JP4682912B2 - センサネットシステム、センサネット位置特定プログラム - Google Patents

センサネットシステム、センサネット位置特定プログラム Download PDF

Info

Publication number
JP4682912B2
JP4682912B2 JP2006128846A JP2006128846A JP4682912B2 JP 4682912 B2 JP4682912 B2 JP 4682912B2 JP 2006128846 A JP2006128846 A JP 2006128846A JP 2006128846 A JP2006128846 A JP 2006128846A JP 4682912 B2 JP4682912 B2 JP 4682912B2
Authority
JP
Japan
Prior art keywords
node
locator
information
sensor
base station
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006128846A
Other languages
English (en)
Other versions
JP2007300571A (ja
Inventor
俊之 在塚
教夫 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2006128846A priority Critical patent/JP4682912B2/ja
Priority to US11/797,749 priority patent/US7675410B2/en
Publication of JP2007300571A publication Critical patent/JP2007300571A/ja
Application granted granted Critical
Publication of JP4682912B2 publication Critical patent/JP4682912B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/38Services specially adapted for particular environments, situations or purposes for collecting sensor information
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/0009Transmission of position information to remote stations
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C9/00Individual registration on entry or exit
    • G07C9/20Individual registration on entry or exit involving the use of a pass
    • G07C9/28Individual registration on entry or exit involving the use of a pass the pass enabling tracking or indicating presence
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W60/00Affiliation to network, e.g. registration; Terminating affiliation with the network, e.g. de-registration
    • H04W60/04Affiliation to network, e.g. registration; Terminating affiliation with the network, e.g. de-registration using triggered events
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

本発明は、人や物の状態や位置等の状況変化を連続的に追跡可能なセンサネットワークシステムに関し、特に移動体の位置特定が有効な分野に関する。
従来から、建物や市街地等での人の行動に対するセキュリティ管理、倉庫や店舗等の流通過程の物品管理、医療施設や家庭での人の健康や安全管理、愛玩動物や家畜の状態監視等の分野では、人や物品、動物等の移動体に、個体を識別可能なIDを外部に伝達する手段を設けたタグをつけ、外部からタグの情報を読み取ることによって移動体の管理を行う方法が提案され、また実用化されてきた。
移動体を管理する上で、IDによる個体の識別に加えて重要な管理情報の一つに移動体の位置がある。移動体のIDと位置を、それらが観測された時間と組み合わせることによって、特定の移動体の現在地、移動の経路、複数の移動体間の関係、観測フィールドとの関係等の情報が得られる。上記の分野では、これらの情報から、例えば施設内作業者による立入り制限区域への侵入、商品の流通経路のトレース、患者の居場所確認等の状況を把握することができる。
移動体の位置を特定する方法としては、IDを発信するタグとして携帯電話等の無線端末と、無線端末と通信する基地局を用いる方法が開示されている。例えば、無線通信基地局を通信領域が重ならないように配置し、無線端末が最も近い基地局と通信した時点で、その無線端末の位置を通信した基地局の位置とする方法がある。
また、無線端末の信号が基地局に到達するまでの時間を計測する手段を設け、無線端末からの信号電波を少なくとも3つ以上の基地局が同時に受信し、電波が到達した時間差の計測結果に基づいて各基地局と端末間の距離を推定し、3辺測量の原理で位置を特定する方法がある(例えば、特許文献1参照)。
さらに、時間差の代わりに端末から受信した信号の電波強度の差から各基地局と端末間の距離を推定し、3辺測量の原理で位置を特定する方法がある(例えば、特許文献2参照)。
また、3辺測量の原理で無線端末の位置を特定する方法として、電波強度の統計的なモデルを対象空間毎にトレーニングによって決定し、このモデルを用いて測定誤差を軽減する方法がある(例えば、特許文献3及び特許文献4参照)。
特開平8−129061号公報 特開平11−178042号公報 特開2004−112482号公報 特開2005−525003号公報
上記背景技術の適用分野において移動体につけるタグとして無線端末を用いる場合、無線の通信可能距離が長い方が通信先の基地局の設置間隔を広くすることができるという点で有利である。一方で、いずれの適用分野についても、移動体の位置はできるだけ精度よく観測することが求められる。
これに対し、通信相手の基地局位置を無線端末の位置とする従来の方法は、端末−基地局間の通信距離が長い場合には、誤差が大きくなるという問題がある。
特許文献1、および特許文献2が開示する3辺測量に基づいた位置特定方法は、少なくとも3つ以上の基地局を位置特定の基準として用いるため、同時に3つ以上の基地局と端末が通信を行えるように、基地局を十分密に配置する必要がある。また、端末位置の推定を精度よく行うためには、それぞれの基地局の位置を予め正確に決定しておく必要がある。
また、特許文献1が開示する時間差を用いた距離推定に基づいた3辺測量の方法は、できるだけ高い測定精度を得るためには、基地局が端末と通信した時間を正確に比較する必要があるため、基地局間で厳密に時間同期を行う手段が必要である。
特許文献2が開示する電波強度を用いた距離推定に基づいた3辺測量の方法は、できるだけ高い測定精度を得るためには、電波強度を正確に計測する必要がある。しかし、上記背景技術分野の適用場所においては、さらには壁や床、設置物の配置や素材、存在する人や物品等の電波を吸収あるいは反射する物体の存在、湿度、他の電波の影響等、伝搬環境の静的、動的な状態によって電波強度が影響を受けるため、精度よく端末の位置を特定することは難しい。この点、特許文献3及び4は統計的モデル決定を開示するが、対象空間の特性を網羅的に測定してモデル化する必要がある。また、位置決定に複雑な計算を行う必要がある。
さらに、上記従来技術は、いずれも端末−基地局間の距離は、最長で通信可能距離の最大値まで広がる場合があり、端末と基地局の間に電波を遮蔽する物体がひとつ、あるいは複数存在する、あるいは出現する可能性がある。その場合には位置特定が不可能になる。また、上記従来技術は通常、端末が測位のための信号を送信する必要がある。
本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、下記のとおりである。センシングデータを取得するセンサと、上記センシングデータ及びノードID情報を含む第1の送信データを生成する第1のコントローラと、上記第1の送信データを基地局に送信する第1の無線処理部と、を有するノードと、ロケータノードの検知領域にノードが存在する場合に、上記ノードから基地局への送信データを傍受する第2の無線処理部と、上記送信データからノードID情報を抽出し、上記抽出したノードID情報、及びロケータノードID情報を含む第2の送信データを生成する第2のコントローラと、を有するロケータノードと、基地局の通信領域に上記ノードが存在する場合に、上記第1の送信データを受信して第1のノードID情報を抽出し、上記ロケータノードから上記第2の送信データが送信される場合に、上記第2の送信データを受信して第2のノードID情報及び上記ロケータノードID情報を抽出するノード通信処理部と、上記第1の送信データ、上記第2の送信データの少なくとも何れかから抽出したID情報をサーバに送信するノード管理部と、を有する基地局と、上記ID情報を受信するイベントアクション制御部と、上記ロケータノードID情報と上記ロケータノードの位置とを対応づけるロケータノード位置テーブルを記録する記録部と、上記受信したID情報及び上記ロケータノード位置テーブルを用いて、上記検知領域及び上記通信領域の少なくとも何れかに存在するノードの位置を特定するデータベース制御部と、を有するサーバ、から構成されるセンサネットシステム。
基地局とセンサノード間の正確な距離の推定する必要がなくなり、基地局の厳密な位置決めが不要となる。また、基地局間の正確な時間同期が不要となり、基地局を密に配置する必要がなくなる。さらに、電波強度変動の影響を低減するための複雑な計算が不要となる。また、センサノードは測位のための信号を送信する必要はなく、センサノードの消費電力を低減することができる。
本発明は、ロケータノードを用いてノードの位置を特定することにより、基地局の厳密な位置決めなど、複雑な処理を必要としないことを特徴とする。
以下、本発明の実施形態を添付図面に基づいて説明する。
図1は、センサノードからの通信を傍受する位置特定用ロケータノードを用いてセンサノードの位置を特定するセンサネットワークシステムの構成図である。本明細書では一実施形態として、基地局BST、分散データ処理サーバDDS、ディレクトリサーバDRSを開示するが、これらの構成を1のデータ処理サーバ内に備え、1のデータ処理サーバで実行することも可能である。
<センサネットワークシステムSNS構成の概要>
センサノードWSN(無線センサノード)、MSN(無線モバイルセンサノード)は、所定の位置に設置され、あるいは所定の物あるいは人等に取り付けられ、環境に関する情報や取り付けられた物に関する情報を収集し、その情報を基地局BST−1〜nに送信するノードである。センサノードには、無線により基地局BST−1〜nに接続される無線センサノードWSN、無線モバイルセンサノードMSNと、有線によりネットワークNWK−nに接続される有線センサノードFSNが含まれる。
固定的に設置される無線センサノードWSNは、例えば、搭載されたセンサが周期的に周囲の状況をセンシングして、予め設定された基地局BSTへ直接、あるいは無線を中継するルータRTRを介してセンシング情報を送信する。無線モバイルセンサノードMSNは、ヒトが持ち歩く、クルマに搭載する等、移動体に設置して移動可能であることを前提とし、至近の基地局BSTへ直接、あるいは至近のルータRTRを介してルータRTRが接続している基地局BSTへ情報を中継して送信する。
また、ロケータノードLCNは所定の位置に設置され、周囲に存在するセンサノードを検知して、検知したセンサノードの情報を基地局BST−1〜nへ直接、あるいは無線を中継するルータRTRを介して送信するノードである。ロケータノードLCNは、センサノードが基地局BST、あるいはルータRTRに送信した通信を傍受する機能を有し、ロケータノードLCNから予め定めた特定の距離内にセンサノードが出現した場合に該センサノードを検知して、検知情報を基地局BSTに送信する。
なお、ルータRTRは、センサノードWSNあるいはMSNと基地局の間に1つだけ存在しても良いし、複数のルータRTRを1本のパスで接続して中継するマルチホップ型、あるいは複数のルータRTRをメッシュ状に接続して中継するメッシュ型の中継ネットワークを構成しても良い。
ここで、無線センサノードの全体(総称)を指すときにはWSNまたはMSNとし、個々の無線センサノードを指すときには、WSN−1〜nあるいはMSN−1〜nのように添え字を付して表す。他の構成要素についても以下同様に、総称を示す際には添え字無しで表し、個々を示す際には添え字「−1〜n」を付すものとする。
各基地局BST−1〜nには、1つまたは複数の無線センサノードWSN、MSN、ロケータノードLCNが接続され、各基地局BST−1〜nは、ネットワークNWK−2〜nを介して各センサノードからのデータを収集する分散データ処理サーバDDS−1〜nに接続される。なお、ネットワークNWK−2〜nは、基地局BSTと分散データ処理サーバ(分散サーバ)DDSとを接続する。分散データ処理サーバDDSは、システム規模の大きさによって、その接続数を変えることができる。また、センサノードWSNまたはMSN、ロケータノードLCNと基地局BST間の通信は、今後特に説明しない限りは上述のように直接行われる場合も、ルータRTRによる中継ネットワークを介して行われる場合もあるものとし、本実施例で説明するセンサネットワークシステムには、該中継ネットワークを制御する機能を備えるものとする。中継ネットワークを制御する機能については、一般の無線中継ネットワークで使用されている機能を適用可能であるため、ここでは詳細には記述しない。
各分散データ処理サーバDDS−1〜nは、無線及び有線センサノード(以下、分散データ処理サーバDDSへの接続手段を特に限定しない場合には単に「センサノード」と表記する場合もある)や、ロケータノードLCNが検出したデータ等を格納するディスク装置DSKと、図示しないCPU及びメモリを備えて所定のプログラムを実行し、後述するようにセンサノードからの測定データを収集し、予め規定した条件に従って、データの格納、データの加工、さらにはネットワークNWK−1を介してディレクトリサーバ(管理サーバ)DRSもしくは他のサーバへの通知やデータ転送などのアクションを行う。なお、ネットワークNWK−1は、LANやインターネット等で構成される。
ここで、センサノードから収集したデータは、主には、センサノードを識別する固有のIDおよびセンシングされた数値データであり、また、ロケータノードLCNから収集したデータは、主にロケータノードLCNを識別する固有のIDおよびロケータノードLCNが検出したセンサノードを識別する固有のIDであり、各々が時系列に応じた変化を示すが、そのままではアプリケーションシステムAPSが容易に利用可能な形式にはなっていない。そこで、ディレクトリサーバDRSでは、予め設定された定義に基づいて、センサノードの出力データをアプリケーションシステムAPSが利用しやすい実世界モデル(ヒト、モノ、状態、など)に変換してアプリケーションシステムAPSに提供する。
なお、分散データ処理サーバDDS−1〜nがデータを収集する対象は、自身が接続されたネットワークNWK−2〜nの基地局BSTに所属するセンサノードやロケータノードLCN、他の基地局BSTから移動してきた無線センサノードMSNである。また、有線センサノードFSNは、分散データ処理サーバDDS−1〜nに接続するようにしてもよい。もちろん、有線センサノードFSNを基地局BSTに接続し、基地局BSTが有線センサノードFSNを無線センサノードと同等に管理することもできる。
ネットワークNWK−1には、分散データ処理サーバDDSから送られたセンシング情報に関連づけられた実世界モデルを管理するディレクトリサーバDRSと、ディレクトリサーバDRSや分散データ処理サーバDDS及び基地局BST、センサノードの設定及び管理を行う管理者端末ADTと、このディレクトリサーバDRSの情報を利用するアプリケーションシステムAPSが接続される。なお、管理者端末は、センサノードを管理するセンサ管理者と、センサネットワークのサービスを管理するサービス管理者用にそれぞれ用意しても良い。
ディレクトリサーバDRSは、図示しないCPU、メモリ及びストレージ装置を備えて所定のプログラムを実行し、後述するように、有意な情報に関連づけられたオブジェクトを管理する。すなわち、アプリケーションシステムAPSが、アプリケーションインタフェースを介して実世界モデルに対してアクセスを要求すると、ディレクトリサーバDRSは実世界モデルに該当する測定データを所有する分散データ処理サーバDDS−1〜nにアクセスし、該当する測定データを取得し、そのセンシングデータを、必要あればアプリケーションシステムAPSが利用しやすい形に変換してアプリケーションシステムAPSに渡す。
この例では、センサノードやロケータノードLCNを接続して通信を行う基地局BST、BSTを経由したセンサノードやロケータノードLCNの情報を収集する分散データ処理サーバDDS、分散データ処理サーバDDSのセンシング情報に関連づけられた実世界モデルを管理するディレクトリサーバDRSを用いてセンサネットシステムを構成したが、上述したように基地局BST、分散データ処理サーバDDS、ディレクトリサーバDRSを同一のハードウェア上に構成しても良い。なお、ノード−基地局間の通信を比較的近距離の無線等で構成する例では、ノードから通信可能な距離内に基地局を配置する必要がある。この時、基地局機能のみを分離すればひとつの基地局の構成は単純になり、サイズやコストを下げる事が可能になるため、観測フィールドの様々な場所に多数配置するができる。その結果として、フィールド全体を比較的安価に通信可能エリアにすることができる。一方で、分散データ処理サーバは、例えば1つの観測フィールドに1つ配置してフィールド全体のノードの管理やデータ収集を行い、また、ディレクトリサーバは、複数の観測フィールドを統括する構成にすれば、処理の分散化や、センサネットシステムの統括管理が行いやすくなるという効果が得られる。
図2は、図1に示したセンサネットワークシステムの機能ブロック図である。ここでは、説明を簡易にするため、図1の分散データ処理サーバDDS−1〜nのうち分散データ処理サーバDDS−1の詳細のみを示し、また、分散データ処理サーバDDS−1に接続された基地局BST−1〜nのうち基地局BST−1のみを示す。他の分散データ処理サーバDDSや基地局BSTも同様に構成される。以下、各部の構成について説明する。
<基地局BST>
基地局BSTは、予め設定された配下の無線センサノードWSN、MSN、有線センサノードFSN、およびロケータノードLCNについて管理を行い、各センサノード、ロケータノードLCNが測定したデータや、ノード自身の状態データ等を分散データ処理サーバDDSに送信する。
ノード通信処理部NCPは、センサノードやロケータノードからの通信を受信し、受信内容に含まれるノードのアドレス情報を、アドレス変換テーブルACTを用いて分散データ処理サーバDDSを含む上位システムで使用するアドレスフォーマットに変換する。また、受信内容に含まれるセンシング結果や、残電池容量や通信リトライ回数等のセンサノード自身の状態等、種々のデータを抽出する。
本実施例においては、ノード−基地局間の通信時に、ノードを特定するアドレス情報として、ローカルアドレスとPAN(Personal Area Network) IDを用いる。ここで、PAN IDとは、1の基地局BSTと、基地局BSTに接続された無線センサノードWSN、およびロケータノードLCNで構成される無線ネットワーク単位で割り当てられるIDである。つまり、各構成要素がどのネットワークに属するかを識別するため、1のPANに属するノード、ロケータノード、基地局には同一のPAN IDが付与される。また、センサノードやロケータノードが持つローカルアドレスは、それぞれのノードが所属するPANの中でユニークになるように予め割り当てる。従って、PAN IDとローカルアドレスの組み合わせによってノードのIDはセンサネットシステムSNSの中で一意に決定される。また、後述するグローバルアドレスは、センサネットシステムの中で各ノードに付与されるか、あるいは予め各ノードに割り当てられているIDである。
ここで、本明細書では、センサノードが有するPAN IDであるS_PIDとローカルアドレスS_LADをセンサノードID情報、ロケータノードが有するL_PIDとローカルアドレスL_LADをロケータノードID情報と定義する。
一方で、センサノードやロケータノードは、他のセンサネットシステム、あるいは他の類似システムに所属するノードとの混同を避けるために、他のシステムに所属するノードが混在する可能性がある領域内では一意な識別を行う必要がある。また、分散データ処理サーバDDSやディレクトリサーバDRS、アプリケーションシステムAPSにおいて、他のシステムのノード情報を統合して処理する場合には、すべてのノードを一意に識別する必要がある。このために、各ノードには個体識別のためのグローバルアドレスを割り当てる。
通常、各PANに所属するノード数は、該ノード群が所属するセンサネットシステムSNS、および他のシステム全体に所属するノード数に対し少なくなる。したがって、グローバルアドレスを表現するのに必要なデータサイズに比べ、ローカルアドレスを表現するのに必要なデータサイズを小さくする事ができる。これにより、同一PAN内のノード−基地局間のローカルな通信の際には、通信時に付加するノードのアドレスデータサイズを小さくする事ができ、結果として全体の通信データ量を少なくする事が可能になる。特に帯域の制限された無線通信を行う場合では、通信データ量を少なくすることにより通信時間が短縮されるため、伝送路占有時間節約の面においても、センサノードの電力消費量削減の面においても有利になる。
上述したように、図2に示すノード処理部NCPがアドレス変換テーブルACTを用いて、ローカルアドレスからグローバルアドレスへの変換を行う。なお、図2では、ノード−基地局間通信で用いるノードのアドレスフォーマットと、分散処理サーバDDSを含む上位システムで使用するアドレスフォーマットが異なる場合の例を開示したが、通信データ量に制約が無い場合は、両者を同じにしても実用上問題が無い場合もある。その場合はアドレス変換テーブルACTは不要になる。
イベント監視部EVMは、ノード通信処理部NCPにより取得した該センサノードやロケータノードのID情報であるグローバルアドレスと、センシング結果やノード状態情報をイベントとして監視する。また、センシング結果やノードの状態等の内容に応じて、データ変換や異常判定等予め設定された判定条件に基づいて行われる処理結果をセンサノード管理部SNMに通知する。
コマンド制御部CMC−Bでは、後述する分散データ処理サーバDDS−1のコマンド制御部CMC−Dとの間でコマンドの送受を行う。例えば、分散データ処理サーバDDS−1からのコマンドに応じて、基地局BST−1のパラメータの設定を実行したり、基地局BST−1の状態パラメータの設定を実行したり、センサノードやロケータノードLCNの状態を分散データ処理サーバDDS−1へ送信したりする。
センサノード管理部SNMは、分散データ処理サーバのイベントアクション制御部EACとデータ通信を行う。具体的には、センサノード管理部SNMが管理するセンサノードやロケータノードLCNのセンシング結果やノードの状態情報の処理結果をイベント監視部EVMから受け取り、予め定めた送信条件に従ってNWK−2を介し、分散データ処理サーバDDSに送信する。
また、センサノード管理部SNMは、自身が管理するセンサノードやロケータノードLCNの管理情報(稼動状態、残電力など)を保持する。そして、分散データ処理サーバDDS−1からセンサノードやロケータノードLCNに関する問い合わせがあった場合には、各センサノード、ロケータノードLCNに代わって、管理情報を通知する。つまり、多数のセンサノード、ロケータノードLCNを受け持つ分散データ処理サーバDDS−1は、センサノードやロケータノードLCNの管理を基地局BSTに委ねることで、自身の負荷を低減することができる。
また、センサノード管理部SNMは、イベント監視部EVMが異常を検出した場合には、センサノードやロケータノードLCNの管理情報を更新し、分散データ処理サーバDDS−1へ異常のあったセンサノードあるいはロケータノードLCNを通知する。なお、センサノードあるいはロケータノードLCNの異常とは、センサノードあるいはロケータノードLCNからの応答がない場合や、センサノードあるいはロケータノードLCNの電力が予め設定したしきい値以下になった場合、センシング値が予め定めた正常値の範囲を逸脱した場合など、センサノードあるいはロケータノードLCNの機能が停止または停止に至る状態を示す。
また、センサノード管理部SNMは、コマンド制御部CMC−DからセンサノードやロケータノードLCNに対するコマンド(出力タイミングの設定)を受けた場合には、このコマンドをセンサノードやロケータノードLCNに送信して設定を行い、設定の完了を示す通知をセンサノードやロケータノードLCNから受信した後に、センサノードやロケータノードLCNの管理情報を更新する。なお、センサノードやロケータノードLCNの出力タイミングは、例えば、無線センサノードWSNが基地局BST−1にデータを周期的に送信する際の周期を示す。
<分散データ処理サーバDDS>
分散データ処理サーバDDS−1は、以下の構成を備える。
ディスク装置DSKは、データベースDBを格納する。
コマンド制御部CMC−Dは、基地局BST及び後述するディレクトリサーバDRSと通信を行って、コマンド等の送受信を行う。
イベントアクション制御部EACは、基地局のセンサノード管理部からのデータを受信する。具体的には、センサノードやロケータノードLCNからの測定データを基地局BSTから受信するたびに、測定データに含まれるセンサノードやロケータノードLCNのIDを取得し、後述するテーブル(図27のイベントテーブルETB)からセンサノードやロケータノードLCNのIDに対応するイベントの発生ルールを読み込んで、測定データの値に応じたイベントの発生の有無を判定する。さらに、センサノードのIDに該当するイベントの発生に対応するアクションを実行する。
アクション実施の内容としては、アプリケーション開発者やシステム設計者などにより予め設定されたルールに基づいて、測定データを加工データに変換したり、測定データと加工データとをデータベース制御部DBCを通じてデータベースDBへ格納したり、また、ディレクトリサーバDRSに通知を行ったりなどの処理を含む。
本実施形態では、図1で示すように、複数の基地局BSTに対して、これらのいくつかを地域的(または、場所的)に集約する複数の分散データ処理サーバDDSを配置することで、多数のセンサノードおよびロケータノードLCNからの情報を分散して処理することが可能になる。例えば、オフィスなどではフロア毎に分散データ処理サーバDDSを設け、工場などでは建屋毎に分散データ処理サーバDDSを設ければよい。
分散データ処理サーバDDS−1のディスク装置DSKは、基地局BSTから受信したセンサノードWSN、MSN、FSN、ロケータノードLCNの測定データ、これらの測定データを加工した加工データ、基地局BSTや無線センサノードWSN、MSN、有線センサノードFSNおよびロケータノードLCNに関する装置データ、およびロケータノードLCNのID情報とロケータノードLCNの設置位置情報を予め関連づけたロケータノード位置テーブルをデータベースDBとして格納する。
分散データ処理サーバDDS−1のデータベース制御部DBCは、イベントアクション制御部EACから送られたセンサノードやロケータノードLCNの出力である測定データをデータベースDBに格納する。また、必要に応じて測定データを数値処理したり、他データと融合することにより得られる加工データをデータベースDBに格納したりする。なお、装置データは管理者端末ADTなどからの要求に応じて随時更新される。
さらに、ロケータノードLCNが検出したセンサノードID情報に対し、該ロケータノードID情報からロケータノード位置テーブルを用いて設置位置を呼び出してセンサノードの位置として関連づけ、センサノードの位置とセンシングデータを対応づけてディレクトリサーバDRSに送信する。なお、複数のロケータノードLCNのセンサノード検知領域の重複領域内にセンサノードが存在した際等、複数のロケータノードから同一のセンサノードのID情報が同期して送られてきた場合には、上記イベントアクション制御部EACで説明したイベント発生に対応するアクションの1つとして予め設定された、後述する複数のロケータノードがセンサノードを検知した場合の処理を実行することにより、センサノードの位置を関連づける。
<ディレクトリサーバDRS>
複数の分散データ処理サーバDDSを管理するディレクトリサーバDRSは、以下の構成を備える。 セッション制御部SESは、ネットワークNKW−1を介して接続されたアプリケーションシステムAPSや管理者端末ADTからの通信を制御する。
モデル管理部MMGは、アプリケーションシステムが利用し易い実世界のモデル(オブジェクト)と、分散データ処理サーバDDSがセンサノードから収集した測定データもしくは加工データ、ロケータノードから収集したセンサノード検出情報に基づいて決定したセンサノードの位置情報との対応関係を実世界モデルテーブルMTBに設定した実世界モデルリストMDLによって管理する。
ディレクトリサーバDRSは、実世界モデルに相当する測定データもしくは加工データの存在場所の位置情報(URLなどのリンク)も管理している。つまり、アプリケーションシステム開発者は、実世界モデルを指定することで、時々刻々と変化するセンサノードやロケータノードLCNの測定情報にダイレクトにアクセス可能となる。センサノードやロケータノードLCNからの測定データ、加工データおよび位置情報データの履歴は、時間の経過につれて増大するのに対し、実世界モデル情報は時間が経過してもサイズが変化することはなく、その内容のみが変化する。この実世界モデルの詳細については後述する。
なお、実世界モデルテーブルMTBは、ディレクトリサーバDRSの所定のストレージ装置(図示省略)などに格納される。
ディレクトリサーバDRSのアクション制御部ACCは、分散データ処理サーバDDSのイベントアクション制御部EACやコマンド制御部CMC−Dと通信を行って、アプリケーションシステムAPSや管理者端末ADTからのイベントアクションの設定要求を受け付ける。そして、受け付けたイベントまたはアクションの内容を実世界モデルテーブルMTBの情報を参照して解析し、解析結果に応じたディレクトリサーバDRSと分散データ処理サーバDDS−1〜n間の機能分担を設定する。なお、一つのアクションやイベントは、一つの分散データ処理サーバDDSだけではなく、複数の分散データ処理サーバDDS−1〜nに関与する場合もある。
検索エンジンSERは、セッション制御部SESが受け付けたオブジェクトに対する検索要求に基づいて、実世界モデルテーブルMTBの情報を参照し、分散データ処理サーバDDSのデータベースDBに対して検索を実行する。
なお、検索要求がクエリーであれば、クエリーの内容に従ったデータベースDBの対応付けと、クエリーのSQL(Structured Query Language)変換を実行し、検索を実行する。なお、検索対象となるデータベースDBは、複数の分散データ処理サーバDDSにまたがる場合がある。また、最新データ取得(ストリーム)はアクション制御部ACCのアクションの設定にて対応できる。例えば、該当のデータを常にアプリケーションシステムAPSに転送するようなアクションの設定を、該当する分散データ処理サーバDDSのイベントアクション制御部EACに設定しておけばよい。
次に、装置管理部NMGは、ネットワークNWK−1に接続されてセンサネットワークを構成する分散データ処理サーバDDSと、分散データ処理サーバDDSに接続された基地局BST、基地局BSTに接続されたセンサノードやロケータノードLCNを統合的に管理するものである。装置管理部NMGでは、分散データ処理サーバDDS、基地局BST、センサノード、ロケータノードLCNの登録や検索に関するインターフェースを管理者端末ADT等に提供し、それぞれの装置の状態や、センサノードがロケータノードLCNの状態を管理する。
装置管理部NMGは、分散データ処理サーバDDSや基地局BST、センサノード、ロケータノードLCNに対してコマンドを発行することができ、このコマンドによりセンサネットワークのリソースを管理する。なお、センサノードやロケータノードLCNは上位となる基地局BSTのコマンド制御部CMC−Bを介して装置管理部NMGからコマンドを受け、基地局BSTは上位の分散データ処理サーバDDSのコマンド制御部CMC−Dを介して装置管理部NMGからコマンドを受ける。
なお、コマンド制御部CMC−Dを介して装置管理部NMGが発行するコマンドとしては、例えば、リセット、パラメータ設定、データ消去、データ転送、定型イベント/アクション設定等がある。
<センサノードの一例>
次に、センサノードの一例を図3および図4に示す。
図3は、無線センサノードWSNの一例を示すブロック図である。
センサSSRは、測定対象の状態量(温度、湿度、照度、位置等)または状態量の変化を測定する。
アクチュエータAATは、LEDやスピーカー、振動モータ、液晶表示モニタ等の出力デバイスおよびそれらを駆動するドライバで構成される。
無線処理部WPRは、基地局BSTから送られてきたコマンドや応答等の無線通信を、アンテナANTを介してLNA(ローノイズアンプ)で増幅した後受信する受信回路と、センサノードWSNで生成した信号を、PA(パワーアンプ)で増幅した後アンテナANTを介して基地局BSTに送信する送信回路と、受信回路、送信回路をコントローラCNTからの制御信号に基づいて制御する制御回路で構成される。
コントローラCNTは、予め設定された周期、もしくは不定期にセンサSSRの測定データを読み込み、この測定データに予め設定したセンサノードのIDを加えて無線処理部WPRに転送する。測定データにはセンシングを行った時間情報をタイムスタンプとして与える場合もある。また、無線処理部WPRを介して受信したコマンドや、センシング結果、予め指定されている処理手順に基づいてアクチュエータAATを制御し、出力デバイスを駆動する。さらに、電源POWを制御してセンサノードを構成する各要素の電力供給状態を制御する。なお、図3には図示していないが、コントローラCNTブロックには、種々のデータや制御プログラムを保持するためのメモリ等のストレージデバイスが含まれる。
また、コントローラCNTは受信したコマンドを解析して、所定の処理(例えば、設定変更など)を行う。また、コントローラCNTは、電源POWの残電力(または充電量)を監視し、残電力がしきい値を下回ると、無線処理部WPRから基地局BSTに対して電力がなくなる警報を送信する。
無線処理部WPRでは、限りのある電力で長時間測定を行うため、間欠的に動作して電力消費を低減させることが望ましい。例えば、図4で示すように、スリープ状態SLPではコントローラCNTはセンサSSRの駆動を停止し、所定のタイミングでスリープ状態から動作状態WAKに切り替わって、センサSSRを駆動して測定データを送信するように構成する。
電源POWは、基地局BSTと通信を行う無線処理部WPRと、各ブロックSSR、AAT、CNT、WPRに電力を供給する。また、電池(二次電池を含む)を利用するのが一般的であると考えられるが、それに限定されず、太陽電池や振動発電等の自律発電機構を具備する、あるいはモバイルセンサノードでなければ、外部電源から電源を供給する構成とすることもできる。
なお、図3は一つのセンサノードに一つのセンサSSR、およびアクチュエータAATを備えた例であるが、複数のセンサSSR、およびアクチュエータAATを配置しても良い。あるいは、センサSSRに代わって、固有の識別子IDを格納したメモリを設けても良く、センサノードをタグとして使用しても良い。また、無線モバイルセンサノードMSN、有線センサノードFSNも図3、図4と同様に構成することが可能である。
<ロケータノードの一例>
ロケータノードLCNの例を図7から図14に示す。
図7は、ロケータノードLCNの一構成例である。ロケータノードは、少なくとも、センサノードから基地局への通信を傍受及び基地局BSTとの通信を行う無線処理部WPRと、各ブロックCNT、WPRに電力を供給する電源POWと、無線処理部WPR、および電源POWを制御するコントローラCNTと、送受信を行うアンテナANTから構成される。コントローラCNTは、傍受した情報にロケータノードのIDを加えて無線処理部に転送する。図7におけるコントローラCNT、無線処理部WPR、電源POW、およびアンテナANTは、図3における無線センサノードWSNと全く同じ構成要素で構成する事ができる。ロケータノードLCNの主たる目的は、近傍のセンサノードの通信を傍受して、その情報を基地局BSTに伝送することであるため、図3に記載されているセンサSSR、アクチュエータAATは記載されていないが、図3の無線センサノードWSN構成例と同様に、センサSSRとアクチュエータAATを搭載していても良い。従って、図3の無線センサノードWSNと全く同じハードウェアでロケータノードLCNを構成する事も可能である。
ロケータノードLCNは、少なくとも近傍のセンサノードの通信を傍受するノード傍受モードと、基地局BSTとの間で通信を行う通信モードを備える。通常の通信モードでは、基地局BSTとの通信を安定に行うために、通信可能距離ができるだけ大きくなるように設定し、ノード傍受モードでは、アプリケーションの位置特定精度要求に応じて、センサノード検知領域NDAを設定する。このセンサノード検知領域の設定は、コントローラが無線処理部を制御することにより行う。
図7の構成例は、通信モードとノード傍受モードをひとつのハードウェア構成で実現する例である。例えば、通信モードにおけるロケータノードLCN−基地局BST間の最大通信可能距離をAm、ノード傍受モードにおける検知領域半径をBm(A>B)と設定する場合、図7の無線処理部WPRにおけるローノイズアンプLNAおよび受信回路において、通信モード時は最大Am遠方の基地局BSTから到達する電波を受信し、ノード傍受モード時は、最大Bmを超える距離だけ離れたセンサノードからの通信は検知しないようにする必要がある。
このための第1の方法は、RSSI(Received Signal Strength Indicator)と呼ばれる電波強度の指標を用いる方法である。つまり、該RSSIの値がBmであるセンサノードから発信された電波を傍受した際の強度を閾値とし、ノード傍受モード時には、傍受した電波のRSSIが該閾値より大きい場合にのみ、傍受した電波からセンサノードのID情報を取得して伝送する方法である。閾値を調整することにより検知領域の半径を変更することができる。
閾値を超えるかどうかの判定は、受信回路を制御する制御回路で行っても良いし、コントローラCNTで行う事も可能である。
第2の方法は、ローノイズアンプLNAのゲインを予め設定した距離に合わせて調整する方法である。通常、LNAのゲインは、受信した電波強度に応じて、これを最大利得で扱うようAGC(オートゲインコントロール)機能等によって調整する。これにより、受信電波の強度の差を吸収し、以降の受信処理に必要な信号レベルに増幅して受信処理を行うことが可能になる。ただし、受信レベルが小さすぎると、ノイズに埋もれる等により信号の信頼性が保証できなくなるため、AGCで最大に増幅してもある信号レベルを超えない信号は有効な信号とみなさず無視する等の処理が必要になる。
これに対し、予め設定した検知領域半径に等しい距離だけ離れたセンサノードの発信した電波強度を、受信可能な最小レベルとして扱うように設定すれば、該電波強度を下回る信号を受信した際には有効な信号として扱う事ができなくなる。そのための設定方法として、LNAのゲインを検知領域半径に等しい距離のノードが発信した電波強度が受信可能な最小レベルとなる値に固定すれば、ノード傍受モード時に、予め設定した検知領域内に存在するセンサノードの通信のみを検知する事が可能になる。また、ゲインの固定値を調整することにより検知領域の半径を変更する事ができる。また、LNAのゲインを、上記最小レベルを上限とし、AGCによって増幅することにより、以後の処理のための信号レベルを最適値に調整しても良い。この場合は、AGCで実際に適用した増幅率の情報を後の受信処理部に通知し、もとの信号レベル値がわかるようにする必要がある。
なお、上記第1の方法と、第2の方法を組み合わせて使用することも可能である。
一般に発信源から受信器のアンテナに届く無線電波は、発信源から直接届く直接波と、壁や床、天井、設置物等による反射、回折、透過の結果、複数の経路(マルチパス)を経由して届く間接波を重ね合せたものになる。それぞれの電波は、アンテナまでの経路が異なるために伝搬距離が異なり、その結果到達時間がずれる。このために生じる位相差によって、電波が強めあったり弱めあったりする(マルチパスフェージング)。電波の伝達条件は、発信源と受信回路の位置、周囲環境の空間的、時間的特性によって変化するため、到達した電波の強度は一定にはならない。この電波強度のゆれにより、検知領域の設定半径には誤差が生じることがある。通常、発信源と受信器アンテナ間の距離が長いほど、マルチパスフェージングの影響は大きくなると考えられる。
一方、ロケータノードLCNを用いてセンサノードの位置を特定する本発明の方法は、電波強度を用いた距離推定に基づいた3辺測量の方法に比べ、発信源と受信器アンテナ間の距離が短くなるため、マルチパスフェージングによる測定誤差の影響が小さくなることが期待できる。これにより、測定精度があがり、また電波強度変動の影響を低減する複雑な計算を必要としないため、処理速度が向上する。
図8は、上記通信モードとノード傍受モードを、それぞれに適したアンテナに切り替えることによって実現する例である。図8の構成では、通信用アンテナCATと傍受用アンテナSATを切り替えるスイッチを設け、通信時は通信用アンテナCATを接続し、ノード傍受時は傍受用アンテナSATを接続する。傍受用アンテナSATには、通信用アンテナCATより受信感度の低いアンテナを用い、アンテナ感度は、設定したい検知領域半径に合わせて調整する。
図9は、通信用と傍受用に受信回路を2つ用意する構成例である。無線処理部WPR内に、通信用処理部CPRと、傍受用処理部SPRを設ける。通信用処理部CPRは、通信モード時に基地局BSTの信号を受信するための受信回路と、基地局BSTに信号を発信するための発信回路を持つ。傍受用処理部SPRは、ノード傍受モード時に、予め設定した検知領域半径内に存在するセンサノードの通信のみを傍受するように調整した受信回路を持つ。制御回路は、通信モード時には通信用処理部CPRを用いて通信を行い、ノード傍受モード時には、傍受用処理部SPRを用いてセンサノードの通信を傍受する。本構成例の場合は、通信モードとノード傍受モードを同時に実行することが可能である。また、図10に示すように、通信用処理部に通信用アンテナCAT、傍受用処理部に傍受用アンテナSATを接続しても良い。
<ロケータノードによるセンサノードの位置の特定>
図5(A)〜(C)は、ロケータノードLCNによるモバイルセンサノード検知方法を説明する図である。ロケータノードLCNは、センサネットワークSNSの一構成要素として位置づけられ、センサノードと同じ通信方式によって基地局BSTと通信する。ロケータノードLCNは、前述したように予め設定された領域内でセンサノードから基地局への通信を傍受し、該センサノードのID等の情報を抽出して基地局BSTを介して分散データ処理サーバDDSに伝送する。
図5(A)は、ロケータノード及びセンサノードが基地局と通信領域内に存在し、かつセンサノードがロケータノードの検知領域内に存在する場合である。基地局は、センサノードからセンシングデータとセンサノードID情報を含むデータ、及びロケータノードから傍受したセンサノードID情報とロケータノードID情報を含むデータを受信する。また、サーバは、基地局から受信したデータに含まれる2つセンサノードID情報が同じ場合に、ロケータノードの位置をセンサノードの位置とする。これにより、センシングデータとノードの位置を対応づけることができる。
図5(B)は、ロケータノードのみ基地局と通信領域内に存在し、かつセンサノードがロケータノードの検知領域に存在する場合である。基地局は、ロケータノードからの送信データのみ受信し、センサノードからの送信データを受信しない。これにより、サーバは、センサノードがロケータノードの検知範囲内かつ基地局と通信領域外に存在することを検出する。なお、該センサノードは、ロケータノードが属するセンサネットシステムが管理しているセンサノードでなくても良い。その場合は、ロケータノードの検知領域内に所属不明のセンサノードが存在する事を検出する。この時、センサノードの送信データが、該センサネットシステムが管理するセンサノードと同じフォーマットであれば、所属不明のセンサノードのID情報を取得し、フォーマットが異なる場合は、所属、およびID不明のセンサノードであることを示す情報をサーバに送信する。これにより、サーバ、あるいはアプリシステムにおいて、所属不明のセンサノードが存在する事をシステム管理者に通知する事ができる。
図5(C)は、ロケータノード及びセンサノードが基地局と通信領域内に存在し、かつセンサノードがロケータノードの検知範囲外に存在する場合である。基地局は、センサノードから受信する送信データからセンサノードID情報を抽出するが、抽出したセンサノードID情報と同じセンサノードID情報を含むデータをロケータノードから受信しない。これにより、サーバは、センサノードが基地局との通信範囲内かつロケータノードの検知範囲外に存在することを検出する。
このように、本発明ではロケータノードを用いて、ロケータノードの検知領域、及び基地局の通信領域の少なくとも何れかに存在するノードの位置を特定する。そのため、3辺測量方式と比較して、基地局と端末間の正確な距離を推定する必要がなく、基地局の厳密な位置決めが不要となる。また、基地局間の正確な時間同期が不要となる。基地局を密に配置することが不要となり、コストが低減される。さらに、ロケータノードは、壁や床、設置物など遮蔽物による電波強度に影響を与える要素を考慮して、ユーザが所望とする場所に設置できるため、電波強度変動を低減するための複雑な計算が不要となる。さらには、センサノードはあくまで基地局に対してセンシングデータを送信するだけであって、位置測位のための信号を基地局やロケータノードに送信する必要がない。そのため、センサノードの消費電力を低減することができる。
図6は、ロケータノードLCNによって移動体の位置を特定する概念を示している。ここでは人PS−1を移動体とし、人PS−1がモバイルセンサノードMSN−1を持っているものとする。LCN−1〜3はそれぞれロケータノードを表し、NDA−1〜3は、ロケータノードLCN−1〜3それぞれがセンサノードの通信を傍受可能なセンサノード検知領域を表している。今、人PS−1はロケータノードLCN−1の検知領域NDA−1内に存在するため、モバイルセンサノードMSN−1が基地局と通信を行った際に、ロケータノードLCN−1が該通信を傍受し、MSN−1のID情報を取得して分散データ処理サーバDDSに伝送する。分散データ処理サーバDDSは、各ロケータノードLCNの設置位置情報をテーブル(図2におけるDSK内のロケータノード位置テーブル)として管理しており、ロケータノードLCN−1によるモバイルセンサノードMSN−1検知情報に基づいて、MSN−1を持っている人PS−1の位置がロケータノードLCN−1付近であると判断する。次に、人PS−1がロケータノードLCN−2の検知領域NDA−2内に移動したとする。この領域内でモバイルノードMSN−1が通信を行うと、ロケータノードLCN−2がその通信を傍受することによってMSN−1の存在を検知し、MSN−1のID情報を該通信から取得して分散データ処理サーバDDSに伝送する。分散データ処理サーバDDSは、ロケータノード位置テーブルに基づいて、MSN−1を持っている人PS−1の位置がロケータノードLCN−2付近であると判断する。このように、移動体が移動しながらロケータノードLCNの検知領域NDA内で通信を行う度に、センサネットワークシステムSNSは、移動体の位置を、近傍のロケータノードLCNの位置として特定する事が可能になる。
図20〜22を用いて、センサノードの位置を特定する方法の詳細を説明する。
図20は、無線センサノードWSNが発信した通信を、ロケータノードLCNが傍受した場合のデータフローの例を説明する図である。
無線センサノードWSNからは、センサノードの送信時通信パケット例として図示するように、センサネットのPAN IDであるS_PIDとローカルアドレスS_LADをパケットヘッダに持ち、センサ値等のデータ(Data1、Data2...)をデータフィールドに持つパケットが基地局BSTに送信される。図3の無線センサノードの構成を例にとると、コントローラCNTからの指示等によりセンサSSRが取得したセンサ値(Data1、Data2...)は、コントローラCNT内の図示されていないストレージデバイスに保持されている該無線センサノードWSN自身のローカルアドレスS_LADと、自身が所属するPAN IDであるS_PIDとともに通信パケットに加工され、無線処理部WPRを介して送出される。
ロケータノードLCNで行う処理について、図21を用いて説明する。ロケータノードLCNは、ロケータノードの電源投入時、またはリセット時には(S101)、接続可能な基地局を検索して接続するために、複数存在する無線チャンネルch−i(i=1〜N)を順番に使用して(S102)、ロケータノードが持つグローバルアドレスと共に接続要求信号を送信する(S103)。これに対し特定の基地局から接続許可信号を受信した時に(S104)、そのチャンネルch−iを使用チャンネルとして決定し(S105)、該基地局が指定したPAN IDとローカルアドレスを取得して以降の通信で使用する(S106)。本フローは、基地局からの接続許可信号を受信するまで繰り返す(S107、S108)。どの無線チャンネルからも接続許可信号を受信しなかった場合は、応答できる基地局が通信範囲に無いものと判定し、指定時間スリープした後リトライする(S109)。
基地局との接続が確立した後、ロケータノードはノード傍受モードで待機し(S110)、定期的にノードからの通信検出を行ってノードの通信を検知した時にノードのPAN ID、ローカルアドレス、RSSIを取得する(S111、S112)。ノードの通信を検知できなかった場合はノード傍受モードに復帰する。
ノードのPAN ID、ローカルアドレス、RSSIを取得したら検知処理モードに移行し、検知処理を実行する(S113)。検知処理によって取得したノードのPAN IDとローカルアドレスが、予め定めた値の範囲に含まれる有効なPAN IDとローカルアドレスであった場合には(S114)、通信モードに移行し(S115)、ロケータノード自身のPAN ID、ローカルアドレスとともに、検知したセンサノードのPAN ID、ローカルアドレス、検知処理モードMODE、および通信を傍受した際の電波強度RSSIを基地局BSTに送信した後(S116)、ノード傍受モードに復帰する。
なお、取得したPAN IDとローカルアドレスが有効と認められなかった場合には、無視するか異常検知情報を基地局BSTに送信する等の例外処理を行った後(S117)ノード傍受モードに復帰する。
図7のロケータノードLCNの構成を例にとると、無線処理部WPRが無線センサノードWSNのパケットを傍受し、コントローラCNTに送る。コントローラCNTは、該パケットのパケットヘッダからS_PIDとS_LADを取得し、コントローラCNT内の図示されていないストレージデバイスに保持されているロケータノードLCN自身のローカルアドレスL_LADと、自身が所属するPAN IDのL_PIDとともに通信パケットに加工され、無線処理部WPRを介して送出される。
図20の例では、その他分散データ処理サーバDDSやアプリケーションで利用する情報として、図11〜14で説明するノード検知処理モード(逐次送信型のノード検出信号か、適時送信型のノード検出信号か)MODE、および無線センサノードWSNの通信を傍受した時の電波強度RSSIも合わせて送信している。ロケータノードLCNが図14で説明する適時通信型で動作している場合は、無線センサノードWSNがロケータノードLCNの検知領域から離脱した際に、ノード離脱信号を通信パケットとして送信する。この場合のデータフィールドには、少なくとも無線センサノードWSNのPAN IDであるS_PID、ローカルアドレスS_LAD、およびノード検知処理モード(適時通信型のノード離脱信号であることを示すモード)MODEを含む。
次に、基地局BSTで行う処理について図22を用いて説明するが、特に本発明に関連するセンサノードやロケータノードLCNからの通信パケットを受信した際の処理のみを記載し、初期設定や終了処理、サーバ間処理等、基地局BSTが行う他の処理に関する記載は省略する。
基地局は、ノードからの通信を受信する準備が完了した時点で(S201)、ノードからの通信を受信するモードで待機し(S202)、無線センサノードやロケータノードLCNから送信された通信パケットを受信した時(S203)、受信パケットヘッダからノードのPAN IDとローカルアドレスを取得する(S204)。そして、PAN IDが基地局BSTの所属するPAN IDと等しい場合に、正しいPAN IDと判定し(S205)、ローカルアドレス⇔グローバルアドレス変換テーブルを用いてPAN IDとローカルアドレスをグローバルアドレスに変換する(S206)。
受信した通信パケットが無線センサノードWSNから送信された場合は、PAN IDはS_PID、ローカルアドレスはS_LADとなり、グローバルアドレスはS_GADとなる。また、受信した通信パケットがロケータノードLCNから送信された場合は、PAN IDはL_PID、ローカルアドレスはL_LADとなり、グローバルアドレスはL_GADとなる。
基地局BSTは、センサネット管理部SNMで管理されているグローバルアドレスを照合し、受信したパケットに含まれるローカルアドレスを変換したグローバルアドレスが無線センサノードWSNに付与されたものである場合には(S208)、受信したパケットのデータフィールドからセンシングデータData1、Data2、...を取得する(S209)。データ処理サーバDDSに送信した後(S210)、ノードからの通信を受信するモードに復帰する。正しいPAN IDと判定されなかった際には、無視するか、異常検知情報として例外処理した後(S207)、ノードからの通信を受信するモードに復帰する。
受信したパケットに含まれるローカルアドレスを変換したグローバルアドレスがロケータノードLCNに付与されたものである場合には(S211)、データフィールドから検知した無線センサノードのPAN IDとローカルアドレスを取得する(S212)。該PAN IDが、基地局BSTが所属するPAN IDと等しい場合に、正しいPAN IDと判定し(S214)、ローカルアドレス⇔グローバルアドレス変換テーブルを用いてPAN IDとローカルアドレスをグローバルアドレスに変換する(S215)。正しいPAN IDと判定されなかった際には、無視するか、異常検知情報として例外処理した後(S217)、ノードからの通信を受信するモードに復帰する。そして、ロケータノードのグローバルアドレス、検知したセンサノードのグローバルアドレス、ノード検知処理モードMODE、検知した通信の電波強度RSSIを分散データ処理サーバDDSに送信する(S216)。受信したパケットが無線センサノードWSN、ロケータノードLCNのいずれでもない場合は、無視するか、異常検知情報として例外処理した後(S213)、ノードからの通信を受信するモードに復帰する。
分散データ処理サーバのDBCは、受信したWSNのS_GADとLCNに含まれるS_GADとを照合し、同じ場合には、L_GADの位置をS_GADの位置とする。さらに、ロケータノード位置テーブルを用いて、S_GADの位置を特定する。
なお、センサノードが別の基地局のネットワークに移動した場合には、ノードからの要求に対して通常その移動先の基地局のPAN IDが新たに付与されるが、その新しいPAN IDの付与が行われる前の段階で、センサノードが基地局と通信を行い、またロケータノードがその通信を傍受することもありうる。上記の説明では、そのようなセンサノードのPAN IDが、基地局の所属するPAN IDと異なる場合に、例えば無視するか、異常検知情報として処理する等の例外処理を行うようにしている。しかし、基地局BSTが、他のPANに所属する別の基地局BST’のローカルアドレス⇔グローバルアドレス変換テーブルを持つようにすれば、基地局BSTと同じPANに所属するロケータノードLCNが、別のPANに所属する無線センサノードWSN’の通信パケットを傍受した場合でも、該通信パケットに含まれるPAN IDとローカルアドレスをグローバルアドレスに変換することが可能になる。
また、ロケータノードの検知領域内に別のロケータノードが存在する場合、タイミングによっては、ひとつのロケータノードLCN−1が別のロケータノードLCN−2を検知する可能性がある。この場合は検知した側のロケータノードLCN−1が送信したノード検出信号パケットを、検知された側のロケータノードLCN−2が逆に検知し、ノード検出信号パケットを送信し、再びLCN−1がそのパケットを検知するといった巡回状態になる。そこで、ロケータノードのノード傍受モードに一定のパケット不感時間を設け、同一ノードから短時間に連続して送信された通信を検知した際には無視する等の制御を行う。
例えば、他のノードが発信した通信パケットをロケータノードLCNが検知して検出信号パケットを送信するまでの時間に、処理検出処理にかかる時間を加え、さらに適当なマージン時間を加えた時間を不感時間とすれば良い。この不感時間に比較して、同一のセンサノードが通信パケットを発信する間隔を十分長く設定すれば、センサノードからの通信を検出しそこなう事は無い。なお、各ノードが発信する通信パケットに、予めノードの種別をあらわす識別符号を付加しておき、ロケータノードがパケットを受信した時に、受信したパケットがロケータノードの識別符号を含む場合にはノード検知処理を行わないようにしても良い。あるいは、各ロケータノード内のストレージデバイスに、検知する可能性のあるロケータノードのローカルアドレスを保持しておき、検知処理を行う前にアドレス照合を行って、受信したパケットに含まれるローカルアドレスが、保持してあるロケータノードのローカルアドレスと一致する場合にはノード検知処理を行わないようにする事も可能である。
本実施例では、ロケータノードが送信するノード検出信号パケットのデータフィールドに検知したセンサノードのPAN IDとローカルアドレスを入れたが、ノード検出信号パケットヘッダのロケータノードのショートアドレス格納領域に検知したセンサノードのローカルアドレスを入れ、データフィールドにロケータノードが保持しているグローバルアドレスを入れて送信することも可能である。この場合、基地局は、センサノードからの通信パケットと同じ処理ルーチンを用いてパケットヘッダのローカルアドレスのみをグローバルアドレスに変換し、データフィールドに格納されているロケータノードのグローバルアドレスを、センサ値とみなしてそのまま分散データ処理サーバDDSに送信すれば良い。そのため、基地局内に、ロケータノードからのパケットかどうかを判定し、ロケータノードからのパケットの場合にのみデータフィールドからセンサノードのローカルアドレスを取得してグローバルアドレスに変換するという処理部を設ける必要がなくなり、基地局の処理が単純になる。
<ロケータノードの状態変化>
図11は、センサノードがロケータノードの検知領域内に存在する時の、センサノードの状態変化と、それに対応したロケータノードの状態変化を説明する図である。センサノードは、定期的、あるいはセンシング結果等なんらかのイベントドリブンで通信を行うものとし、通信モードと非通信モードを交互に繰り返しているとする(図11の下のグラフ)。
一方、ロケータノードはノード傍受モード、検知処理モード、通信モードの3つのモードを遷移するものとする(図11の上のグラフ)。ロケータノードが傍受モードにある時に(図21のS110)、センサノードが通信を行うと、ロケータノードはその通信を検知し、検知処理モードに移行する(図21のS113)。検知処理モードでは、傍受したセンサノードの信号からセンサノードのID情報を取得し、通信モードに移行して(図21のS115)、取得したセンサノードのID情報を送信(図21のS116)した後、また傍受モードに移行する。ロケータノードは、センサノードからの通信を傍受する度に逐次一連の動作を行う。このように、自動的に傍受モードに戻るため、より多くの情報を取得することができる。
図12は、ロケータノードの検知領域にセンサノードが2つ存在する場合の状態変化を説明する図である。ロケータノードは、センサノード1の通信を検知した時にはセンサノード1のID情報をノード1検出信号として送信し、センサノード2の通信を検知した時にはセンサノード2のID情報をノード2検出信号として送信する。仮に、ロケータノードがノード傍受モード以外のモード時にセンサノードの通信が起きた場合は、ロケータノードはセンサノードの通信を傍受する事ができないが、この場合は次の通信時に傍受する。ロケータノードがセンサノードの通信を傍受できない期間をできるだけ短くするために、ロケータノード、およびセンサノードの通信時間を短くする、あるいはセンサノードの通信を再送する等の工夫を行っても良い。
図13は、センサノードが移動して、ロケータノードの検知領域からはずれた際の状態変化を説明する図である。図中に示すようにセンサノードが検知圏内に存在している間は、図11と同様の状態変化を繰り返すが、センサノードが検知圏内から離脱した後は、ロケータノードはセンサノードの通信を検知できないため、ノード検出信号がロケータノードから送信されない。
図11から13は、いずれもロケータノードがセンサノードの通信を傍受するたびに検知信号を送信する逐次通信型の方法であるが、センサノードの通信頻度が高い場合や、ロケータノードの検知領域内に多数のセンサノードが存在する場合には、ロケータノードから送信される検知信号の通信頻度が高くなり、トラフィックが増加する。
そこで、図14に示すようにロケータノードが最初にセンサノードの通信を検知した時にノード検出信号を送信し、ロケータノードがセンサノードの通信を検知できなくなった時に離脱信号を送信する適時通信型の方法を用いても良い。
図14においては、センサノードがロケータノードの検知領域に入った後、最初に行った通信をロケータノードが検知し、ノード検出信号を送信する。ロケータノードは、非検知判定時間を持ち、該非検知判定時間以内に同じセンサノードから次の通信を傍受した際には、センサノードの検知は行うが、検出信号は送信しない。センサノードが検知圏内から離脱した場合、あるいは他の要因で以後の通信が行われなかった場合等、最後に検知した通信から非検知判定時間以内に、ロケータノードが同じセンサノードから次の通信を検知できなかった場合には、ロケータノードは、非検知判定時間経過後にセンサノードが離脱したことを示す情報をセンサノードID情報に付加し、ノード離脱信号として送信する。
また、非検知判定時間はセンサノードごとに規定される時間であって、あるセンサノードの非検知判定時間以内に異なるセンサノードから通信を検知しても、非検知判定時間の計測には影響しない。非検知判定時間は、予め定めた一律の値を用いても良いし、あるいは検知したセンサノードの通信間隔に合わせて調整した値を用いても良い。このためには、ロケータノード内のメモリにセンサノードのIDあるいは種類と、それに対応して非検知判定時間を決定する情報を記述したテーブルを保持し、検知したセンサノードのIDからテーブルを参照することにより、非検知判定時間を決定して設定する。または、最初にノード検出信号を送信した際に分散データ処理サーバDDSに問い合わせ、非検知判定時間を決定する情報をDDSからのコマンドとして受信して設定する事も可能である。
ロケータノードを逐次通信型で動作させるか、適時通信型で動作させるかは、ロケータノードのコントローラCNTに予め選択した処理を行うように実装する事も可能である。また、両方の方法を備え、ロケータノードに付属させたディップスイッチ等により切り替えても良い。さらに、システム管理者やアプリケーション開発者が選択した方法を、ディレクトリサーバDRS、分散処理サーバDDS、および基地局BSTを経由してコマンドとしてロケータノードに送信し、切り替える事も可能である。無線通信の伝送路の混雑状況等を観測する手段を設け、伝送路が混雑している場合には適時通信型、そうでない場合には逐次通信型を選択して切り替えコマンドをロケータノードに送信する処理をセンサネットシステムSNSの機能によりアクションとして登録し、混雑状況をイベントとして取得した時に、分散データ処理サーバDDSのイベントアクション制御部により判定して切り替えても良い。
<ロケータノードの配置>
図15〜18は、観測フィールドにロケータノードを配置する例である。図中の示した小さい丸がロケータノードLCN、大きい丸がその検知領域SNAを表している。
図15は、観測フィールド全域を複数のロケータノードの検知領域SNAでカバーする設定例である。この設定では、検知領域の半径aを大きくすることにより、少ないロケータノードで観測フィールド全域をほぼカバーする事ができる。
図16は、同じ数のロケータノードを用いて、比較的小さい検知半径bをもつ検知領域を設定した例である。この設定では、少ないロケータノードで高い精度で位置を特定する事が可能であるが、観測フィールドの全域をカバーしていないため、センサノードの位置を特定できない領域がある。このような場合には、例えばモバイルセンサノードが検知された時間とロケータノードの配置をもとにモバイルセンサノードの移動速度、および移動方向を計算し、最後に観測された地点から現在までの移動方向と距離を時間積分することにより、おおよその位置を推定することができる。これにより、少ないロケータノードでも観測フィールドの全域をカバーすることができる。移動速度、移動方向の計算、およびこれに基づく位置推定は、アプリケーションシステムAPSかディレクトリサーバDRSで行う。
図17は、比較的小さい検知半径bの検知領域を持つ多数のロケータノードを、観測フィールドに密に配置する例である。この設定によれば、高い位置特定精度で観測フィールド全体を網羅する事が可能である。
図18は、観測フィールドの状況に合わせてロケータノードLCNの配置、および検知領域SNAの半径を設定する例である。例えば、おおよその位置がわかればよい領域は大きな検知半径dのロケータノードを粗く、細かく位置を特定したい領域には小さな検知半径bのロケータノードを密に配置する。その中間の領域には、中間の検知半径cのロケータノードを配置することにより、ロケータノードの数を大きく増やさずに、必要な精度と網羅性を実現することができる。
このように、ロケータノードの数と配置、検知領域の検知半径を調整することにより、観測フィールド、およびアプリケーションに最適な設定で位置特定を行う事が可能になる。
図19は、ロケータノードLCNのノード傍受モード時に、アンテナに指向性を持たせる、もしくはアンテナの周囲に電波遮蔽物を設置する等により検知領域に指向性を制御した場合の例である。例えば店舗の商品陳列棚にロケータノードを設置し、モバイルセンサノードの位置を特定するアプリケーションを想定した場合、モバイルセンサノードが陳列棚の間の通路のどちら側にあるかを把握したい場合には、アンテナの回りに遮蔽物を設置する、指向性のあるアンテナを用いる等により検知領域の形状が上方からみて例えば半円になるように制御すれば、検知領域を設定した方向のみに限定する事が可能になる。また、例えば金属性の陳列棚等、十分な電波遮蔽を得られる設置物を遮蔽物として利用しても良い。
<センサネットワークの設置例>
図23は、分散データ処理サーバDDSに接続されるセンサノードおよびロケータノードの設置例を示す図である。図5の例では、オフィスビルの各フロアに基地局、ロビー、廊下、部屋、エレベータ等にロケータノードを設置し、ビル内にいる人にモバイルセンサノードを設置した例を示している。この例では、無線センサノードを適用した例として説明するが、分散データ処理サーバとセンサノードとを無線通信で接続するか、有線通信で接続するかは、適宜選択すればよい。
図23のビル内には、例えば1階には、居室1に基地局BST−1、第1会議室に基地局BST−2が設置されている。また、2階には、居室3に基地局BST−3、第2会議室にBST−4−2が設置されている。さらに、3階には、居室5に基地局BST−5、第3会議室に基地局BST−6が設置されている。エレベータの籠ELVに基地局BST−7が設置されている。
一方、ビル内の各所、人等の移動体の位置を特定したい場所に、ロケータノードLCNを設置する。図5では、出入り口、ロビー、会議室、居室にそれぞれLCN−1〜10が設置されている。ビル内にいる人PS−1は、例えば名札形状のモバイルセンサノードMSN−1を装着する。また、WSN−1からWSN−10は、据置き型の無線センサノードを示している。これらの無線センサノードは、例えば出入り口に設置して人感センサで人の出入りを検知したり、居室や会議室に設置して温度センサ、湿度センサ、照度センサで気温、湿度、明るさの絶対量あるいは変化を検知したりする。
センサノードMSN−1、およびWSN−1からWSN−10、およびロケータノードLCN−1〜10は、それぞれがビル内に配置された基地局BST−1からBST−7のいずれかと無線通信を行うことによってセンサを用いて検知した状態量または状態量の変化、あるいはセンサノードを検知した際のノード検出信号を送信する。基地局BST−1からBST−7は、センサノードやロケータノードから受信した状態量または状態量の変化を、図1に示したネットワークNWK−2からNWK−Nを介して分散データ処理サーバDDSに送信する。
<センサネットワークの動作概念>
次に、センサネットワークSNSの動作の概要について、図24を用いて説明する。図24は、実世界モデルの具体的な形であるオブジェクトとセンサノードの測定データの関連を示すブロック図である。
図1、2を用いて説明したディレクトリサーバDRSは、図24に示すように実世界モデルとして予め以下に述べるようなオブジェクト(OBJ−1からOBJ−6)を生成し、実世界モデルテーブルMTBの実世界モデルリストMDLに定義する。ここでは、図23のオフィスビルを利用する人物PS−1の場合を示し、図24に示した無線センサノードMSN−1を、この人物が装着しているものとする。
モバイルセンサノードMSN−1の位置情報は、測定データ1(図25のデータ格納先)が指し示す分散データ処理サーバDDSに格納されるよう、装置管理部NMGで定義されている。モバイルセンサノードMSN−1の位置情報は、MSN−1を検出したロケータノードLCNの位置として定義する。
そして、実世界モデルテーブルMTBの実世界モデルリストMDLには、人PS−1の位置というオブジェクト(OBJ−1)は、測定データ1(LINK−1)という格納先にデータの実体があることが定義され、実世界モデルと実際のデータの格納位置との対応関係が管理されている。つまり、実世界モデルリストMDLにおいて、人PS−1の位置(OBJ−1)というオブジェクトは、測定データ1(LINK−1)に対応する分散データ処理サーバDDSの格納位置に関連付けられている。図24の例では、人PS−1の位置を示す無線センサノードMSN−1の位置情報(どこの基地局BSTに存在するか)は、例えば分散データ処理サーバDDS−1のディスク装置DSK1に格納される。
アプリケーションシステムAPSからは、PS−1位置(OBJ−1)の値はディレクトリサーバDRSの実世界モデルテーブルMTBに存在するようにアクセスできるが、実際のデータはディレクトリサーバDRSではなく、予め設定された分散データ処理サーバDDS−1のディスク装置DSK1に格納されるのである。
また、PS−1移動速度(OBJ−2)というオブジェクトは、移動するセンサノードMSN−1の移動速度情報が測定データ2(LINK−2)に格納されるよう、実世界モデルテーブルMTBに定義される。モバイルセンサノードMSN−1の移動速度の求め方は特に限定しないが、最も単純な方法としては移動するセンサノードMSN−1を検出するロケータノードLCNが切り替わる時間から求めることができる。さらに、測定データ2に対応する分散データ処理サーバDDSと格納位置が定義される。例えば、分散データ処理サーバDDS−2のディスク装置DSK2に格納する。
PS−1ノード装着(OBJ−3)というオブジェクトは、名札型無線センサノードMSN−1のクリップ等に取り付けたスイッチ等により着脱を検出することによって判定したノード装着状態が測定データ3(LINK−3)に格納されるよう、実世界モデルテーブルMTBに定義される。さらに、測定データ3に対応する分散データ処理サーバDDSと格納位置が定義される。例えば、MSN−1に取り付けられたスイッチの状態は、例えば分散データ処理サーバDDS−3のディスク装置DSK3に格納する。
周囲気温(OBJ−4)というオブジェクトは、人PS−1が接続した基地局(例えばBST−1)に接続している無線センサノード(例えば図23におけるWSN−3)の温度センサが測定した温度情報が測定データ4(LINK−4)に格納されるよう、実世界モデルテーブルMTBに定義される。さらに、測定データ4に対応する分散データ処理サーバDDSと格納位置が定義される。例えば、無線センサノードWSN−3からの温度は、例えば分散データ処理サーバDDS−4のディスク装置DSK4に格納する。
PS−1ゲート通過(OBJ−5)というオブジェクトは、人PS−1が接続した基地局(例えばBST−1)に接続している無線センサノード(例えばWSN−2)の人感センサが測定した人検知情報が測定データ5(LINK−5)に格納されるよう、実世界モデルテーブルMTBに定義される。さらに、測定データ5に対応する分散データ処理サーバDDSと格納位置が定義される。例えば、図23における無線センサノードWSN−2からの人検知情報は分散データ処理サーバDDS−5のディスク装置DSK5に格納する。
周囲明るさ(OBJ−5)というオブジェクトは、人PS−1が接続した基地局(例えばBST−1)に接続している無線センサノード(例えば図23におけるWSN−3)の照度センサが測定した照度情報が測定データ6(LINK−6)に格納されるよう、実世界モデルテーブルMTBに定義される。さらに、測定データ6に対応する分散データ処理サーバDDSと格納位置が定義される。例えば、無線センサノードWSN−3からの照度は、例えば分散データ処理サーバDDS−6のディスク装置DSK6に格納する。
このように、実世界モデルテーブルMTBに定義された各オブジェクトOBJは、測定データに対応する格納先(LINK)を格納しており、アプリケーションシステムAPSからは目的のデータがディレクトリサーバDRSに存在するように見えるが、実際のデータは分散データ処理サーバDDSに格納される。
そして、情報の格納先LINKには、センサノードが測定した測定データまたは測定データをアプリケーションシステムが利用しやすい形に変換した加工データなど、アプリケーションシステムが利用可能なデータの格納位置が設定されている。センサノードからの測定データは各分散データ処理サーバDDSで収集・蓄積され、さらに、後述するようにイベントアクションが設定されていれば、測定データに対して加工などが加えられ、加工データとして所定の分散データ処理サーバDDSに格納されていく。
実際のセンサノードからのデータ収集、データの蓄積、データの加工は分散データ処理サーバDDSで行われ、ディレクトリサーバDRSでは、実世界モデルと情報の格納先及びセンサノードの定義などが管理される。
これにより、アプリケーションシステム開発者はセンサノードの所在を意識する必要がなく、オブジェクトOBJを検索することで、センサノードの測定値(または加工データ)に対応する所望のデータを得ることができるのである。
そして、ディレクトリサーバDRSは、オブジェクトOBJ毎の格納先(リンク先)を管理し、実際のデータは分散データ処理サーバDDSが格納し、処理するので、センサノードの数が膨大になったとしても、データ処理サーバDDSの負荷が過大になるのを防ぐことができるのである。つまり、多数のセンサノードを使用しながら、ディレクトリサーバDRSと分散データ処理サーバDDS及びアプリケーションシステムAPSを接続するネットワークNWK−1のトラフィックが過大になるのを抑制できるのである。
測定開始から所定時間経過した状態では、分散データ処理サーバのディスク装置DSK1〜6にセンサノードからの実際の測定データが書き込まれ、時間の経過とともにデータ量は増大する。しかしながら、ディレクトリサーバDRSの実世界モデルテーブルMTBのモデルリストMDLに設定されたオブジェクトOBJ−1〜6に対応する格納先LINK−1〜6は、時間が経過しても情報量は変化することなく、格納先LINK−1〜6が指し示す情報の内容が変化するだけである。
なお、図24の例では、オブジェクト毎に異なるデータ処理サーバに格納している例を示しているが、異なるオブジェクトを同じデータ処理サーバのディスク装置に格納することができることはいうまでもない。データ処理の扱い易さ等から、どのオブジェクトの測定データをどのデータ処理サーバに格納するかを決めておけばよい。
<測定データとイベントの関係>
次に、分散データ処理サーバDDSで収集される測定データと、測定データに基づくイベントアクションの関係を図25、図26、図27に示す。
図25は、ディレクトリサーバDRSが管理するセンサ情報テーブルSTBの例である。センサ情報テーブルSTBは実世界モデルテーブルMTBに格納されている。センサ情報テーブルSTBには、測定データに付与されるデータID毎に、センサ種別、センシング情報の意味、計測値、設置場所、センシングの間隔、データ格納先が格納されている。ここでは、一つのセンサノードが複数種類のセンシングデータと関連づけられることを考慮して、測定データ毎にIDを付与しているが、一つのセンサノードが一種類のセンシングデータとしか関連づけられない場合は、データIDに代えてセンサノードIDを用いることができる。また、図25に示したセンサ情報テーブルに格納する情報の例は一例であって、センサネットワークシステムの管理の必要性に応じて格納する情報の増減は可能である。
図26において、分散データ処理サーバDDSのイベントアクション制御部EACには、ディレクトリサーバインターフェースDSIを介して、基地局BSTから収集される測定データをイベントに対応付けるイベントテーブルETBを備える。イベントテーブルETBは、図27で示すように、センサノード毎に割り当てられて測定データに付与されるデータID(DID)と、測定データに関してイベントの発生判断条件であるEVTと、測定データをデータベースDBに格納するか否かを決定するデータ格納DHLとから1レコードが構成されている。
例えば、図中、データIDが「XXX」の測定データは、その値がA1より大のときにイベントの発生をディレクトリサーバDRSに通知する。またデータIDが「XXX」の測定データは、データ到着時にディスク装置DSKに測定データを書き込むように設定される。
分散データ処理サーバDDSでは、基地局BSTから受信した測定データを、まず、センシングデータID抽出部IDEで受け付け、測定データに付与されているIDであるデータIDを抽出する。また、センシングデータID抽出部IDEは、測定データを最新データメモリLDMに送る。
抽出されたデータIDはイベント検索部EVSに送られて、イベントテーブルETBを検索し、データIDが一致するレコードがあれば、当該レコードのイベント内容EVTと測定データをイベント発生判定部EVMに送る。
イベント発生判定部EVMでは、測定データの値とイベント内容EVTを比較して、条件を満たせばイベントの発生を、ディレクトリサーバインターフェースDSIを通じてディレクトリサーバDRSに通知する。また、イベント発生判定部EVMは、データ格納DHLの要求を最新データメモリに伝える。
DB制御部DBCは、イベントテーブルETBのデータ格納DHLがYESとなっているデータについては、最新データメモリLDMからデータを受け取り、ディスク装置DSKに書き込みを行う。
分散データ処理サーバDDSは、ディレクトリサーバインターフェースDSIがディレクトリサーバDRSより測定データの参照要求を受信した場合、データアクセス受け付け部DARに当該アクセス要求を送る。
データアクセス受け付け部DARでは、アクセス要求が最新のデータであれば、アクセス要求に含まれるデータIDに対応する測定データを最新データメモリLDMから読み込んで、ディレクトリサーバインターフェースDSIへ返送する。あるいは、アクセス要求が過去のデータであれば、アクセス要求に含まれるデータIDに対応する測定データをディスク装置DSKから読み込んで、ディレクトリサーバインターフェースDSIへ返送する。
このように、分散データ処理サーバDDSでは、基地局BSTから収集したセンサノードのデータのうち、最新のデータを最新データメモリLDMに保持し、さらに、後で参照が必要と予想されるデータについてのみディスク装置DSKに記録する。また、イベントが発生時のデータのみ、データをディスク装置DSKに記録する設定も可能である。この場合には、周期的(観測間隔)に収集するデータによるディスク使用量増加を防ぐことができる。以上の方法により、ひとつの分散データ処理サーバDDSで複数の基地局BST(つまり、多数のセンサノード)を管理することが可能となる。
<アクション制御部>
図28は、ディレクトリサーバDRSのアクション制御部ACCの詳細を示すブロック図である。
アクション制御部ACCは、複数の分散データ処理サーバDDSのイベントアクション制御部EACから受信したイベント発生に基づいて、予め設定した動作(アクション)を自動的に行うものである。
このため、アクション制御部ACCは、セッション制御部SESを介してアプリケーションシステムAPSからアクション設定を受け付けるアクション受け付け部ARCと、受け付けたアクションを、モデル管理部(MMG)を介して実世界モデルテーブルMTBの情報を参照して分析し、分析結果に応じてディレクトリサーバDRSと分散データ処理サーバDDS間の機能(または負荷)分担を設定するアクション分析部AANと、アクションの定義及び実行を管理するアクション管理部AMGと、アプリケーションシステムAPSからの設定要求に応じたイベントとアクションの関係を格納するアクションテーブルATBと、アクションテーブルATBで定義されたイベントを監視するように分散データ処理サーバDDS−1〜nに指令を送出するイベント監視指示部EMNと、各分散データ処理サーバDDS−1〜nで発生したイベント通知を受信するイベント受信部ERCと、受信したイベントとアクションテーブルATBの定義に基づいて、所定動作を実行するアクション実行部ACEとから構成される。
アクションの登録について、図29のタイミングチャートを参照しながら説明する。図29では、まず、アプリケーションシステム管理者がアプリケーションシステムAPSからディレクトリサーバDRSのアクション制御部ACCに接続し、アクションの設定を要求する。例えば、アクションの一例として、出入口等のゲートをXさんが通過するのを監視し、アプリケーションシステムAPSに通知を送信する、というアクションを設定する場合について説明する。
アクション制御部ACCのアクション受付部ARCは、このアクションの設定要求を受け付けると、アクション分析部AANに当該アクションの設定を要求する。アクション分析部AANは、監視対象のデータIDを選択し、さらにその測定データがどのようになったらイベントを発生させるか決定する。すなわち、「Xさんのゲート通過」という実世界の事象をセンサネットシステムに蓄積されるセンシングデータにより判定可能なモデルとして構築する。
ここで、Xさん=人PS−1の場合、図24に示したように既に実世界モデルテーブルMTBにモデルが定義されているので、実世界モデルリストMDLからデータID(「X2」とする)とデータを格納する情報格納先(分散データ処理サーバDDS1)を取得する。
次に、アクション管理部AMGでは、「Xさんのゲート通過」というイベントを分散データ処理サーバDDSで発生させるため、上記選択したセンサノードを管理する分散データ処理サーバDDSに対して「Xさんのゲート通過」というイベントを発生するように指令を送出する。そして、アクション管理部AMGは、アクションテーブルATBに「アプリケーションシステムに通知を送信する」というアクションを設定し、当該アクションを実行するイベントのIDとして、上記センサノードIDを設定する。
ディレクトリサーバDRSのアクション管理部AMGから指令を受けた分散データ処理サーバDDSでは、図30で示すように、実世界モデルリストMDLから取得したデータID=X2について、ゲート通過という条件「00」と、アクションとして行うべきイベントの通知先にディレクトリサーバDRSのアクション制御部ACCを登録する。
具体的に、図24の例を用いて説明する。ディレクトリサーバDRSはオブジェクトOBJ−1(無線センサノードMSN−1の位置情報)を管理するデータ処理サーバDDS−1に対して、図30に示すイベントテーブルETBを登録させる。ここで、条件「00」が当該ゲートを通信範囲に含む基地局のIDとすれば、人PS−1が当該ゲートを通過したときにオブジェクトOBJ−1(無線センサノードMSN−1の位置情報)に対応するデータID(X2)の値は「00」の値を返すことになる。このように、実世界の事象とセンシング情報とが関係づけられ、X2=00の条件が成立した場合に、データ処理サーバDDS−1はディレクトリサーバのアクション制御部ACCに対して、イベント発生を通知する。
いうまでもなく、以上のイベント発生条件は一例である。例えば、ゲートに付加された人感センサの情報と人PS−1の位置情報との双方を用いてイベント発生条件とすることも可能であろう。
また、図31のアクションテーブルATBはディレクトリサーバDRSのアクションデーブルATBであり、監視対象のイベントIDを示すデータID欄には、「PS−1のゲート通過」を示すデータID=X2が設定される。また、イベントの条件欄には、分散データ処理サーバDDS−1からのイベント発生の受信が設定され、ディレクトリサーバDRSが実行するアクション欄には、アプリケーションシステムAPSへの通知が設定される。さらに、アクションのパラメータ欄にはアプリケーションシステムAPSを示すIPアドレスが設定される。
アクション管理部AMGがアクションテーブルATBに登録するアクションは、図31で示すように、データID=X2のイベントを受信したことをイベントの条件とし、アプリケーションへシステムへの通知というアクションを、パラメータ欄に記載したアドレスに対して実行するよう設定する。
上述のように、一つのイベント発生から一つのアクションを行うものを単一アクションとし、上記のようなアクションの設定は図32で示す流れとなる。すなわち、アプリケーションシステムAPSからディレクトリサーバDRSのアクション制御部ACCに対してアクションの設定要求が行われ、アクションの分析とイベントの監視指示がアクション制御部ACCで生成され、分散データ処理サーバDDSのイベントアクション制御部EACにてイベントテーブルETBが定義される。その後、アクション制御部ACCのアクション管理部AMGは、イベント受信部ERCに対して、上記設定したイベント(データID=X2)の監視を指示する。これにより一連のアクションの設定が完了したことをアクション制御部ACCはアプリケーションシステムに通知する。
<アクションの実行>
図33は、設定したアクションの実行を示すタイムチャートである。
監視対象のセンサノードの測定データがイベント発生条件の「00」に変化して、Xさんのゲート通過が判定されると、分散データ処理サーバDDS−1は、データID=X2に関するイベント通知を発生する。
このイベント発生は、分散データ処理サーバDDSからディレクトリサーバDRSに通知され、図28のイベント受信部ERCが受信する。ディレクトリサーバDRSのアクション管理部AMGは、受信したイベントのIDから図31のアクションテーブルATBを検索し、該当するアクションの有無を判定する。受信したID=X2のイベントは、アクションテーブルATBに定義があるので、アクション管理部AMGは、アクション実行部ACEに対してアクションテーブルATBのアクションとパラメータを通知する。
アクション実行部ACEは、アプリケーションシステムAPSに対して人PS−1がゲートを通過した旨を連絡し、アクションを実行する。そして、アプリケーションシステムAPSはアクション結果を受信する。
なお、以上は一つのイベント発生でひとつのアクションを行う例について述べたが、2つ以上のイベント発生条件が全て成立したらあるアクションを実行するように設定してもよく、一つのイベント発生で複数のアクションを行うように設定することもできる。
以上述べたような、イベント−アクション制御は、ディレクトリサーバで実行することも、データ処理サーバで実行することも可能であり、これはイベントとアクションの内容によって定めることが望ましい。例えば、イベントの判定が一つのデータ処理サーバに格納されているデータで実行できるのであればディレクトリサーバの負荷、通信経路の負荷を軽くするためにも、データ処理サーバで実行することが望ましい。一方、複数のデータ処理サーバにデータが分散している場合には、ディレクトリサーバで実行しても良いし、ある一つのデータ処理サーバにイベントの判定を割り当てても良い。
<ロケータノード−センサノード間の距離推定>
図34〜36は、ロケータノードLCNの検知領域SNAの設定方法を説明する図である。
図34には、ロケータノードLCN−1〜3が配置されており、無線センサノードWSNがある。各々のロケータノード、およびセンサノードはセンサネットシステムSNSに所属するいずれかの基地局に接続しているものとする。今、各ロケータノードLCN−1〜3の現在の検知領域SNA−1−a、SNA−2−a、SNA−3−aは、検知半径がそれぞれ1−a、2−a、3−aに設定されているとする。図34の状態では、センサノードWSNは、いずれのロケータノードの検知領域内にも存在しないため、ロケータノードLCN−1〜3には検知されない。ただし、基地局との間の通信が確立されていれば、センサノードから基地局へデータが送信され、センサネットシステムSNSの基地局BST、分散データ処理サーバDDS、ディレクトリサーバDRSの各階層で接続されているセンサノードは管理されるため、WSNが存在する事はわかっている。このような状況の場合に、センサノードWSNの場所を特定するために、検知領域SNAの検知半径を調整する。
図35は、ロケータノードLCN−1〜3の検知領域の検知半径を、SNA−1−b、SNA−2−b、SNA−3−bに広げた様子を示している。各ロケータノードLCN−1〜3は、それぞれが予め定めたノード非検知判定時間を超過してもセンサノードを検知しなかった場合に、コントローラCNTに予め設定しておいた処理機能を用いてそれぞれの検知領域の検知半径を広げる。図35では、この処理により、ロケータノードLCN−3の検知領域SNA−3−bにセンサノードWSNが入るため、ロケータノードLCN−3がセンサノードWSNを検知することができるようになる。この時、センサノードWSNとロケータノードLCN−3の距離は、3−aから3−bの間であると推定する事ができる。
図36は、図35のタイミングで検知領域を拡大した後、それぞれに設定されているノード非検知判定時間を超過しても未だセンサノードを検出していないロケータノードLCN−1、2が、さらに検知領域を拡大した様子を示している。図36においては、ロケータノードLCN−2の検知領域SNA−2−cの範囲にセンサノードWSNが入ったことにより、ロケータノードLCN−2がセンサノードWSNを検知することができるようになる。この時、センサノードWSNとロケータノードLCN−2の距離は、2−bから2−cの間であると推定する事ができる。
同様にLCN−1についてもセンサノードWSNが検知できるまで検知領域を拡大していくことが可能である。この結果、3つ以上のロケータノードから同時にひとつのセンサノードWSNを検出することができれば、推定した距離を用いて3辺測量を行うことにより、センサノードWSNの座標を計算することができる。
上記で説明した検知領域拡大方法とは逆に、それぞれのロケータノードごとに予め定めた一定時間の間に、規定の頻度以上同一の、あるいは複数のセンサノードを検出した場合に、センサノードが検知できなくなるまで検知領域を縮小することもできる。この場合は、最後にセンサノードを検知できた検知領域半径を、設定値に固定する。
このように、一連の検知領域調整方法を、複数のセンサノードが存在する観測フィールドで時間的に連続して行えば、観測フィールド内のロケータノードの検知領域を自動的に調整する事が可能になる。
上記で説明したロケータノードの検知領域SNAの調整自体は、各ロケータノードのコントローラが無線処理部を制御することにより行う。検知領域調整開始のトリガは、分散データ処理サーバDDSのコマンド制御部からの制御コマンドを、基地局BSTを介してロケータノードが受け取ることによって与えられる。また、検知領域を広げるもしくは狭めるといった検知半径の調整要否、及び調整する程度の判断はイベントアクション制御部において行われ、その判断結果を上記制御コマンドに含めることも可能である。
分散データ処理サーバDDSでは、イベントアクション制御部EACにおいて、センサノードが基地局に接続されていることが確認されているにも関わらず、予め定めた時間を経過しても、該センサノードが所属する基地局に所属するいずれのロケータノードからも該センサノードの検出信号を受信しないという条件をイベントとして登録する。また、ロケータノードに対し検知領域調整開始コマンドをコマンド制御部CMC−Dを介して発行するというアクションを登録する。そして、該イベントが発生したときに、該アクションを実行する。
ロケータノードは、検知領域の調整が完了した際に、その時の検知領域半径設定値を、基地局、分散データ処理サーバDDSを介してディレクトリサーバDRSに通知する。ディレクトリサーバDRSでは、検知領域半径の情報に基づいて、検出したセンサノードの位置精度を実世界モデル情報として図24に示した実世界モデルテーブルMTBに格納し、アプリケーションシステムAPSからの要求に従って分散データ処理サーバ、基地局を介してロケータノードに通知する。
なお、各ロケータノードに対する基地局からのコマンドが、ロケータノードから基地局への送信に対する応答としてロケータノードに送信される通信方式を用いている場合は、ロケータノードから基地局への送信がなければコマンドを受信することができない。ロケータノードは通常傍受モードで待機しているため、図9あるいは図10に示したように通信モードと傍受モードを並列動作可能な構成である場合を除き、ノード検出信号、あるいはノード離脱信号を送信した時にのみコマンドを受信可能である。そこで、各ロケータノードに、センサノードを検知していない時間を計測する手段を設け、予め定めた一定時間センサノードを検出しなかった場合には、ロケータノードから基地局に、センサノード非検知信号を送信し、検知領域調整を指示するコマンドを受信するようにしても良い。あるいは、上位システムに問い合わせずに直ちに検知領域調整を開始することも可能である。
この時、ロケータノードに時間計測手段を設け、検知領域調整を行うタイミングを予め特定の時間に設定することによって同期させ、対象となるロケータノードの検知領域半径を一斉に変更するようにしてもよい。これにより、センサノードが通信を行った際に、すべての対象ロケータノードが新しい検知領域で検知処理を行う事ができるため、調整を早く完了することができる。
また、対象とするセンサノードがモバイルセンサノードMSNであった場合には、センサノードが移動する可能性があるため、検知領域半径を一斉に変更することにより、全てのロケータノードが、モバイルセンサノードの発信した同じ通信を元に調整を行うことが可能になり、より正確な検知領域半径調整を行うことができる。
<複数のロケータノードがセンサノードを検知した場合>
図37に示すように、複数のロケータノード(例えばLCN−1、LCN−2、LCN−3)がひとつのセンサノードWSNを検知した場合、いずれかのロケータノード位置をセンサノードWSNの位置として決定することが必要となる。ロケータノードの位置をセンサノードの位置とするのではなく、より細かい位置特定が必要な場合には、電波強度RSSI等を加重とする加重平均を取ることにより、ロケータノード間の中間的な位置を推定することも可能であるが、ここでは、どれか1つのロケータノードを選択する方法について開示する。
第1の方法は、各ロケータノードが傍受したセンサノードの送信信号のRSSIを測定する手段を設け、その絶対値が最も大きいロケータノードを選択する方法である。
第2の方法は、各ロケータノードによるセンサノードの検知の時間連続性に基づいて決定する方法である。図38は、ロケータノードLCN−1〜LCN−3のそれぞれが、センサノードWSNの各通信のタイムスロット毎にセンサノードWSNを検知した例を表している。図中の矢印は、ロケータノードがセンサノードを検知したことを示す。複数のロケータノードがセンサノードを検知した時は、図に示すように、その時点からみて過去に連続して検知したスロット数が最も多いロケータノードが選択される。これにより、人の通過等、電波伝搬に影響を及ぼす物体の通過等により突発的にセンサノード検知状態が変化した場合の影響を回避する事が可能になる。この判定処理は、分散データ処理サーバDDSのイベントアクション制御部において実行する。この時、ロケータノードによるセンサノードの検出履歴は、分散データ処理サーバのディスクDSK内のデータベースDBに測定データ/属性として格納しておく。なお、第1の方法と第2の方法を組み合せて用いても良い。また、前述したように、1のロケータノードのみセンサノードを検知するよう各ロケータノードの検知領域を縮小してもよい。
<ロケータノードの動作タイミング>
ロケータノードは、基地局との通信を行っている時以外は、センサノードの通信を傍受するノード傍受モードで待機する事を想定している。したがって、通常は常時無線処理部が動作していることになり、結果として電力消費が大きくなる。このため、小型電池等による長時間連続動作は困難である。そこで、ロケータノードの電力消費を節減する方法を開示する。
第1の方法は、センサノードが通信するタイミングに合わせてノード傍受モードに移行し、それ以外の時間はスリープする方法である。無線通信のプロトコルによっては、同一のPANに所属するノードが同期して通信を行うタイミングを調整する。例えばZigBee無線規格では、PAN全体を調整するコーディネータと呼ばれるデバイスが、定期的にビーコン信号を発信し、他のノードは、ビーコン信号によって規定された期間のみ通信を行う。このような通信方式を用いる場合は、ロケータノードについても、ビーコン信号によって規定された通信期間のみセンサノードの通信を傍受すれば良いため、この期間以外の期間はスリープすることによって電力消費を節減することができる。
ロケータノードの電力消費を節減する第2の方法は、センサノードが通信することをなんらかの手段で検知し、該検知結果をトリガにノード傍受モードに移行する方法である。例えば、センサノードが通信する直前に、例えばスピーカーや赤外線LED等、センサノード自身が持つアクチュエータATTを動作させ、出力された音や光などの情報を発信する。ロケータノードは、該情報をロケータノードが持つ検知手段で検知する。
図39は、本方法を適用する場合のロケータノードの構成例である。図39は、図7で説明したロケータノードの構成例に、センサSSRを追加したものである。センサSSRは、電源POWから電力を供給され、例えばマイク等の音圧を感知するセンサが、予め定めた音圧レベルを超える音をセンシングした場合や、フォトダイオード等の赤外線受光センサが、予め定めた発光量を検知した等、センシング対象を検知するのに十分な量の情報をセンシングした際に、割込信号をコントローラCNTに伝送する機能を有する。コントローラCNTは、割込信号部INTが該割込信号を受信した際に、ロケータノードをノード傍受モードに移行する。センサの消費電力が十分小さく、また、割込信号を受信してノード傍受モードに移行するのに必要な機能以外の機能を停止することが出来る場合には、センサノードの電力消費を節減することができる。センサSSRの例としては、例えば移動体の動きを検知する人感センサやマイクロ波センサ、センサノードが通信の直前にスピーカーから出力した可聴音または超音波等を検出するマイク、ノードが通信の直前に赤外線LEDを発光させ、これを受光するフォトダイオードやフォトトランジスタ等がある。なお、ここでは、図7の構成への追加例についてのみ記載するが、図8〜図10の構成についても同様に追加可能なことは明らかである。
<ロケータノード機能のその他の応用方法>
ここまでに開示したロケータノードの機能は、基本的に専用ハードウェアを用いて実現することを想定しているが、ロケータノードの機能は、通常のセンサノードの構成で実現できる。そのため、例えば観測フィールドに据え置いて使用する据置型センサノードをロケータノードとして使用したり、無線マルチホップネットワークやメッシュネットワークの中継器や基地局の無線処理部をロケータノードとして使用したりすることも可能である。さらに、モバイルセンサノードMSNをロケータノードとして使用することもできる。
これにより、モバイルセンサノードを持って移動することにより、据置型センサノードの設置位置を特定することができる。この場合は、例えばモバイルセンサノードにGPS等の位置特定手段を設け、据置型センサノードを検知した時のモバイルセンサノードの位置をGPSで計測し、据置型センサノードのID情報と共に基地局に伝送し、据置型センサノードの位置を特定する。さらに、モバイルセンサノードによって他のモバイルセンサノードを検知すれば、人のプレゼンス情報として利用する事ができる。
なお、本実施形態における処理フローはプログラムとして構成し、各制御部や各処理部はコンピュータでプログラムを読み取ることにより実行できる。
以上、本発明の例を説明したが、本発明は上記実施例に限定されるものではなく、種々変形可能であり、上述した各実施例を適宜組み合わせることが可能であることは当業者に理解されよう。
以上のように、本発明によれば、 建物や市街地等での人の行動に対するセキュリティ管理、倉庫や店舗等の流通過程の物品管理、医療施設や家庭での人の健康や安全管理、愛玩動物や家畜の状態監視等の分野において、人や物品、動物等の移動体の位置を特定する事が可能になるため、施設内作業者による立入り制限区域への侵入、商品の流通経路のトレース、患者の居場所確認等の状況をきめ細かく把握することができるようになる。
ロケータノードを用いてセンサノードの位置を特定するセンサネットワークシステムの一例を示す構成図である。 センサネットワークの機能の一例を示すブロック図である。 無線センサノードWSNの一例を示すブロック図である。 無線センサノードの動作状態の一例を示すグラフで、時間と消費電流の関係を示す。 ロケータノードLCNによるモバイルセンサノード検知方法の一例を説明する図である。 ロケータノードLCNによるモバイルセンサノード検知方法の一例を説明する図である。 ロケータノードLCNによるモバイルセンサノード検知方法の一例を説明する図である。 ロケータノードLCNによって移動体の位置を特定する概念の一例を説明する図である。 ロケータノードLCNの一例を示すブロック図である。 ロケータノードLCNの一例を示すブロック図である。 ロケータノードLCNの一例を示すブロック図である。 ロケータノードLCNの一例を示すブロック図である。 ロケータノードの状態変化の一例を説明する図である。 ロケータノードの状態変化の一例を説明する図である。 ロケータノードの状態変化の一例を説明する図である。 ロケータノードの状態変化の一例を説明する図である。 観測フィールドにロケータノードを配置する例である。 観測フィールドにロケータノードを配置する例である。 観測フィールドにロケータノードを配置する例である。 観測フィールドにロケータノードを配置する例である。 ロケータノードの指向性を制御した場合の例である。 データフローの例を説明する図である。 ロケータノードの処理フローの一例を説明する図である。 基地局の処理フローの一例を説明する図である。 無線センサノード等の配置の一例を示す説明図である。 オブジェクトとセンサノードの測定データの関連の一例を示すブロック図である。 センサ情報テーブルの一例を示す説明図である。 分散データ処理サーバDDSのイベントアクション制御部の一例を示すブロック図である。 イベントテーブルの一例を説明する図である。 ディレクトリサーバDRSのアクション制御部ACCの一例を示すブロック図である。 アクションテーブルの一例を説明する図である。 分散データ処理サーバDDSのイベントテーブルのエントリの一例を示す説明図である。 ディレクトリサーバDRSのアクションテーブルのエントリの一例を示す説明図である。 単一のアクションの設定の流れの一例を示すタイムチャートである。 単一のアクションの応答の流れの一例を示すタイムチャートである。 ロケータノードの検知領域の設定方法の一例を説明する図である。 ロケータノードの検知領域の設定方法の一例を説明する図である。 ロケータノードの検知領域の設定方法の一例を説明する図である。 複数のロケータノードがセンサノードを検知した場合の選択方法の一例を説明する図である。 複数のロケータノードがセンサノードを検知した場合の選択方法の一例を説明する図である。 センサを持つロケータノードの構成例を示す図である。
符号の説明
DRS:ディレクトリサーバ、DDS:分散データ処理サーバ、WSN、MSN、FSN:センサノード、LCN:ロケータノード、BST:基地局、NDA:ノード検知領域、MMG: モデル管理部、MTB:実世界モデルテーブル、NWK:ネットワーク、APS:アプリケーションシステム、SNS:センサネットワークシステム。

Claims (11)

  1. センシングデータを取得するセンサと、
    前記センシングデータ及び無線ノードのIDである第1ノードID情報を含む第1送信情報を生成する第1コントローラと、前記第1送信情報を基地局に送信する第1無線処理部とを有する無線ノードと、
    無線で通信可能な領域に前記無線ノードが存在する場合、前記無線ノードから前記基地局への送信情報を傍受する第2無線処理部と、前記傍受した送信情報から当該無線ノードのノードID情報を抽出し、前記抽出したノードID情報である第2ノードID情報及びロケータノードのIDである第3ノードID情報を含む第2送信情報を生成する第2コントローラとを有するロケータノードと、
    前記第1送信情報を受信した場合に、前記第1ノードID情報を抽出し、前記第2送信情報を受信した場合、前記第2ノードID情報及び前記第3ノードID情報を抽出し、アドレス変換テーブルを用いて上記第1又は第2及び第3ノードID情報を、システム全体で一意に定まる識別子である第1又は第2及び第3ノードグローバルアドレスに変換するノード通信処理部と、
    前記第1又は第2及び第3ノードグローバルアドレスを含むノード検出情報をサーバへ送信するノード管理部と、
    を有する基地局と、
    前記ノード検出情報を受信するイベントアクション制御部と、
    前記ロケータノードのノードグローバルアドレスと前記ロケータノードの位置とを対応付けるロケータノード位置テーブルを記録する記憶部と、
    複数の前記ノード検出情報が受信された場合であって、前記第1ノードグローバルアドレスと前記第2ノードグローバルアドレスが同じ場合に、前記第3グローバルアドレスに対応する前記ロケータノードの位置を、前記無線ノードの位置に対応付けるデータベース制御部を有するサーバと、
    から構成されるセンサネットシステム。
  2. 請求項1に記載のセンサネットシステムにおいて、
    前記サーバは複数の基地局を管理し、
    前記複数の基地局はそれぞれ前記基地局と、前記基地局が管理する無線ノード、ロケータノードで構成されるネットワークを識別するネットワークIDを有し、
    前記ノードID情報は、前記無線ノード及び前記ロケータノードが属するネットワークのネットワークIDを含み、
    前記複数の基地局それぞれの前記ノード通信処理部は、前記ノードID情報から抽出される無線ノード及びロケータノードそれぞれのネットワークIDが前記基地局のネットワークIDと同じ場合に、前記ノードグローバルアドレスへの変換を行うセンサネットシステム。
  3. 請求項1に記載のセンサネットシステムであって、
    前記サーバはさらに、ロケータノードの検知領域を変更する指示を基地局に送信するコマンド制御部を備え、
    前記無線ノードが前記基地局の通信領域に存在し前記ロケータノードの検知領域に存在しない場合であって、
    前記ノード通信処理部は、前記第1送信情報を受信し、
    前記データベース制御部において、受信した第1ノードグローバルアドレスと同じ第2ノードグローバルアドレスが存在しないことを判定した場合、
    前記コマンド制御部は、前記指示を前記センサノード管理部に送信し、
    前記第2無線処理部は、前記ノード通信処理部を介して前記指示を受け、
    前記第2コントローラが前記指示に基づいて前記第2無線処理部を制御することにより、前記第2無線処理部が前記第1送信データを傍受するセンサネットシステム。
  4. 請求項1乃至3の何れかに記載のセンサネットシステムにおいて、
    複数のロケータノードの検知領域が重なる領域に無線ノードが存在する場合であって、
    前記複数のロケータノードが前記無線ノードから前記基地局への送信情報を傍受した場合、
    前記データベース制御部は、前記記録部に記録された前記複数のロケータノードが前記無線ノードを検知した履歴に基づいて、1のロケータノードを選択し、前記選択したロケータノードのノードグローバルアドレスに基づいて上記ノードの位置を特定するセンサネットシステム。
  5. 請求項1乃至4の何れかに記載のセンサネットシステムであって、
    前記ロケータノードは、前記送信情報を傍受する傍受モードと、前記ノードID情報を抽出する検出処理モードと、前記第2送信情報を送信する通信モードと、を有し、
    前記第2コントローラが前記第2無線処理部を制御することにより、前記傍受モードで前記送信情報を傍受すると前記検出処理モードに移行し、前記ノードID情報を抽出すると前記通信モードに移行し、前記第2送信情報を送信すると前記傍受モードに移行するセンサネットシステム。
  6. 請求項5に記載のセンサネットシステムであって、
    前記ロケータノードは、前記傍受モードに移行後、前記検出処理モードで所定時間内に同じノードID情報を抽出した場合には、前記傍受モードに移行し、
    前記同じノードID情報を抽出した最新の時刻から前記所定時間内に前記同じノードID情報を抽出しない場合には、前記ノードの上記検出領域からの離脱を示す情報を前記基地局に送信するセンサネットシステム。
  7. 請求項1乃至6の何れかに記載のセンサネットシステムであって、
    前記第2無線処理部が前記送信情報を傍受した電波の電波強度が所定の値を超える場合に、
    前記第2コントローラは、前記傍受した送信情報から前記第2ノードID情報を抽出するセンサネットシステム。
  8. 請求項1乃至6の何れかに記載のセンサネットシステムであって、
    前記第2無線処理部は、受信する電波の電波強度を増幅する増幅器を有し、
    前記増幅器は、予め設定された増幅率で、前記第2無線処理部が前記送信情報を傍受した電波の電波強度を増幅し、
    前記第2コントローラは、前記増幅された電波強度が所定の値を超える場合に前記傍受した送信情報から前記第2ノードID情報を抽出するセンサネットシステム。
  9. 請求項5または6に記載のセンサネットシステムであって、
    前記ノードは前記第1送信情報を送信する前に所定の情報を生成するアクチュエータをさらに有し、
    前記ロケータノードは、前記所定の情報を検知手段により検知し、前記傍受モードを開始するセンサネットシステム。
  10. 基地局にセンサネット位置特定方法を実行させるセンサネット位置特定プログラムであって、
    無線ノードから送信されるセンシングデータと第1ノードID情報を含む第1送信情報と、ロケータノードが傍受した無線ノードから送信された送信情報に含まれるノードID情報である第2ノードID情報とロケータノードのIDである第3ノードID情報を含む第2送信情報とを受信し、
    前記第1及び第2送信情報から、前記第1ノードID情報、前記第2ノードID情報及び前記第3ノードID情報を抽出し、アドレス変換テーブルを用いて上記第1、第2及び第3ノードID情報を、システム全体で一意に定まる識別子である第1、第2及び第3ノードグローバルアドレスに変換し、
    前記第1及び第2ノードグローバルアドレスが同じ場合に、前記第3ノードグローバルアドレスと前記ロケータノードの位置とを対応づけデータベースを持つサーバに、前記第1、第2及び第3ノードグローバルアドレスを送信するセンサネット位置特定プログラム。
  11. 請求項10に記載のセンサネット位置特定プログラムであって、
    前記サーバは複数の基地局を管理し、
    前記複数の基地局はそれぞれ上記基地局と、前記基地局が管理する無線ノード、ロケータノードで構成されるネットワークを識別するネットワークIDを有し、
    前記ノードID情報は、前記無線ノード及び前記ロケータノードが属するネットワークのネットワークIDを含み、
    上記複数の基地局はそれぞれ、前記ノードID情報から抽出される無線ノード及びロケータノードそれぞれのネットワークIDが前記基地局のネットワークIDと同じ場合に、前記変換を行うセンサネット位置特定プログラム。
JP2006128846A 2006-05-08 2006-05-08 センサネットシステム、センサネット位置特定プログラム Active JP4682912B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006128846A JP4682912B2 (ja) 2006-05-08 2006-05-08 センサネットシステム、センサネット位置特定プログラム
US11/797,749 US7675410B2 (en) 2006-05-08 2007-05-07 Sensor-net systems and its application systems for locationing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006128846A JP4682912B2 (ja) 2006-05-08 2006-05-08 センサネットシステム、センサネット位置特定プログラム

Publications (2)

Publication Number Publication Date
JP2007300571A JP2007300571A (ja) 2007-11-15
JP4682912B2 true JP4682912B2 (ja) 2011-05-11

Family

ID=38769654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006128846A Active JP4682912B2 (ja) 2006-05-08 2006-05-08 センサネットシステム、センサネット位置特定プログラム

Country Status (2)

Country Link
US (1) US7675410B2 (ja)
JP (1) JP4682912B2 (ja)

Families Citing this family (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9020854B2 (en) 2004-03-08 2015-04-28 Proxense, Llc Linked account system using personal digital key (PDK-LAS)
WO2006069330A2 (en) 2004-12-20 2006-06-29 Proxense, Llc Biometric personal data key (pdk) authentication
US11206664B2 (en) 2006-01-06 2021-12-21 Proxense, Llc Wireless network synchronization of cells and client devices on a network
US8036152B2 (en) 2006-01-06 2011-10-11 Proxense, Llc Integrated power management of a client device via system time slot assignment
US7904718B2 (en) 2006-05-05 2011-03-08 Proxense, Llc Personal digital key differentiation for secure transactions
JP4682912B2 (ja) * 2006-05-08 2011-05-11 株式会社日立製作所 センサネットシステム、センサネット位置特定プログラム
US9269221B2 (en) 2006-11-13 2016-02-23 John J. Gobbi Configuration of interfaces for a location detection system and application
JP4780413B2 (ja) * 2007-01-12 2011-09-28 横河電機株式会社 不正アクセス情報収集システム
JP5327832B2 (ja) * 2007-05-16 2013-10-30 独立行政法人情報通信研究機構 ノード識別子と位置指示子とを用いたパケットの通信方法
US8648734B2 (en) * 2007-09-13 2014-02-11 University Of Louisville Research Foundation, Inc. System and method for collecting data using wired sensors connected to wireless nodes
US8659427B2 (en) * 2007-11-09 2014-02-25 Proxense, Llc Proximity-sensor supporting multiple application services
KR100932911B1 (ko) * 2007-11-13 2009-12-21 한국전자통신연구원 무선 센서 네트워크에서의 선행적 데이터 필터링을 위한센서노드의 센싱 데이터 전송장치 및 방법
KR20090057559A (ko) * 2007-12-03 2009-06-08 삼성전자주식회사 두 안테나 수신감도 변화 차이를 이용한 근접 센싱 방법 및장치
US8171528B1 (en) 2007-12-06 2012-05-01 Proxense, Llc Hybrid device having a personal digital key and receiver-decoder circuit and methods of use
WO2009079666A1 (en) 2007-12-19 2009-06-25 Proxense, Llc Security system and method for controlling access to computing resources
US8508336B2 (en) 2008-02-14 2013-08-13 Proxense, Llc Proximity-based healthcare management system with automatic access to private information
WO2009126732A2 (en) 2008-04-08 2009-10-15 Proxense, Llc Automated service-based order processing
DE102009016230B4 (de) * 2008-09-12 2013-12-19 Siemens Aktiengesellschaft Verfahren und Vorrichtung zur merkmalsbasierten Ortung eines mobilen Objekts mittels einer Referenzkarte oder zum unüberwachten Lernen einer Referenzkarte zur merkmalsbasierten Ortung
KR101683286B1 (ko) * 2009-11-25 2016-12-06 삼성전자주식회사 이동통신망을 이용한 싱크 인증 시스템 및 방법
US8325061B2 (en) * 2010-01-07 2012-12-04 Emilcott Associates, Inc. System and method for mobile environmental measurements and displays
US9418205B2 (en) 2010-03-15 2016-08-16 Proxense, Llc Proximity-based system for automatic application or data access and item tracking
US8918854B1 (en) 2010-07-15 2014-12-23 Proxense, Llc Proximity-based system for automatic application initialization
US9338583B2 (en) * 2010-07-23 2016-05-10 Koninklijke Philips N.V. Method for energy efficient body sensor network discovery
JP5732863B2 (ja) * 2011-01-17 2015-06-10 ソニー株式会社 位置推定装置、位置推定方法、プログラム、および位置推定システム
ES2628341T3 (es) * 2011-02-03 2017-08-02 Realcell Limited Sistema y procedimiento para localizar un dispositivo de comunicación celular
US9265450B1 (en) 2011-02-21 2016-02-23 Proxense, Llc Proximity-based system for object tracking and automatic application initialization
US8898289B1 (en) * 2011-03-22 2014-11-25 Netapp, Inc. Distributed event processing method and architecture
JP5547124B2 (ja) * 2011-03-31 2014-07-09 公益財団法人鉄道総合技術研究所 プログラム及び計測データ管理装置
US8903551B2 (en) 2011-08-23 2014-12-02 International Business Machines Corporation Sensor-swarm environmental event detection
JP5372100B2 (ja) * 2011-10-03 2013-12-18 日本電信電話株式会社 通信システム、中継装置、通信方法、中継方法及びコンピュータプログラム
US9467862B2 (en) 2011-10-26 2016-10-11 Milwaukee Electric Tool Corporation Wireless tracking of power tools and related devices
JP5429826B2 (ja) * 2011-12-28 2014-02-26 株式会社スポットライト 超音波通信システム及びビーコン
CN102438253B (zh) * 2011-12-31 2014-02-12 中国人民解放军国防科学技术大学 移动传感器网中利用管道的节点部署方法
WO2013111192A1 (en) * 2012-01-26 2013-08-01 National Institute Of Information And Communications Technology Method for securing name registries, network access and data communication in id/locator split-base networks
US9503856B2 (en) * 2012-03-05 2016-11-22 Qualcomm Incorporated Method for determining wireless device location based on proximate sensor devices
US9167520B2 (en) * 2012-03-20 2015-10-20 Qualcomm Incorporated Controlling applications in a mobile device based on environmental context
US9015018B2 (en) * 2012-03-20 2015-04-21 The Boeing Company Boundary system designer for wireless aircraft networks
WO2013153890A1 (ja) 2012-04-12 2013-10-17 オムロン株式会社 デバイス管理装置及びデバイス検索方法
JP6065911B2 (ja) * 2012-08-06 2017-01-25 日本電気株式会社 配置情報登録装置、配置情報登録方法および配置情報登録プログラム
KR20140021136A (ko) * 2012-08-08 2014-02-20 삼성전자주식회사 윈도우를 이용한 데이터 처리 방법 및 데이터 처리 장치
US9585019B2 (en) 2012-08-22 2017-02-28 Omron Corporation Device management apparatus and device management method
US8892132B2 (en) * 2012-09-05 2014-11-18 Motorola Solutions, Inc. Analytic and tracking systems and methods using over-the-air identifiers of mobile devices
US8768315B2 (en) 2012-09-05 2014-07-01 Motorola Solutions, Inc. Method and apparatus for identifying a suspect through multiple correlated device identities
JP5445722B1 (ja) 2012-09-12 2014-03-19 オムロン株式会社 データフロー制御指令発生装置およびセンサ管理装置
TWI487931B (zh) * 2012-10-01 2015-06-11 Internat Mobile Iot Corp 地表定位系統
US9743242B2 (en) * 2012-10-01 2017-08-22 International Mobile Iot Corp. Earth positioning system
US9526437B2 (en) 2012-11-21 2016-12-27 i4c Innovations Inc. Animal health and wellness monitoring using UWB radar
US10158213B2 (en) 2013-02-22 2018-12-18 Milwaukee Electric Tool Corporation Worksite power distribution box
US9466198B2 (en) 2013-02-22 2016-10-11 Milwaukee Electric Tool Corporation Wireless tracking of power tools and related devices
US9766603B2 (en) 2013-03-08 2017-09-19 International Business Machines Corporation Wireless network of low power sensing and actuating motes
US10149617B2 (en) 2013-03-15 2018-12-11 i4c Innovations Inc. Multiple sensors for monitoring health and wellness of an animal
US9405898B2 (en) 2013-05-10 2016-08-02 Proxense, Llc Secure element as a digital pocket
AU2014383919B8 (en) * 2014-03-20 2017-03-16 Chugai Technos Corporation Carbon dioxide ground leakage monitoring system
WO2015186218A1 (ja) * 2014-06-05 2015-12-10 株式会社日立製作所 無線通信システム
US20160249317A1 (en) * 2015-01-22 2016-08-25 Griffin Technology, Inc. Wireless Array
JP6398894B2 (ja) 2015-06-30 2018-10-03 オムロン株式会社 データフロー制御装置およびデータフロー制御方法
JP6465012B2 (ja) 2015-12-14 2019-02-06 オムロン株式会社 データフロー制御装置およびデータフロー制御方法
JP6458755B2 (ja) 2016-03-15 2019-01-30 オムロン株式会社 データフロー制御装置およびデータフロー制御方法
JP6376159B2 (ja) 2016-03-15 2018-08-22 オムロン株式会社 データフロー制御装置およびデータフロー制御方法
JP6372508B2 (ja) 2016-03-15 2018-08-15 オムロン株式会社 データフロー制御装置およびデータフロー制御方法
US10455350B2 (en) 2016-07-10 2019-10-22 ZaiNar, Inc. Method and system for radiolocation asset tracking via a mesh network
JP6890394B2 (ja) * 2016-09-27 2021-06-18 アドソル日進株式会社 中継装置、位置検知システム及び中継方法
TWM568972U (zh) 2016-10-31 2018-10-21 美商米沃奇電子工具公司 發訊系統及位置紀錄系統
IL256677B (en) * 2017-12-31 2022-09-01 Elta Systems Ltd Signal detection using complementary information
EP3628619A1 (en) * 2018-09-27 2020-04-01 Otis Elevator Company Elevator system
JP7127691B2 (ja) * 2018-09-27 2022-08-30 日本電気株式会社 位置推定装置、位置推定システム、位置推定方法およびプログラム
US11605973B2 (en) * 2018-10-29 2023-03-14 Conectric, Llc Systems and methods for a wireless sensor network
US11327147B2 (en) * 2018-12-26 2022-05-10 Locix, Inc. Systems and methods for determining locations of wireless sensor nodes based on anchorless nodes and known environment information
CN114223224B (zh) 2019-08-13 2024-03-08 米沃奇电动工具公司 具有多个和应用程序可设置的信标发射率的工具追踪装置
US11276284B1 (en) * 2021-04-13 2022-03-15 Honeywell International Inc. System and method for detecting events in a system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001136562A (ja) * 1999-08-09 2001-05-18 Miwa Science Kenkyusho:Kk 位置情報システムおよびその利用システム
JP2002533692A (ja) * 1998-12-19 2002-10-08 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 測位ビーコン
JP2003521134A (ja) * 1998-08-19 2003-07-08 シグマワン コミュニケーションズ コーポレーション 無線通信システムにおける移動局信号を測定し、位置を決定するためのシステムおよび方法
JP2004242052A (ja) * 2003-02-06 2004-08-26 Nippon Telegr & Teleph Corp <Ntt> 位置情報に基づく情報配信システム及び方法
JP2004328310A (ja) * 2003-04-24 2004-11-18 Nippon Telegr & Teleph Corp <Ntt> 位置情報に基づく情報提供システム及び情報提供方法とサービス提供サーバ
JP2005006086A (ja) * 2003-06-12 2005-01-06 Nippon Telegr & Teleph Corp <Ntt> 位置検出システム及びその使用方法
JP2005175663A (ja) * 2003-12-09 2005-06-30 Matsushita Electric Ind Co Ltd 所在確認システム

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08129061A (ja) 1994-10-28 1996-05-21 Clarion Co Ltd 測位システム
JPH11178042A (ja) 1997-12-08 1999-07-02 Nippon Telegr & Teleph Corp <Ntt> 位置検出システム
KR20010036027A (ko) * 1999-10-05 2001-05-07 박종섭 코드분할 다중접속 방식 시스템의 트렁크 라우팅 장치 및 그 방법
US7035240B1 (en) * 2000-12-27 2006-04-25 Massachusetts Institute Of Technology Method for low-energy adaptive clustering hierarchy
US7130538B2 (en) * 2001-03-12 2006-10-31 Avago Technologies Fiber Ip (Singapore) Ptd. Ltd. Optical switch and networking method
US7161926B2 (en) * 2001-07-03 2007-01-09 Sensoria Corporation Low-latency multi-hop ad hoc wireless network
JP2005525003A (ja) 2001-09-05 2005-08-18 ニューベリイ ネットワークス,インコーポレーテッド 無線ネットワークにおける位置検出および場所追跡
JP3829784B2 (ja) 2002-09-19 2006-10-04 日本電信電話株式会社 位置検出方法及びシステム及び無線通信装置
US7184777B2 (en) * 2002-11-27 2007-02-27 Cognio, Inc. Server and multiple sensor system for monitoring activity in a shared radio frequency band
JP2005184727A (ja) * 2003-12-24 2005-07-07 Hitachi Ltd 無線通信システム、無線ノード、無線通信システムの構築方法及びノードの位置測定方法
US20060253570A1 (en) * 2005-01-25 2006-11-09 Pratik Biswas Self-organizing sensor node network
US7352280B1 (en) * 2005-09-01 2008-04-01 Raytheon Company System and method for intruder tracking using advanced correlation in a network security system
US7289466B2 (en) * 2005-10-05 2007-10-30 Honeywell International Inc. Localization for low cost sensor network
US20070133469A1 (en) * 2005-12-08 2007-06-14 Electronics And Telecommunications Rsearch Institute Sensor node device and method for supporting mobility of mobile node in sensor network
US8040859B2 (en) * 2006-02-17 2011-10-18 Honeywell International Inc. Identification of the location of nodes distributed in ad hoc networks
JP2007300572A (ja) * 2006-05-08 2007-11-15 Hitachi Ltd センサネットシステム、センサネット位置特定方法
JP4682912B2 (ja) * 2006-05-08 2011-05-11 株式会社日立製作所 センサネットシステム、センサネット位置特定プログラム
JP4188409B2 (ja) * 2006-05-25 2008-11-26 デュアキシズ株式会社 通信管理システム、通信管理方法、及び通信制御装置
US20080016440A1 (en) * 2006-07-14 2008-01-17 Microsoft Corporation Programming And Managing Sensor Networks
KR100789914B1 (ko) * 2006-09-29 2008-01-02 한국전자통신연구원 장애 요인이 적은 이웃 노드를 선택적으로 이용하는 위치 인식 방법 및 노드 장치

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003521134A (ja) * 1998-08-19 2003-07-08 シグマワン コミュニケーションズ コーポレーション 無線通信システムにおける移動局信号を測定し、位置を決定するためのシステムおよび方法
JP2002533692A (ja) * 1998-12-19 2002-10-08 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 測位ビーコン
JP2001136562A (ja) * 1999-08-09 2001-05-18 Miwa Science Kenkyusho:Kk 位置情報システムおよびその利用システム
JP2004242052A (ja) * 2003-02-06 2004-08-26 Nippon Telegr & Teleph Corp <Ntt> 位置情報に基づく情報配信システム及び方法
JP2004328310A (ja) * 2003-04-24 2004-11-18 Nippon Telegr & Teleph Corp <Ntt> 位置情報に基づく情報提供システム及び情報提供方法とサービス提供サーバ
JP2005006086A (ja) * 2003-06-12 2005-01-06 Nippon Telegr & Teleph Corp <Ntt> 位置検出システム及びその使用方法
JP2005175663A (ja) * 2003-12-09 2005-06-30 Matsushita Electric Ind Co Ltd 所在確認システム

Also Published As

Publication number Publication date
US7675410B2 (en) 2010-03-09
JP2007300571A (ja) 2007-11-15
US20080164997A1 (en) 2008-07-10

Similar Documents

Publication Publication Date Title
JP4682912B2 (ja) センサネットシステム、センサネット位置特定プログラム
US20070262863A1 (en) Sensor network system and sensor network position specifying method
JP4431513B2 (ja) セキュリティシステム
US8457656B2 (en) Wireless tracking system and method utilizing multiple location algorithms
JP5984811B2 (ja) 無線端末の位置の決定のための方法並びにその関連システム及び装置
US8145235B2 (en) System and method for estimating mobile wireless unit position in a localized area
JP4445951B2 (ja) エリア推定システム及びエリア推定方法
US20090045939A1 (en) Locating devices using wireless communications
CN111654954B (zh) 将信息与资产或物理空间关联的***及方法
JP2009504529A (ja) 無線ノードネットワークを使用したエレベータかごの呼び方法及びそのためのシステム
US20110122858A1 (en) Wireless transmitter-receiver and mobile object management system
JP5389945B2 (ja) 追跡システムおよびデバイスの位置を追跡する方法
CN107251623A (zh) 定位移动设备
JP2013510307A (ja) 無線ネットワークでの位置検出
US11202172B2 (en) System and method for managing indoor positioning data
US20210021962A1 (en) System and method for passive tracking of objects
KR20180053717A (ko) Iot 상호작용 시스템
US20140191897A1 (en) Low Frequency Magnetic Induction Positioning System And Method
US11611851B2 (en) Location tracking of assets
JP2009237924A (ja) 対象物位置対応制御装置および対象物位置対応制御プログラム
JP2007251425A (ja) 位置測位システム及び位置測位方法
US20130099896A1 (en) Sensor Location and Tagging System
JP2020022181A (ja) 情報管理システム、及び周囲環境管理方法
CN116847321A (zh) 一种蓝牙信标***以及蓝牙定位方法
US20210287501A1 (en) Vibration triangulation network

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110124

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4682912

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250