JP3939674B2 - Co-Cr-Mo type fine wire and medical implant device obtained by processing this fine wire - Google Patents

Co-Cr-Mo type fine wire and medical implant device obtained by processing this fine wire Download PDF

Info

Publication number
JP3939674B2
JP3939674B2 JP2003107307A JP2003107307A JP3939674B2 JP 3939674 B2 JP3939674 B2 JP 3939674B2 JP 2003107307 A JP2003107307 A JP 2003107307A JP 2003107307 A JP2003107307 A JP 2003107307A JP 3939674 B2 JP3939674 B2 JP 3939674B2
Authority
JP
Japan
Prior art keywords
concentration
fine wire
mass
phase
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003107307A
Other languages
Japanese (ja)
Other versions
JP2004315839A (en
Inventor
晶彦 千葉
芳樹 小野
繁美 佐藤
倫彦 綾田
健 鈴木
盛通 甲斐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NHK Spring Co Ltd
Original Assignee
NHK Spring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NHK Spring Co Ltd filed Critical NHK Spring Co Ltd
Priority to JP2003107307A priority Critical patent/JP3939674B2/en
Priority to US10/821,170 priority patent/US7857916B2/en
Priority to DE602004014057T priority patent/DE602004014057D1/en
Priority to EP04008755A priority patent/EP1466991B1/en
Publication of JP2004315839A publication Critical patent/JP2004315839A/en
Application granted granted Critical
Publication of JP3939674B2 publication Critical patent/JP3939674B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、人工骨材の補綴材料、多孔質人工骨材、医療外科用多孔質埋め込み部品、骨接合用または固定用のワイヤおよびケーブル、細線を織り加工または編み加工した骨接合および固定用のバンド、血管内ステント用ワイヤメッシュおよびガイドワイヤ、ならびに血管塞栓用ワイヤ等の、医療用インプラントデバイスに適用されるCo−Cr−Mo系細線およびその製造方法、ならびにこの細線を加工した面状体等に係り、とくに、生体適合性、耐食性、耐摩耗性、加工性および柔軟性に優れたCo−Cr−Mo系細線の製造技術に関する。
【0002】
【従来の技術】
従来、Co−Cr−Mo系合金は、生体適合性に優れる合金として知られていたが、塑性加工が容易でないことから、その鋳造材や鍛造材は、比較的大きな寸法に形成された剛体製品に限られ、生体構成部材に好適な細線を製造することは困難であった。また、本合金は、生体適合性に優れることから、その適用分野が広く、とくに医療分野におけるニーズが高かった。このため、生体構成部材の力学特性に適合する強度、耐摩耗性および耐ねじり特性と、生体構成部材の形状にフィットする柔軟性とを有する本合金からなる細線の開発が要請されていた。
【0003】
このような要請に対し、本合金にNiを添加することにより塑性加工を可能とした技術が開示されている(特許文献1参照)。具体的には、5質量%未満のNiを含有するCo−Cr−Moからなる長尺部材を製造することで、移植可能な医療用装置を提供することができるとされている。しかしながら、Niは生体アレルギー性の問題があるため、医療分野に使用される細線についてはNiを含有しないことが望ましい。なお、特許文献1に記載された技術によれば、Niを含有しない細線も包含されるが、発明の詳細な説明中の実施態様にはNiを含むもののみが開示されており、Niを含有しない細線が加工可能であるか否かは定かではない。
【0004】
また、本合金において、Mo濃度の増大と組織の均一化とを図った場合には、耐食性はもとより耐摩耗性が飛躍的に向上するが、通常の鋳造材はMo濃度の増大とともに硬くしかも脆いMo高濃度相が偏析する。このため、塑性加工時に偏析相において加工応力が急増し、場合によっては偏析相または偏析相と母相との界面にて割れが発生する等、塑性加工が困難となる問題があった。
【0005】
この解決策として、Co−(26〜30)質量%Cr−(6〜12)質量%Mo−(0〜0.3)質量%Cの合金溶湯を水冷銅鋳型で急冷鋳造した材料を、熱間鍛造法により平均結晶粒径50μm以下の粒内にMo濃度の高い析出物や金属間化合物等の第二相を微細に分散させた組織に調整することにより塑性加工性を改善した技術が開示されている(特許文献2参照)。しかしながら、特許文献2に記載された合金から塑性加工法により直径200μm以下の細線を得ようとすると、高濃度Moの第二相が粒状に微細に分散したといえども変形し難く、第二が母相(第一相)内で移動するのみで母相内を傷つけ、母相内部に孔や亀裂を生ずるおそれがあった。よって、この問題が生じないように合金を細線形状に仕上げるには、特許文献2に記載された組織制御条件の下に、塑性加工を徐々に繰り返すことが必要であった。このため、工程数が大幅に増大し、製造コストが割高になるという問題が生じていた。
【0006】
さらに、従来技術においては、特許文献1の請求項13およびその実施態様の記載から明らかなように、8質量%以上のMoを含有した細線の製造例は開示されておらず、このため、Niを含有せず、しかも8質量%以上のMoを含有した耐食性、耐摩耗性および柔軟性に優れた細線の開発が要請されていた。
【0007】
一方、特許文献2に記載された製造方法のような鍛造を繰り返す方法では、円形断面の細線を製造するのは容易でなく、むしろ箔帯を製造する場合ならば未だ可能性がある。また溶湯を冷却用ロール側面に当てて急冷凝固手段を用いるロール法によって箔帯を製造することも可能である。しかしながら、この箔帯は生体内の複雑な形状にフィットする程の柔軟性に乏しいため、柔軟性を向上させるべく、横断面の円形度(短径/長径)の高い細線を織り加工または編み加工してなる帯の開発も要請されていた。
【0008】
【特許文献1】
特開平10−43314号公報
【特許文献2】
特開2002−363675号公報
【特許文献3】
特公平7−36942号公報
【特許文献4】
特願2000−216090号公報
【0009】
【発明が解決しようとする課題】
本発明は、上記種々の要請に鑑みてなされたものであり、Co−Cr−Mo系細線の本来的な特徴である優れた生体適合性を確保することを前提に、とくに、優れた耐食性、耐摩耗性および加工性を発揮するとともに、生体構成部材の形状にフィットすべく優れた柔軟性を発揮するCo−Cr−Mo系細線およびこの細線を加工した医療用インプラントデバイスを提供することを目的としている。
【0010】
【課題を解決するための手段】
本発明者らは、従来難加工材とされてきたCo−Cr−Mo系合金から直接細線を形成する公知な方法として各種の溶融紡糸法を検討した。その結果、本合金系においては、横断面の円形度(短径/長径)の高い細線を得る方法として、例えば特許文献3に記載された回転液中紡糸法や特許文献4に記載されたガス中溶融紡糸法を利用することが好適であることが判明した。具体的には、横断面の円形度が0.6以上の円形断面を有する細線の製造には、回転液中紡糸法を採用し、細線直径をノズル径により制御して直径200μm以下の細線を得る方法が好適であるとの知見を得た。また、横断面の円形度が0.7以上の円形断面を有する細線の製造には、ガス中溶融紡糸法を採用し、細線直径をノズル径により制御して直径200μm以下の細線を得る方法が好適であるとの知見を得た。
【0011】
また、上記二つの製造方法をとくに条件を付さずに用いただけでは、細線形状は得られるものの、細線の太さがある一定値を超える場合には、90度以上の曲げ変形等で細線が折れ易く、細線の中には延性に乏しいものが存在することが判明した。この原因を検討した結果、細線が太いほど内部組織においてMo濃度の低い相と高い相とが顕著に存在し、これが延性に乏しい原因であることが判明した。そこで、Mo濃度を均一化すること、すなわちMo濃度の低い相に対するMo濃度の高い相の濃度比率の適正化を図ることで、延性、ひいては加工性に富んだ細線が得られるとの知見を得た。
【0012】
ここで、直径200μmを超える細線が折れやすい理由は、200μmを超えるノズル径での紡糸手段では、合金溶湯ジェットの表面と内部との冷却速度差が大きいことから、円形度の低下に起因する柔軟性の劣化およびMo濃度の不均一化による延性の劣化が生じ易く、このため、とくに90度以上の曲げが困難となったと考えられる。また、凝固前の合金溶湯ジェットの直径が200μm以下の場合には、合金溶湯ジェットの円形度が高いほど合金溶湯ジェット側面からの冷却が円周方向において均一になされるとともに、Mo濃度の均一化にも寄与しているものと考えられる。
【0013】
さらに、Moの配合濃度は耐食性および耐摩耗性を確保する上で8質量%以上必要であるが、16質量%を超えると、直径200μm以下の細線であっても、90度以上の曲げ変形が困難で延性に乏しいことが判明した。また、Crの配合濃度は耐食性を確保する上で26質量%以上必要であるが、31質量%を超えると、Mo配合濃度を8質量%以上とした場合には、90度以上の曲げ変形が困難で延性に乏しい細線となることが判明した。なお、耐摩耗性や細線の後加工性に鑑みれば、Cは0.3質量%前後添加してもよいことも判明した。
【0014】
本発明のCo−Cr−Mo系細線は、以上に示した種々の知見に基づいてなされたものであり、Cr:26〜31質量%、Mo:8〜16質量%、残部がCoおよび不可避不純物からなる直径200μm以下の細線であって、横断面の円形度(短径/長径)が0.6以上であり、Mo濃度の低い相に対するMo濃度の高い相の濃度比率が1.8以下の均一な組織を有することを特徴としている。なお、ここにいうMo濃度とは、加速電圧20kVでの電子線照射下のX線マイクロアナライザにより測定した値である。
【0015】
このように、本発明のCo−Cr−Mo系細線では、その本来的な特徴である優れた生体適合性を確保した上で、Mo量の適正化を図ることにより、優れた耐食性、耐摩耗性および加工性を確保することができる。また、Cr量の適正化を図ることにより、優れた耐食性および加工性を確保することができる。そして、横断面の円形度の適正化を図ることで、優れた柔軟性を確保することができる。さらに、Mo濃度の低い相と高い相とのMo濃度比率の適正化により、優れた延性、すなわち加工性を確保することができる。なお、細線の直径を200μm以下としたことにより、合金溶湯ジェットの表面と内部との冷却速度差を小さくすることができ、円形度の低下やMo濃度の不均一化を防止することができる。また、耐摩耗性や細線の後加工性に鑑みれば、Cは0.3質量%前後添加することができる。
【0016】
このようなCo−Cr−Mo系細線においては、Co濃度の低い相に対するCo濃度の高い相の濃度比率が1.1以下である均一な組織を有することや、同様にCr濃度の低い相に対するCr濃度の高い相の濃度比率が1.1以下である均一な組織を有することが望ましい。このようなCo濃度またはCr濃度の適正化に起因した組織のさらなる適正化を図ることで、さらに優れた延性、ひいては加工性に富むCo−Cr−Mo系細線を得ることができる。また、横断面の円形度を0.8以上とすることにより、さらに柔軟性に富むCo−Cr−Mo系細線とすることができる。
【0017】
次に、本発明のCo−Cr−Mo系細線の製造方法は、以上に示した細線を好適に製造するための方法であって、Cr:26〜31質量%、Mo:8〜16質量%、残部がCoおよび不可避不純物からなる合金溶湯を直径200μm以下の紡糸ノズルから噴出して合金溶湯ジェットを形成し、上記合金溶湯ジェットを回転する円筒状ドラムの内周面に沿って形成された冷却液体層中で凝固させることにより細線を得ることを特徴としている。
【0018】
この製造方法は、回転液中紡糸法によるものであることから、上述した本発明者らの知見によって横断面の円形度を0.6以上とすることができ、細線の十分な柔軟性を確保することができる。なお、この製造方法によれば、上述したとおり、本合金の本来的な特徴である優れた生体適合性を確保した上で、Mo量の適正化、Cr量の適正化および細線径の適正化により、耐食性、耐摩耗性、加工性および柔軟性に富むCo−Cr−Mo系細線を得ることができる。
【0019】
また、本発明のCo−Cr−Mo系細線の他の製造方法は、Cr:26〜31質量%、Mo:8〜16質量%、残部がCoおよび不可避不純物からなる合金溶湯を直径200μm以下の紡糸ノズルから噴射して合金溶湯ジェットを形成し、上記合金溶湯ジェットを冷却ガス中で冷却して凝固させることにより細線を得ることを特徴としている。
【0020】
この製造方法は、ガス中溶融紡糸法によるものであることから、上述した本発明者らの知見によって横断面の円形度を0.7以上とすることができ、さらに高い柔軟性を確保することができる。なお、生体適合性、耐食性、耐摩耗性および加工性に関しては、上記製造方法と同様に、優れた効果を得ることができる。
【0021】
さらに、本発明のCo−Cr−Mo系細線の他の製造方法は、Cr:26〜31質量%、Mo:8〜16質量%、残部がCoおよび不可避不純物からなる合金溶湯を直径200μm以下の紡糸ノズルから下方に噴出して合金溶湯ジェットを形成し、上記合金溶湯ジェットの落下経路を包囲する形態で配置したガス整流筒の内部に冷却ガスを導入して前記合金溶湯ジェットを凝固させることにより細線を得、ガス整流筒の排出部から前記細線を外部に排出することを特徴としている。
【0022】
この製造方法も、ガス中溶融紡糸法によるものであることから、横断面の円形度を0.8以上とすることができ、同様に高い柔軟性を確保することができる。また、生体適合性、耐食性、耐摩耗性および加工性に関しては、上記製造方法と同様に、優れた効果を得ることができる。
【0023】
ここで、回転液中紡糸法による製造方法とガス中溶融紡糸法による製造方法とを比較した場合に、ガス中溶融紡糸法による製造方法の方が、より円形度の高い細線が得られ易い理由を説明する。すなわち、前者の場合は、合金溶湯ジェットが固化する前に回転する冷却液体層に突入して、冷却液体の進行方向に合金溶湯ジェットが曲げられる際に扁平化し易い。これに対し、後者の場合は、直線状に落下する合金溶湯ジェットが固化するまでの空中飛行中、合金溶湯ジェットの表面張力で円形度を自己補正しながらその表面上に極薄いCr系酸化膜の殻が形成される。このため、両紡糸法により製造した細線においては、円形度に差が生ずると考えられる。
【0024】
次に、上記したガス中溶融紡糸法による製造方法においては、冷却ガスは、酸素含有ガスとすることが望ましい。また、この冷却ガスは、合金溶湯ジェットの落下方向において紡糸ノズル寄りの第1の位置にて整流筒内に導入される不活性ガスからなる第1のガス成分と、第1の位置より下側の第2の位置にて整流筒内に導入される酸化性ガスからなる第2のガス成分とからなるものとすることが望ましい。この場合、第1のガス成分をアルゴンまたはヘリウムとし、第2のガス成分を酸素または炭酸ガスとすることができる。さらに、その下側に合金溶湯ジェットの冷却促進のために、第3、第4の冷却ガスの導入部を配備してもよい。
【0025】
以上は本発明のCo−Cr−Mo系細線の製造方法であるが、このように製造された細線を織り加工、編み加工または不織加工してなる面状体、細線を織り加工、編み加工または不織加工してなる筒状体、および細線を加工してなる縒り線またはケーブルは、生体適合性、耐食性、耐摩耗性、加工性および柔軟性に優れているため、各種医療用インプラントデバイスに適用することができる。
【0026】
【実施例】
以下、実施例により本発明を具体的に説明する。なお、Co−Cr−Mo系細線の製造に際し、ガス中溶融紡糸法を利用する場合には、図1に示す装置を用いた。具体的には、同図に示すように、合金原料を先端がノズルになっているるつぼ内で加熱溶融し、ノズルから噴出された合金溶湯ジェットをヘリウムガスおよび酸素ガスにより冷却することにより凝固して細線を得、巻取り用ドラムにて巻き取った。一方、回転液中紡糸法を利用する場合には、特許文献3に記載されているような通常の装置を用いた。なお、円形度は任意に選択した短径および長径から算出した値である。
【0027】
[実施例1]
配合組成がCo−29質量%Cr−(8,12,16)質量%Moの各合金を用いてをガス中溶融紡糸法により各々代表直径70μm、100μm、150μmの細線を得た。得られた細線の円形度はいずれも0.8〜0.9の範囲にあり、90度以上の曲げ変形が可能であった。また、内部組織は、Mo濃度に関する濃度比率が1.8以下の均一な組織であった。
【0028】
ここで、とくに、Co−29質量%Cr−8質量%Moの代表直径100μmの細線に関し、縦断面と横断面とのそれぞれ2箇所の、配合組成とMo濃度比率とについての結果を表1に示す。また、その縦断面および横断面の電子顕微鏡における反射電子組成像(以下、単に「組成像」と称する。)を図2(a),(b)にそれぞれ示す。なお、図2(a),(b)中には図示していないが、表1中の縦断面1(横断面1)とは、縦断面(横断面)中の任意に選択した比較的暗い部分を示し、縦断面2(横断面2)とは、縦断面(横断面)中の任意に選択した比較的明るい部分を示す。さらに、Co−29質量%Cr−12質量%Moの代表直径100μmの細線に関し、縦断面と横断面とのそれぞれ2箇所の、配合組成とMo濃度比率とについての結果を表2に示す。
【0029】
【表1】

Figure 0003939674
【0030】
【表2】
Figure 0003939674
【0031】
表1および図2(a),(b)から明らかなように、得られた細線は、短径98μm、長径103μmであることから、その円形度は0.95であり、本発明の好適範囲にあることが判る。またこの細線は、90度以上の曲げ変形が可能であることも確認された。さらに、表1に示すように、内部組織は、Mo濃度に関する濃度比率が1.4以下の均一な組織であった。また、表2から明らかなように、得られた細線の内部組織は、Mo濃度に関する濃度比率が1.5以下の均一な組織であった。
【0032】
[実施例2]
配合組成がCo−27質量%Cr−(10,14)質量%Moの合金で合金溶湯ジェットの速度と回転ドラムの速度とを同等とした回転液中紡糸法により直径120μm、150μm、180μmの細線を得た。得られた細線は円形度0.7〜0.8で、90度以上の曲げ変形が可能であった。内部組織は、Mo濃度に関する濃度比率が1.4以下の均一な組織であった。
【0033】
[比較例1]
配合組成がCo−29質量%Cr−8質量%Moの通常鋳造材の横断面組成像を図3に示す。同図に示すように、この組成像はMo低濃度相(横断面1)と高濃度相(横断面2)とに明瞭に分離し、その濃度比率は2.6以上であった。この横断面1および横断面2での各元素の濃度およびMo濃度比率の結果を表3に示す。また、配合組成がCo−29質量%Cr−12質量%Moの通常鋳造材の横断面1および横断面2での各元素の濃度およびMo濃度比率の結果を表4に示す。
【0034】
【表3】
Figure 0003939674
【0035】
【表4】
Figure 0003939674
【0036】
表3,4によれば、Mo濃度比率は、本発明における好適値を満足するものではなかった。また、これらの鋳造材を用いて伸線加工により直径200μmの細線を製造することは困難であった。
【0037】
[比較例2]
配合組成がCo−29質量%Cr−8質量%Moの合金から回転液中紡糸法により直径250μmの細線を得た。この細線は、直径が200μmを超えるものであるため、円形度が0.4〜0.8であり、一部に本発明の好適範囲から逸脱するものがあった。さらに、内部組織は、Mo濃度に関する濃度比率が1.8を超え、均一な組織は得られなかった。また、この細線は90度以上の曲げ変形が不可能であった。
【0038】
【発明の効果】
以上説明したように本発明によれば、Co−Cr−Mo合金本来の特徴である優れた生体適合性を確保した上で、Mo量の適正化、Cr量の適正化、円形度の適正化および細線径の適正化により、細線の優れた耐食性、耐摩耗性、加工性および柔軟性を確保することができる。よって、本発明は、各種医療用インプラントデバイスに好適なCo−Cr−Mo系細線およびその製造方法、ならびにこの細線を加工した面状体等を提供することができる点で有望である。
【図面の簡単な説明】
【図1】 ガス中溶融紡糸法によりCo−Cr−Mo系細線を製造する際に使用した装置を示す概略図である。
【図2】 Co−29質量%Cr−8質量%Moの細線の、(a)は縦断面組成像であり 、(b)は横断面組成像である。
【図3】 Co−29質量%Cr−8質量%Moの通常鋳造材の横断面組成像である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an artificial bone prosthetic material, a porous artificial bone material, a porous implant part for medical surgery, a wire and cable for osteosynthesis or fixation, and an osteosynthesis and fixation technique in which fine wires are woven or knitted. Co-Cr-Mo type fine wires applied to medical implant devices, such as bands, wire meshes and guide wires for intravascular stents, and vascular embolization wires, and production methods thereof, and planar bodies processed from these fine wires In particular, the present invention relates to a technique for manufacturing a Co—Cr—Mo fine wire excellent in biocompatibility, corrosion resistance, wear resistance, workability and flexibility.
[0002]
[Prior art]
Conventionally, a Co—Cr—Mo alloy has been known as an alloy having excellent biocompatibility. However, since plastic working is not easy, the cast material and the forged material are rigid products formed in relatively large dimensions. However, it is difficult to manufacture a fine wire suitable for a biological component. Moreover, since this alloy is excellent in biocompatibility, its application field is wide, and the needs in the medical field were particularly high. For this reason, there has been a demand for the development of a thin wire made of the present alloy having strength, wear resistance and torsional resistance characteristics that match the mechanical characteristics of the biological component and flexibility that fits the shape of the biological component.
[0003]
In response to such a request, a technique has been disclosed that enables plastic working by adding Ni to the alloy (see Patent Document 1). Specifically, it is said that an implantable medical device can be provided by manufacturing a long member made of Co—Cr—Mo containing Ni of less than 5 mass%. However, since Ni has a problem of bioallergenicity, it is desirable not to contain Ni for fine wires used in the medical field. In addition, according to the technique described in Patent Document 1, thin wires that do not contain Ni are also included, but only those containing Ni are disclosed in the embodiments in the detailed description of the invention, and contain Ni. It is uncertain whether or not fine lines that can be processed can be processed.
[0004]
In addition, in this alloy, when the Mo concentration is increased and the structure is made uniform, the wear resistance as well as the corrosion resistance is drastically improved. However, the normal casting material is hard and brittle as the Mo concentration is increased. Mo high concentration phase segregates. For this reason, there has been a problem that the plastic working becomes difficult, for example, the working stress rapidly increases in the segregation phase during plastic working, and in some cases, cracking occurs at the segregation phase or the interface between the segregation phase and the parent phase.
[0005]
As a solution, a material obtained by quench-casting a molten alloy of Co- (26-30) mass% Cr- (6-12) mass% Mo- (0-0.3) mass% C with a water-cooled copper mold is heated. Disclosed is a technology that improves plastic workability by adjusting a microstructure in which second phase such as precipitates with high Mo concentration and intermetallic compounds are finely dispersed in grains with an average crystal grain size of 50 μm or less by a hot forging method. (See Patent Document 2). However, in order to obtain a thin line from the described alloy by plastic working method of the following diameter 200μm in Patent Document 2 hardly second phase of high concentration Mo is deformed even a finely dispersed in the particulate, second phase May move inside the mother phase (first phase) and damage the inside of the mother phase, possibly causing holes and cracks inside the mother phase. Therefore, in order to finish the alloy into a thin line shape so as not to cause this problem, it is necessary to gradually repeat the plastic working under the structure control conditions described in Patent Document 2. For this reason, the number of processes increased significantly and the problem that manufacturing cost became expensive had arisen.
[0006]
Furthermore, in the prior art, as is apparent from the description of claim 13 of Patent Document 1 and the embodiment thereof, an example of manufacturing a thin wire containing 8% by mass or more of Mo is not disclosed. There has been a demand for the development of a thin wire excellent in corrosion resistance, wear resistance and flexibility, which contains no Mo and 8% by mass or more of Mo.
[0007]
On the other hand, in the method of repeating forging such as the manufacturing method described in Patent Document 2, it is not easy to manufacture a thin wire having a circular cross section, but it may still be possible if a foil strip is manufactured. It is also possible to manufacture a foil strip by a roll method using a rapid solidification means by applying the molten metal to the cooling roll side surface. However, this foil strip is not flexible enough to fit a complex shape in the living body, so to improve flexibility, weaving or knitting thin wires with a high degree of circularity (minor axis / major axis) in the cross section There was also a demand for the development of the belt.
[0008]
[Patent Document 1]
Japanese Patent Laid-Open No. 10-43314 [Patent Document 2]
JP 2002-363675 A [Patent Document 3]
Japanese Patent Publication No. 7-36942 [Patent Document 4]
Japanese Patent Application No. 2000-216090 [0009]
[Problems to be solved by the invention]
The present invention has been made in view of the above various requirements, and on the premise of ensuring excellent biocompatibility, which is an inherent characteristic of Co-Cr-Mo type fine wires, in particular, excellent corrosion resistance, An object of the present invention is to provide a Co—Cr—Mo-based fine wire that exhibits wear resistance and workability, and exhibits excellent flexibility to fit the shape of a biological component, and a medical implant device obtained by processing the fine wire. It is said.
[0010]
[Means for Solving the Problems]
The present inventors examined various melt spinning methods as a known method for directly forming a fine wire from a Co—Cr—Mo alloy which has been conventionally regarded as a difficult-to-work material. As a result, in the present alloy system, as a method for obtaining a thin wire having a high degree of circularity (minor axis / major axis) of the cross section, for example, the spinning method described in Patent Document 3 and the gas described in Patent Document 4 are used. It has been found suitable to use a medium melt spinning method. Specifically, for the production of a thin wire having a circular cross section with a cross-sectional circularity of 0.6 or more, a spinning method in a rotating liquid is adopted, and the fine wire diameter is controlled by the nozzle diameter to produce a thin wire having a diameter of 200 μm or less. The knowledge that the method to obtain was suitable was acquired. In addition, a method of obtaining a fine wire having a diameter of 200 μm or less by adopting a melt spinning method in gas for manufacturing a fine wire having a circular cross section with a circularity of a cross section of 0.7 or more and controlling the diameter of the fine wire by the nozzle diameter. The knowledge that it was suitable was obtained.
[0011]
In addition, if the above two manufacturing methods are used without any particular conditions, a fine line shape can be obtained, but if the thickness of the fine line exceeds a certain value, the fine line may be bent by 90 degrees or more. It was easy to break, and it was found that some thin wires had poor ductility. As a result of investigating this cause, it was found that the thicker the fine wire, the more the low concentration phase and the high phase exist in the internal structure, which is the cause of poor ductility. Therefore, we have obtained the knowledge that by making the Mo concentration uniform, that is, by optimizing the concentration ratio of the high Mo concentration phase to the low Mo concentration phase, it is possible to obtain a thin wire with excellent ductility and eventually workability. It was.
[0012]
Here, the reason why a thin wire exceeding 200 μm in diameter is likely to break is that the spinning means with a nozzle diameter exceeding 200 μm has a large difference in cooling rate between the surface and the inside of the molten alloy jet, so that flexibility due to a decrease in circularity is caused. It is considered that the ductility is deteriorated due to the deterioration of the property and the non-uniformity of the Mo concentration, and it is considered difficult to bend at 90 degrees or more. When the diameter of the molten alloy jet before solidification is 200 μm or less, the higher the circularity of the molten alloy jet, the more uniform the cooling from the side of the molten alloy jet is in the circumferential direction, and the uniform Mo concentration It is thought that it contributes to.
[0013]
Further, the Mo concentration is required to be 8% by mass or more in order to ensure corrosion resistance and wear resistance. However, if it exceeds 16% by mass, bending deformation of 90 ° or more occurs even for a thin wire having a diameter of 200 μm or less. It turned out to be difficult and poorly ductile. In addition, the Cr concentration needs to be 26% by mass or more in order to ensure corrosion resistance, but if it exceeds 31% by mass, bending deformation of 90 ° or more occurs when the Mo compound concentration is 8% by mass or more. It turned out to be a difficult and poorly ductile wire. In view of the wear resistance and post-workability of fine wires, it has also been found that C may be added at around 0.3% by mass.
[0014]
The Co—Cr—Mo thin wire of the present invention has been made based on the various findings shown above, Cr: 26 to 31% by mass, Mo: 8 to 16% by mass, the balance being Co and inevitable impurities A thin wire having a diameter of 200 μm or less, the circularity of the cross section (minor axis / major axis) is 0.6 or more, and the concentration ratio of the high Mo concentration phase to the low Mo concentration phase is 1.8 or less. It is characterized by having a uniform structure. Here, the Mo concentration is a value measured by an X-ray microanalyzer under electron beam irradiation at an acceleration voltage of 20 kV.
[0015]
As described above, the Co—Cr—Mo thin wire of the present invention has excellent corrosion resistance and wear resistance by ensuring the excellent biocompatibility that is its original characteristic and by optimizing the amount of Mo. And processability can be ensured. In addition, by optimizing the Cr amount, excellent corrosion resistance and workability can be ensured. And the outstanding softness | flexibility can be ensured by optimizing the circularity of a cross section. Furthermore, excellent ductility, that is, workability can be ensured by optimizing the Mo concentration ratio between the low and high phases of Mo. In addition, by making the diameter of a thin wire into 200 micrometers or less, the cooling rate difference between the surface and the inside of a molten alloy jet can be made small, and the fall of circularity and non-uniformity of Mo concentration can be prevented. In view of wear resistance and post-workability of fine wires, C can be added at around 0.3% by mass.
[0016]
Such a Co—Cr—Mo thin wire has a uniform structure in which the concentration ratio of the high Co concentration phase to the low Co concentration phase is 1.1 or less, and similarly to the low Cr concentration phase. It is desirable to have a uniform structure in which the concentration ratio of the phase with a high Cr concentration is 1.1 or less. By further optimizing the structure resulting from the optimization of the Co concentration or Cr concentration, a Co—Cr—Mo type fine wire having further excellent ductility and eventually workability can be obtained. Further, by setting the circularity of the cross section to 0.8 or more, it is possible to obtain a Co—Cr—Mo type fine wire that is more flexible.
[0017]
Next, the method for producing the Co—Cr—Mo thin wire of the present invention is a method for suitably producing the fine wire shown above, and Cr: 26 to 31 mass%, Mo: 8 to 16 mass% Cooling formed along the inner peripheral surface of a cylindrical drum that rotates the molten alloy jet by forming a molten alloy jet by jetting a molten alloy consisting of Co and inevitable impurities from a spinning nozzle having a diameter of 200 μm or less. It is characterized by obtaining fine lines by solidifying in a liquid layer.
[0018]
Since this manufacturing method is based on the spinning in a rotating liquid, the circularity of the cross section can be 0.6 or more based on the above-mentioned knowledge of the present inventors, and sufficient flexibility of the thin wire is ensured. can do. In addition, according to this manufacturing method, as mentioned above, after ensuring the excellent biocompatibility that is an original characteristic of the alloy, the Mo amount is optimized, the Cr amount is optimized, and the fine wire diameter is optimized. Thus, it is possible to obtain a Co—Cr—Mo type fine wire rich in corrosion resistance, wear resistance, workability and flexibility.
[0019]
Another method for producing the Co—Cr—Mo fine wire of the present invention is as follows: Cr: 26 to 31% by mass, Mo: 8 to 16% by mass, and the remaining molten alloy consisting of Co and inevitable impurities with a diameter of 200 μm or less. It is characterized by forming a molten alloy jet by spraying from a spinning nozzle, and cooling and solidifying the molten alloy jet in a cooling gas to obtain a thin line.
[0020]
Since this manufacturing method is based on the melt spinning method in gas, the circularity of the cross section can be set to 0.7 or more according to the above-described knowledge of the present inventors, and higher flexibility can be secured. Can do. In addition, regarding biocompatibility, corrosion resistance, wear resistance, and workability, excellent effects can be obtained in the same manner as in the above manufacturing method.
[0021]
Furthermore, another manufacturing method of the Co—Cr—Mo type fine wire of the present invention is as follows: Cr: 26 to 31% by mass, Mo: 8 to 16% by mass, and the remaining molten alloy consisting of Co and unavoidable impurities having a diameter of 200 μm or less. By jetting downward from the spinning nozzle to form a molten alloy jet, by introducing a cooling gas into the inside of the gas flow straightening tube arranged in a form surrounding the dropping path of the molten alloy jet, the molten alloy jet is solidified A thin wire is obtained, and the thin wire is discharged to the outside from the discharge portion of the gas rectifying cylinder.
[0022]
Since this production method is also based on the gas melt spinning method, the circularity of the cross section can be set to 0.8 or more, and similarly high flexibility can be secured. Moreover, regarding biocompatibility, corrosion resistance, wear resistance, and workability, excellent effects can be obtained as in the above manufacturing method.
[0023]
Here, when the manufacturing method by the spinning in the rotating liquid and the manufacturing method by the gas melt spinning method are compared, the manufacturing method by the gas melt spinning method is more likely to obtain a finer wire with higher circularity Will be explained. That is, in the former case, the molten alloy jet enters the rotating cooling liquid layer before solidifying and is easily flattened when the molten alloy jet is bent in the traveling direction of the cooling liquid. On the other hand, in the latter case, an ultrathin Cr-based oxide film is formed on the surface of the molten alloy jet that falls in a straight line during the air flight until the circularity is self-corrected by the surface tension of the molten alloy jet. Shell is formed. For this reason, it is considered that there is a difference in the degree of circularity in the fine wires produced by the both spinning methods.
[0024]
Next, in the manufacturing method by the above-described melt spinning method in gas, the cooling gas is desirably an oxygen-containing gas. The cooling gas includes a first gas component composed of an inert gas introduced into the flow straightening cylinder at a first position near the spinning nozzle in the falling direction of the molten alloy jet, and a lower side than the first position. Preferably, the second gas component is made of an oxidizing gas introduced into the rectifying cylinder at the second position. In this case, the first gas component can be argon or helium, and the second gas component can be oxygen or carbon dioxide. Furthermore, in order to promote cooling of the molten alloy jet, a third and fourth cooling gas introduction portions may be provided on the lower side.
[0025]
The above is the method for producing the Co—Cr—Mo type fine wire of the present invention. The thin wire thus produced is woven, knitted or non-woven processed, and the fine wire is woven and knitted. Alternatively, non-woven tubular bodies, and twisted wires or cables formed by processing fine wires are excellent in biocompatibility, corrosion resistance, wear resistance, workability and flexibility. Can be applied to.
[0026]
【Example】
Hereinafter, the present invention will be described specifically by way of examples. In addition, when manufacturing the Co—Cr—Mo type fine wire, the apparatus shown in FIG. 1 was used when the melt spinning method in gas was used. Specifically, as shown in the figure, the alloy material is heated and melted in a crucible whose tip is a nozzle, and the molten alloy jet ejected from the nozzle is solidified by cooling with helium gas and oxygen gas. A thin wire was obtained and wound up with a winding drum. On the other hand, when utilizing the spinning in-rotating method, an ordinary apparatus as described in Patent Document 3 was used. The circularity is a value calculated from an arbitrarily selected minor axis and major axis.
[0027]
[Example 1]
Fine wires having representative diameters of 70 μm, 100 μm, and 150 μm were obtained by melt spinning in gas using each alloy having a blend composition of Co-29 mass% Cr- (8, 12, 16) mass% Mo, respectively. The circularity of the thin wires obtained was in the range of 0.8 to 0.9, and bending deformation of 90 degrees or more was possible. The internal structure was a uniform structure with a concentration ratio related to the Mo concentration of 1.8 or less.
[0028]
Here, in particular, with respect to a fine wire having a representative diameter of 100 μm of Co-29 mass% Cr-8 mass% Mo, the results regarding the blending composition and the Mo concentration ratio at two locations of the longitudinal section and the transverse section are shown in Table 1. Show. 2A and 2B show reflected electron composition images (hereinafter simply referred to as “composition images”) in the electron microscope of the longitudinal section and the transverse section, respectively. Although not shown in FIGS. 2 (a) and 2 (b), the longitudinal section 1 (transverse section 1) in Table 1 is relatively dark arbitrarily selected in the longitudinal section (transverse section). A longitudinal section 2 (transverse section 2) indicates a relatively bright part arbitrarily selected in the longitudinal section (transverse section). Further, Table 2 shows the results of the blending composition and the Mo concentration ratio of Co-29 mass% Cr-12 mass% Mo with a representative diameter of 100 μm at two locations on the longitudinal section and the transverse section.
[0029]
[Table 1]
Figure 0003939674
[0030]
[Table 2]
Figure 0003939674
[0031]
As is clear from Table 1 and FIGS. 2 (a) and 2 (b), the thin wire obtained has a minor axis of 98 μm and a major axis of 103 μm, so its circularity is 0.95, which is a preferred range of the present invention. It can be seen that It was also confirmed that this thin line can be bent and deformed by 90 degrees or more. Furthermore, as shown in Table 1, the internal structure was a uniform structure with a concentration ratio relating to Mo concentration of 1.4 or less. As is clear from Table 2, the internal structure of the obtained thin wire was a uniform structure having a concentration ratio of 1.5 or less with respect to the Mo concentration.
[0032]
[Example 2]
A thin wire having a diameter of 120 μm, 150 μm, and 180 μm by an in-rotating spinning method in which the blending composition is Co-27 mass% Cr- (10,14) mass% Mo and the speed of the molten alloy jet is equal to the speed of the rotating drum. Got. The obtained thin wire had a circularity of 0.7 to 0.8 and could be bent and deformed by 90 ° or more. The internal structure was a uniform structure having a concentration ratio with respect to the Mo concentration of 1.4 or less.
[0033]
[Comparative Example 1]
FIG. 3 shows a cross-sectional composition image of a normal cast material having a blend composition of Co-29 mass% Cr-8 mass% Mo. As shown in the figure, this composition image was clearly separated into a Mo low concentration phase (cross section 1) and a high concentration phase (cross section 2), and the concentration ratio was 2.6 or more. Table 3 shows the results of the concentration of each element and the Mo concentration ratio in the cross section 1 and the cross section 2. In addition, Table 4 shows the results of the concentration of each element and the Mo concentration ratio in the transverse section 1 and the transverse section 2 of a normal cast material having a blend composition of Co-29 mass% Cr-12 mass% Mo.
[0034]
[Table 3]
Figure 0003939674
[0035]
[Table 4]
Figure 0003939674
[0036]
According to Tables 3 and 4, the Mo concentration ratio did not satisfy the preferred value in the present invention. Moreover, it was difficult to produce a thin wire having a diameter of 200 μm by wire drawing using these cast materials.
[0037]
[Comparative Example 2]
A thin wire having a diameter of 250 μm was obtained from an alloy having a composition of Co-29 mass% Cr-8 mass% Mo by spinning in a rotating liquid. Since this thin wire has a diameter exceeding 200 μm, the circularity is 0.4 to 0.8, and some of them deviate from the preferred range of the present invention. Furthermore, the internal structure had a concentration ratio with respect to the Mo concentration exceeding 1.8, and a uniform structure was not obtained. Further, this fine wire was not capable of bending deformation of 90 degrees or more.
[0038]
【The invention's effect】
As described above, according to the present invention, while ensuring the excellent biocompatibility that is the original characteristic of the Co—Cr—Mo alloy, the Mo amount is optimized, the Cr amount is optimized, and the circularity is optimized. Further, by optimizing the diameter of the fine wire, it is possible to ensure excellent corrosion resistance, wear resistance, workability and flexibility of the fine wire. Therefore, the present invention is promising in that it can provide a Co—Cr—Mo type fine wire suitable for various medical implant devices, a method for producing the same, a planar body obtained by processing the fine wire, and the like.
[Brief description of the drawings]
FIG. 1 is a schematic view showing an apparatus used for producing a Co—Cr—Mo fine wire by a gas melt spinning method.
2A is a longitudinal sectional composition image and FIG. 2B is a transverse sectional composition image of a Co-29 mass% Cr-8 mass% Mo thin wire.
FIG. 3 is a cross-sectional composition image of a normal cast material of Co-29 mass% Cr-8 mass% Mo.

Claims (5)

Cr:26〜31質量%、Mo:8〜16質量%、残部がCoおよび不可避不純物からなる直径200μm以下の細線であって、横断面の円形度(短径/長径)が0.6以上であり、Mo濃度の低い相に対するMo濃度の高い相の濃度比率が1.8以下の均一な組織を有することを特徴とするCo−Cr−Mo系細線。  Cr: 26 to 31% by mass, Mo: 8 to 16% by mass, the balance is a fine wire having a diameter of 200 μm or less composed of Co and inevitable impurities, and the circularity (minor axis / major axis) of the cross section is 0.6 or more A Co—Cr—Mo fine wire characterized by having a uniform structure in which the concentration ratio of the high Mo concentration phase to the low Mo concentration phase is 1.8 or less. Co濃度の低い相に対するCo濃度の高い相の濃度比率が1.1以下である均一な組織を有することを特徴とする請求項1に記載のCo−Cr−Mo系細線。  2. The Co—Cr—Mo fine wire according to claim 1, which has a uniform structure in which a concentration ratio of a high Co concentration phase to a low Co concentration phase is 1.1 or less. Cr濃度の低い相に対するCr濃度の高い相の濃度比率が1.1以下である均一な組織を有することを特徴とする請求項1または2に記載のCo−Cr−Mo系細線。  3. The Co—Cr—Mo fine wire according to claim 1, wherein the Co—Cr—Mo thin wire has a uniform structure in which a concentration ratio of a phase having a high Cr concentration to a phase having a low Cr concentration is 1.1 or less. 前記横断面の円形度が0.7以上であることを特徴とする請求項1〜3のいずれかに記載のCo−Cr−Mo系細線。  The Co-Cr-Mo type fine wire according to any one of claims 1 to 3, wherein the circularity of the cross section is 0.7 or more. 請求項1〜4に記載のCo−Cr−Mo系細線を織り加工、編み加工または不織加工してなることを特徴とする医療用インプラントデバイスA medical implant device obtained by weaving, knitting, or non-woven processing the Co—Cr—Mo fine wires according to claim 1.
JP2003107307A 2003-04-11 2003-04-11 Co-Cr-Mo type fine wire and medical implant device obtained by processing this fine wire Expired - Lifetime JP3939674B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003107307A JP3939674B2 (en) 2003-04-11 2003-04-11 Co-Cr-Mo type fine wire and medical implant device obtained by processing this fine wire
US10/821,170 US7857916B2 (en) 2003-04-11 2004-04-09 Co-Cr-Mo alloy fine wire, manufacturing method therefor, and planar body, tubular body, stranded wire and cable formed of wire
DE602004014057T DE602004014057D1 (en) 2003-04-11 2004-04-13 Wire made of a Co-Cr-Mo alloy, process for its production and use as a flat body, pipe, stranded wire and cable
EP04008755A EP1466991B1 (en) 2003-04-11 2004-04-13 Co-Cr-Mo alloy fine wire, its method of manufacture, and use as a planar body, tubular body, stranded wire and cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003107307A JP3939674B2 (en) 2003-04-11 2003-04-11 Co-Cr-Mo type fine wire and medical implant device obtained by processing this fine wire

Publications (2)

Publication Number Publication Date
JP2004315839A JP2004315839A (en) 2004-11-11
JP3939674B2 true JP3939674B2 (en) 2007-07-04

Family

ID=33469177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003107307A Expired - Lifetime JP3939674B2 (en) 2003-04-11 2003-04-11 Co-Cr-Mo type fine wire and medical implant device obtained by processing this fine wire

Country Status (1)

Country Link
JP (1) JP3939674B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006103742A1 (en) * 2005-03-28 2006-10-05 Iwate University Co-Cr-Mo ALLOY FOR ARTIFICIAL JOINT HAVING EXCELLENT WEAR RESISTANCE
JP4675253B2 (en) * 2006-02-09 2011-04-20 日本発條株式会社 Co—Cr—Mo type alloy fine wire and method for producing the same, and planar body, cylindrical body, twisted wire and cable formed by processing this thin wire

Also Published As

Publication number Publication date
JP2004315839A (en) 2004-11-11

Similar Documents

Publication Publication Date Title
US7641983B2 (en) Medical devices including composites
US9034456B2 (en) Medical devices and methods of making the same
JP5784005B2 (en) Biodegradable implant and method for producing the same
US7780798B2 (en) Medical devices including hardened alloys
US20120295129A1 (en) Metal member manufacturing method and metal member
JP2017501756A (en) Bioerodible magnesium alloy microstructure for internal prostheses
CA2606546A1 (en) Medical devices and methods of making the same
JP7156950B2 (en) Nickel-titanium-yttrium alloy wire with reduced oxide inclusions
JP6143227B2 (en) Co-Cr-Mo alloy for living body
JP7041778B1 (en) Titanium alloy manufacturing method
JP3939674B2 (en) Co-Cr-Mo type fine wire and medical implant device obtained by processing this fine wire
JP4067484B2 (en) Co-Cr-Mo type fine wire and method for producing the same, and planar body, cylindrical body, twisted wire and cable formed by processing the fine wire
US7857916B2 (en) Co-Cr-Mo alloy fine wire, manufacturing method therefor, and planar body, tubular body, stranded wire and cable formed of wire
JP4675253B2 (en) Co—Cr—Mo type alloy fine wire and method for producing the same, and planar body, cylindrical body, twisted wire and cable formed by processing this thin wire
WO2021076510A1 (en) Methods for manufacturing radiopaque intraluminal stents comprising cobalt-based alloys with supersaturated tungsten content
CN113039298A (en) Pt-Co alloy for medical use
WO2016152908A1 (en) Medical implant comprising zinc-based alloy, and method for producing same
CN111801432B (en) Shape memory alloy and shape memory alloy wire rod
KR102644029B1 (en) implant device
WO2016152909A1 (en) Medical implant comprising zinc-based alloy
JP6811466B1 (en) Medical Au-Pt-Pd alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070328

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100406

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100406

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120406

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140406

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250