JP4672985B2 - Lithium ion secondary battery - Google Patents

Lithium ion secondary battery Download PDF

Info

Publication number
JP4672985B2
JP4672985B2 JP2004017935A JP2004017935A JP4672985B2 JP 4672985 B2 JP4672985 B2 JP 4672985B2 JP 2004017935 A JP2004017935 A JP 2004017935A JP 2004017935 A JP2004017935 A JP 2004017935A JP 4672985 B2 JP4672985 B2 JP 4672985B2
Authority
JP
Japan
Prior art keywords
negative electrode
active material
polyacrylic acid
binder
ion secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004017935A
Other languages
Japanese (ja)
Other versions
JP2005216502A (en
Inventor
静恵 木津
和典 久保田
正樹 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2004017935A priority Critical patent/JP4672985B2/en
Publication of JP2005216502A publication Critical patent/JP2005216502A/en
Application granted granted Critical
Publication of JP4672985B2 publication Critical patent/JP4672985B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、リチウムイオン二次電池に関するものであり、特に長期サイクル特性に優れた電極の構成に関するものである。   The present invention relates to a lithium ion secondary battery, and particularly to a configuration of an electrode excellent in long-term cycle characteristics.

リチウムイオン二次電池は、高電圧で高エネルギー密度が得られるため、近年、移動体通信機器、携帯電子機器の主電源として利用されている。リチウムイオン二次電池の負極活物質としては、グラファイト系のものが実用化されているが、その容量は、ほぼ理論容量に達している。   Lithium ion secondary batteries are used as a main power source for mobile communication devices and portable electronic devices in recent years because high energy density is obtained at high voltage. As a negative electrode active material of a lithium ion secondary battery, a graphite-based material has been put into practical use, but its capacity has almost reached the theoretical capacity.

しかしながら、これら機器の小型高性能化にともなってより一層の高性能化が求められており、多くの研究が行われている。例として、黒鉛粉末に比べて大きい理論容量を有するケイ素(4199mAh/g)やケイ素合金が挙げられる。   However, with the miniaturization and high performance of these devices, there has been a demand for higher performance, and many studies have been conducted. Examples include silicon (4199 mAh / g) and silicon alloys, which have a larger theoretical capacity than graphite powder.

リチウムイオン二次電池の負極板を作製する際、一般には粉末状の負極活物質材料を用いており、前記材料粉末と結着剤等を水もしくは有機溶媒と混合してスラリー状にしたものをシート状の集電体に塗布し、乾燥することで集電体上に電極合剤を形成して負極板を作製している。   When preparing a negative electrode plate of a lithium ion secondary battery, generally a powdered negative electrode active material is used, and the material powder and a binder are mixed with water or an organic solvent to form a slurry. The negative electrode plate is manufactured by forming an electrode mixture on the current collector by applying it to a sheet-like current collector and drying it.

前記電極では、活物質材料や導電剤等の電極合剤を構成する各材料粉末は、電極合剤内に添加される結着剤によって結着されることで電極を形成すると同時に集電体表面とも結着されている。   In the electrode, each material powder constituting the electrode mixture such as an active material or a conductive agent is bound by a binder added in the electrode mixture to form an electrode and at the same time the current collector surface It is bound together.

サイクル特性に優れた高容量非水二次電池を提供する負極板中の結着剤として、SBR(スチレンブタジエンゴム)やポリビニルアルコールなど種々のものが使われており、ポリアクリル酸もそのひとつである(例えば、特許文献1。)。
特開2000−348730号公報
Various binders such as SBR (styrene butadiene rubber) and polyvinyl alcohol are used as the binder in the negative electrode plate that provides high-capacity non-aqueous secondary batteries with excellent cycle characteristics, including polyacrylic acid. Yes (for example, Patent Document 1).
JP 2000-348730 A

Li-Si(リチウムーケイ素)合金を負極活物質とすると、高容量が得られるが、充放電時のリチウムの吸蔵放出反応に伴う活物質自身の体積変化が大きいために電極合剤全体としても大きな膨張収縮が起こる。そのため、合剤中や、集電板中での集電不良が生じ、優れたサイクル特性を得ることが出来ない。   A high capacity can be obtained by using a Li—Si (lithium-silicon) alloy as the negative electrode active material. Expansion and contraction occur. Therefore, current collection failure occurs in the mixture or in the current collector plate, and excellent cycle characteristics cannot be obtained.

そのため、従来は、特許文献1に記載のように、合剤の強度をあげるために、架橋型ポリアクリル酸が用いられていた。架橋型ポリアクリル酸を用いた場合は、強度がよいため充放電を行った後の劣化率も低い。   Therefore, conventionally, as described in Patent Document 1, cross-linked polyacrylic acid has been used to increase the strength of the mixture. When cross-linked polyacrylic acid is used, the deterioration rate after charge / discharge is low because the strength is good.

架橋型ポリアクリル酸は、水を含む分散媒をアルカリ性にしないと、溶かすことができない。しかしながら、Siは溶液を酸性よりにする性質があり、Li−Si合金を負極活物質として用いたペーストには、架橋型ポリアクリル酸は溶けにくいため、取り扱いしにくいといった問題がある。   The crosslinked polyacrylic acid cannot be dissolved unless the dispersion medium containing water is made alkaline. However, Si has the property of making the solution more acidic, and the paste using a Li—Si alloy as the negative electrode active material has a problem that it is difficult to handle since the crosslinked polyacrylic acid is difficult to dissolve.

上記従来の課題を考慮し、本発明の目的は、取り扱いのより簡易な結着剤を用い、且つ劣化率の低いリチウムイオン二次電池を提供することである。   In view of the above conventional problems, an object of the present invention is to provide a lithium ion secondary battery that uses a binder that is easier to handle and has a low deterioration rate.

上記の目的を達成するために、第1の本発明は、正極と、Li―Si合金を含む負極活物質と、架橋型でないポリアクリル酸を含む結着剤とを有する負極と、非水電解質とを備え、前記架橋型でないポリアクリル酸の重量平均分子量は、300,000以上、3,000,000以下である、リチウムイオン二次電池である。 In order to achieve the above object, a first aspect of the present invention includes a positive electrode, a negative electrode active material including a Li—Si alloy , a negative electrode including a non-crosslinked polyacrylic acid, and a non-aqueous electrolyte. And a polyacrylic acid that is not cross-linked has a weight average molecular weight of 300,000 or more and 3,000,000 or less.

本発明によれば、取り扱いのより簡易な結着剤を用い、且つ劣化率の低いリチウムイオン二次電池を提供することが出来る。   According to the present invention, it is possible to provide a lithium ion secondary battery using a binder that is easier to handle and having a low deterioration rate.

以下、図面を参照しながら、実施の形態について説明する。ただし、本発明はこれらの実施の形態に限定されるものではない。
(実施の形態1)
図1は、本実施の形態1のリチウムイオン二次電池のコイン型電池の構成断面図である。図に示す様に、本実施の形態1のリチウムイオン二次電池は、ケース5と、ケース5の底部に配置された負極用の集電板7と、集電体7の上側に結着されている試験極6を備えている。尚、本発明の負極は、集電体7と試験極6に相当する。
Hereinafter, embodiments will be described with reference to the drawings. However, the present invention is not limited to these embodiments.
(Embodiment 1)
FIG. 1 is a structural cross-sectional view of a coin-type battery of the lithium ion secondary battery according to the first embodiment. As shown in the figure, the lithium ion secondary battery according to the first embodiment is bound to the case 5, the negative electrode current collector plate 7 disposed at the bottom of the case 5, and the current collector 7. The test electrode 6 is provided. The negative electrode of the present invention corresponds to the current collector 7 and the test electrode 6.

又、集電体7と試験極6を覆うようにセパレータ4として多孔質ポリエチレンシートが設置されている。このセパレータ4の試験極6の反対側には、リチウム箔2が配置されており、リチウム箔2の上側には集電体3が配置されている。尚、本発明の正極は、リチウム箔2と集電体3に相当する。   Further, a porous polyethylene sheet is installed as the separator 4 so as to cover the current collector 7 and the test electrode 6. The lithium foil 2 is disposed on the opposite side of the separator 4 from the test electrode 6, and the current collector 3 is disposed on the lithium foil 2. The positive electrode of the present invention corresponds to the lithium foil 2 and the current collector 3.

又、セパレータ4の周囲にガスケット8が設置されており、ガスケット8を介して封口板1が設置されており、集電体3、リチウム箔2、セパレータ7、試験極6及び集電体7が封止されている。又、ケース5と封口版1によって封止されている空間に電解液が充填されている。   A gasket 8 is installed around the separator 4, and a sealing plate 1 is installed via the gasket 8, and the current collector 3, the lithium foil 2, the separator 7, the test electrode 6, and the current collector 7 are provided. It is sealed. The space sealed by the case 5 and the sealing plate 1 is filled with an electrolytic solution.

上述した試験極6は、負極活物質としてLi-Si合金が用いられており、結着剤として架橋されていないポリアクリル酸を含んでいる。負極活物質は、Li-Si合金と、電気化学的にLiを吸蔵、放出しないSi合金を含有することが好ましい。これにより、負極活物質の導電性をあげることが出来る。   The test electrode 6 described above uses a Li—Si alloy as a negative electrode active material, and contains polyacrylic acid that is not crosslinked as a binder. The negative electrode active material preferably contains a Li—Si alloy and a Si alloy that does not electrochemically occlude and release Li. Thereby, the electroconductivity of a negative electrode active material can be raised.

また、電気化学的にLiを吸蔵、放出しないSi合金としては、Ti、Fe、Co、Ni、Cuから選ばれる少なくとも一種の金属とSiとの合金からなることが好ましい。又、電気化学的にLiを吸蔵、放出しないSi合金の負極活物質に対する体積割合が、0〜80%であることがより好ましい。この割合が低いほど容量を上げることが出来る。   Further, the Si alloy that does not electrochemically occlude and release Li is preferably made of an alloy of Si and at least one metal selected from Ti, Fe, Co, Ni, and Cu. More preferably, the volume ratio of the Si alloy that does not electrochemically occlude and release Li to the negative electrode active material is 0 to 80%. The lower the ratio, the higher the capacity.

さらに、負極活物質は粉体であることが好ましい。また、ポリアクリル酸は架橋されていなければ良く、直鎖状や、分岐状構造のものが良い。分子量としては、300,000以上、3,000,000以下が好ましく、500,000以上、2,000,000以下であれば、更に好ましい。
尚、本発明のSiを含む負極活物質は、本実施の形態1ではLi-Si合金に相当するが、ケイ化物、リチウム以外のSi合金であってもよく、要するに、Siを含みリチウムイオンを吸蔵・放出可能でありさえすればよい。
Furthermore, the negative electrode active material is preferably a powder. Further, the polyacrylic acid is not required to be cross-linked, and is preferably linear or branched. The molecular weight is preferably 300,000 or more and 3,000,000 or less, more preferably 500,000 or more and 2,000,000 or less.
The negative electrode active material containing Si of the present invention corresponds to a Li—Si alloy in the first embodiment, but may be a silicide or a Si alloy other than lithium. In short, it contains Si and contains lithium ions. It only has to be occluded / released.

又、本発明のリチウムイオン二次電池は、本実施の形態1のコイン型電池に相当するが、正極、負極、及びセパレータ等を積層し、渦巻状に卷回してアルミケース等の缶へ挿入した円筒形の電池であっても良い。   The lithium ion secondary battery of the present invention corresponds to the coin-type battery of the first embodiment, but is laminated with a positive electrode, a negative electrode, a separator, etc., wound in a spiral and inserted into a can such as an aluminum case. It may be a cylindrical battery.

以下、実施例において本発明における負極板の作製方法、及びそれを用いたコイン型電池の作製方法、試験方法を、より詳細に説明する。但し、本発明はこれらの実施例に限定されるものではない。   Hereinafter, the method for producing a negative electrode plate, the method for producing a coin-type battery using the same, and the test method in the present invention will be described in more detail in Examples. However, the present invention is not limited to these examples.

(実施例1)
実施例1として、結着剤に、所定の重量平均分子量(5000、150,000、300,000、500,000、1,000,000、2,000,000、3,000,000、4,000,000)の架橋型でないポリアクリル酸をそれぞれ用いた場合について以下に説明する。
始めに、負極板の作製方法について説明する。
Example 1
As Example 1, a case where polyacrylic acid having a predetermined weight average molecular weight (5000, 150,000, 300,000, 500,000, 1,000,000, 2,000,000, 3,000,000, 4,000,000) is used as the binder will be described below.
First, a method for manufacturing a negative electrode plate will be described.

負極活物質としては、SiとTiとの合金とを含有し、導電剤としてはAB(アセチレンブラック)を用いた。前記負極活物質と導電剤と水とをディスパーにて20000rpm、15min分散混合させ、そこへ所定の重量平均分子量であるポリアクリル酸10wt%水溶液を加えた。
更にディスパーにて20000rpm、15min分散混合してペースト状にしたものを銅集電体7表面に塗布し、乾燥させた。なお、混合比率は、負極活物質の重量100に対してAB10、結着剤であるポリアクリル酸10、水240とした。また、乾燥は真空で100℃、10時間行った。
The negative electrode active material contained an alloy of Si and Ti, and AB (acetylene black) was used as the conductive agent. The negative electrode active material, the conductive agent, and water were dispersed and mixed with a disper at 20000 rpm for 15 minutes, and a 10 wt% polyacrylic acid aqueous solution having a predetermined weight average molecular weight was added thereto.
Further, a paste formed by dispersing and mixing at 20000 rpm for 15 minutes with a disper was applied to the surface of the copper current collector 7 and dried. The mixing ratio was AB10, polyacrylic acid 10 as a binder, and water 240 with respect to 100 weight of the negative electrode active material. The drying was performed in vacuum at 100 ° C. for 10 hours.

以上のようにして作成した負極となる極板シートをそれぞれ直径1cmの円形に切り出し、これを電極として次の方法で、実施の形態1において説明したコイン型試験セルを作製し、電池特性を評価した。   The electrode plate sheets to be negative electrodes prepared as described above are each cut into a circle having a diameter of 1 cm, and this is used as an electrode to produce the coin-type test cell described in Embodiment 1 and evaluate the battery characteristics. did.

試験極6は、前述の方法で作成し、集電体7とともに、ケース5内に設置した。この試験極6上にセパレータ4として多孔質ポリエチレンシートを設置し、エチレンカーボネートとジエチルカーボネートの1:1の混合溶媒に1Mの濃度で六フッ化リン酸リチウムを溶解した溶液を電解液(図示せず)としてケース内に充填した。   The test electrode 6 was prepared by the above-described method and installed in the case 5 together with the current collector 7. A porous polyethylene sheet was installed as a separator 4 on the test electrode 6, and a solution of lithium hexafluorophosphate dissolved at a concentration of 1 M in a 1: 1 mixed solvent of ethylene carbonate and diethyl carbonate was used as an electrolyte (not shown). )).

対極としてのリチウム箔2を封口板1内に設置した集電体3に圧着し、セパレータ4上に重ねた後、ガスケット8を装着し、プレス封口機を用いかしめ封口してコイン型電池を作製した。尚、試験極は直径1cmの円形に切り出した状態で、電極上の活物質重量が20mgとなるようにあらかじめ塗布量を調製しておいた。   A lithium foil 2 as a counter electrode is pressure-bonded to a current collector 3 installed in a sealing plate 1 and stacked on a separator 4, and then a gasket 8 is attached and sealed using a press sealing machine to produce a coin-type battery. did. The test electrode was cut in a circular shape with a diameter of 1 cm, and the coating amount was prepared in advance so that the active material weight on the electrode was 20 mg.

8種類の異なる重量平均分子量の架橋型でないポリアクリル酸を結着剤として用い、上記方法で試験セルを作製した。
(実施例2)
実施例2として、結着剤にポリアクリル酸(重量平均分子量1,000,000)を用い負極活物質100に対して、重量割合をそれぞれ1、2、20、40、50とし、実施例1と同様の製造方法を用いて5種類のコイン型電池を作製した。
A test cell was prepared by the above method using 8 types of polyacrylic acids having different weight average molecular weights which are not cross-linked types as binders.
(Example 2)
In Example 2, polyacrylic acid (weight average molecular weight 1,000,000) was used as the binder, and the weight ratio was 1, 2, 20, 40, 50 with respect to the negative electrode active material 100, respectively. Five types of coin-type batteries were produced using the method.

又、負極活物質量を100とした場合のAB(アセチレンブラック)及び水の混合比率は、負極活物質100に対する結着剤の重量割合が1、2、20の場合は、AB10、水240とし、負極活物質100に対する結着剤の重量割合が40、50の場合は、AB10、水600とした。
(実施例3)
実施例3として、結着剤にポリアクリル酸(重量平均分子量300,000)を用い負極活物質100に対して、重量割合をそれぞれ2、40とし、実施例1と同様の製造方法を用いて2種類のコイン型電池を作製した。
The mixing ratio of AB (acetylene black) and water when the negative electrode active material amount is 100 is AB10 and water 240 when the weight ratio of the binder to the negative electrode active material 100 is 1, 2, and 20. When the weight ratio of the binder to the negative electrode active material 100 was 40 or 50, AB10 and water 600 were used.
(Example 3)
In Example 3, polyacrylic acid (weight average molecular weight 300,000) was used as the binder, the weight ratio was 2 and 40, respectively, with respect to the negative electrode active material 100, and two types using the same production method as in Example 1. A coin-type battery was manufactured.

又、負極活物質量を100とした場合のAB(アセチレンブラック)及び水の混合比率は、負極活物質100に対する結着剤の重量割合が2の場合は、AB10、水240とし、負極活物質100に対する結着剤の重量割合が40の場合は、活物質の重量100に対してAB10、水600とした。
(実施例4)
実施例4として、結着剤にポリアクリル酸(重量平均分子量3,000,000)を用い負極活物質100に対して、重量割合をそれぞれ、2、40とし、実施例1と同様の製造方法を用いて2種類のコイン型電池を作製した。
When the negative electrode active material amount is 100, the mixing ratio of AB (acetylene black) and water is AB10 and water 240 when the weight ratio of the binder to the negative electrode active material 100 is 2, and the negative electrode active material When the weight ratio of the binder to 100 was 40, AB10 and water 600 were used with respect to the active material weight of 100.
Example 4
In Example 4, polyacrylic acid (weight average molecular weight 3,000,000) was used as the binder, the weight ratios were 2 and 40, respectively, with respect to the negative electrode active material 100, and the same production method as in Example 1 was used. Various types of coin-type batteries were produced.

又、負極活物質量を100とした場合のAB(アセチレンブラック)及び水の混合比率は、負極活物質100に対する結着剤の重量割合が2の場合は、AB10、水240とし、負極活物質100に対する結着剤の重量割合が40の場合は、活物質の重量100に対してAB10、水600とした。
(比較例1)
比較例1として、結着剤として架橋型ポリアクリル酸を用いた実施例1と同様の製造方法でコイン型電池を作製した。尚、架橋型ポリアクリル酸は、3次元的にランダムに結合しているため、重量平均分子量は計測できない。
When the negative electrode active material amount is 100, the mixing ratio of AB (acetylene black) and water is AB10 and water 240 when the weight ratio of the binder to the negative electrode active material 100 is 2, and the negative electrode active material When the weight ratio of the binder to 100 was 40, AB10 and water 600 were used with respect to the active material weight of 100.
(Comparative Example 1)
As Comparative Example 1, a coin-type battery was manufactured by the same manufacturing method as Example 1 using cross-linked polyacrylic acid as a binder. In addition, since cross-linked polyacrylic acid is randomly bonded three-dimensionally, the weight average molecular weight cannot be measured.

上記実施例1で作製した8種類試験セル、及び比較例1において作製した試験セルを用いて、充放電ともに電流密度1.0mA/cm2の定電流で、0Vから1.0Vの電圧範囲で、50サイクル充放電を繰り返し、劣化率の試験を行った。 Using the eight types of test cells prepared in Example 1 and the test cell prepared in Comparative Example 1, 50 charges and discharges were performed at a constant current of 1.0 mA / cm 2 and a voltage range of 0 V to 1.0 V. The cycle charge / discharge was repeated, and the deterioration rate was tested.

以下の表1に、実施例1、及び比較例2において作製したコイン型電池の充放電を50サイクル行った時点での、1サイクルあたりの劣化率を示す。   Table 1 below shows the deterioration rate per cycle when 50 cycles of charging and discharging of the coin-type battery produced in Example 1 and Comparative Example 2 were performed.

Figure 0004672985
Figure 0004672985

又、図2は(表1)の結果を、分子量を横軸に劣化率を縦軸に示したグラフである。尚、分子量が4,000,000のものでは粘度が高すぎ、集電体に塗工することができず、電池を作製できなかった。   FIG. 2 is a graph showing the results of (Table 1), with the molecular weight on the horizontal axis and the deterioration rate on the vertical axis. When the molecular weight was 4,000,000, the viscosity was too high to be applied to the current collector, and a battery could not be produced.

ポリアクリル酸の分子量が3,000,000以下の場合、高分子量になるほど、負極板シートの強度を上げることが出来、充放電に伴う膨張収縮による集電の悪化を防ぐことができる。しかしながら、高分子量になるほどペーストが凝集を起こしやすく、経時変化が大きくなり劣化率が大きくなる。これは(表1)及び図2の結果において分子量1,000,000の場合の劣化率が0.08と最も小さく、分子量1,000,000より小さくても大きくても劣化率が大きくなっていることから明らかである。   When the molecular weight of polyacrylic acid is 3,000,000 or less, the higher the molecular weight, the higher the strength of the negative electrode plate sheet, and the prevention of current collection due to expansion / contraction due to charge / discharge. However, the higher the molecular weight, the more easily the paste is agglomerated, the change with time increases, and the deterioration rate increases. This is clear from the results shown in Table 1 and FIG. 2 in which the deterioration rate when the molecular weight is 1,000,000 is the smallest 0.08, and the deterioration rate is large whether the molecular weight is smaller or larger than 1,000,000.

又、図2のグラフから、分子量が5,000から300,000の間における分子量に対する劣化率の低下割合と、300,000から1,000,000の間における分子量に対する劣化率の低下割合では、明らかに5,000から300,000の方がより大きいことがわかる。すなわち、分子量が300,000より小さい場合と比較して分子量が300,000から3,000,000の場合、劣化率が大幅に改善される。そのため、架橋型でないポリアクリル酸の分子量は、300,000以上で3,000,000以下であれば好ましい。   Also, from the graph of FIG. 2, the rate of decrease of the deterioration rate with respect to the molecular weight when the molecular weight is between 5,000 and 300,000 and the rate of decrease of the deterioration rate with respect to the molecular weight between 300,000 and 1,000,000 are clearly greater than 5,000 to 300,000. I understand that. That is, when the molecular weight is 300,000 to 3,000,000, the deterioration rate is greatly improved as compared with the case where the molecular weight is smaller than 300,000. Therefore, the molecular weight of non-crosslinked polyacrylic acid is preferably 300,000 or more and 3,000,000 or less.

又、比較例1の結着剤として架橋型ポリアクリル酸を用いた場合、劣化率は0.1%となっている。なお、重量平均分子量が測定出来ないため、図2のグラフには点線で示している。架橋型でないポリアクリル酸を用いて、架橋型ポリアクリル酸と同等の剛性を持たせるためには、分子量が500,000以上で2,000,000以下であれば更に好ましい。
かかる構成によれば、充放電に伴う集電悪化を抑制することにより、優れたサイクル特性を得ることが出来る。
When cross-linked polyacrylic acid is used as the binder of Comparative Example 1, the deterioration rate is 0.1%. In addition, since a weight average molecular weight cannot be measured, it has shown with the dotted line in the graph of FIG. In order to use polyacrylic acid that is not cross-linked and to have rigidity equivalent to that of cross-linked polyacrylic acid, it is more preferable that the molecular weight is 500,000 or more and 2,000,000 or less.
According to such a configuration, excellent cycle characteristics can be obtained by suppressing the deterioration of current collection associated with charge and discharge.

また、図3は、実施例2〜4におけるリチウムイオン二次電池の負極板の結着剤であるポリアクリル酸(分子量1,000,000)の活物質100に対する重量割合と50サイクル時点での1サイクルあたりの劣化率を示す。   Further, FIG. 3 shows the weight ratio of polyacrylic acid (molecular weight 1,000,000), which is the binder of the negative electrode plate of the lithium ion secondary battery in Examples 2 to 4, to the active material 100 and per cycle at 50 cycles. Indicates the deterioration rate.

活物質に対する結着剤の重量割合が1%では樹脂量が少なすぎ、充放電に伴う集電悪化が大きく、優れたサイクル特性を得ることが出来なかった。また活物質の重量100に対する結着剤の重量が50の場合は、ペーストの粘度が高すぎ、銅箔表面に塗工することが出来なかった。   When the weight ratio of the binder to the active material was 1%, the amount of the resin was too small and the current collection caused by charging / discharging was great, and excellent cycle characteristics could not be obtained. In addition, when the weight of the binder was 50 with respect to the weight of the active material 100, the viscosity of the paste was too high to be applied to the copper foil surface.

従って、結着剤に用いるポリアクリル酸の、活物質の重量100に対する結着剤の重量割合は、2以上、40以下であることが好ましい。   Accordingly, the weight ratio of the polyacrylic acid used for the binder to the weight of the active material of 100 is preferably 2 or more and 40 or less.

本発明のリチウムイオン二次電池は、架橋型でないポリアクリル酸を用い、架橋型ポリアクリル酸を用いてないため取り扱いしやすく、製造工程においてコストも安価になり、優れた長期サイクル特性を有することが出来る。   The lithium ion secondary battery of the present invention uses non-crosslinked polyacrylic acid, and is easy to handle because it does not use crosslinked polyacrylic acid, has a low cost in the manufacturing process, and has excellent long-term cycle characteristics. I can do it.

本発明にかかるリチウムイオン二次電池は、取り扱いのより簡易な結着剤を用い、且つ劣化率の低い効果を有し、携帯機器等の二次電池として有用である。   The lithium ion secondary battery according to the present invention uses a binder that is easier to handle and has an effect of a low deterioration rate, and is useful as a secondary battery for portable devices and the like.

本発明にかかる実施の形態1におけるリチウムイオン二次電池の断面図Sectional drawing of the lithium ion secondary battery in Embodiment 1 concerning this invention 本発明にかかる実施例1、及び比較例1におけるリチウムイオン二次電池の1サイクルあたりの劣化率のグラフを示す図The figure which shows the graph of the deterioration rate per cycle of the lithium ion secondary battery in Example 1 and the comparative example 1 concerning this invention. 本発明にかかる実施例2、実施例3及び実施例4におけるリチウムイオン二次電池の1サイクルあたりの劣化率のグラフを示す図The figure which shows the graph of the deterioration rate per cycle of the lithium ion secondary battery in Example 2, Example 3 and Example 4 concerning this invention.

符号の説明Explanation of symbols

1 封口板
2 リチウム箔
3 集電体
4 セパレータ
5 ケース
6 試験極
7 集電板
8 ガスケット
DESCRIPTION OF SYMBOLS 1 Sealing plate 2 Lithium foil 3 Current collector 4 Separator 5 Case 6 Test electrode 7 Current collector plate 8 Gasket

Claims (1)

正極と、
Li―Si合金を含む負極活物質と、架橋型でないポリアクリル酸を含む結着剤とを有する負極と、
非水電解質とを備え、
前記架橋型でないポリアクリル酸の重量平均分子量は、300,000以上、3,000,000以下である、リチウムイオン二次電池。
A positive electrode;
A negative electrode having a negative electrode active material containing a Li-Si alloy and a binder containing polyacrylic acid which is not cross-linked,
With non-aqueous electrolyte,
The lithium ion secondary battery in which the weight average molecular weight of the non-crosslinked polyacrylic acid is 300,000 or more and 3,000,000 or less.
JP2004017935A 2004-01-27 2004-01-27 Lithium ion secondary battery Expired - Lifetime JP4672985B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004017935A JP4672985B2 (en) 2004-01-27 2004-01-27 Lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004017935A JP4672985B2 (en) 2004-01-27 2004-01-27 Lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2005216502A JP2005216502A (en) 2005-08-11
JP4672985B2 true JP4672985B2 (en) 2011-04-20

Family

ID=34902587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004017935A Expired - Lifetime JP4672985B2 (en) 2004-01-27 2004-01-27 Lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP4672985B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160102407A (en) 2013-12-26 2016-08-30 제온 코포레이션 Slurry composition for negative electrodes of lithium ion secondary batteries, negative electrode for lithium ion secondary batteries, and lithium ion secondary battery
US11024837B2 (en) 2016-08-09 2021-06-01 Panasonic Intellectual Property Management Co., Ltd. Nonaqueous electrolyte secondary battery

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4876468B2 (en) * 2005-07-27 2012-02-15 パナソニック株式会社 Nonaqueous electrolyte secondary battery
JP2007115671A (en) * 2005-09-22 2007-05-10 Matsushita Electric Ind Co Ltd Negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery using it
CN100431204C (en) * 2005-09-22 2008-11-05 松下电器产业株式会社 Negative electrode for lithium ion secondary battery and lithium ion secondary battery prepared by using the same
US7875388B2 (en) 2007-02-06 2011-01-25 3M Innovative Properties Company Electrodes including polyacrylate binders and methods of making and using the same
FR2965108B1 (en) * 2010-09-22 2020-02-28 Commissariat A L'energie Atomique Et Aux Energies Alternatives ELECTRODE CURRENT COLLECTOR FOR LITHIUM BATTERIES
CN108574101B (en) 2017-02-28 2022-02-08 荒川化学工业株式会社 Binder aqueous solution for lithium ion battery, slurry, electrode, separator/electrode laminate, and lithium ion battery
CN108574102B (en) 2017-02-28 2022-05-27 荒川化学工业株式会社 Binder aqueous solution for lithium ion battery, slurry, electrode, separator/electrode laminate, and lithium ion battery

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001283859A (en) * 2000-03-31 2001-10-12 Nippon Zeon Co Ltd Binder for electrode of lithium-ion secondary battery and its use
JP2002117860A (en) * 2000-10-11 2002-04-19 Matsushita Electric Ind Co Ltd Electrode and lithium secondary battery
JP2002260736A (en) * 2000-12-27 2002-09-13 Mitsubishi Chemicals Corp Lithium secondary battery
JP2003003031A (en) * 2001-06-25 2003-01-08 Hitachi Chem Co Ltd Carboxy group-containing resin composition, and battery binder resin composition, electrode and battery using the same
JP2003123842A (en) * 2001-10-19 2003-04-25 Shirouma Science Co Ltd Polymer gel electrolyte component and manufacturing method of the same
JP2004214182A (en) * 2002-12-17 2004-07-29 Mitsubishi Chemicals Corp Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
JP2004247119A (en) * 2003-02-13 2004-09-02 Sii Micro Parts Ltd Nonaqueous electrolyte secondary battery
JP2005183632A (en) * 2003-12-18 2005-07-07 Mitsubishi Chemicals Corp Electrochemical device and electric double layer capacitor or battery using the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001283859A (en) * 2000-03-31 2001-10-12 Nippon Zeon Co Ltd Binder for electrode of lithium-ion secondary battery and its use
JP2002117860A (en) * 2000-10-11 2002-04-19 Matsushita Electric Ind Co Ltd Electrode and lithium secondary battery
JP2002260736A (en) * 2000-12-27 2002-09-13 Mitsubishi Chemicals Corp Lithium secondary battery
JP2003003031A (en) * 2001-06-25 2003-01-08 Hitachi Chem Co Ltd Carboxy group-containing resin composition, and battery binder resin composition, electrode and battery using the same
JP2003123842A (en) * 2001-10-19 2003-04-25 Shirouma Science Co Ltd Polymer gel electrolyte component and manufacturing method of the same
JP2004214182A (en) * 2002-12-17 2004-07-29 Mitsubishi Chemicals Corp Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
JP2004247119A (en) * 2003-02-13 2004-09-02 Sii Micro Parts Ltd Nonaqueous electrolyte secondary battery
JP2005183632A (en) * 2003-12-18 2005-07-07 Mitsubishi Chemicals Corp Electrochemical device and electric double layer capacitor or battery using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160102407A (en) 2013-12-26 2016-08-30 제온 코포레이션 Slurry composition for negative electrodes of lithium ion secondary batteries, negative electrode for lithium ion secondary batteries, and lithium ion secondary battery
US11024837B2 (en) 2016-08-09 2021-06-01 Panasonic Intellectual Property Management Co., Ltd. Nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP2005216502A (en) 2005-08-11

Similar Documents

Publication Publication Date Title
CN106797022B (en) Potassium ion secondary battery or potassium ion capacitor
JP5206758B2 (en) Negative electrode material, metal secondary battery, and negative electrode material manufacturing method
KR101546251B1 (en) Electrolyte for electrochemical device and the electrochemical device thereof
CN112582596B (en) Secondary battery, battery module, battery pack and device containing same
JP2006216277A (en) Method of manufacturing electrode material for lithium secondary battery, electrode structure, and secondary battery
JPWO2013076996A1 (en) Negative electrode for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
JP4088755B2 (en) Nonaqueous electrolyte secondary battery
WO2005078849A1 (en) Electrochemical device
JP4672985B2 (en) Lithium ion secondary battery
JP6047086B2 (en) Sodium secondary battery
CN104781967A (en) Active material particles, positive electrode for capacitor device, and manufacturing method for capacitor device and active material particles
JPWO2018163485A1 (en) Alkaline battery
JP2002056896A (en) Nonaqueous electrolyte battery
JP2015115283A (en) Sodium secondary battery, and method for manufacturing positive electrode material used therefor
JP2003331838A (en) Lithium secondary battery
JP2014220115A (en) Sodium secondary battery
JP6273868B2 (en) Negative electrode active material for power storage device and method for producing the same
JP2000294294A (en) Nonaqueous electrolyte secondary battery
JP2005327489A (en) Positive electrode for power storage element
WO2014006973A1 (en) Electrode for electricity storage devices, electricity storage device using same, and method for producing same
JP2007087796A (en) Lithium ion secondary battery
JP2014056663A (en) Sodium secondary battery
CN113161603A (en) Novel potassium ion battery and preparation method thereof
JP2003317695A (en) Nonaqueous electrolyte lithium ion cell and separator there for
JP2016178051A (en) Lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100203

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110120

R150 Certificate of patent or registration of utility model

Ref document number: 4672985

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3