気を得た。   The particulate matter was carbonyl Fe particles having an average particle diameter of 100 μm, and was continuously supplied to the plating pot 1 having an internal volume of 1 L. The temperature inside the plating pot 1 for supplying Fe particles was kept constant at 90 ° C., and nitrogen gas was supplied into the pot 1 at 1.5 L / min to obtain a non-oxidizing atmosphere.

反応液、酸化液の流量は10mL/minに調整し、Fe粒子に連続的に供給し、更に反応液、酸化液、Fe粒子は超音波ホーンから供給される超音波によって攪拌した。   The flow rates of the reaction solution and the oxidizing solution were adjusted to 10 mL / min, and were continuously supplied to the Fe particles. The reaction solution, the oxidizing solution, and the Fe particles were further stirred by ultrasonic waves supplied from an ultrasonic horn.

Fe粒子は、メッキポット1内に1時間滞留するように回転羽3の回転数を調整した。   The rotational speed of the rotary blade 3 was adjusted so that the Fe particles stayed in the plating pot 1 for 1 hour.

得られたFe粉末は、黒褐色を呈しており、得られた量は7kgであった。   The obtained Fe powder had a dark brown color, and the amount obtained was 7 kg.

(比較例1)
純水1Lに対しでFeCl・4HOを10g、NiCl・6HOを2.39g、ZnC1を0.27gそれぞれ溶解した反応液を作製した。別の溶液として、純粋1Lに対して、NaNOを2g溶解した酸化液を作製した。
(Comparative Example 1)
A reaction solution was prepared by dissolving 10 g of FeCl 2 .4H 2 O, 2.39 g of NiCl 2 .6H 2 O, and 0.27 g of ZnC 1 2 per 1 L of pure water. As another solution, an oxidation solution in which 2 g of NaNO 2 was dissolved in 1 L of pure was prepared.

粒子状物は、平均粒径100μmのカルボニルFe粒子とし、反応容器中の純水1Lに十分均一に分散可能な量を投入した。また、反応容器中の純水は、予め窒素ガスにより脱酸素を行った。   The particulate matter was carbonyl Fe particles having an average particle diameter of 100 μm, and an amount capable of being dispersed sufficiently uniformly in 1 L of pure water in the reaction vessel was added. The pure water in the reaction vessel was previously deoxygenated with nitrogen gas.

反応液、酸化液の流量は10mL/minに調整し、反応容器内に連続的に供給した。その間、反応液中のpHはアンモニア水を適宜供給することで6〜8に保った。また、反応容器内の温度は90℃で一体に保った。反応時間は1時間とした。得られたFe粉末は黒褐色を呈しており、得られた量は50gであった。   The flow rates of the reaction solution and the oxidizing solution were adjusted to 10 mL / min and continuously supplied into the reaction vessel. Meanwhile, the pH in the reaction solution was kept at 6 to 8 by appropriately supplying ammonia water. The temperature in the reaction vessel was kept at 90 ° C. integrally. The reaction time was 1 hour. The obtained Fe powder had a blackish brown color, and the amount obtained was 50 g.

(比較例2)
純水1Lに対して、FeCl・4HOを10g、NiCl・6HOを2.39g、ZnC1を0.27gそれそれ溶解した反応液を作製した。別の溶液としで、鈍水1Lに対しでNaNOを2g溶解した酸化液を作製した。
(Comparative Example 2)
A reaction liquid was prepared by dissolving 10 g of FeCl 2 .4H 2 O, 2.39 g of NiCl 2 .6H 2 O, and 0.27 g of ZnC 1 2 per 1 L of pure water. As another solution, an oxidizing solution in which 2 g of NaNO 2 was dissolved in 1 L of blunt water was prepared.

これらの溶液を用いて、図1に示したような装置を用いでフェライト膜を作製した。   Using these solutions, a ferrite film was produced using an apparatus as shown in FIG.

フェライト膜の作製は、以下の手順で行った。   The ferrite film was produced according to the following procedure.

粒子状物は平均粒径100μmのカルボニルFe粒子とし、内容積1Lのメッキポット1に連続して、供給した。Fe粒子を供給するメッキポット1内部の温度は90℃で一定に保ち、またメッキポット1内には窒素がスを1.5L/minで供給しで非酸化性雰囲気を得た。   The particulate matter was carbonyl Fe particles having an average particle size of 100 μm, and was continuously supplied to the plating pot 1 having an internal volume of 1 L. The temperature inside the plating pot 1 for supplying Fe particles was kept constant at 90 ° C., and nitrogen was supplied into the plating pot 1 at 1.5 L / min to obtain a non-oxidizing atmosphere.

反応液、酸化成の流量は10mL/minに調整し、Fe粒子に連続的に供給した。   The flow rate of the reaction solution and oxidation was adjusted to 10 mL / min and continuously supplied to the Fe particles.

Fe粒子はメッキポット1内に1時間滞留するように回転羽3の回転数を調整した。   The rotational speed of the rotary blade 3 was adjusted so that the Fe particles stayed in the plating pot 1 for 1 hour.

得られたFe粉末は、黒褐色を呈しでおり、得られた量は7kgであった。   The obtained Fe powder had a blackish brown color, and the amount obtained was 7 kg.

下記表1に、本発明例、比較例1においで1時間フェライト被覆処理を施した後のFe粉末の収量を示した。   Table 1 below shows the yield of Fe powder after the ferrite coating treatment for 1 hour in the inventive example and the comparative example 1.

Figure 0004684549
Figure 0004684549

上記表1から分かるように、本発明例においでフェライト被覆Fe粉末の収量は140倍に増加している。即ち、本発明例においで工業的な生産性を向上したフェライト被覆粒子状物の製造装置が得られた。   As can be seen from Table 1 above, the yield of the ferrite-coated Fe powder is increased 140 times in the examples of the present invention. That is, in the present invention example, an apparatus for producing ferrite-coated particulate matter with improved industrial productivity was obtained.

図2は本発明例に示したように超音波によって反応液、酸化液、Fe粒子を攪拌した場合のフェライト被覆Fe粒子の概略断面図を図3に本発明例と同じ設備を用いで超音波による攪拌を行わなかった場合のフェライト被覆Fe粒子の概略断面図である。   FIG. 2 is a schematic cross-sectional view of ferrite-coated Fe particles when the reaction solution, oxidizing solution, and Fe particles are stirred by ultrasonic waves as shown in the present invention example. FIG. It is a schematic sectional drawing of the ferrite covering Fe particle at the time of not performing stirring by.

図2及び図3から分かるように、反応液、酸化液、Fe粒子を超音波によって、攪拌することによって、表面が均一にフェライトで被覆されたFe粒子が得られた。   As can be seen from FIGS. 2 and 3, the reaction solution, the oxidizing solution, and the Fe particles were agitated by ultrasonic waves to obtain Fe particles whose surfaces were uniformly coated with ferrite.

フェライト被覆粒子状物は、本発明例以外の金属扮末でも同様の効果が得られる。また、金属粉末以外の樹脂、金属酸化物、有機顔料、セルロース、合成高分子材料、セラミックス及び繊維状粒子、扁平状粒子においても同様の効果が得られる。   The same effect can be obtained with the ferrite-coated particulate matter even with a metal powder other than the example of the present invention. Similar effects can also be obtained with resins other than metal powders, metal oxides, organic pigments, cellulose, synthetic polymer materials, ceramics, fibrous particles, and flat particles.

本発明に係るフェライト被膜製造装置は、磁気記録媒体、光磁気記録媒体、磁気ヘッド、磁気光学素子、マイクロ波素子、磁歪素子、磁気音響素子用のフェライト被覆粒子状物の製造に適用できる。   The ferrite film production apparatus according to the present invention can be applied to the production of ferrite-coated particulates for magnetic recording media, magneto-optical recording media, magnetic heads, magneto-optical elements, microwave elements, magnetostrictive elements, and magnetoacoustic elements.

本発明のフェライトメッキ膜製造装置の概略構成を示す図である。It is a figure which shows schematic structure of the ferrite plating film manufacturing apparatus of this invention. 本発明例に示したように超音波によって反応液、酸化液、Fe粒子を攪拌した場合のフェライト被覆Fe粒子の概略断面図である。It is a schematic sectional drawing of the ferrite coat | covered Fe particle at the time of stirring a reaction liquid, an oxidizing solution, and Fe particle by an ultrasonic wave as shown in the example of this invention. 図3は本発明例と同じ設備を用いで超音波による攪拌を行わなかった場合のフェライト被覆Fe粒子の概略断面図である。FIG. 3 is a schematic cross-sectional view of the ferrite-coated Fe particles when the same equipment as that of the present invention example is used and ultrasonic stirring is not performed.

符号の説明Explanation of symbols

1 メッキポット
2 中心シャフト
3 回転羽
4 供給口
5 排出口
6,7 供給ノズル
8 超音波ホーン
9,10 Fe粉末断面
11,12 被覆フェライト断面
101 フェライトメッキ膜製造装置
DESCRIPTION OF SYMBOLS 1 Plating pot 2 Center shaft 3 Rotary blade 4 Supply port 5 Discharge port 6,7 Supply nozzle 8 Ultrasonic horn 9,10 Fe powder cross section 11,12 Coated ferrite cross section 101 Ferrite plating film manufacturing apparatus

Claims (1)

粒子状物を供給し、前記粒子状物の表面をフェライトめっき膜で被覆し、表面が前記フェライトめっき膜で被覆された粒子状物を回収するこれらの操作を連続的に行うフェライト被覆粒子状物の製造装置であって、
前記製造装置は少なくとも第一鉄イオンを含む反応液、少なくとも酸化剤もしくは少なくとも酸素を含んだ酸化媒体を流下、噴霧、もしくは液滴の滴下によって前記反応液及び前記酸化媒体を前記粒子状物に接触させて当該粒子状物と直接反応させて、前記粒子状物の表面をフェライトめっき膜で被覆する機構と、
前記反応液、前記酸化媒体、及び粒子状物を超音波により攪拌し、前記粒子状物の表面を均一にフェライトめっき膜で被覆するための攪拌手段を備える
ことを特徴とするフェライト被覆粒子状物の製造装置。
A ferrite-coated particulate material that supplies the particulate material, coats the surface of the particulate material with a ferrite plating film, and continuously collects the particulate material whose surface is coated with the ferrite plating film . Manufacturing equipment,
The manufacturing apparatus contacts the reaction solution and the oxidation medium with the particulate matter by flowing, spraying, or dropping droplets of a reaction solution containing at least ferrous ions, an oxidation medium containing at least an oxidizing agent or at least oxygen. A mechanism for directly reacting with the particulate matter and covering the surface of the particulate matter with a ferrite plating film ;
The reaction solution, and wherein said oxidizing medium, and the particulate was agitated ultrasonically obtain Bei and stirring means for coating with uniform ferrite-plated film surface of the particulate material <br/> that Manufacturing equipment for ferrite coated particulates.
JP2003411218A 2003-12-10 2003-12-10 Ferrite coated particulate manufacturing equipment Expired - Lifetime JP4684549B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003411218A JP4684549B2 (en) 2003-12-10 2003-12-10 Ferrite coated particulate manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003411218A JP4684549B2 (en) 2003-12-10 2003-12-10 Ferrite coated particulate manufacturing equipment

Publications (2)

Publication Number Publication Date
JP2005175102A JP2005175102A (en) 2005-06-30
JP4684549B2 true JP4684549B2 (en) 2011-05-18

Family

ID=34732019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003411218A Expired - Lifetime JP4684549B2 (en) 2003-12-10 2003-12-10 Ferrite coated particulate manufacturing equipment

Country Status (1)

Country Link
JP (1) JP4684549B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5880211B2 (en) * 2012-03-29 2016-03-08 三菱マテリアル株式会社 Ferrite thin film forming composition and method for forming ferrite thin film

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06231957A (en) * 1992-08-31 1994-08-19 Nippon Paint Co Ltd Particle coated with ferrite and its manufacture
JPH07118864A (en) * 1993-10-22 1995-05-09 C Uyemura & Co Ltd Electroless plating method and electroless plating device for particle
JPH07267627A (en) * 1994-03-24 1995-10-17 Katayama Chem Works Co Ltd Ferromagnetism-coated porous silica fine powder and its use
JPH07320916A (en) * 1994-05-26 1995-12-08 Japan Synthetic Rubber Co Ltd Method of manufacturing magnetic particle
JP2000128544A (en) * 1998-10-28 2000-05-09 Nittetsu Mining Co Ltd Film-coated powder and its production
JP2002121421A (en) * 2000-10-13 2002-04-23 Sekisui Chem Co Ltd Method for producing metal oxide-covered particle, and metal oxide-covered particle
JP2002121679A (en) * 2000-10-13 2002-04-26 Mitsuboshi Belting Ltd Method for manufacturing conductive bead

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06231957A (en) * 1992-08-31 1994-08-19 Nippon Paint Co Ltd Particle coated with ferrite and its manufacture
JPH07118864A (en) * 1993-10-22 1995-05-09 C Uyemura & Co Ltd Electroless plating method and electroless plating device for particle
JPH07267627A (en) * 1994-03-24 1995-10-17 Katayama Chem Works Co Ltd Ferromagnetism-coated porous silica fine powder and its use
JPH07320916A (en) * 1994-05-26 1995-12-08 Japan Synthetic Rubber Co Ltd Method of manufacturing magnetic particle
JP2000128544A (en) * 1998-10-28 2000-05-09 Nittetsu Mining Co Ltd Film-coated powder and its production
JP2002121421A (en) * 2000-10-13 2002-04-23 Sekisui Chem Co Ltd Method for producing metal oxide-covered particle, and metal oxide-covered particle
JP2002121679A (en) * 2000-10-13 2002-04-26 Mitsuboshi Belting Ltd Method for manufacturing conductive bead

Also Published As

Publication number Publication date
JP2005175102A (en) 2005-06-30

Similar Documents

Publication Publication Date Title
Bang et al. Applications of ultrasound to the synthesis of nanostructured materials
CN101835555B (en) Copper fine particle, method for producing the same, and copper fine particle dispersion
CN103534049A (en) Copper powder, copper paste, method for manufacturing conductive coating film, and conductive coating film
TWI449804B (en) Metal layer-coated substrate and process for the production thereof
EP1567602A2 (en) Carbon black compositions and their applications
CN104308172B (en) A kind of method preparing the micro-nano metal of hollow cubic
JPH076072B2 (en) Method for forming ferrite film
KR20100024295A (en) Preparation method of metal flake
CN111069591B (en) Preparation method of nickel-cobalt alloy particle modified graphene micro-sheet wave-absorbing composite powder
Wang et al. Dopamine-induced surface functionalization for the preparation of Al–Ag bimetallic microspheres
Li et al. Raspberry‐like Gold Microspheres: Preparation and Electrochemical Characterization
CN107113982A (en) Printing distributing board substrate, the method for making printing distributing board substrate, printing distributing board, the method and resin base material for making printing distributing board
Lu et al. Strategies for tailoring the properties of chemically precipitated metal powders
JP2002507055A (en) Ferromagnetic particles
JP4684549B2 (en) Ferrite coated particulate manufacturing equipment
US20030140731A1 (en) Methods for the preparation of metallic alloy nanoparticles and compositions thereof
US6156428A (en) Base metal particles having anisometric morphology
JP2004244694A (en) Method and device for producing ferrite-covered particulate material
TWI330546B (en) Method of synthesizing nano-particles
JP6181367B2 (en) Coated fibrous copper particulate aggregate
JP2531588B2 (en) Method for producing metal-supported particles having ferromagnetism
CN107216775B (en) A kind of electromagnetic screen coating and preparation method thereof
JP3782284B2 (en) Film coating device for film coating powder
Cheng et al. Preparation of micron–sized polystyrene/silver core–shell microspheres by ultrasonic assisted electroless plating
JP2007153662A (en) Metal nitride nanoparticles and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100204

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101102

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110119

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110209

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4684549

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term