JP4678551B2 - 膨張弁 - Google Patents

膨張弁 Download PDF

Info

Publication number
JP4678551B2
JP4678551B2 JP2008307807A JP2008307807A JP4678551B2 JP 4678551 B2 JP4678551 B2 JP 4678551B2 JP 2008307807 A JP2008307807 A JP 2008307807A JP 2008307807 A JP2008307807 A JP 2008307807A JP 4678551 B2 JP4678551 B2 JP 4678551B2
Authority
JP
Japan
Prior art keywords
refrigerant
diaphragm
space
passage
temperature sensing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008307807A
Other languages
English (en)
Other versions
JP2010133577A (ja
Inventor
真 池上
健一 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2008307807A priority Critical patent/JP4678551B2/ja
Priority to DE102009056281A priority patent/DE102009056281A1/de
Priority to US12/592,670 priority patent/US8851394B2/en
Priority to CN2009102523258A priority patent/CN101749901B/zh
Publication of JP2010133577A publication Critical patent/JP2010133577A/ja
Application granted granted Critical
Publication of JP4678551B2 publication Critical patent/JP4678551B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Temperature-Responsive Valves (AREA)

Description

本発明は空気調和装置、冷凍装置等の冷凍サイクルに用いられる膨張弁に関する。
従来、冷凍サイクルの減圧装置として、気相状態の感温流体が感温部に充填された、いわゆるガスチャージ方式の膨張弁が知られている(例えば、特許文献1参照)。この特許文献1に記載の第1の従来技術における膨張弁では、アルミ製の弁体駆動棒を構成するステムとなる感温棒の外周に熱伝導率の低い樹脂がインサート形成されている。この樹脂層は、感温棒に密着するように一体化されている。樹脂としては、例えば冷媒等の影響による経時的変化のないPPS樹脂が用いられる。
この樹脂層は、冷凍サイクルの気相冷媒が通過する低圧冷媒通路に露出している部分の感温棒に設けられている。低圧冷媒通路を流れる蒸発器出口からの冷媒蒸気の温度は、パワーエレメント部の上部圧力作動室中の感温流体として封入された冷媒(以下、封入冷媒とする)に伝達され、この温度に対応した圧力の作動ガスが発生する。これにより、例えば蒸発器からの未蒸発の低圧冷媒が低圧冷媒通路の通路中に流れて樹脂層に付着したとしても、樹脂は低熱伝導率の材料であるため、伝熱の時定数が大きくなり、膨張弁の応答特性は鈍感になる。したがって、蒸発器の熱負荷の急変動が生じても、このように膨張弁の応答特性が鈍感なため、冷凍システムにハンチング現象が生じることを回避できる。
また、他の方式の従来の膨張弁としては、パワーエレメント部の上部圧力作動室と中空状の感温棒における中空部とを連通させて、作動流体が封入された空間を形成するとともに、当該中空部に作動流体の分子径に適した細孔径を有する吸着物質(活性炭)を設けた吸着チャージ方式を採用したものが知られている(例えば、特許文献2参照)。そして、パワーエレメント部下方の下部圧力作動室は、感温棒の周囲の隙間を介して低圧冷媒通路に連通するようになっている。この特許文献2に記載の第2の従来技術では、低圧冷媒通路を流れる蒸発器出口からの冷媒蒸気の温度を当該中空部の作動流体に伝達し、この温度に対応した圧力を上部圧力作動室中の作動流体に伝達させる。
したがって、パワーエレメント部のダイヤフラムは、上部圧力作動室中の作動流体ガスの圧力と下部圧力作動室中の蒸発器の出口における冷媒蒸気の圧力との差に応じて感温棒を駆動して、オリフィスに対する弁体の弁開放度(すなわち、蒸発器の入口への液体状の冷媒の流入量)を調整する。
そして、感温棒の中空部に設けた活性炭により、活性炭と作動流体との温度・圧力平衡が達成されるまでに時間を要するため、冷凍サイクルの制御特性が安定し、ハンチング現象を回避することができる。
特開平09−159324号公報 特開2001−33123号公報
しかしながら、第1の従来技術では、感温棒の外周に樹脂層を備えることにより、低圧冷媒通路を流れる気相冷媒(以下、低圧冷媒とする)からの熱伝達を遅らせて時定数を大きくしている。このため、低圧冷媒から封入冷媒への熱伝達が悪くなるので、相対的に外気や膨張弁本体から封入冷媒への伝熱の影響が大きくなり、感温棒の温度が低圧冷媒の温度よりも高くなってしまう。したがって、冷媒の温度が安定し、冷媒の圧力が一定である定常時には、検出温度の誤差が大きくなってしまうという問題がある。
また、ハンチング現象は、膨張弁が蒸発器出口の冷媒温度を検知し、オリフィス(減圧部)の開度を調整する間の応答遅れと、サイクル自身が持つ応答遅れの相互作用によるものである。このため、膨張弁における応答遅れ(時定数)をサイクルの応答遅れに対して十分大きくすることで、相互作用によるハンチングの影響の低減が可能である。しかし、その背反として、空調負荷によってサイクルの冷媒流量(流速)が変動することによりサイクル側の応答遅れが変動することから、低流速条件で十分な時定数を持つよう膨張弁を設計した場合には、高流速条件時の応答が必要以上に遅くなりすぎてしまい、この設計がサイクルの運転状態を適正な状態にすることに対する阻害因子となってしまう。
また、感温棒自身の温度は、膨張弁の周囲温度によって加熱されるダイヤフラム側からの熱の影響を受ける。さらに封入冷媒はダイヤフラムの上部に封入されているため、感温棒はその長手方向に温度差が生じて温度分布が生じるようになる。このような温度分布のため、例えば周囲温度が高い場合には、上部圧力作動室の封入冷媒は実際に低圧冷媒通路に流れ込む低圧冷媒の温度よりも高くなってしまうので、開弁側に誤作動するという問題がある。
一方、第2の従来技術は、感温棒の中空部に設けた活性炭によって、作動流体ガスに直接伝熱する時定数を持たせるようにしている。これにより、作動流体ガスを感温棒の中空部の活性炭に吸着させて低圧冷媒通路側に導いているため、検出される冷媒温度の誤差は小さくなる。しかしながら、感温棒の中空部に活性炭を充填する必要があり、コスト、工数が要し、生産性がよくないという問題がある。
また、作動流体は活性炭に吸着されているため、上部圧力作動室の圧力は温度の上昇とともに増加してしまい、MOP(maximum operating pressure)特性(密閉空間の作動流体が加熱ガスとなることにより、温度の上昇に対して上部圧力作動室の圧力上昇が緩やかとなり、高負荷時の圧縮機の動力を低減することができる特性のこと)を持たせることができない。
また、従来の減圧装置として、気液混合状態の感温流体が感温部に充填された、いわゆる液チャージ方式の膨張弁が知られている。この液チャージ方式の膨張弁では、感温流体は使用時に気液二相状態であるため、第2の従来技術と同様に、MOP特性が得られず、また、高圧時にダイヤフラム等のパワーエレメント部にかかる圧力に耐え得る設計仕様とすることが要求されるため、コスト面等が大きくなる。また、液チャージ方式の膨張弁は、第1の従来技術のようなガスチャージ方式に比べて、充填方法および各構成部材においてコストおよび工数が大幅に増加という問題があり、生産性上好ましくない。
そこで、本発明は上記問題点に鑑みてなされたものであり、その目的は、優れた生産性に加え、ハンチングの防止等に有効な時定数を有し、周囲温度の影響による誤作動を防止する膨張弁を提供することである。
上記目的を達成するために、下記の技術的手段を採用することができる。なお、特許請求の範囲および下記各手段に記載の括弧内の符号は、ひとつの態様として後述する実施形態に記載の具体的手段との対応関係を示す。
請求項1に記載の膨張弁に係る発明は、圧縮機(8)からの液冷媒が流通する第1の通路(7)、および蒸発器(6)から圧縮機に向かう気相冷媒が流通する第2の通路(9)を有するボディ部(2)と、第1の通路に設けられるオリフィス部(11)と、オリフィス部を通過する冷媒の量を調節する弁体(14)と、ボディ部に設けられて圧力差によって作動するダイヤフラム(32)を有するパワーエレメント部(30)と、パワーエレメント部の内部でダイヤフラムを境界として一方側に形成された第1の圧力作動室(35)と、ダイヤフラムを境界として他方側に形成され、前記第2の通路と連通する第2の圧力作動室(36)と、少なくとも一部が第2の通路に位置して配置され、一方の端部がダイヤフラムに接し他方の端部が弁体を駆動するように構成されてダイヤフラムの変位とともに変位する棒状部材であって、軸方向に延びる筒状空間(55)が形成された感温棒(50)と、感温棒の内壁をなす層であって、感温棒を構成する材質よりも熱伝導率が低い低熱伝導層(60)と、感温棒の筒状空間を2つの空間に区画し、筒状空間を軸方向にすべるように動くピストン部材(70)と、を備えている。
さらに、感温棒の前記筒状空間は、ダイヤフラムに形成された開口部(32a)を通じて第1の圧力作動室に連通しており、ピストン部材によって区画された2つの空間のうち、第1の圧力作動室側に形成される第1の空間(55a)には、圧力による体積変化の小さい非圧縮性流体が封入され、第1の圧力作動室と反対側で第2の通路に位置するように形成される第2の空間(55b)には、気体状態の冷媒が封入されることを特徴とする。
この発明によれば、以下に列記する効果が得られる。ピストン部材によって区画された空間であって、冷凍サイクルの低圧冷媒が流通する第2の通路に位置する第2の空間には気体状態の冷媒が封入されることにより、いわゆるガスチャージ方式の膨張弁を提供でき、液チャージ方式、吸着チャージ方式等の他の方式よりも優れた低コスト、低工数の高い生産性を得ることができる。上記非圧縮性流体は、圧力による体積変化が小さいため、周囲温度の変動による体積変化が小さい流体で構成される。このため、体積変化に起因する非圧縮性流体と気体状態の冷媒との界面部位の変位量(換言すれば、ピストン部材の変位量)は、ダイヤフラムの変位に起因する非圧縮性流体と気体状態の冷媒との界面部位の変位量に対して十分に小さく無視できるものである。よって、この非圧縮性流体が、ピストン部材によって区画されたもう一方の空間であって、第1の圧力作動室側に形成される第1の空間に封入されることにより、膨張弁の周囲温度の影響を受けやすい第1の空間の流体の体積変化がほとんどないため、周囲温度の影響を排除した膨張弁の作動が実現できる。さらに、低熱伝導層を感温棒の内壁に設けることにより、熱伝達の時定数を大きくすることができ、ハンチング現象の防止に有効な手段を簡単な構成で実現できる。
以上により、優れた生産性に加え、ハンチングの防止等に有効な時定数を有し、周囲温度の影響による誤作動を防止する膨張弁が得られる。
請求項2に記載の発明では、請求項1に記載のピストン部材の代わりに、筒状空間を形成する内壁に固定されて筒状空間を2つの空間に区画し、圧力差によって変形する形状可変部材(71)を備えることを特徴とする。
この発明によれば、当該形状可変部材は、その両側に配される気体状態の冷媒と非圧縮性流体との圧力差によって自在に変形するため、上記のピストン部材と同様の機能を奏することができる。また、当該形状可変部材は、例えば、ゴム材等の膜状の軟性部材により形成することができ、筒状空間内をすべるピストン部材よりも簡易な構成の部品にすることができる。
請求項3に記載の発明は、請求項1または請求項2に記載の発明において、非圧縮性流体が封入される第1の空間(55a)を、気体状態の冷媒が封入される第2の空間(55b)よりも下方に位置させることを特徴とする。
この発明によれば、第2の空間の下方に第1の空間が位置する構成の膨張弁であるため、第1の空間に非圧縮性流体が封入された状態のパワーエレメント部に対して、後から感温棒の第2の空間に気体状態の冷媒を封入することができる。そして、両流体が封入されたパワーエレメント部および感温棒をボディ部の所定の位置に設置する手順の組み立てを行うことができる。これにより、後から非圧縮性流体を封入する場合に栓をするためのパワーエレメント部の封止部材を不要にすることができ、より簡易な構成の膨張弁を提供できる。
請求項4に記載の膨張弁に係る発明は、圧縮機(8)からの液冷媒が流通する第1の通路(7)、および蒸発器(6)から圧縮機に向かう気相冷媒が流通する第2の通路(9)を有するボディ部(2)と、第1の通路に設けられるオリフィス部(11)と、オリフィス部を通過する冷媒の量を調節する弁体(14)と、ボディ部に設けられて圧力差によって作動するダイヤフラム(32)を有するパワーエレメント部(30)と、パワーエレメント部の内部でダイヤフラムを境界として上方に形成された上部圧力作動室(35)と、ダイヤフラムを境界として下方側に形成され、第2の通路と連通する下部圧力作動室(36)と、少なくとも一部が第2の通路に位置して配置され、上方の端部がダイヤフラムに接し下方の端部が弁体を駆動するように構成されてダイヤフラムの変位とともに変位する棒状部材であって、軸方向に延びる筒状空間(55)が形成された感温棒(50)と、感温棒の内壁をなす層であって、感温棒を構成する材質よりも熱伝導率が低い低熱伝導層(60)と、を備える。
さらに、感温棒の筒状空間は、ダイヤフラムに形成された開口部(32a)を通じて上部圧力作動室に連通しており、上部圧力作動室から感温棒の筒状空間にかけての空間のうち、少なくとも上部圧力作動室を含む上方空間には圧力による体積変化の小さい非圧縮性流体が封入され、上方空間よりも下方空間には気体状態の冷媒が封入されており、非圧縮性流体と気体状態の冷媒は互いに予め定める割合で溶け合う特性を有する関係にあり、非圧縮性流体が感温棒の筒状空間の下方に落下することを妨げる表面張力による抗力は、非圧縮性流体と気体状態の冷媒との界面(56)に作用する非圧縮性流体の重力よりも大きくなるように構成されていることを特徴とする。
この発明によれば、以下に列記する効果が得られる。この発明に係る膨張弁は、非圧縮性流体と気体状態の冷媒が互いに予め定める割合で溶け合う特性を有する関係にあることにより、両者が溶け合う特性(以下、相溶性とも称する)の程度を考慮して、上記抗力が上記重力よりも大きくなるように構成される。よって、非圧縮性流体と気体状態の冷媒は所定の量が溶け合って形成される二層をなし、この二層が平衡状態に保たれる界面が形成されるようになる。また、上方空間に封入されるこのような非圧縮性流体は、圧力による体積変化が小さいため、周囲温度の変動による体積変化が小さい流体で構成される。このため、体積変化に起因する上方の非圧縮性流体と下方の気体状態の冷媒との界面の変位量は、ダイヤフラムの変位に起因する非圧縮性流体と気体状態の冷媒との界面の変位量に対して十分に小さく無視できるものとなる。よって、このような非圧縮性流体が、当該上方空間に封入されることにより、膨張弁の周囲温度の影響を受けやすい上部圧力作動室の流体の体積変化がほとんどないため、周囲温度の影響を排除した膨張弁の作動が実現できる。
さらに、少なくとも上部圧力作動室を含む上方空間よりも下方空間には気体状態の冷媒が封入されることにより、いわゆるガスチャージ方式の膨張弁を提供でき、液チャージ方式、吸着チャージ方式等の他の方式よりも優れた低コスト、低工数の高い生産性を得ることができる。さらに、低熱伝導層を感温棒の内壁に設けることにより、熱伝達の時定数を大きくすることができ、ハンチング現象の防止に有効な手段を簡単な構成で実現できる。
以上により、優れた生産性に加え、ハンチングの防止等に有効な時定数を有し、周囲温度の影響による誤作動を防止する膨張弁が得られる。
請求項5に記載の膨張弁に係る発明は、請求項4に記載の発明に対して、非圧縮性流体と気体状態の冷媒は互いに全く溶け合わない関係にあることが相違する。この発明によれば、非圧縮性流体と気体状態の冷媒は、互いが全く溶け合わないため(以下、完全非相溶性の関係とも称する)、両者が分離する完全二層をなし、この二層が平衡状態に保たれる界面が形成されるようになる。したがって、上記抗力が上記重力よりも大きくなるように膨張弁を設計するために、両者の相溶性を考慮する必要がなく、設計が容易に行える。
請求項6に記載の発明では、請求項4または請求項5に記載の発明において、非圧縮性流体と気体状態の冷媒との界面(56)が形成される部位に感温棒の筒状空間を横断するように設けられた表面張力増加部材(72)を備えることを特徴とする。この発明によれば、非圧縮性流体がこのような表面張力増加部材に接触することにより、表面張力の増大が図れ、非圧縮性流体と気体状態の冷媒との平衡状態がさらに安定して保たれるようになる。
請求項7に記載の発明では、低熱伝導層は樹脂で形成されていることを特徴とする。この発明によれば、感温棒の内壁に、例えばインサート成形等を用いた生産性の高い方法で低熱伝導層を形成することができる。
請求項8に記載の発明のように、非圧縮性流体として、PGA系オイル、シリコン系オイル、フッ素系オイルのいずれかを採用することができる。
以下に、図面を参照しながら本発明を実施するための複数の形態を説明する。各形態において先行する形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各形態において構成の一部のみを説明している場合は、構成の他の部分については先行して説明した他の形態を適用することができる。各実施形態で具体的に組み合わせが可能であることを明示している部分同士の組み合わせばかりではなく、特に組合せに支障が生じなければ、明示していなくても実施形態同士を部分的に組み合せることも可能である。
(第1実施形態)
以下、本発明に係る膨張弁の一例である第1実施形態について、図1および図2を用いて説明する。本膨張弁は、自動車等の空気調和装置の冷凍サイクルに使用される減圧装置としての温度式膨張弁である。図1は、本実施形態における膨張弁1の構成を示す縦断面図であり、冷凍サイクルの構成部品とともに概略的に示している。
図1に示すように、膨張弁1は角柱状のアルミ製のボディ部2を有する。このボディ部2には、冷凍サイクルの冷媒(例えばR134a)が流れる冷媒管路3において、凝縮器4の出口からレシーバ5を介して蒸発器6の冷媒入口へと向かう部分に介在される液相冷媒が通過する第1の通路7が形成されている。ボディ部2には、蒸発器6の出口から圧縮機8の入口へと向かう部分に介在される低圧の気相冷媒(低圧冷媒)が通過する第2の通路9が形成されている。第1の通路7と第2の通路9は、上下に互いに離れて形成されている。
第1の通路7には、レシ−バ5の冷媒出口から供給された液体冷媒を断熱膨張させるためのオリフィス部11が形成されている。オリフィス部11は、第1の通路7において断面積の小さい狭い通路であり、弁体14の軸方向に沿うように設けられている。オリフィス部11の入口には弁座12が形成されていて、弁座12には弁部材13により支持された弁体14が着座または離座するように設けられている。弁体14と弁座12との距離を調整することにより、オリフィス部11を流通する冷媒の量が調節される。
弁体14と弁部材13とは溶接により固定されている。弁部材13は、弁体14が弁座12に押し付けられる方向に圧縮コイルばね16からなる付勢手段により付勢されている。圧縮コイルばね16は、弁部材13と弁体14を付勢する付性手段であって、弁体14によってオリフィス部11を閉じる方向に付勢する。
第1の通路7は、レシ−バ5からの液冷媒が導入される第1の冷媒流入口17aから第1の冷媒流出口17bに至るまでの通路であり、その途中に第1の冷媒流入口17aに連通する弁室18が設けられている。弁室18は、オリフィス部11の中心線と同軸に形成される室であり、プラグ19によって下方から閉塞されることにより有底の空間となっている。
さらに、ボディ部2には、小径の孔部20と、小径の孔部20よりも径が大きい大径の孔部21とがオリフィス部11の中心軸線と同軸でその延長線上に第2の通路9に連通するように形成されている。大径の孔部21および小径の孔部20は、ともに上下方向に延びる形状の筒状の空間をなしている。大径の孔部21が形成する筒状の空間には、感温棒50の下部が挿入されて配置されている。小径の孔部20が形成する筒状の空間には、感温棒50の下部に当接(直接、突き当たること)された作動棒51が貫通するように配置されている。
ボディ部2の上端には、感熱部となるパワーエレメント部30が固定されるねじ孔31が形成されている。パワーエレメント部30は、ステンレス製のダイヤフラム32と、ダイヤフラム32を挾んで互いに密着して設けられた第1カバー33と第2カバー34を備えている。
一体となった第1カバー33と第2カバー34がボディ部2に取り付けられることにより、パワーエレメント部30の内部でダイヤフラム32を境界として一方側に第1の圧力作動室が形成され、ダイヤフラム32を境界とした他方側には第2の圧力作動室が形成される。上部圧力作動室35は、第1の圧力作動室であり、ダイヤフラム32よりも上方に位置する気密室である。下部圧力作動室36は、第2の圧力作動室であり、ダイヤフラム32よりも下方に位置する気密室である。第1カバー33は、上部圧力作動室35にダイヤフラムを駆動する流体を封入するための封止プラグ40(封止部材)を備えている。
下部圧力作動室36は、オリフィス部11の中心軸線に対して同心状に形成された均圧孔42を通じて第2の通路9に連通されている。第2の通路9は、蒸発器6からの気相冷媒(低圧冷媒)が第2の冷媒流入口17cから第2の冷媒流出口17dに至るまでの通路であり、その途中に感温棒50が横断するように配置されている。第2の通路9には、蒸発器6からの気相冷媒が流れ、その気相冷媒の圧力が均圧孔42を介して下部圧力作動室36に加えられる。下部圧力作動室36と均圧孔42とは、感温棒50の傘状部分50bの周囲に形成されたクリアランス(傘状部分50bと第2カバー34との間隔)によって連通する関係にある。
さらに、下部圧力作動室36から第2の通路9と小径の孔部20にかけて形成された空間には、ともにステンレス製である感温棒50と作動棒51が設けられている。感温棒50は、ステムを構成する棒状部材であり、感温棒の軸方向一方の面部50aがダイヤフラム32と当接し、かつ軸方向他方の端部が第2の通路9を貫通して大径の孔部21内に軸方向に摺動(滑らせながら動くこと)可能に配置されている。
感温棒50は、少なくとも一部が第2の通路9に配置されて第2の通路9を流れる低圧冷媒の温度を感知するものである。つまり、感温棒50は、蒸発器6出口の冷媒の温度を上部圧力作動室35に伝達するとともに、上部圧力作動室35および下部圧力作動室36の圧力差に伴うダイヤフラム32の変位に応じて、大径の孔部21内を摺動して弁体14に対して駆動力を与える。作動棒51は、感温棒50と一体でなって、小径の孔部20内に摺動可能に配され、感温棒50の変位に応じて弁体14に対して直接、圧縮コイルばね16の弾性力に抗する押圧力を加える。
感温棒50は作動棒51に当接し、作動棒51は弁体14に当接する関係にあり、感温棒50と作動棒51とは、弁体14を駆動する弁体駆動棒として機能する。したがって、均圧孔42には、ダイヤフラム32の下面から第2の通路9を通り、オリフィス部11まで延びる弁体駆動棒が同心的に配置されていることになる。
感温棒50には、その軸方向に延びる筒状空間55が形成されている。この筒状空間55は、上側(一方側)が開口し、下側(他方側)が閉じた有底の容器である。筒状空間55の上側(一方側)の開口は、ダイヤフラム32に形成された開口部32aに一致しており、筒状空間55は、当該開口部32aを通じて上部圧力作動室35に連通している。
筒状空間55を形成する内壁全体には、所定の厚さの低伝導層が形成されているため、感温棒50は内周面における熱伝導は外周面における熱伝導よりも低下する構造となっている。低熱伝導層60は、感温棒50を構成する材質よりも熱伝導率が低い材質で形成されている。例えば、低熱伝導層60は、各種の樹脂によって形成することが好ましい。低熱伝導層60を樹脂で形成した場合には、例えばインサート成形等を用いた生産性の高い方法で低熱伝導層60を容易に形成することができる。
筒状空間55には、筒状空間55を2つの空間に区画する部材であって、筒状空間55を軸方向にすべるように動くピストン部材70が設けられている。ピストン部材70は、区画された2つの空間それぞれに満たされる流体が混じり合わないように行き来することを阻止するとともに、これら流体間の圧力差に応じて筒状空間55を軸方向に摺動する部材である。
ピストン部材70によって区画された2つの空間のうち、上部圧力作動室35を含む第1の空間55aには、ダイヤフラム32を駆動する流体である非圧縮性流体が充填され封入されている。この非圧縮性流体は、圧力による体積変化(あるいは密度変化)が極めて小さい流体である。また、非圧縮性流体は、例えば膨張弁1の使用温度(例えば、−30℃〜60℃)において、ある程度の体積変化はするものの、相変化することはない流体で構成されるものである。例えば、非圧縮性流体は、R134a用のPGA系オイル等のコンプレッサオイル、フッ素系オイル、シリコン系オイル等である。
さらに、ピストン部材70によって区画された2つの空間のうち、上部圧力作動室35と反対側に形成される第2の空間55bには、気体状態の冷媒が充填され封入されている。第2の空間55bは第2の通路9に位置するように形成されるため、第2の空間55bに封入される気体状態の冷媒(以下、気体冷媒と称することもある)には、蒸発器6を流出して第2の通路9を流れる低圧冷媒の熱が伝達されることになる。
ピストン部材70は、例えば、筒状空間55を形成する内壁面に沿う形状であり、この内壁面とピストン部材70の外周面との間には第1の空間55aの非圧縮性流体および第2の空間55bの気体冷媒が他方の空間に流入するような隙間が形成されないように、設置されている。また、ピストン部材70は、非圧縮性流体および気体冷媒が透過しないような材質で形成されている。
上記構成の膨張弁1が適用される冷凍サイクルにおいて、圧縮機8が起動して冷媒が流動すると、膨張弁1は減圧装置として作動し、第1の通路7および第2の通路9を冷媒が流通する。
第2の通路9を流通する低圧冷媒の熱は、筒状空間55内の気体冷媒に伝達されることにより、当該気体冷媒の圧力を変化させるとともに、第2の通路9と連通する下部圧力作動室36に伝達される。そして、上部圧力作動室35の非圧縮性流体には、筒状空間55内の気体冷媒の圧力がピストン部材70を介して加えられ、この圧力に応じて非圧縮性流体の圧力がダイヤフラム32の上面に印加される。ダイヤフラム32は、その上面に印加された非圧縮性流体の圧力とダイヤフラム32の下面に印加された圧力(つまり下部圧力作動室36の圧力(蒸発器6の冷媒出口から圧縮機8の冷媒入口へと向かう部分に介在した気相冷媒の圧力))との差により上下に変位する。
ダイヤフラム32の上下への変位は、感温棒弁50、作動棒51を介して、弁体14に伝達され、弁体14をオリフィス部11の弁座12に対して接近または離間させる。この結果、第1の通路7を流れる冷媒流量が制御される。このように、蒸発器6の出口側の気相冷媒の熱エネルギーは、感温棒50、低伝導層60、筒状空間55内の気体冷媒、非圧縮性流体の経路で伝わり、気体冷媒の圧力と非圧縮性流体の圧力との差で決定される圧力がダイヤフラム32に作用し、ダイヤフラム32の変位、すなわち、弁体14の変位が決定されて、膨張弁1による冷媒の減圧量が制御される。
例えば、蒸発器6の出口温度が上昇すると(出口冷媒の過熱度が上昇すると)、上部圧力作動室35の圧力が高くなり、それに応じてダイヤフラム32が下方に変位して、感温棒弁50、作動棒51によって弁体14が下げられるため、オリフィス部11の開度が大きくなる。これにより蒸発器6への冷媒の供給量が多くなり、蒸発器6の温度を低下させるようになる。逆に、蒸発器6の出口温度が低下すると(出口冷媒の過熱度が低下すると)、弁体14が上記と逆方向に駆動されてオリフィス部11の開度が小さくなり、蒸発器6への冷媒の供給量が少なくなり、蒸発器6の温度を上昇させるようになる。
このように、蒸発器6の出口冷媒の過熱度に応じて弁体14が変位することによって、蒸発器6の出口冷媒の過熱度が所定値に近づきようにオリフィス部11の通路断面積が調整される。また、プラグ19の締まり程度を調整することにより、圧縮コイルばね16によって弁体14にかかる荷重を調整して、過熱度の所定値を変更することができる。
次に、膨張弁1の変形例である膨張弁1Aについて説明する。図2は、膨張弁1の変形例である膨張弁1Aの構成を示す縦断面図である。図2に示すように、膨張弁1Aは、ピストン部材70の代わりに、固定式であって、その形状が変形可能である形状可変部材71を備えている。形状可変部材71は、筒状空間55を形成する内壁に固定されており、筒状空間55を2つの空間に区画し、圧力差によって自在に変形する部材である。形状可変部材71は、ピストン部材70と同様に、区画された2つの空間それぞれに満たされる流体が混じり合わないように行き来することを阻止する部材である。つまり、形状可変部材71は、非圧縮性流体と気体冷媒との圧力差によって、筒状空間55を形成する内壁に固定される周縁部は変位しないが、中央部が変形して変位することで、第2の通路9を流通する冷媒の熱を圧力として伝えることができる。形状可変部材71は、例えば、薄い膜状体であって、非圧縮性流体および気体冷媒を透過しない材質である天然ゴム、ポリウレタンゴム等の合成ゴムで形成することができる。
本実施形態の膨張弁がもたらす作用効果について述べる。膨張弁1は、筒状空間55を形成する内壁に設けられた層であって、感温棒50を構成する材質よりも熱伝導率が低い低熱伝導層60と、筒状空間55を2つの空間に区画し、筒状空間55を形成する内壁を軸方向にすべるように動くピストン部材70と、を備えている。ピストン部材70によって区画された2つの空間のうち、上部圧力作動室35側に形成される第1の空間55aには、圧力による体積変化の小さい非圧縮性流体が封入され、上部圧力作動室35と反対側で第2の通路9に位置するように形成される第2の空間55bには、気体状態の冷媒が封入されている。
このような構成によって以下の作用効果が得られる。筒状空間55を形成する内壁に低熱伝導層60を設けることにより、蒸発器6出口の冷媒の熱を感温用冷媒(気体冷媒)に伝える熱伝達の時定数を大きくすることができる。したがって、ハンチング現象の防止に有効な時定数の確保が簡単な構成で構築できる。また、筒状空間55がピストン部材70によって2つの空間に仕切られ、仕切られた2つの空間に非圧縮性流体と気体冷媒とを分けて封入することにより、これらの流体の互いの溶解性を考慮することなく、それぞれの所定量を封入することができる。また、ピストン部材70によって区画された第2の空間55bに気体状態の冷媒を封入することにより、いわゆるガスチャージ方式の膨張弁を提供することができる。したがって、液チャージ方式、吸着チャージ方式等の他の方式よりも優れた低コスト、低工数を備え、量産性の向上を図ることができる。
また、非圧縮性流体の体積変化に起因する非圧縮性流体と気体状態の冷媒との界面部位の変位量、つまり、ピストン部材70の変位量は、ダイヤフラム32の変位に起因する非圧縮性流体と気体状態の冷媒との界面部位の変位量に対して十分に小さく無視できるものとなる。非圧縮性流体がピストン部材70によって区画された上部圧力作動室35側に形成される第1の空間55aに封入されることにより、膨張弁1の周囲温度の影響を受けやすい第1の空間55aの流体の体積変化がほとんどないようになる。このため、例えば低温度時にパワーエレメント部30の上部で感温流体が凝縮して誤作動を引き起こすという従来技術の問題が解消されることになる。したがって、ガスチャージ方式の量産性の良さと、周囲温度の影響を排除した作動の実現との両方を併せ持つ膨張弁を提供することができる。
膨張弁1Aは、膨張弁1が奏する上記作用効果を有するとともに、以下の作用効果を奏する。膨張弁1Aの形状可変部材71は、その両側に配される気体冷媒と非圧縮性流体との圧力差によって自在に変形するため、筒状空間55内をすべらせる必要のあるピストン部材70よりも簡易な構成、簡易な設計で膨張弁を製作することができる。
また、膨張弁1,1Aは、活性炭などの吸着剤を用いず、気相冷媒を感温部に充填するガスチャージ方式であるため、設定温度にて封入冷媒が加熱ガスとなるMOP特性を持たせることができる。
(第2実施形態)
第2実施形態では、膨張弁1の他の形態である膨張弁1Bについて図3〜図5を用いて説明する。図3は、第2実施形態における膨張弁1Bの構成を示す縦断面図である。図3において前述の第1実施形態で説明した図面中と同一符号を付した構成部品は、同様の構成部品であり、同様の作用効果を奏するものである。
図3に示すように、本実施形態の膨張弁1Bは、膨張弁1,1Aと異なってピストン部材70、形状可変部材71といった筒状空間55を区画する部材を備えていない点を特徴とする。この構成を採用するため、非圧縮性流体と気体冷媒とは界面56において平衡状態を保つ関係にある。さらに膨張弁1Bは、非圧縮性流体が筒状空間55の下部に落下することを妨げる抗力(以下、表面張力に起因する抗力ともいう)が、非圧縮性流体と気体冷媒との界面56に作用する非圧縮性流体の重力よりも大きくなるように構成されている。
このように、表面張力に起因する抗力が非圧縮性流体の重力よりも大きくなるようにするために、膨張弁1Bは下記の式1を満足するように製作される。膨張弁1Bにおいて、筒状空間55の軸方向断面の直径をφとし、界面56よりも上方に存在する非圧縮性流体の鉛直方向高さをhとし、非圧縮性流体の密度をρとし、非圧縮性流体の界面56における表面張力をSとし、円周率をπとし、重力加速度をgとしたときに、
(数1)
(式1)
φ・S ≧ (φ/2)・h・ρ・g
が成立する。この式1は、筒状空間55に形成される界面56の軸方向断面が円形である場合に適用される式である。
また、筒状空間55に形成される界面56の軸方向断面が矩形状である場合には、膨張弁1Bは下記の式2を満足するように製作される。筒状空間55の軸方向断面の縦横の長さをL1、L2とすると、
(数2)
(式2)
{2・(L1+L2)/π}・S ≧ L1・L2・h・ρ・g
が成立する。式2の{2・(L1+L2)/π}の部分は、濡れぶち長さが等しくなるような円相当の直径を表している。
このように膨張弁1Bは、各構成部品の寸法、非圧縮性流体の封入量、気体冷媒の封入量等を上記の式1や式2を満たすように構成することにより製作される。
さらに、非圧縮性流体と着たい冷媒との間に、互いに予め定める割合で溶け合う特性(以下、相溶性とも称する)を有する関係にある場合には、その相溶性の程度を考慮して、上記の式1や式2を満足するように、膨張弁1Bを構成する。
相溶性を有する場合に、考慮される混合による蒸気圧降下についての考え方について図4にしたがって一例を説明する。図4は膨張弁1Bに封入される非圧縮性流体と気体状態の冷媒との相溶性の一例を示す特性図である。図4は、界面56を形成する2流体のうち非圧縮性流体であるオイルのモル分率(横軸)に対するオイルの蒸気圧比(P/Pr)(縦軸)の関係を示している。そして、ここでは、各成分が互いに分子間力を及ぼさない理想溶液であるとして、図4に示す当該蒸気圧降下の特性を、ラウールの法則(混合溶液の各成分の蒸気圧は各純液体の蒸気圧と混合溶液中のモル分率の積で表される)に基づいて算出している。
また、非圧縮性流体と気体冷媒とが相溶性を有する場合に、圧力および温度で決定される互いの溶解度特性が分かっているときは、その特性を織り込んで、各流体の封入量、封入圧力等を調整する設計を行うようにする。
また、非圧縮性流体と気体状態の冷媒との界面56が形成される部位には、筒状空間55を横断するように設けられた表面張力増加部材72を設けてもよい。図5は、非圧縮性流体と気体冷媒との界面56に設ける表面張力増加部材72の構成を示す平面図である。
表面張力増加部材72は、図5に示すように、例えば、筒状空間55の軸方向と交差するような形態を有する橋絡状の線部材、網目部材等の格子状部材によって構成される。非圧縮性流体が界面56付近で表面張力増加部材72の線状部分に接触することにより、通路断面積における非圧縮性流体の接触面積が大きくなるので、表面張力が増加するようになる。これにより、非圧縮性流体と気体状態の冷媒との平衡状態がさらに安定して保たれるようになり、両流体を仕切るための部材がなくてもさらに安定した界面56が得られる。また、表面張力増加部材72が網目部材で構成されている場合には、非圧縮性流体の流動の妨げとならない程度にそのメッシュ数が多く、その開口率が小さい方が好ましい。
一方、膨張弁1Aに封入される非圧縮性流体と気体冷媒として、互いに全く溶け合わない関係にある流体を採用してもよい。このような流体を採用した場合には、非圧縮性流体と気体冷媒は、完全非相溶性の関係であるため、両者が完全に分離する二層をなし、この二層が平衡状態に保たれる界面56が形成される。これにより、膨張弁1Bの仕様、設計の決定において、表面張力に起因する抗力が重力よりも大きくするために両流体の相溶性による蒸気圧降下等を考慮する必要がないので、膨張弁の製作を簡単化できる。
本実施形態の膨張弁1Bがもたらす作用効果について述べる。膨張弁1Bの筒状空間55は、少なくとも上部圧力作動室35を含む上方空間には圧力による体積変化の小さい非圧縮性流体が封入され、上方空間よりも下方空間には気体状態の冷媒が封入されている。非圧縮性流体と気体状態の冷媒は互いに予め定める割合で溶け合う特性を有する関係にある。膨張弁1Bは、非圧縮性流体が筒状空間55の下方に落下することを妨げる表面張力による抗力は、非圧縮性流体と気体状態の冷媒との界面56に作用する非圧縮性流体の重力よりも大きくなるように構成されている。
このような構成によって以下の作用効果が得られる。筒状空間55を形成する内壁に低熱伝導層60を設けることにより、蒸発器6出口の冷媒の熱を感温用冷媒(気体冷媒)に伝える熱伝達の時定数を大きくすることができる。したがって、ハンチング現象の防止に有効な時定数の確保が簡単な構成で構築できる。
また、膨張弁1Bは、非圧縮性流体と気体状態の冷媒が互いに予め定める割合で溶け合う特性を有する関係にあり、両者が溶け合う特性(相溶性)の程度を考慮して、非圧縮性流体の表面張力に起因する抗力がその重力よりも大きくなるように構成される。これにより、非圧縮性流体と気体状態の冷媒は所定の量が溶け合って形成される二層をなし、この二層が界面56で平衡状態に保たれるようになる。したがって、非圧縮性流体と気体状態の冷媒とを区画する部材を備えなくても、安定した界面56を構成することができる。
また、上方空間に封入される非圧縮性流体は、圧力による体積変化が小さいため、周囲温度の変動による体積変化が小さい流体で構成される。このため、体積変化に起因する上方の非圧縮性流体と下方の気体状態の冷媒との界面56の変位量は、ダイヤフラムの変位に起因する非圧縮性流体と気体状態の冷媒との界面56の変位量に対して十分に小さく無視できるものとなる。よって、このような非圧縮性流体が、当該上方空間に封入されることにより、膨張弁の周囲温度の影響を受けやすい上部圧力作動室35の流体の体積変化がほとんどないようになる。このため、例えば、低温度時にパワーエレメント部30の上部で感温流体が凝縮して誤作動を引き起こすという従来技術の問題が解消されることになる。したがって、ガスチャージ方式の量産性の良さと、周囲温度の影響を排除した作動の実現との両方を併せ持つ膨張弁を提供することができる。
また、少なくとも上部圧力作動室35を含む上方空間よりも下方空間には気体状態の冷媒が封入されることにより、いわゆるガスチャージ方式の膨張弁を提供できる。したがって、膨張弁1Bは、液チャージ方式、吸着チャージ方式等の他の方式よりも優れた低コスト、低工数を備え、量産性の向上を図ることができる。
(第3実施形態)
第3実施形態では、膨張弁1の他の形態である膨張弁1Cについて図6を用いて説明する。図6は、第3実施形態における膨張弁1Cの構成を示す縦断面図である。図6において前述の第1実施形態で説明した図面中と同一符号を付した構成部品は、同様の構成部品であり、同様の作用効果を奏するものである。
図6に示すように、本実施形態の膨張弁1Cは、膨張弁1,1Aと異なってピストン部材70、形状可変部材71といった空間を区画する部材を備えていない点と、第1の空間55aを第2の空間55bよりも下方に位置させる構成とした点と、を特徴とする。この特徴を備えることにより、膨張弁1Cは、膨張弁1,1A,1Bとは異なって上下を逆にした姿勢、つまり膨張弁1Bを逆さました姿勢で設置されて使用される。これにより、第1の通路7Cが上方に位置し、第2の通路9Cが下方に位置するようになる。
膨張弁1Cは、このような姿勢で設置されることにより、以下に示す構成を備えている。非圧縮性流体が下方に位置し、気体冷媒が非圧縮性流体の上方に位置するように封入される。そして、感温棒50Cは、一方の端部が下方のダイヤフラム32に接し、他方の端部が作動棒51を介して上方の弁体14を駆動するように構成される。弁体14と直接的に接する作動棒51は、感温棒50Cの上方端部に固定された蓋部材61により支持されている。蓋部材61は、感温棒50Cの上方端部に蓋をする部材であり、筒状空間55の上部を閉塞している。膨張弁1Cのパワーエレメント部30Cは、下方に位置する平板状の第1カバー33Cと上方に位置する第2カバー34によってダイヤフラム32を挾んで保持している。
次に、膨張弁1Cにおいて筒状空間55に各流体を封入する手順について説明する。まず、上記のようにダイヤフラム32が保持され、感温棒50Cが取り付けられた状態のパワーエレメント部30Cに対して、感温棒50Cの上方端部の開口部52から非圧縮性流体を入れて第1の圧力作動室35Cに充填する。次に、開口部52から気体冷媒を充填し、蓋部材61によって開口部52を閉塞する。このようにして、非圧縮性流体と気体冷媒は、筒状空間55で二層をなすように封入されることになる。
そして、パワーエレメント部30Cをボディ部2のねじ孔31に締結して取り付ける。一体となった第1カバー33Cと第2カバー34がボディ部2に取り付けられることにより、パワーエレメント部30Cの内部でダイヤフラム32を境界として下方側に第1の圧力作動室35Cが形成され、ダイヤフラム32を境界とした下方側には第2の圧力作動室36Cが形成される。同時に、作動棒51の下方端部が蓋部材61によって支持されて、感温棒50Cの変位が作動棒51を介して弁体14に伝えられるようになる。
このように、膨張弁1Cは、上記姿勢で設置されていることと、蓋部材61を備えていることから、膨張弁1,1A,1Bが有する封止プラグ40を備える必要がなく、部品点数、組立て工数を低減したパワーエレメント部30Cを提供することができる。
本実施形態の膨張弁1Cは、非圧縮性流体が封入される第1の空間55aを、気体状態の冷媒が封入される第2の空間55bよりも下方に位置させるように構成される。この構成によれば、気体冷媒の下方に非圧縮性流体を備えるため、第1の空間55aに非圧縮性流体が封入された状態のパワーエレメント部30Cに対して、後から第2の空間55bに気体状態の冷媒を封入することができる。そして、両流体が封入されたパワーエレメント部30Cおよび感温棒50Cをボディ部2の所定の位置に設置する手順の組み立てを行うことができる。これにより、後から非圧縮性流体を封入する場合に栓をするためにパワーエレメント部に封止部材を設ける必要がなく、パワーエレメント部の構成をより簡単化することができる。
(第4実施形態)
第4実施形態では、膨張弁1の他の形態である膨張弁1Dについて説明する。図7は、第4実施形態における膨張弁1Dの構成を示す縦断面図である。図7において前述の第1実施形態で説明した図面中と同一符号を付した構成部品は、同様の構成部品であり、同様の作用効果を奏するものである。
図7に示すように、本実施形態の膨張弁1Dは、第1実施形態の膨張弁1を逆さました姿勢で設置されて使用されるものである。この構成により、非圧縮性流体が封入される第1の空間55aを、気体状態の冷媒が封入される第2の空間55bよりも下方に位置させるできるため、一般的に比重の大きい非圧縮性流体を下方に配置することができる。なお、膨張弁1Dのピストン部材70は、形状可変部材71に置き換えてもよい。
(その他の実施形態)
上述の実施形態では、本発明の好ましい実施形態について説明したが、本発明は上述した実施形態に何ら制限されることなく、本発明の主旨を逸脱しない範囲において種々変形して実施することが可能である。
上記実施形態において、非圧縮性流体は圧力による体積変化が極めて小さい流体である。しかし、第2の空間55bに封入された気体冷媒によって発生する圧力に対して、圧縮されるときの圧縮率が予め分かっている場合には、そのような所定の圧縮率を有する流体を第1の空間55aに封入する流体として使用してもよい。この場合には、当該気体冷媒による発生圧力に対する圧縮率を織り込んで封入される各流体の封入量、封入圧力等を調整する設計を行えばよい。
第1実施形態における膨張弁1の構成を示す縦断面図である。 膨張弁1の変形例である膨張弁1Aの構成を示す縦断面図である。 第2実施形態における膨張弁1Bの構成を示す縦断面図である。 膨張弁1Bに封入される非圧縮性流体と気体状態の冷媒との相溶性の一例を示す特性図である。 非圧縮性流体と気体状態の冷媒との界面に設ける表面張力増加部材72の構成を示す平面図である。 第3実施形態における膨張弁1Cの構成を示す縦断面図である。 第4実施形態における膨張弁1Dの構成を示す縦断面図である。
符号の説明
2…ボディ部
6…蒸発器
7…第1の通路
8…圧縮機
9…第2の通路
11…オリフィス部
14…弁体
30…パワーエレメント部
32…ダイヤフラム
32a…開口部
35…上部圧力作動室(第1の圧力作動室)
36…下部圧力作動室(第2の圧力作動室)
50…感温棒
55…筒状空間
55a…第1の空間
55b…第2の空間
56…界面
60…低熱伝導層
70…ピストン部材
71…形状可変部材
72…表面張力増加部材

Claims (8)

  1. 圧縮機(8)からの液冷媒が流通する第1の通路(7)、および蒸発器(6)から前記圧縮機に向かう気相冷媒が流通する第2の通路(9)を有するボディ部(2)と、
    前記第1の通路に設けられるオリフィス部(11)と、
    前記オリフィス部を通過する冷媒の量を調節する弁体(14)と、
    前記ボディ部に設けられて圧力差によって作動するダイヤフラム(32)を有するパワーエレメント部(30)と、
    前記パワーエレメント部の内部で前記ダイヤフラムを境界として一方側に形成された第1の圧力作動室(35)と、
    前記ダイヤフラムを境界として他方側に形成され、前記第2の通路と連通する第2の圧力作動室(36)と、
    少なくとも一部が前記第2の通路に位置して配置され、一方の端部が前記ダイヤフラムに接し他方の端部が前記弁体を駆動するように構成されて前記ダイヤフラムの変位とともに変位する棒状部材であって、軸方向に延びる筒状空間(55)が形成された感温棒(50)と、
    前記感温棒の前記筒状空間をなす層であって、前記感温棒を構成する材質よりも熱伝導率が低い低熱伝導層(60)と、
    前記感温棒の前記筒状空間を2つの空間に区画し、前記筒状空間を軸方向にすべるように動くピストン部材(70)と、
    を備え、
    前記感温棒の前記筒状空間は、前記ダイヤフラムに形成された開口部(32a)を通じて前記第1の圧力作動室に連通しており、
    前記ピストン部材によって前記区画された2つの空間のうち、前記第1の圧力作動室側に形成される第1の空間(55a)には、圧力による体積変化の小さい非圧縮性流体が封入され、前記第1の圧力作動室と反対側で前記第2の通路に位置するように形成される第2の空間(55b)には、気体状態の冷媒が封入されることを特徴とする膨張弁。
  2. 前記ピストン部材の代わりに、前記筒状空間を形成する内壁に固定されて前記筒状空間を2つの空間に区画し、圧力差によって変形する形状可変部材(71)を備えることを特徴とする請求項1記載の膨張弁。
  3. 前記非圧縮性流体が封入される前記第1の空間(55a)を、前記気体状態の冷媒が封入される前記第2の空間(55b)よりも下方に位置させることを特徴とする請求項1または請求項2に記載の膨張弁。
  4. 圧縮機(8)からの液冷媒が流通する第1の通路(7)、および蒸発器(6)から前記圧縮機に向かう気相冷媒が流通する第2の通路(9)を有するボディ部(2)と、
    前記第1の通路に設けられるオリフィス部(11)と、
    前記オリフィス部を通過する冷媒の量を調節する弁体(14)と、
    前記ボディ部に設けられて圧力差によって作動するダイヤフラム(32)を有するパワーエレメント部(30)と、
    前記パワーエレメント部の内部で前記ダイヤフラムを境界として上方に形成された上部圧力作動室(35)と、
    前記ダイヤフラムを境界として下方側に形成され、前記第2の通路と連通する下部圧力作動室(36)と、
    少なくとも一部が前記第2の通路に位置して配置され、上方の端部が前記ダイヤフラムに接し下方の端部が前記弁体を駆動するように構成されて前記ダイヤフラムの変位とともに変位する棒状部材であって、軸方向に延びる筒状空間(55)が形成された感温棒(50)と、
    前記感温棒の内壁をなす層であって、前記感温棒を構成する材質よりも熱伝導率が低い低熱伝導層(60)と、
    を備え、
    前記感温棒の前記筒状空間は、前記ダイヤフラムに形成された開口部(32a)を通じて前記上部圧力作動室に連通しており、
    前記上部圧力作動室から前記感温棒の前記筒状空間にかけての空間のうち、少なくとも前記上部圧力作動室を含む上方空間には圧力による体積変化の小さい非圧縮性流体が封入され、前記上方空間よりも下方空間には気体状態の冷媒が封入されており、
    前記非圧縮性流体と前記気体状態の冷媒は、互いに予め定める割合で溶け合う特性を有する関係にあり、
    前記非圧縮性流体が前記感温棒の前記筒状空間の下方に落下することを妨げる表面張力による抗力が、前記非圧縮性流体と前記気体状態の冷媒との界面(56)に作用する前記非圧縮性流体の重力よりも大きくなるように構成されていることを特徴とする膨張弁。
  5. 圧縮機(8)からの液冷媒が流通する第1の通路(7)、および蒸発器(6)から前記圧縮機に向かう気相冷媒が流通する第2の通路(9)を有するボディ部(2)と、
    前記第1の通路に設けられるオリフィス部(11)と、
    前記オリフィス部を通過する冷媒の量を調節する弁体(14)と、
    前記ボディ部に設けられて圧力差によって作動するダイヤフラム(32)を有するパワーエレメント部(30)と、
    前記パワーエレメント部の内部で前記ダイヤフラムを境界として上方に形成された上部圧力作動室(35)と、
    前記ダイヤフラムを境界として下方側に形成され、前記第2の通路と連通する下部圧力作動室(36)と、
    少なくとも一部が前記第2の通路に位置して配置され、上方の端部が前記ダイヤフラムに接し下方の端部が前記弁体を駆動するように構成されて前記ダイヤフラムの変位とともに変位する棒状部材であって、軸方向に延びる筒状空間(55)が形成された感温棒(50)と、
    前記感温棒の内壁をなす層であって、前記感温棒を構成する材質よりも熱伝導率が低い低熱伝導層(60)と、
    を備え、
    前記感温棒の前記筒状空間は、前記ダイヤフラムに形成された開口部(32a)を通じて前記上部圧力作動室に連通しており、
    前記上部圧力作動室から前記感温棒の前記筒状空間にかけての空間のうち、少なくとも前記上部圧力作動室を含む上方空間には圧力による体積変化の小さい非圧縮性流体が封入され、前記上方空間よりも下方空間には気体状態の冷媒が封入されており、
    前記非圧縮性流体と前記気体状態の冷媒は、互いに全く溶け合わない関係にあり、
    前記非圧縮性流体が前記感温棒の前記筒状空間の下方に落下することを妨げる表面張力による抗力が、前記非圧縮性流体と前記気体状態の冷媒との界面(56)に作用する前記非圧縮性流体の重力よりも大きくなるように構成されていることを特徴とする膨張弁。
  6. さらに、前記非圧縮性流体と前記気体状態の冷媒との界面(56)が形成される部位に前記感温棒の前記筒状空間を横断するように設けられた表面張力増加部材(72)を備えることを特徴とする請求項4または請求項5に記載の膨張弁。
  7. 前記低熱伝導層は、樹脂で形成されていることを特徴とする請求項1から請求項6のいずれか一項に記載の膨張弁。
  8. 前記非圧縮性流体は、PGA系オイル、シリコン系オイル、フッ素系オイルのいずれかであることを特徴とする請求項1から請求項7のいずれか一項に記載の膨張弁。
JP2008307807A 2008-12-02 2008-12-02 膨張弁 Expired - Fee Related JP4678551B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008307807A JP4678551B2 (ja) 2008-12-02 2008-12-02 膨張弁
DE102009056281A DE102009056281A1 (de) 2008-12-02 2009-11-30 Expansionsventil und Verfahren zu dessen Herstellung
US12/592,670 US8851394B2 (en) 2008-12-02 2009-12-01 Expansion valve and method of producing the same
CN2009102523258A CN101749901B (zh) 2008-12-02 2009-12-02 膨胀阀及膨胀阀的制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008307807A JP4678551B2 (ja) 2008-12-02 2008-12-02 膨張弁

Publications (2)

Publication Number Publication Date
JP2010133577A JP2010133577A (ja) 2010-06-17
JP4678551B2 true JP4678551B2 (ja) 2011-04-27

Family

ID=42345036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008307807A Expired - Fee Related JP4678551B2 (ja) 2008-12-02 2008-12-02 膨張弁

Country Status (1)

Country Link
JP (1) JP4678551B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101572574B1 (ko) * 2010-08-12 2015-12-01 한온시스템 주식회사 팽창밸브 및 이를 구비한 차량용 공조장치
JP5724904B2 (ja) 2012-02-20 2015-05-27 株式会社デンソー 膨張弁
JP2013178060A (ja) * 2012-02-29 2013-09-09 Denso Corp 膨張弁
JP6780590B2 (ja) * 2017-03-02 2020-11-04 株式会社デンソー エジェクタモジュール
JP7349706B2 (ja) * 2019-07-04 2023-09-25 株式会社不二工機 パワーエレメント及びこれを用いた膨張弁
JP7429602B2 (ja) 2020-05-21 2024-02-08 株式会社鷺宮製作所 温度式膨張弁及び冷凍サイクルシステム

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010031998A (ja) * 2008-07-30 2010-02-12 Denso Corp 膨張弁
JP2010091161A (ja) * 2008-10-07 2010-04-22 Denso Corp 温度式膨張弁

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010031998A (ja) * 2008-07-30 2010-02-12 Denso Corp 膨張弁
JP2010091161A (ja) * 2008-10-07 2010-04-22 Denso Corp 温度式膨張弁

Also Published As

Publication number Publication date
JP2010133577A (ja) 2010-06-17

Similar Documents

Publication Publication Date Title
JP4678551B2 (ja) 膨張弁
US8851394B2 (en) Expansion valve and method of producing the same
EP1659352A2 (en) Expansion device
JP5071295B2 (ja) 膨張弁
US5361597A (en) Thermostatic expansion valve
JP2008014628A (ja) 温度膨張弁
JPH0571860B2 (ja)
US6540149B1 (en) Thermal expansion valve
EP1179716B1 (en) Thermal expansion valve
JP3995828B2 (ja) 温度膨張弁
JP2008138812A (ja) 差圧弁
JP2002054860A (ja) 温度式膨張弁
KR20050054842A (ko) 팽창밸브
JP2007278616A (ja) 膨張装置
JP2001012824A (ja) 制御弁
JP2007033021A (ja) 温度差圧感知弁
CN204460866U (zh) 双向热力膨胀阀
JP5948096B2 (ja) 膨張弁
CN105823276B (zh) 双向热力膨胀阀
JP4081295B2 (ja) 膨張弁
CN108489161B (zh) 热力膨胀阀
JP2005249273A (ja) 温度式膨張弁
JP2018004234A (ja) 膨張弁
JP2006112749A (ja) 温度式膨張弁
JPH09269163A (ja) 膨張弁

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110119

R151 Written notification of patent or utility model registration

Ref document number: 4678551

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S802 Written request for registration of partial abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311802

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees