JP4675253B2 - Co—Cr—Mo type alloy fine wire and method for producing the same, and planar body, cylindrical body, twisted wire and cable formed by processing this thin wire - Google Patents

Co—Cr—Mo type alloy fine wire and method for producing the same, and planar body, cylindrical body, twisted wire and cable formed by processing this thin wire Download PDF

Info

Publication number
JP4675253B2
JP4675253B2 JP2006032800A JP2006032800A JP4675253B2 JP 4675253 B2 JP4675253 B2 JP 4675253B2 JP 2006032800 A JP2006032800 A JP 2006032800A JP 2006032800 A JP2006032800 A JP 2006032800A JP 4675253 B2 JP4675253 B2 JP 4675253B2
Authority
JP
Japan
Prior art keywords
alloy
less
thin wire
alloy thin
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006032800A
Other languages
Japanese (ja)
Other versions
JP2007211297A (en
Inventor
芳樹 小野
将史 坂本
一人 狩野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NHK Spring Co Ltd
Original Assignee
NHK Spring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NHK Spring Co Ltd filed Critical NHK Spring Co Ltd
Priority to JP2006032800A priority Critical patent/JP4675253B2/en
Publication of JP2007211297A publication Critical patent/JP2007211297A/en
Application granted granted Critical
Publication of JP4675253B2 publication Critical patent/JP4675253B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、人工骨材の補綴材料、多孔質人工骨材、医療外科用多孔質埋め込み部品、骨接合用または固定用のワイヤおよびケーブル、細線を織り加工または編み加工した骨接合および固定用のバンド、血管内ステント用ワイヤメッシュおよびガイドワイヤ、ならびに血管塞栓用ワイヤ等の、医療用インプラントデバイスに適用されるCo−Cr−Mo系合金細線およびその製造方法、ならびにこの細線を加工した面状体等に係り、特に、生体適合性、耐食性、耐摩耗性、加工性、柔軟性、およびMRI診断対応性に優れたCo−Cr−Mo系合金細線およびその製造方法に関する。   The present invention relates to an artificial bone prosthetic material, a porous artificial bone material, a porous implant part for medical surgery, a wire and cable for osteosynthesis or fixation, and an osteosynthesis and fixation technique in which fine wires are woven or knitted. Co-Cr-Mo alloy thin wire applied to medical implant devices, such as a band, a wire mesh and guide wire for an intravascular stent, and a vascular embolization wire, and a method for producing the same, and a planar body obtained by processing the thin wire In particular, the present invention relates to a Co—Cr—Mo alloy fine wire excellent in biocompatibility, corrosion resistance, wear resistance, workability, flexibility, and MRI diagnostic compatibility, and a method for manufacturing the same.

Co−Cr−Mo系合金は、生体適合性、耐食性、耐摩耗性に優れる合金として従来より用いられているが、その応用範囲は、塑性加工が容易でないため、鋳造材や鍛造材として比較的大きな寸法のものに形成された剛体製品に限られていた。一方、そのような合金の生体適合性に優れた特長から、上記したような技術分野でのニーズが高く、生体構成部材の力学特性に適当な強度、耐摩耗性、及び生体構成部材の形状にフィットする柔軟性を有した上記合金系の細線からなる加工品が望まれていた。 Co-Cr-Mo-based alloy, biocompatible, corrosion resistance, have been used conventionally as an alloy having excellent wear resistance, range of applications, since plastic working is not easy, relatively as cast material and forging It was limited to rigid products formed in large dimensions. On the other hand, due to the excellent biocompatibility of such an alloy, there is a high need in the technical field as described above, and the strength, wear resistance, and shape of the biological component are appropriate for the mechanical properties of the biological component. There has been a demand for a processed product made of the above alloy-based fine wire having flexibility to fit.

上記のような特長に加え、骨との結合力増大の為に骨組織が成長して進入し易い気孔径(200μm前後)を有する多孔質体が望まれているが、上記合金系を粒子化したものを基本単位として焼結等により目的の気孔(相当)径を有する多孔質体を構成しようとすると、粒子間が点接触で接合されるために充分な接合強度が得られず、そのような多孔質体では生体に適当な強度や耐摩耗性、柔軟性等と、目的とする気孔(相当)径との両立が困難であった。このため、合金細線を基本素材とする三次元的網目構造の多孔質体が強く望まれていた。   In addition to the features described above, a porous material having a pore diameter (around 200 μm) that allows bone tissue to grow and enter to increase the bond strength with bone is desired. If a porous body having a target pore (equivalent) diameter is formed by sintering or the like using the above as a basic unit, the particles are bonded by point contact, so that sufficient bonding strength cannot be obtained. With such a porous body, it is difficult to achieve both the strength, wear resistance, flexibility and the like suitable for the living body and the intended pore (equivalent) diameter. For this reason, a porous body having a three-dimensional network structure using a fine alloy wire as a basic material has been strongly desired.

そのような多孔質体を構成し得る合金細線の直径は、多孔質体の気孔率と力学特性及び目的とする気孔(相当)径の関係を考慮すると、直径φ200μm前後の合金細線が適当と考えられる。一方、合金細線よりも製造が可能なものとしては箔帯がある。箔帯は、例えば合金溶湯を冷却用ロール側面に接触させて急冷凝固させるロール法等により製造することができ、円形断面の細線作成に比べれば製造が容易である。しかしながら、箔帯では、生体内の複雑な形状にフィットせず、軸断面の円形度(短径/長径)の高い細線を織り加工または編み加工した柔軟性に富んだ帯の提供が望まれていた。   Considering the relationship between the porosity and mechanical properties of the porous body and the target pore (equivalent) diameter, the diameter of the alloy thin wire that can constitute such a porous body is considered to be an alloy thin wire with a diameter of around 200 μm. It is done. On the other hand, one that can be manufactured more than an alloy thin wire is a foil strip. The foil strip can be manufactured, for example, by a roll method in which a molten alloy is brought into contact with the side surface of the cooling roll and rapidly solidified, and is easier to manufacture than a thin wire having a circular cross section. However, for foil strips, it is desired to provide a flexible strip that does not fit in a complex shape in a living body and that weaves or knits fine wires with a high degree of circularity (minor axis / major axis) of the shaft section. It was.

一方、医療画像診断分野では人体の被爆問題からX線画像に代わる磁気共鳴画像(以下MRI)診断が急増しているが、磁化率の高い合金が上記部材として生体内に埋め込まれた患者がMRI装置内におかれた場合、その部材が発生する磁束が影響して部材周辺の画像が歪んだり画像に抜けが生じるといった問題が生じ、画像診断に障害が出ていた。Co−Cr−Mo系合金は生体適合性、耐食性、耐摩耗性に優れる合金として従来より使用実績のある素材であり、今後もさらなる開発により耐食性、耐摩耗性の向上が期待され、上記技術分野で欠かせない合金系である。しかしながら、現在のASTM規格組成材は磁化率が高く、MRI診断にとっては不都合な状況にある。   On the other hand, in the field of medical imaging diagnosis, magnetic resonance imaging (hereinafter referred to as MRI) diagnosis instead of X-ray imaging has rapidly increased due to the problem of exposure to the human body. When placed in the apparatus, the magnetic flux generated by the member has an effect, causing a problem that the image around the member is distorted or the image is missing, and the image diagnosis is hindered. Co-Cr-Mo alloy is a material that has been used for a long time as an alloy with excellent biocompatibility, corrosion resistance, and wear resistance, and is expected to improve corrosion resistance and wear resistance through further development. It is an indispensable alloy system. However, current ASTM standard composition materials have a high magnetic susceptibility and are inconvenient for MRI diagnosis.

Mo濃度を増加させる且つ組織を均一化させることにより、Co−Cr−Mo系合金の耐食性と耐摩耗性を大幅に向上させることができる。しかしながら、Moの含有量の増加とともに硬くて脆いMo高濃度相が第二相として偏析し、加工応力の急増や第二相で割れる等、塑性加工性が大きく低下する問題があった。   By increasing the Mo concentration and making the structure uniform, the corrosion resistance and wear resistance of the Co—Cr—Mo alloy can be greatly improved. However, as the Mo content increases, the hard and brittle Mo high-concentration phase segregates as the second phase, and there is a problem that the plastic workability is greatly deteriorated, such as rapid increase in processing stress and cracking by the second phase.

これに対して、特許文献1では、Cr:26〜30質量%、Mo:6〜12質量%、C:0〜0.3質量%、残部:Coからなる合金の溶湯を水冷銅鋳型で急冷鋳造し、この鋳造材料を熱間鍛造によって平均結晶粒径50μm以下の粒内に第二相を微細に分散した組織に調整することにより、塑性加工性を改善している。しかしながら、その材料組成はASTM規格組成を包含した周辺組成であるため、従来通り磁化率が高いものとなり、MRIの画像の歪みや抜けが診断上許容できるものではなかった。また塑性加工性を改善されたとはいえ、寸法の大きな(cmサイズの)製品への適用は可能であっても、上記のような塑性加工法で直径300μm以下の円形度の高い細線を得るには膨大な工程数が必要とされるのは明白であった。   In contrast, in Patent Document 1, Cr: 26 to 30% by mass, Mo: 6 to 12% by mass, C: 0 to 0.3% by mass, and the balance: a molten alloy made of Co is quenched with a water-cooled copper mold. The plastic workability is improved by casting and adjusting the cast material to a structure in which the second phase is finely dispersed in grains having an average crystal grain size of 50 μm or less by hot forging. However, since the material composition is a peripheral composition including the ASTM standard composition, the magnetic susceptibility is high as before, and distortion and omission of the MRI image are not acceptable for diagnosis. Even though the plastic workability has been improved, it is possible to obtain a thin wire with a high circularity of 300 μm or less in diameter by the plastic working method as described above even though it can be applied to a product having a large size (cm size). It was clear that a huge number of processes were required.

さらに、特許文献2には、Co−Cr−Mo−Ni合金細線が開示されている。しかしながら、このCo−Cr−Mo系合金細線もASTM規格組成を包含した周辺組成であるだけでなく、伸線加工などの塑性加工性を発現させるために強磁性のNiも意識的に成分として含めた素材であるため、従来通り磁化率が高いものとなり、MRIの画像の歪みや抜けが診断上許容できるものではないばかりでなく、Niの生体アレルギーという問題も招来していた。   Furthermore, Patent Document 2 discloses a Co—Cr—Mo—Ni alloy fine wire. However, this Co—Cr—Mo alloy thin wire is not only a peripheral composition including the ASTM standard composition, but also ferromagnetic Ni is intentionally included as a component in order to develop plastic workability such as wire drawing. Therefore, the magnetic susceptibility is high and the MRI image distortion and omission are not acceptable in diagnosis, and there has also been a problem of Ni bioallergy.

特開2002−363675号公報(要約書)JP 2002-363675 A (Abstract) 特開平10−43314号公報(要約書)JP 10-43314 A (abstract)

本発明は、上記種々の要請に鑑みてなされたものであり、Co−Cr−Mo系合金細線の本来的な特徴である優れた生体適合性を確保することを前提に、特に、優れた耐食性、耐摩耗性、加工性およびMRI診断対応性を発揮するとともに、生体構成部材の形状にフィットすべく優れた柔軟性を発揮するCo−Cr−Mo系合金細線およびその製造方法、ならびにこの細線を加工した面状体等を提供することを目的としている。   The present invention has been made in view of the various demands described above, and is particularly excellent in corrosion resistance on the premise of ensuring excellent biocompatibility, which is an inherent characteristic of Co—Cr—Mo alloy fine wires. Co-Cr-Mo alloy thin wire that exhibits wear resistance, workability and MRI diagnostic compatibility, and also exhibits excellent flexibility to fit the shape of a biological component, a method for manufacturing the same, and the thin wire It aims at providing the processed planar body etc.

本発明のCo−Cr−Mo系合金細線は、質量%で、Co:63%以上68%未満、Cr:15%以上26%未満、Mo:10%以上19%未満、残部:不可避的不純物からなる組成を有するとともに、CrとMoの含有量の和が32〜37%であり、直径が300μm以下で軸断面の円形度が0.7以上で、室温での質量磁化率が7.0(単位;4π・10−9/kg)以下であることを特徴としている。ただし、質量磁化率は振動試料型磁力計により測定した値であり括弧内はその単位である。 The Co—Cr—Mo alloy fine wire of the present invention is, in mass%, Co: 63% or more and less than 68%, Cr: 15% or more and less than 26%, Mo: 10% or more and less than 19%, and the balance: unavoidable impurities. The sum of the Cr and Mo contents is 32 to 37%, the diameter is 300 μm or less, the circularity of the axial section is 0.7 or more, and the mass magnetic susceptibility at room temperature is 7.0 ( Unit: 4π · 10 −9 m 3 / kg) or less. However, the mass susceptibility is a value measured by a vibrating sample magnetometer, and the unit in parentheses is the unit.

以下、本発明の作用を上記した数値限定の根拠とともに説明する。
1.質量磁化率
発明者等は、従来よりMRI診断に対応困難であったASTM規格Co−Cr−Mo系合金の質量磁化率を調べたところ、室温での質量磁化率が8.0(単位;4π・10−9/kg)以下のものはなかった。そこで、本発明者等は、MRI診断に悪影響を与えないCo−Cr−Mo系合金の質量磁化率を調査した結果、その質量磁化率は7.0以下であることが判明した。
The operation of the present invention will be described below together with the grounds for limiting the numerical values described above.
1. Mass magnetic susceptibility The inventors investigated the mass magnetic susceptibility of an ASTM standard Co—Cr—Mo alloy that has been difficult to cope with MRI diagnosis conventionally, and found that the mass magnetic susceptibility at room temperature was 8.0 (unit: 4π).・ There was nothing less than 10 -9 m 3 / kg). Therefore, the present inventors investigated the mass magnetic susceptibility of a Co—Cr—Mo alloy that does not adversely affect the MRI diagnosis, and as a result, the mass magnetic susceptibility was found to be 7.0 or less.

次に、発明者等は、Co−Cr−Mo系合金の組成の検討を行った。磁気の発生は、原子単体のもつ磁気モーメント以外に、物質を構成している結晶のような構造体においては隣接原子の相互作用が大きく関わる。したがって、結晶構造が同じ、つまり隣接原子の位置関係が同じ場合は、Co−Cr−Mo系合金を構成する元素中で原子の磁気モーメントの最も大きい(つまり原子磁化率も最も大きい)Coを極力少なくすることがCo−Cr−Mo系合金の質量磁化率の低減に作用するものと考えられる。そこで、本発明者等は、Coの含有量を低下させ、Cr、Moの含有量を増やした種々の試料により検討を行った。その結果、Co配合濃度の低下とともに質量磁化率も低下し、上記した理論を裏付ける結果を得た。   Next, the inventors examined the composition of the Co—Cr—Mo alloy. In addition to the magnetic moment of a single atom, the generation of magnetism is greatly related to the interaction of adjacent atoms in a structure such as a crystal constituting a substance. Therefore, when the crystal structure is the same, that is, when the positional relationship between adjacent atoms is the same, Co having the largest atomic magnetic moment (that is, the largest atomic susceptibility) is selected as much as possible among the elements constituting the Co—Cr—Mo alloy. It is thought that reducing it acts to reduce the mass magnetic susceptibility of the Co—Cr—Mo alloy. Therefore, the present inventors have studied with various samples in which the Co content is reduced and the Cr and Mo contents are increased. As a result, the mass magnetic susceptibility decreased as the Co blending concentration decreased, and the results supporting the above theory were obtained.

しかしながら、Cr、Moの含有量がある値以上になると、質量磁化率が再び上昇することが判明した。これについては、鋳造材、鋳造材に塑性加工を施した加工材、加工材に熱処理を施した熱処理材ともに、同様な傾向を示した。なお、それらの材料の質量磁化率の絶対値はそれぞれ異なり、鋳造材の方が大きいことが判った。このように質量磁化率が再度増大する理由は定かではないが、顕微鏡観察やX線回折、X線マイクロアナライザ、後方散乱電子線回折による解析の結果、いずれも内部組織において、fccまたはhcp構造の母相に対し、Mo高濃度領域が増えており、さらにその領域ではfcc、hcpの他に、複雑な結晶構造をもつ相(同定されていないがCoCr化合物構造のσ相、CoCrMo化合物構造のR相、CoMo化合物構造のμ相などが考えられる)を含んでいることが明らかとなった。 However, it has been found that when the Cr and Mo contents exceed a certain value, the mass magnetic susceptibility rises again. About this, the same tendency was shown with the cast material, the processing material which gave the cast material plastic processing, and the heat processing material which heat-processed the processing material. In addition, it turned out that the absolute value of the mass magnetic susceptibility of those materials differs, respectively, and the casting material is larger. The reason why the mass magnetic susceptibility increases again is not clear, but as a result of microscopic observation, analysis by X-ray diffraction, X-ray microanalyzer, and backscattered electron diffraction, all of the fcc or hcp structure in the internal tissue Compared with the parent phase, the Mo high-concentration region has increased, and in that region, in addition to fcc and hcp, a phase having a complex crystal structure (unidentified σ phase of CoCr compound structure, Co 5 Cr 2 Mo It was revealed that the R phase of a three- compound structure, the μ phase of a Co 7 Mo 6 compound structure, and the like are conceivable.

以上の結果から、Cr、Moの含有量がある値以上になると、質量磁化率が再び上昇する原因としては、第1に、Moの高濃度領域が増えたために母相のMo濃度が減少し、母相において構成元素中最も質量磁化率の高いCoの濃度が高くなったためと考えられる。第2に、Moの高濃度領域内に存在する結晶構造が複雑な相の質量磁化率が高いためと考えられる。もちろん、第1および第2の原因の相乗効果も考えられる。以上を踏まえた本発明の合金細線の組成の限定理由は以下のとおりである。なお、以下の説明において質量磁化率の単位は「4π・10−9/kg」であり、「%」は「質量%」を意味する。 From the above results, when the Cr and Mo contents exceed a certain value, the reason why the mass magnetic susceptibility increases again is as follows. First, the Mo concentration in the parent phase decreases because the high concentration region of Mo increases. This is considered to be because the concentration of Co having the highest mass magnetic susceptibility among the constituent elements in the parent phase has increased. Second, it is considered that the mass magnetic susceptibility of the phase having a complicated crystal structure existing in the high concentration region of Mo is high. Of course, a synergistic effect of the first and second causes is also conceivable. Based on the above, the reasons for limiting the composition of the fine alloy wire of the present invention are as follows. In the following description, the unit of mass magnetic susceptibility is “4π · 10 −9 m 3 / kg”, and “%” means “mass%”.

2.Co:63%以上68%未満
Coの含有量が63%未満では、fccまたはhcp構造以外の例えばσ相、R相、μ相など複雑な結晶構造を持つ相が増大し、質量磁化率が高くなる。または、Moの高濃度領域が増えるために母相のMo濃度が減少し、母相におけるCoの濃度が高くなって質量磁化率が高くなる。一方、Coは、構成元素中最も質量磁化率が高いため、可能な限り含有量を抑えることが望ましく、質量磁化率を7.0以下とするためには68%未満にする必要がある。よって、Co含有量は63%以上68%未満とした。
2. Co: 63% or more and less than 68% When the Co content is less than 63%, the phase having a complicated crystal structure such as σ phase, R phase, and μ phase other than the fcc or hcp structure increases, and the mass magnetic susceptibility is high. Become. Alternatively, since the high concentration region of Mo increases, the Mo concentration in the parent phase decreases, the Co concentration in the parent phase increases, and the mass magnetic susceptibility increases. On the other hand, since Co has the highest mass magnetic susceptibility among the constituent elements, it is desirable to suppress the content as much as possible. To make the mass magnetic susceptibility 7.0 or less, it is necessary to make it less than 68%. Therefore, the Co content is set to 63% or more and less than 68%.

3.Mo:10%以上19%未満
Moの含有量が10%未満では、母相中のCoの濃度が相対的に増大し、質量磁化率が高くなる。また、Moは合金の硬さを高めて耐摩耗性を向上する特性がある。一方、Moの含有量が19%以上では、例えばσ相、R相、μ相など複雑な結晶構造を持つ相が増大し、質量磁化率が高くなる。または、Moの高濃度領域が増えるために母相のMo濃度が減少し、母相におけるCoの濃度が高くなって質量磁化率が高くなる。よって、Moの含有量はMo:10%以上19%未満とした。
3. Mo: 10% or more and less than 19% When the Mo content is less than 10%, the Co concentration in the parent phase is relatively increased and the mass magnetic susceptibility is increased. Further, Mo has a characteristic of increasing the hardness of the alloy and improving the wear resistance. On the other hand, when the content of Mo is 19% or more, for example, a phase having a complicated crystal structure such as a σ phase, an R phase, and a μ phase increases, and the mass magnetic susceptibility increases. Alternatively, since the high concentration region of Mo increases, the Mo concentration in the parent phase decreases, the Co concentration in the parent phase increases, and the mass magnetic susceptibility increases. Therefore, the Mo content is set to Mo: 10% or more and less than 19%.

4.Cr:15%以上26%未満
Crの含有量が15%未満では、Co−Cr−Mo系合金の耐食性が維持できないとともに母相中のCo濃度が増加して質量磁化率が高くなる。一方、Crの含有量が26%以上では、Moが10%以上のときに上記したσ相が増大或いはMo高濃度域が増大して質量磁化率が高くなる。よって、Crの含有量は15%以上26%未満とした。
4). Cr: 15% or more and less than 26% When the content of Cr is less than 15%, the corrosion resistance of the Co—Cr—Mo alloy cannot be maintained, and the Co concentration in the parent phase increases to increase the mass magnetic susceptibility. On the other hand, when the Cr content is 26% or more, when the Mo content is 10% or more, the above-mentioned σ phase increases or the Mo high concentration region increases and the mass magnetic susceptibility increases. Therefore, the Cr content is set to 15% or more and less than 26%.

5.直径:300μm以下
本発明の合金組成においては、種々の工法により得られた組織が濃度ムラのない組織を有する場合は全体に硬く、濃度ムラによりMo高濃度がある場合はそれが変形し難く割れ易い。したがって、大寸法の本発明に係る組成の素材から塑性加工法により直径φ300μm以下の細線を得るのは困難である。そこで、合金溶湯のジェットを一気に細線形状に急冷凝固可能な後述する回転液中紡糸法やガス中紡糸法を用いて紡糸ノズルの直径をφ300μm以下として紡糸すると、軸断面の円形度が0.7以上あるいは0.8以上のCo−Cr−Mo系金細線を製造できることが判明した。よって、Co−Cr−Mo系合金細線の直径は300μm以下とした。
5. Diameter: 300 μm or less In the alloy composition of the present invention, when the structure obtained by various methods has a structure with no density unevenness, the whole is hard, and when there is a high Mo concentration due to density unevenness, it is difficult to deform and crack. easy. Therefore, it is difficult to obtain a thin wire having a diameter of 300 μm or less from a material having a composition according to the present invention having a large size by a plastic working method. Therefore, when the spinning nozzle diameter is set to φ300 μm or less by using a rotating liquid spinning method or a gas spinning method, which will be described later, which can rapidly cool and solidify a jet of molten alloy into a thin line shape, the circularity of the shaft section becomes 0.7 μm or less. It has been found that a Co—Cr—Mo type gold fine wire of 0.8 or more can be produced. Therefore, the diameter of the Co—Cr—Mo alloy fine wire is set to 300 μm or less.

本発明によれば、Co−Cr−Mo系合金細線の質量磁化率が7.0以下であるため、Co−Cr−Mo系合金細線が発生する磁束による影響が軽減され、これにより周辺の画像が歪んだり画像に抜けが生じるといった問題を解消することができる。また、軸断面の円形度を0.7以上としたことにより、優れた柔軟性を確保することができる。   According to the present invention, since the mass magnetic susceptibility of the Co—Cr—Mo based alloy fine wire is 7.0 or less, the influence of the magnetic flux generated by the Co—Cr—Mo based alloy fine wire is reduced. Can solve problems such as distortion of the image and missing images. Moreover, the outstanding softness | flexibility can be ensured by setting the circularity of the axial cross section to 0.7 or more.

本発明のCo−Cr−Mo系合金細線を製造するには、直径300μm以下の紡糸ノズルからCo−Cr−Mo系合金の溶湯を噴出して溶湯ジェットを形成し、この溶湯ジェットを回転する円筒状ドラムの内周面に沿って形成された冷却液体層中で凝固させることによって直径300μm以下のCo−Cr−Mo系合金細線を製造し、このCo−Cr−Mo系合金細線を1200℃〜1350℃で3時間以上非酸化性雰囲気中にて熱処理することが好適である。なお、この回転液中紡糸法により紡糸を行うには、特公平7−36942号公報に記載されているような公知の装置を用いることができる。   In order to produce the Co—Cr—Mo alloy thin wire of the present invention, a molten jet of Co—Cr—Mo alloy is formed from a spinning nozzle having a diameter of 300 μm or less to form a molten jet, and a cylinder that rotates this molten jet. A Co—Cr—Mo alloy fine wire having a diameter of 300 μm or less is manufactured by solidifying in a cooling liquid layer formed along the inner peripheral surface of the drum, and the Co—Cr—Mo alloy fine wire is produced at 1200 ° C. It is preferable to perform heat treatment at 1350 ° C. for 3 hours or more in a non-oxidizing atmosphere. In order to perform spinning by this spinning solution spinning method, a known apparatus as described in Japanese Patent Publication No. 7-36942 can be used.

ノズル直径をφ300μm以下として紡糸すると軸断面の円形度に優れた細線となるが、濃度むらの大きい樹枝状組織となり、冷却時に導入された歪の影響もあるためか質量磁化率が7.0を上回ることが判明した。そのため、熱処理による均質化を計る事が有効と考えたが、非酸化性雰囲気でないとCr、Moが表面に拡散して酸化物を形成するなどにより、母相中のCo濃度が大きくなって質量磁化率の上昇を伴う。したがって、熱処理は非酸化性雰囲気で行う必要がある。ここで、熱処理条件が1200℃以下で3時間以下の場合には、Moの偏析によって形成されたMo高濃度領域が大きいまま残置され、その長径は15μmを超える。このMo高濃度領域は延性(加工性)を阻害するとともに、その領域が大きければそこに含まれるfccやhcp以外の相が多くなって質量磁化率を高めてしまう。或いは、マトリックスのCo濃度が高く、質量磁化率が高くなる。一方、熱処理温度が1350℃を超えると、Co−Cr−Mo系合金の部分溶解が始まって濃度むらや大きなMo高濃度領域の再析出が起き易く、上記したと同じ問題を招来する。なお、上記の熱処理は、紡糸直後ではなくてもよく、紡糸で得た合金細線を加工して面状体や筒状体等、高次元形状への加工工程中又は加工後のいずれの段階で行っても良い。   Spinning with a nozzle diameter of φ300 μm or less results in a fine line with excellent circularity of the axial cross section, but it becomes a dendritic structure with large concentration unevenness, and the mass magnetic susceptibility is 7.0 because of the influence of strain introduced during cooling. It turned out to be better. Therefore, we thought that it was effective to measure the homogenization by heat treatment. However, in a non-oxidizing atmosphere, Cr and Mo diffused on the surface to form oxides, and the Co concentration in the parent phase increased and the mass increased. Accompanying increase in magnetic susceptibility. Therefore, the heat treatment needs to be performed in a non-oxidizing atmosphere. Here, when the heat treatment condition is 1200 ° C. or less and 3 hours or less, the Mo high concentration region formed by the segregation of Mo is left large, and the major axis exceeds 15 μm. This high concentration region of Mo hinders ductility (workability), and if the region is large, the phase other than fcc and hcp contained therein increases and the mass magnetic susceptibility increases. Alternatively, the Co concentration of the matrix is high and the mass magnetic susceptibility is high. On the other hand, when the heat treatment temperature exceeds 1350 ° C., partial dissolution of the Co—Cr—Mo alloy starts and re-precipitation of concentration unevenness or a large Mo high concentration region easily occurs, resulting in the same problem as described above. Note that the above heat treatment does not have to be performed immediately after spinning, but is performed at any stage during or after the processing of the alloy thin wire obtained by spinning into a high-dimensional shape such as a planar body or a cylindrical body. You can go.

上記Mo高濃度領域は、Co−Cr−Mo系合金細線の100μm四方の任意断面において粒状領域として観察される。上述のように、Co−Cr−Mo系合金細線の延性を向上させるために、粒状領域の長径は15μm以下が望ましく、同じ理由で粒状領域のマトリックスに対する面積率は5%以下であることが望ましい。   The Mo high concentration region is observed as a granular region in an arbitrary cross section of 100 μm square of the Co—Cr—Mo alloy fine wire. As described above, in order to improve the ductility of the Co—Cr—Mo alloy thin wire, the major axis of the granular region is desirably 15 μm or less, and for the same reason, the area ratio of the granular region to the matrix is desirably 5% or less. .

本発明のCo−Cr−Mo系合金細線は、ガス中紡糸法によっても製造することができる。すなわち、本発明のCo−Cr−Mo系合金細線の製造方法では、直径300μm以下の紡糸ノズルからCo−Cr−Mo系合金の溶湯を噴出して溶湯ジェットを形成し、この溶湯ジェットを冷却ガス中で冷却して凝固させることにより直径300μm以下のCo−Cr−Mo系合金細線を製造し、このCo−Cr−Mo系合金細線を1200℃〜1300℃で3時間以上非酸化性雰囲気中にて熱処理する。   The Co—Cr—Mo alloy fine wire of the present invention can also be produced by an in-gas spinning method. That is, in the method for producing a Co—Cr—Mo alloy thin wire according to the present invention, a melt of a Co—Cr—Mo alloy is ejected from a spinning nozzle having a diameter of 300 μm or less to form a melt jet, and the melt jet is used as a cooling gas. A Co—Cr—Mo type alloy thin wire having a diameter of 300 μm or less was produced by cooling and solidifying in this, and this Co—Cr—Mo type alloy fine wire was placed in a non-oxidizing atmosphere at 1200 ° C. to 1300 ° C. for 3 hours or more. Heat treatment.

より具体的には、直径300μm以下の紡糸ノズルからCo−Cr−Mo系合金溶湯を下方に噴出してCo−Cr−Mo系合金の溶湯ジェットを形成する。この溶湯ジェットの落下経路を包囲する形態で配置したガス整流筒の内部に冷却ガスを導入して溶湯ジェットを凝固させる。これにより、細線を製造し、ガス整流筒の排出部から細線を外部に排出する。   More specifically, a Co—Cr—Mo alloy melt is jetted downward from a spinning nozzle having a diameter of 300 μm or less to form a Co—Cr—Mo alloy melt jet. Cooling gas is introduced into the gas rectifying cylinder arranged in a form surrounding the molten metal drop path to solidify the molten jet. Thereby, a thin wire | line is manufactured and a thin wire | line is discharged | emitted outside from the discharge part of a gas rectification | straightening cylinder.

この場合、冷却ガスは、溶湯ジェットの落下方向に対して紡糸ノズル寄りの第1の位置にて整流筒内に導入される不活性ガスからなる第1のガス成分と、第1の位置より下側の第2の位置にて整流筒内に導入される酸化性ガスからなる第2のガス成分とを含有することが望ましい。   In this case, the cooling gas includes a first gas component composed of an inert gas introduced into the rectifying cylinder at a first position near the spinning nozzle with respect to the falling direction of the molten jet, and a lower position than the first position. It is desirable to contain the 2nd gas component which consists of oxidizing gas introduce | transduced in a rectification | straightening cylinder in the 2nd position of the side.

図1は上記のようなガス中紡糸法を行うための紡糸装置を示す図である。図1に示すように、Co−Cr−Mo系合金原料を先端がノズルになっているるつぼ内で加熱溶融し、ノズルから噴出された溶湯ジェットをヘリウムガスおよび酸素ガスにより冷却することにより凝固して細線を製造し、巻取り用ドラムにて巻き取る。   FIG. 1 is a view showing a spinning device for performing the above-described gas-spinning method. As shown in FIG. 1, a Co—Cr—Mo alloy material is heated and melted in a crucible whose tip is a nozzle, and the molten metal jet ejected from the nozzle is solidified by cooling with helium gas and oxygen gas. A thin wire is manufactured and wound up by a winding drum.

1.比較例1
次に、本発明の具体的な実施例により本発明の効果を説明する。
Co−19%Cr−16%Mo合金を原料とし、図1に示す装置において直径220μmの紡糸ノズルを用いてガス中紡糸法による紡糸を行い、平均直径220μmのCo−Cr−Mo系合金細線を得た。得られたCo−Cr−Mo系合金細線の軸断面を図2に示す。軸断面の円形度は0.8以上を満足したが、室温での質量磁化率は9.8(単位;4π・10−9/kg)であった。なお、円形度は任意に選択した短径および長径から算出した値である。図3は、Co−Cr−Mo系合金細線の断面をエッチングして得られた反射電子像であり、図3では、100μm四方内の反射電子像でMo高濃度領域は明るく写り、その母相に対する面積率は20%以上であり、濃度むらの大きい樹枝状組織であった。
1. Comparative Example 1
Next, the effects of the present invention will be described with reference to specific examples of the present invention.
Using a Co-19% Cr-16% Mo alloy as a raw material, spinning is performed by a gas-in-spinning method using a spinning nozzle having a diameter of 220 μm in the apparatus shown in FIG. 1, and a Co—Cr—Mo alloy fine wire having an average diameter of 220 μm is obtained. Obtained. FIG. 2 shows an axial cross section of the obtained Co—Cr—Mo alloy fine wire. The circularity of the axial section satisfied 0.8 or more, but the mass magnetic susceptibility at room temperature was 9.8 (unit: 4π · 10 −9 m 3 / kg). The circularity is a value calculated from an arbitrarily selected minor axis and major axis. FIG. 3 is a reflected electron image obtained by etching a cross section of a Co—Cr—Mo alloy thin wire. In FIG. 3, the Mo high concentration region appears bright in the reflected electron image in a 100 μm square, and its parent phase. The area ratio was 20% or more, and it was a dendritic tissue with large concentration unevenness.

2.実施例1
比較例1で得られたCo−Cr−Mo系合金細線に対して、1200℃のアルゴンガス雰囲気中で3時間熱処理を行った。熱処理後のCo−Cr−Mo系合金細線の内部組織の反射電子像を図4に示す。図4から得られたMo高濃度領域の母相に対する面積率は2%以下に減少し、室温での質量磁化率は5.9(単位;4π・10−9/kg)であった。
2. Example 1
The Co—Cr—Mo alloy thin wire obtained in Comparative Example 1 was heat-treated in an argon gas atmosphere at 1200 ° C. for 3 hours. FIG. 4 shows a backscattered electron image of the internal structure of the Co—Cr—Mo alloy fine wire after the heat treatment. The area ratio of the Mo high concentration region obtained from FIG. 4 with respect to the parent phase decreased to 2% or less, and the mass magnetic susceptibility at room temperature was 5.9 (unit: 4π · 10 −9 m 3 / kg). .

3.比較例2
紡糸ノズルの直径を350μmとした以外は比較例1と同様にしてCo−Cr−Mo系合金細線を得た。得られたCo−Cr−Mo系合金細線は、溶湯ジェットが太いため、円形度は0.6程度以下となった。これは、溶湯ジェット内部の冷却及び凝固が遅れ、溶湯ジェットが外乱の影響を大きく受け変形して固まったためと推察される。
3. Comparative Example 2
A Co—Cr—Mo alloy thin wire was obtained in the same manner as in Comparative Example 1 except that the spinning nozzle diameter was 350 μm. The obtained Co—Cr—Mo alloy fine wire had a circularity of about 0.6 or less because the melt jet was thick. This is presumably because cooling and solidification inside the molten jet were delayed, and the molten jet was greatly affected by the disturbance and deformed and solidified.

4.実施例2
Co−21%Cr−14%Mo合金を原料とし、直径280μmの紡糸ノズルを用いて回転液中紡糸法による紡糸を行い、平均直径280μmのCo−Cr−Mo系合金細線を得た。得られたCo−Cr−Mo系合金細線の軸断面の円形度は0.7以上を満足した。このCo−Cr−Mo系合金細線に対して、1300℃のアルゴンガス雰囲気中で3時間熱処理を行った。熱処理後のCo−Cr−Mo系合金細線の内部組織の反射電子像を図5に示す。図5から得られたMo高濃度領域の母相に対する面積率は3%以下であった。また、室温での質量磁化率は6.2(単位;4π・10−9/kg)であった。
4). Example 2
A Co-21% Cr-14% Mo alloy was used as a raw material, and spinning was performed by a spinning in-rotating method using a spinning nozzle having a diameter of 280 μm to obtain a Co—Cr—Mo alloy fine wire having an average diameter of 280 μm. The circularity of the axial cross section of the obtained Co—Cr—Mo alloy thin wire satisfied 0.7 or more. The Co—Cr—Mo alloy thin wire was heat treated in an argon gas atmosphere at 1300 ° C. for 3 hours. FIG. 5 shows a backscattered electron image of the internal structure of the Co—Cr—Mo alloy fine wire after the heat treatment. The area ratio of the Mo high concentration region obtained from FIG. 5 to the parent phase was 3% or less. Moreover, the mass magnetic susceptibility at room temperature was 6.2 (unit: 4π · 10 −9 m 3 / kg).

5.比較例3
直径340μmの紡糸ノズルを用いた以外は実施例2と同じ条件で紡糸を行ってCo−Cr−Mo系合金細線を得た。このCo−Cr−Mo系合金細線に対して熱処理を行わずに円形度を測定したところ0.5程度以下であった。紡糸ノズルの直径を350μmとした以外は比較例1と同様にしてCo−Cr−Mo系合金細線を得た。得られたCo−Cr−Mo系合金細線は、紡糸ジェットが太いため、円形度は0.6程度以下となった。比較例3においても、溶湯ジェット内部の冷却及び凝固が遅れ、溶湯ジェットが外乱の影響を大きく受け変形して固まったものと推察される。
5. Comparative Example 3
Spinning was performed under the same conditions as in Example 2 except that a spinning nozzle having a diameter of 340 μm was used to obtain a Co—Cr—Mo alloy thin wire. When the degree of circularity of this Co—Cr—Mo alloy fine wire was measured without heat treatment, it was about 0.5 or less. A Co—Cr—Mo alloy thin wire was obtained in the same manner as in Comparative Example 1 except that the spinning nozzle diameter was 350 μm. The obtained Co—Cr—Mo alloy fine wire had a circularity of about 0.6 or less because the spinning jet was thick. Also in Comparative Example 3, it is surmised that cooling and solidification inside the molten jet are delayed, and the molten jet is greatly affected by disturbance and deformed and solidified.

6.比較例4
Co−24%Cr−8%Mo合金を原料とし、図1に示す装置において直径230μmの紡糸ノズルを用いてガス中紡糸法による紡糸を行い、平均直径230μmのCo−Cr−Mo系合金細線を得た。得られたCo−Cr−Mo系合金細線の軸断面の円形度は0.7以上を満足したが、室温での質量磁化率は10.3(単位;4π・10−9/kg)であった。これは、Moの含有量が少ないために、母相のCo濃度が高くなったためと考えられる。
6). Comparative Example 4
A Co-24% Cr-8% Mo alloy is used as a raw material and spinning is performed by a gas-spinning method using a spinning nozzle having a diameter of 230 μm in the apparatus shown in FIG. Obtained. The circularity of the axial cross section of the obtained Co—Cr—Mo alloy fine wire satisfied 0.7 or more, but the mass magnetic susceptibility at room temperature was 10.3 (unit: 4π · 10 −9 m 3 / kg). Met. This is presumably because the Co concentration of the parent phase was increased due to the low Mo content.

7.比較例5
比較例4で得られたCo−Cr−Mo系合金細線に対して、1200℃のアルゴンガス雰囲気中で3時間熱処理を行った。熱処理後のCo−Cr−Mo系合金細線の軸断面の円形度は0.7以上を満足したが、室温での質量磁化率は8.3(単位;4π・10−9/kg)であった。これは、Moの含有量が少ないために、熱処理を行っても母相のCo濃度の高い状態が維持されたためと考えられる。
7). Comparative Example 5
The Co—Cr—Mo alloy thin wire obtained in Comparative Example 4 was heat treated in an argon gas atmosphere at 1200 ° C. for 3 hours. The circularity of the axial cross section of the Co—Cr—Mo alloy thin wire after heat treatment satisfied 0.7 or more, but the mass magnetic susceptibility at room temperature was 8.3 (unit: 4π · 10 −9 m 3 / kg) Met. This is presumably because the Mo content was small and the high Co concentration of the parent phase was maintained even after heat treatment.

8.比較例6
71%Co−19%Cr−Mo合金を原料とし、図1に示す装置において直径175μmの紡糸ノズルを用いてガス中紡糸法による紡糸を行い、平均直径175μmのCo−Cr−Mo系合金細線を得た。得られたCo−Cr−Mo系合金細線に対して、1200℃のアルゴンガス雰囲気中で3時間熱処理を行った。熱処理後のCo−Cr−Mo系合金細線の軸断面の円形度は0.7以上を満足したが、室温での質量磁化率は8.5(単位;4π・10−9/kg)であった。これは、母相のCo濃度が高いために質量磁化率が高くなったものと考えられる。
8). Comparative Example 6
A 71% Co-19% Cr—Mo alloy is used as a raw material, and spinning is performed by a gas-in-spinning method using a spinning nozzle having a diameter of 175 μm in the apparatus shown in FIG. 1, and a Co—Cr—Mo alloy fine wire having an average diameter of 175 μm is obtained. Obtained. The obtained Co—Cr—Mo alloy thin wire was heat-treated in an argon gas atmosphere at 1200 ° C. for 3 hours. The degree of circularity of the axial cross section of the Co—Cr—Mo alloy thin wire after heat treatment satisfied 0.7 or more, but the mass magnetic susceptibility at room temperature was 8.5 (unit: 4π · 10 −9 m 3 / kg). Met. This is presumably because the mass magnetic susceptibility was increased due to the high Co concentration in the parent phase.

9.比較例7
Co−29%Cr−16%Mo合金を原料とし、図1に示す装置において直径155μmの紡糸ノズルを用いてガス中紡糸法による紡糸を行い、平均直径155μmのCo−Cr−Mo系合金細線を得た。得られたCo−Cr−Mo系合金細線に対して、1200℃のアルゴンガス雰囲気中で6時間熱処理を行った。熱処理後のCo−Cr−Mo系合金細線の軸断面の円形度は0.7以上を満足したが、室温での質量磁化率は8.2(単位;4π・10−9/kg)であった。これは、Co−Cr−Mo系合金細線のCrの含有量が、26%を超えているためにσ相が増大して質量磁化率が高くなったものと考えられる。熱処理後のCo−Cr−Mo系合金細線の内部組織の反射電子像を図6に示す。図6から得られたMo高濃度領域の母相に対する面積率は40%以上であった。これは、σ相が増大した結果、それを包含するMo高濃度領域も広がってしまうためと考えられる。なお、Mo高濃度領域の相は、fccとhcpの結晶相と、不明相(σ相、R相、およびμ相が考えられる)であり、比較例7はσ相が主体と考えられる。
9. Comparative Example 7
Using a Co-29% Cr-16% Mo alloy as a raw material, spinning is performed by a gas-in-spinning method using a spinning nozzle having a diameter of 155 μm in the apparatus shown in FIG. 1, and a Co—Cr—Mo alloy fine wire having an average diameter of 155 μm is obtained. Obtained. The obtained Co—Cr—Mo alloy thin wire was heat-treated in an argon gas atmosphere at 1200 ° C. for 6 hours. The circularity of the axial cross section of the Co—Cr—Mo alloy thin wire after heat treatment satisfied 0.7 or more, but the mass magnetic susceptibility at room temperature was 8.2 (unit: 4π · 10 −9 m 3 / kg) Met. This is presumably because the Cr content of the Co—Cr—Mo alloy fine wire exceeds 26%, so that the σ phase is increased and the mass magnetic susceptibility is increased. FIG. 6 shows a reflected electron image of the internal structure of the Co—Cr—Mo alloy fine wire after the heat treatment. The area ratio with respect to the parent phase of the Mo high concentration region obtained from FIG. 6 was 40% or more. This is presumably because, as a result of the increase of the σ phase, the Mo high concentration region including the σ phase also spreads. The phases in the high Mo concentration region are the fcc and hcp crystal phases and the unknown phase (considered σ phase, R phase, and μ phase), and Comparative Example 7 is considered to be mainly σ phase.

10.その他の実施例
本発明で規定する成分のCo−Cr−Mo系合金を原料とし、図1に示す装置においてガス中紡糸法による紡糸を行い、平均直径300μm以下のCo−Cr−Mo系合金細線を得た。得られたCo−Cr−Mo系合金細線に対して1200℃のアルゴンガス雰囲気中で3時間熱処理を行った。熱処理後の室温での質量磁化率(単位;4π・10−9/kg)を図7に示す。図7に示すように、成分が本発明で規定する範囲内の実施例では、室温での質量磁化率(単位;4π・10−9/kg)は全て7.0以下となった。なお、質量磁化率は、図7のCo−Cr−Mo三元系成分チャートに記載した。
10. Other Examples A Co—Cr—Mo alloy thin wire having an average diameter of 300 μm or less is obtained by using the Co—Cr—Mo alloy of the components specified in the present invention as a raw material, spinning in a gas spinning method in the apparatus shown in FIG. Got. The obtained Co—Cr—Mo alloy fine wire was heat-treated in an argon gas atmosphere at 1200 ° C. for 3 hours. FIG. 7 shows the mass magnetic susceptibility (unit: 4π · 10 −9 m 3 / kg) at room temperature after the heat treatment. As shown in FIG. 7, in Examples in which the components are within the range defined by the present invention, the mass magnetic susceptibility (unit: 4π · 10 −9 m 3 / kg) at room temperature was all 7.0 or less. The mass magnetic susceptibility is shown in the Co—Cr—Mo ternary component chart of FIG.

本発明は、生体適合性、耐食性、耐摩耗性、加工性、柔軟性、およびMRI診断対応性に優れているので、人工骨材の補綴材料、多孔質人工骨材、医療外科用多孔質埋め込み部品、骨接合用または固定用のワイヤおよびケーブル、細線を織り加工または編み加工した骨接合および固定用のバンド、血管内ステント用ワイヤメッシュおよびガイドワイヤ、ならびに血管塞栓用ワイヤ等の医療用インプラントデバイスに適用することができる。   Since the present invention is excellent in biocompatibility, corrosion resistance, wear resistance, processability, flexibility, and MRI diagnosis compatibility, the prosthetic material for artificial bone, porous artificial bone, and porous implant for medical surgery Medical implant devices such as parts, osteosynthesis or fixation wires and cables, osteosynthesis and fixation bands woven or knitted with fine wires, intravascular stent wire meshes and guide wires, and vascular embolization wires Can be applied to.

ガス中溶融紡糸法によりCo−Cr−Mo系合金細線を製造する際に使用した装置を示す概略図である。It is the schematic which shows the apparatus used when manufacturing a Co-Cr-Mo type alloy fine wire by the melt spinning method in gas. 比較例1のCo−Cr−Mo系合金細線の軸断面の反射電子像である。3 is a reflected electron image of an axial cross section of a Co—Cr—Mo alloy fine wire of Comparative Example 1. 比較例1のCo−Cr−Mo系合金細線の軸断面の一部の反射電子像である。2 is a reflected electron image of a part of an axial cross section of a Co—Cr—Mo alloy thin wire of Comparative Example 1. FIG. 実施例1のCo−Cr−Mo系合金細線の軸断面の一部の反射電子像である。2 is a reflected electron image of a part of an axial cross section of a Co—Cr—Mo alloy fine wire of Example 1. FIG. 実施例2のCo−Cr−Mo系合金細線の軸断面の一部の反射電子像である。4 is a reflected electron image of a part of an axial cross section of a Co—Cr—Mo based alloy fine wire of Example 2. FIG. 比較例7のCo−Cr−Mo系合金細線の軸断面の一部の反射電子像である。7 is a reflected electron image of a part of an axial cross section of a Co—Cr—Mo alloy thin wire of Comparative Example 7. 本発明の他の実施例における質量磁化率(単位;4π・10−9/kg)を示すCo−Cr−Mo三元系成分チャートである。It is a Co-Cr-Mo ternary system component chart which shows the mass magnetic susceptibility (unit; 4 (pi) * 10 <-9 > m < 3 > / kg) in the other Example of this invention.

Claims (13)

質量%で、Co:63%以上68%未満、Cr:15%以上26%未満、Mo:10%以上19%未満、残部:不可避的不純物からなる組成を有するとともに、CrとMoの含有量の和が32〜37%であり、直径が300μm以下で軸断面の円形度(短径/長径)が0.7以上で、室温での質量磁化率が7.0(単位;4π・10−9/kg)以下であることを特徴とするCo−Cr−Mo系合金細線。 The composition is composed of Co: 63% or more and less than 68%, Cr: 15% or more and less than 26%, Mo: 10% or more and less than 19%, and the balance: unavoidable impurities, and the content of Cr and Mo. The sum is 32 to 37%, the diameter is 300 μm or less, the circularity (minor axis / major axis) of the axial section is 0.7 or more, and the mass magnetic susceptibility at room temperature is 7.0 (unit: 4π · 10 −9). m 3 / kg) or less, a Co—Cr—Mo alloy thin wire. 100μm四方の任意断面における内部組織は、マトリックス中に分散し該マトリックスに比してMo濃度の高い粒状領域を有し、この粒状領域の長径が15μm以下であり、前記粒状領域のマトリックスに対する面積率が5%以下であることを特徴とする請求項1記載のCo−Cr−Mo系合金細線。   The internal structure in an arbitrary cross section of 100 μm square has a granular region dispersed in the matrix and having a Mo concentration higher than that of the matrix. The major axis of the granular region is 15 μm or less, and the area ratio of the granular region to the matrix The Co—Cr—Mo alloy thin wire according to claim 1, wherein the content is 5% or less. 面心立方晶(fcc)および最密充填六方晶(hcp)以外の結晶構造が前記粒状領域に含まれることを特徴とする請求項2記載のCo−Cr−Mo系合金細線。   3. The Co—Cr—Mo alloy thin wire according to claim 2, wherein a crystal structure other than face centered cubic (fcc) and closest packed hexagonal (hcp) is included in the granular region. 軸断面の円形度が0.8以上であることを特徴とする請求項1〜3のいずれかに記載のCo−Cr−Mo系合金細線。   The Co-Cr-Mo type alloy thin wire according to any one of claims 1 to 3, wherein the circularity of the axial section is 0.8 or more. 請求項1〜3のいずれかに記載のCo−Cr−Mo系合金細線の製造方法であって、直径300μm以下の紡糸ノズルからCo−Cr−Mo系合金の溶湯を噴出して合金溶湯ジェットを形成し、この合金溶湯ジェットを回転する円筒状ドラムの内周面に沿って形成された冷却液体層中で凝固させることによって直径300μm以下のCo−Cr−Mo系合金細線を製造し、このCo−Cr−Mo系合金細線を1200℃〜1350℃で3時間以上非酸化性雰囲気中にて熱処理することを特徴とするCo−Cr−Mo系合金細線の製造方法。   A method for producing a Co-Cr-Mo alloy fine wire according to any one of claims 1 to 3, wherein a molten Co-Cr-Mo alloy is ejected from a spinning nozzle having a diameter of 300 µm or less to produce a molten alloy jet. A Co—Cr—Mo alloy thin wire having a diameter of 300 μm or less is manufactured by solidifying the molten alloy jet in a cooling liquid layer formed along the inner peripheral surface of a rotating cylindrical drum. A method for producing a Co—Cr—Mo alloy thin wire, comprising heat-treating a Cr—Mo alloy thin wire at 1200 ° C. to 1350 ° C. in a non-oxidizing atmosphere for 3 hours or more. 請求項1〜4のいずれかに記載のCo−Cr−Mo系合金細線の製造方法であって、直径300μm以下の紡糸ノズルからCo−Cr−Mo系合金の溶湯を噴出して溶湯ジェットを形成し、この溶湯ジェットを冷却ガス中で冷却して凝固させることにより直径300μm以下のCo−Cr−Mo系合金細線を製造し、このCo−Cr−Mo系合金細線を1200℃〜1350℃で3時間以上非酸化性雰囲気中にて熱処理することを特徴とするCo−Cr−Mo系合金細線の製造方法。   The method for producing a Co-Cr-Mo alloy thin wire according to any one of claims 1 to 4, wherein a molten jet of Co-Cr-Mo alloy is ejected from a spinning nozzle having a diameter of 300 µm or less to form a molten jet. Then, the molten jet is cooled in a cooling gas and solidified to produce a Co—Cr—Mo type alloy fine wire having a diameter of 300 μm or less. The Co—Cr—Mo type alloy fine wire is produced at 1200 ° C. to 1350 ° C. at 3 ° C. A method for producing a Co—Cr—Mo alloy thin wire, characterized by heat-treating in a non-oxidizing atmosphere for at least an hour. 請求項1〜4のいずれかに記載のCo−Cr−Mo系合金細線の製造方法であって、直径300μm以下の紡糸ノズルからCo−Cr−Mo系合金の溶湯を下方に噴出して溶湯ジェットを形成し、この溶湯ジェットの落下経路を包囲する形態で配置したガス整流筒の内部に冷却ガスを導入して前記溶湯ジェットを凝固させることにより細線を製造し、ガス整流筒の排出部から前記細線を外部に排出することを特徴とするCo−Cr−Mo系合金細線の製造方法。   A method for producing a Co-Cr-Mo alloy thin wire according to any one of claims 1 to 4, wherein a molten Co-Cr-Mo alloy is jetted downward from a spinning nozzle having a diameter of 300 µm or less. Forming a thin line by introducing a cooling gas into the gas rectifying cylinder arranged in a form surrounding the molten metal falling path and solidifying the molten jet, and from the discharge part of the gas rectifying cylinder A method for producing a Co—Cr—Mo-based alloy fine wire, wherein the fine wire is discharged to the outside. 冷却ガスとして酸素含有ガスを用いることを特徴とする請求項5〜7のいずれかに記載のCo−Cr−Mo系合金細線の製造方法。   8. The method for producing a Co—Cr—Mo alloy thin wire according to claim 5, wherein an oxygen-containing gas is used as the cooling gas. 前記冷却ガスは、溶湯ジェットの落下方向に対して前記紡糸ノズル寄りの第1の位置にて整流筒内に導入される不活性ガスからなる第1のガス成分と、第1の位置より下側の第2の位置にて整流筒内に導入される酸化性ガスからなる第2のガス成分とを含有することを特徴とする請求項7記載のCo−Cr−Mo系合金細線の製造方法。   The cooling gas includes a first gas component composed of an inert gas introduced into the flow straightening cylinder at a first position near the spinning nozzle with respect to a falling direction of the molten jet, and a lower side than the first position. The method for producing a Co—Cr—Mo alloy fine wire according to claim 7, further comprising: a second gas component made of an oxidizing gas introduced into the rectifying cylinder at the second position. 前記第1のガス成分がアルゴンまたはヘリウム、第2のガス成分が酸素または炭酸ガスであることを特徴とする請求項9記載のCo−Cr−Mo系合金細線の製造方法。   10. The method for producing a Co—Cr—Mo alloy thin wire according to claim 9, wherein the first gas component is argon or helium, and the second gas component is oxygen or carbon dioxide. 請求項1〜4のいずれかに記載のCo−Cr−Mo系合金細線を織り加工、編み加工または不織加工してなることを特徴とする面状体。   A planar body obtained by weaving, knitting, or non-woven processing the Co—Cr—Mo alloy thin wire according to claim 1. 請求項1〜4のいずれかに記載のCo−Cr−Mo系合金細線を織り加工、編み加工または不織加工してなることを特徴とする筒状体。   A cylindrical body obtained by weaving, knitting, or non-woven processing the Co—Cr—Mo alloy thin wire according to claim 1. 請求項1〜4のいずれかに記載のCo−Cr−Mo系合金細線を加工してなることを特徴とする縒り線またはケーブル。   A twisted wire or cable obtained by processing the Co-Cr-Mo alloy fine wire according to any one of claims 1 to 4.
JP2006032800A 2006-02-09 2006-02-09 Co—Cr—Mo type alloy fine wire and method for producing the same, and planar body, cylindrical body, twisted wire and cable formed by processing this thin wire Expired - Fee Related JP4675253B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006032800A JP4675253B2 (en) 2006-02-09 2006-02-09 Co—Cr—Mo type alloy fine wire and method for producing the same, and planar body, cylindrical body, twisted wire and cable formed by processing this thin wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006032800A JP4675253B2 (en) 2006-02-09 2006-02-09 Co—Cr—Mo type alloy fine wire and method for producing the same, and planar body, cylindrical body, twisted wire and cable formed by processing this thin wire

Publications (2)

Publication Number Publication Date
JP2007211297A JP2007211297A (en) 2007-08-23
JP4675253B2 true JP4675253B2 (en) 2011-04-20

Family

ID=38489997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006032800A Expired - Fee Related JP4675253B2 (en) 2006-02-09 2006-02-09 Co—Cr—Mo type alloy fine wire and method for producing the same, and planar body, cylindrical body, twisted wire and cable formed by processing this thin wire

Country Status (1)

Country Link
JP (1) JP4675253B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51116109A (en) * 1975-03-18 1976-10-13 Krupp Gmbh Alloy with high anti corrosion property and * or strong mechanical stress* and its use for false teeth and surgical inserts
JP2002363675A (en) * 2001-06-07 2002-12-18 Japan Science & Technology Corp Co BASED ALLOY FOR LIVING BODY AND PRODUCTION METHOD THEREFOR
JP2004315839A (en) * 2003-04-11 2004-11-11 Nhk Spring Co Ltd Co-Cr-Mo-BASED FINE WIRE, MANUFACTURING METHOD THEREFOR, AND SHEET-SHAPED BODY, TUBE-SHAPED BODY, STRANDED WIRE AND CABLE FORMED OF THE FINE FIRE
JP2005163083A (en) * 2003-12-01 2005-06-23 Nhk Spring Co Ltd Co-Cr-Mo-BASED THIN WIRE, MANUFACTURING METHOD THEREFOR, AND PLANAR BODY, TUBULAR BODY, STRANDED WIRE AND CABLE MADE BY WORKING THE THIN WIRE
JP2006006926A (en) * 2004-06-09 2006-01-12 Cordis Corp Biocompatible metal bearing structure made of solid solution alloy
JP2006233274A (en) * 2005-02-24 2006-09-07 Nhk Spring Co Ltd Co-Cr-Mo ALLOY AND ITS MANUFACTURING METHOD
JP2006265633A (en) * 2005-03-24 2006-10-05 Iwate Univ Co-Cr-Mo ALLOY FOR LIVING BODY FOR DEALING WITH MRI, AND ITS PRODUCTION METHOD

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51116109A (en) * 1975-03-18 1976-10-13 Krupp Gmbh Alloy with high anti corrosion property and * or strong mechanical stress* and its use for false teeth and surgical inserts
JP2002363675A (en) * 2001-06-07 2002-12-18 Japan Science & Technology Corp Co BASED ALLOY FOR LIVING BODY AND PRODUCTION METHOD THEREFOR
JP2004315839A (en) * 2003-04-11 2004-11-11 Nhk Spring Co Ltd Co-Cr-Mo-BASED FINE WIRE, MANUFACTURING METHOD THEREFOR, AND SHEET-SHAPED BODY, TUBE-SHAPED BODY, STRANDED WIRE AND CABLE FORMED OF THE FINE FIRE
JP2005163083A (en) * 2003-12-01 2005-06-23 Nhk Spring Co Ltd Co-Cr-Mo-BASED THIN WIRE, MANUFACTURING METHOD THEREFOR, AND PLANAR BODY, TUBULAR BODY, STRANDED WIRE AND CABLE MADE BY WORKING THE THIN WIRE
JP2006006926A (en) * 2004-06-09 2006-01-12 Cordis Corp Biocompatible metal bearing structure made of solid solution alloy
JP2006233274A (en) * 2005-02-24 2006-09-07 Nhk Spring Co Ltd Co-Cr-Mo ALLOY AND ITS MANUFACTURING METHOD
JP2006265633A (en) * 2005-03-24 2006-10-05 Iwate Univ Co-Cr-Mo ALLOY FOR LIVING BODY FOR DEALING WITH MRI, AND ITS PRODUCTION METHOD

Also Published As

Publication number Publication date
JP2007211297A (en) 2007-08-23

Similar Documents

Publication Publication Date Title
JP6493561B2 (en) High entropy alloy member, method for producing the alloy member, and product using the alloy member
JP6050117B2 (en) Nickel-titanium-rare earth alloy and alloy processing method
JP5476696B2 (en) Biomaterials and medical equipment
TWI526550B (en) Medical alloy and method for producing the same
WO2017154717A1 (en) Embolization coil and method for manufacturing embolization coil
EP3295969A1 (en) Radiopaque composite wire for medical applications and method of making a radiopaque composite wire
JP7041778B1 (en) Titanium alloy manufacturing method
Sun et al. Influence of annealing treatment on the microstructure, mechanical performance and magnetic susceptibility of low magnetic Zr–1Mo parts manufactured via laser additive manufacturing
Torun et al. Microstructure and mechanical properties of MRI-compatible Zr-9Nb-3Sn alloy fabricated by a laser powder bed fusion process
JP4675253B2 (en) Co—Cr—Mo type alloy fine wire and method for producing the same, and planar body, cylindrical body, twisted wire and cable formed by processing this thin wire
CN111032891B (en) Artifact-free superelastic alloy
JP3939674B2 (en) Co-Cr-Mo type fine wire and medical implant device obtained by processing this fine wire
CN114207165B (en) Medical Au-Pt-Pd alloy
JP4067484B2 (en) Co-Cr-Mo type fine wire and method for producing the same, and planar body, cylindrical body, twisted wire and cable formed by processing the fine wire
JP6789528B1 (en) Medical Au-Pt-Pd alloy
CN114277283B (en) Omega-rich medical zirconium-based alloy and preparation method thereof
CN113481409B (en) Biomedical zirconium-based nickel-free low-magnetization-rate shape memory alloy, preparation method thereof and biomedical material
CN111801432B (en) Shape memory alloy and shape memory alloy wire rod
US7857916B2 (en) Co-Cr-Mo alloy fine wire, manufacturing method therefor, and planar body, tubular body, stranded wire and cable formed of wire
JP2021195565A (en) Zirconium alloy
Koike et al. Properties characterization of cast Ti-Al-Cu alloys for dental applications

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4675253

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees