JP4669714B2 - Antibacterial treatment method for porous member and antibacterial filter - Google Patents

Antibacterial treatment method for porous member and antibacterial filter Download PDF

Info

Publication number
JP4669714B2
JP4669714B2 JP2005042856A JP2005042856A JP4669714B2 JP 4669714 B2 JP4669714 B2 JP 4669714B2 JP 2005042856 A JP2005042856 A JP 2005042856A JP 2005042856 A JP2005042856 A JP 2005042856A JP 4669714 B2 JP4669714 B2 JP 4669714B2
Authority
JP
Japan
Prior art keywords
porous member
antibacterial
vapor deposition
deposition polymerization
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005042856A
Other languages
Japanese (ja)
Other versions
JP2006224033A (en
Inventor
善和 高橋
鋼 入倉
吉夫 長谷川
一寿 高橋
卓人 池野
良夫 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2005042856A priority Critical patent/JP4669714B2/en
Publication of JP2006224033A publication Critical patent/JP2006224033A/en
Application granted granted Critical
Publication of JP4669714B2 publication Critical patent/JP4669714B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、居住空間や移動空間である車両・航空機などで用いられる空気調和機や空気清浄機等で用いられる抗菌性フィルター及び多孔質部材の抗菌処理方法に関するものである。   The present invention relates to an antibacterial filter used in an air conditioner or an air purifier used in a vehicle or aircraft that is a living space or a moving space, and an antibacterial treatment method for a porous member.

衛生管理の面から、身の回りの物に抗菌性を付与する技術が注目されている。最近では、居住空間や車室内の空気調和機、空気清浄機や掃除機等の空気が内部を通過する機器についても、抗菌性が求められつつある。   From the aspect of hygiene management, a technology that gives antibacterial properties to objects around us has been attracting attention. Recently, antibacterial properties are also being demanded for devices through which air passes, such as air conditioners in living spaces and vehicle interiors, air purifiers and vacuum cleaners.

上記列挙した機器は、一般的に内部にフィルターを備え、空気とともに取り込んだ塵埃や菌を少なからず捕獲する構造を有している。捕獲した塵埃は、菌が増殖の温床となるが、フィルターの初期、或いは、定期メンテナンス後初期における抗菌性の度合いに、菌増殖の程度が大きく影響を受ける。
このようなフィルターは、耐久性を考慮して、プラスチックや金属、セラミックス等が材料とされる場合が多い。
The above-listed devices generally include a filter inside, and have a structure for capturing a considerable amount of dust and bacteria taken together with air. The trapped dust becomes a hotbed for growth of bacteria, but the degree of bacterial growth is greatly affected by the degree of antibacterial properties at the initial stage of the filter or at the initial stage after regular maintenance.
Such a filter is often made of plastic, metal, ceramics or the like in consideration of durability.

プラスチックからフィルターを製造して抗菌性を付与する方法としては、ポリエチレン、ポリスチレン、塩化ビニル、ポリプロピレン等のプラスチックを加熱溶融し、5〜30%の濃度で抗菌剤を含有したプラスチックペレットであるマスターバッチを添加することにより、抗菌剤を練り込む方法が一般に行われている。尚、この方法の場合、最終製品への抗菌剤の添加量は0.3〜2%程度となる。前記プラスチックには、その種類や加工方法により若干の差があるものの通常は250〜300℃以上の耐熱性が要求され、また、抗菌剤には、この温度において、抗菌剤成分の揮発、分解、含有水分の放出等による抗菌剤の重量変化、抗菌効果の低下や変色等を生じないことが必要とされるため、プラスチックや抗菌剤の材料の選定に制限が生じるという問題があった。   As a method for producing antibacterial properties by producing a filter from plastic, a masterbatch that is a plastic pellet containing an antibacterial agent at a concentration of 5 to 30% by heating and melting a plastic such as polyethylene, polystyrene, vinyl chloride, or polypropylene. In general, a method of kneading an antibacterial agent by adding the above is generally performed. In this method, the amount of antibacterial agent added to the final product is about 0.3 to 2%. The plastics are required to have a heat resistance of 250 to 300 ° C. or more, although there are some differences depending on the type and processing method. In addition, antibacterial agents volatilize, decompose, decompose, There is a problem that the selection of the material of the plastic or the antibacterial agent is limited because it is necessary to prevent the weight change of the antibacterial agent due to the release of the contained moisture, the decrease in the antibacterial effect, and the discoloration.

一方、金属やセラミックスへ抗菌性を付与する方法としては、予め成形した部材表面に貼着剤により抗菌剤を塗布したプラスチックフィルムを貼着する方法が一般に行われている(例えば、特許文献1参照)。
しかしながら、部材の形状が複雑である場合には、部材表面の全面に抗菌性を付与することは困難であるという問題があった(特許文献2参照)。
On the other hand, as a method for imparting antibacterial properties to metals and ceramics, a method of sticking a plastic film in which an antibacterial agent is applied to a previously molded member surface with an adhesive is generally performed (see, for example, Patent Document 1). ).
However, when the shape of the member is complicated, there is a problem that it is difficult to impart antibacterial properties to the entire surface of the member (see Patent Document 2).

特開平7−80957号公報Japanese Patent Laid-Open No. 7-80957 特開平10−100311号公報Japanese Patent Laid-Open No. 10-10031

本発明は、前記従来技術の問題点を解消し、抗菌性を付与する対象となる部材表面全面に、いわゆる抗菌剤を用いることなく抗菌性を付与することを目的とする。   An object of the present invention is to solve the problems of the prior art and to impart antibacterial properties to the entire surface of a member to be imparted with antibacterial properties without using a so-called antibacterial agent.

本発明者等は前記課題を解決するべく鋭意検討の結果、次の通り解決手段を見いだした。
即ち、本発明の多孔質部材の抗菌処理方法は、請求項1に記載の通り、多孔質部材の表面に蒸着重合法によりナイロン、ポリエチレン、ポリエチレンテレフタレート及びポリイミドの内の何れかの合成樹脂被膜を形成後、抗菌性を得るためにオゾン処理することにより前記多孔質部材に抗菌性を付与することを特徴とする。
また、請求項2に記載の本発明は、請求項1に記載の多孔質部材の抗菌処理方法において、前記多孔質部材がセラミックスであることを特徴とする。
また、本発明の抗菌性フィルターは、請求項3に記載の通り、多孔質部材の表面に蒸着重合法によりナイロン、ポリエチレン、ポリエチレンテレフタレート及びポリイミドの内の何れかの合成樹脂被膜を形成後、抗菌性を得るためにオゾン処理することにより、前記多孔質部材に抗菌性が付与されたことを特徴とする。
また、請求項4に記載の本発明は、請求項3に記載の抗菌性フィルターにおいて、前記部材がセラミックスであることを特徴とする。
As a result of intensive studies to solve the above problems, the present inventors have found a solution means as follows.
That is, according to the antibacterial treatment method for a porous member of the present invention, the synthetic resin coating of any one of nylon, polyethylene, polyethylene terephthalate and polyimide is formed on the surface of the porous member by vapor deposition polymerization as described in claim 1. After formation, the porous member is imparted with antibacterial properties by ozone treatment to obtain antibacterial properties.
The present invention according to claim 2 is characterized in that, in the antibacterial treatment method for a porous member according to claim 1, the porous member is ceramic.
In addition, the antibacterial filter of the present invention is the antibacterial filter after forming a synthetic resin film of nylon, polyethylene, polyethylene terephthalate and polyimide on the surface of the porous member by vapor deposition polymerization method as described in claim 3. Antibacterial properties are imparted to the porous member by performing ozone treatment in order to obtain properties.
According to a fourth aspect of the present invention, in the antibacterial filter according to the third aspect, the member is a ceramic.

本発明の方法によれば、蒸着重合法により合成樹脂被膜を形成して抗菌性を付与するため、多孔質部材を構成する材料について制限されることなく、しかも、短時間で多孔質部材の孔表面に均一に抗菌性を付与することができる。また、多孔質部材として、セラミックスを選定した場合には、セラミックス粒子の欠落を防止することができる。
また、本発明のフィルターによれば、多孔質部材の孔表面に均一に抗菌性が付与されているため、抗菌性がフィルターの一部のみが低下するということがない。
According to the method of the present invention, since a synthetic resin film is formed by vapor deposition polymerization to impart antibacterial properties, the material constituting the porous member is not limited, and the pores of the porous member can be formed in a short time. Antibacterial properties can be imparted uniformly to the surface. Further, when ceramics is selected as the porous member, it is possible to prevent the ceramic particles from being lost.
Moreover, according to the filter of the present invention, since the antibacterial property is uniformly imparted to the pore surface of the porous member, the antibacterial property does not decrease only a part of the filter.

本発明の抗菌処理方法は、まず、多孔質部材の表面に蒸着重合法により合成樹脂被膜を形成する。
前記多孔質部材としては、窒化アルミニウム、窒化硅素などのセラミックスや、ガラス、カーボン、金属、プラスチック等を使用することができ、この中でもセラミックスを使用することが好ましい。
また、前記多孔質部材の最小気孔径は3μm以上とすることが好ましい。形成されたポリイミド被膜の膜厚が1μmの場合でも気体流路が確保されるからである。また、前記多孔質部材の最大気孔径は4mmとすることが好ましい。
また、前記多孔質部材の気孔径は、多孔質部材に形成された流路の構造が、多孔質部材の表面側から裏面側に直線的に貫通するような構造の場合には、5μm〜100μmとすることが好ましく、多孔質部材の内部において三次元網目構造の場合には、100μm〜2.5mmとすることが好ましい。
また、前記多孔質部材の気孔率は、10%〜90%の範囲内で選択することができるが、機械的強度の観点からすると30%〜80%の範囲内で選択することが好ましい。
前記合成樹脂被膜は、ナイロン、ポリエチレン、ポリエチレンテレフタレート、ポリイミド等を使用することができる。
前記ポリイミド被膜の蒸着重合法については、原料モノマー、蒸着条件など、従来のポリイミドの蒸着重合と特に変わるところはなく、原料モノマーとして、例えば、無水ピロメリト酸(PMDA)と、4,4'−オキシジアニリン(ODA)の組み合わせ、或いは、PMDAと3,5’−ジアミノ安息香酸(DBA)の組み合わせ等特に限定されるものではない。
前記合成樹脂被膜の厚みは、1μm以上とすることが好ましい。1μm未満であると、抗菌性能が不足するからである。
In the antibacterial treatment method of the present invention, a synthetic resin film is first formed on the surface of a porous member by vapor deposition polymerization.
As the porous member, ceramics such as aluminum nitride and silicon nitride, glass, carbon, metal, plastic, and the like can be used, and among these, ceramic is preferable.
The minimum pore diameter of the porous member is preferably 3 μm or more. This is because even when the film thickness of the formed polyimide coating is 1 μm, a gas flow path is secured. The maximum pore diameter of the porous member is preferably 4 mm.
The pore diameter of the porous member is 5 μm to 100 μm in the case where the flow path structure formed in the porous member linearly penetrates from the front surface side to the back surface side of the porous member. In the case of a three-dimensional network structure inside the porous member, the thickness is preferably 100 μm to 2.5 mm.
The porosity of the porous member can be selected within a range of 10% to 90%, but is preferably selected within a range of 30% to 80% from the viewpoint of mechanical strength.
For the synthetic resin film, nylon, polyethylene, polyethylene terephthalate, polyimide, or the like can be used.
The polyimide film vapor deposition polymerization method is not particularly different from conventional polyimide vapor deposition polymerization in terms of raw material monomers and vapor deposition conditions. Examples of raw material monomers include pyromellitic anhydride (PMDA) and 4,4′-oxy. There is no particular limitation such as a combination of dianiline (ODA) or a combination of PMDA and 3,5′-diaminobenzoic acid (DBA).
The thickness of the synthetic resin film is preferably 1 μm or more. It is because antibacterial performance is insufficient when it is less than 1 μm.

上記の多孔質部材の表面に形成された合成樹脂被膜は、次にオゾン処理され、抗菌性が得られることになる。
前記オゾン処理に関しては、前記合成樹脂被膜をオゾン雰囲気と接触させることができれば特に温度や時間等の条件については制限はなく、一例として、合成樹脂被膜が形成された多孔質部材を200〜250℃の範囲で加熱して、オゾンに10分程度接触させるようにすればよい。
The synthetic resin film formed on the surface of the porous member is then treated with ozone to obtain antibacterial properties.
With respect to the ozone treatment, there are no particular restrictions on conditions such as temperature and time as long as the synthetic resin film can be brought into contact with an ozone atmosphere. As an example, the porous member on which the synthetic resin film is formed is 200 to 250 ° C. It is sufficient to heat within a range of 10 to contact with ozone for about 10 minutes.

上記方法により、処理された多孔質部材は、空気調和機や空気清浄機等の機器の通風路に配置することにより、抗菌性を有するフィルターとして機能することになる。   The porous member treated by the above method functions as a filter having antibacterial properties by being disposed in a ventilation path of a device such as an air conditioner or an air purifier.

(実施例1)
次に、本発明の実施例について図面を参照して説明する。
図1は、蒸着重合対象物に対して、ポリイミド被膜を形成するための蒸着重合装置の略断面図である。
蒸着重合装置1には、図示しないガス導入バルブを介してモノマーガスを導入する一対の第1ガス導入口2及び第2ガス導入口3と、図示しない油拡散ポンプに連通する排気バルブを介して排気作動を行うための真空排気口4とが設けられている。また、蒸着重合装置1の内部には、蒸着重合対象物として直方体形状の多孔質部材(セラミックス)5が配置されている。この多孔質部材5は、蒸着重合装置1の天井部1aから必要な張力に充分耐えうる索条6により懸吊される等して、いずれの面も遮蔽されることなく装置1内に露出されるようになっている。また、蒸着重合装置1は、内部の温度を制御できる温度制御手段7が設置されており、蒸着重合反応に必要な熱を供給できるように構成されている。そして、蒸着重合対象物たる多孔質部材5の表面は、上記した温度制御手段7により加熱された装置1の内壁から輻射熱で全体が均等に加熱される。
このように構成された蒸着重合装置1を用い、その内部に多孔質部材5を配置した状態で、最初に真空排気口4に連なる図示しない排気バルブにより真空排気を作動させて装置1の内部圧力を10-2Paに減圧し、この圧力状態を保ちながら温度制御手段7により、その内部を200℃に加熱してこの状態を保持する。そして、予め温度制御手段9により、208℃に加熱した容器8内の気体状態のピロメリト酸二無水物(PMDA)を第1ガス導入口2から、また、予め温度制御手段11により190℃に加熱した容器10内の気体状態の4,4'−ジアミノジフェニルエーテル(ODA)を第2ガス導入口3から同時に導入して、この状態で、多孔質部材5の表面で蒸着重合反応を30分に亘って進行させ、多孔質部材5の表面全体に6μmの膜厚のポリイミド膜を被覆した。
次に、蒸着重合装置1の温度を上げることにより該ポリイミド膜被覆多孔質部材5を、300℃まで上昇させて1時間保持した後、温度制御を停止し、真空排気した。自然冷却によりポリイミド膜被覆多孔質部材5の温度が200〜250℃に下がったところで、バルブ12を介して酸素を流量20L/minでオゾン発生器を通して蒸着重合装置1に流入させた。前記酸素は、酸素流入により蒸着重合装置1が大気圧になったところで、図示しないが真空排気系のリークバルブを開放して流出する酸素及びオゾンを、オゾン分解器を介して大気に放出している。この状態で10分間経過後、オゾンを除去し該ポリイミド膜被覆多孔質部材5を取り出し、大気中に1週間放置した。
Example 1
Next, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic cross-sectional view of a vapor deposition polymerization apparatus for forming a polyimide film on a vapor deposition polymerization object.
The vapor deposition polymerization apparatus 1 includes a pair of first gas inlet 2 and second gas inlet 3 for introducing a monomer gas via a gas inlet valve (not shown), and an exhaust valve connected to an oil diffusion pump (not shown). A vacuum exhaust port 4 for performing an exhaust operation is provided. In addition, a rectangular parallelepiped porous member (ceramics) 5 is disposed inside the vapor deposition polymerization apparatus 1 as a vapor deposition polymerization object. This porous member 5 is exposed to the inside of the apparatus 1 without being shielded, for example, by being suspended from the ceiling portion 1a of the vapor deposition polymerization apparatus 1 by a rope 6 that can sufficiently withstand the necessary tension. It has become so. Moreover, the vapor deposition polymerization apparatus 1 is provided with a temperature control means 7 capable of controlling the internal temperature, and is configured to supply heat necessary for the vapor deposition polymerization reaction. And the whole surface of the porous member 5 which is a vapor deposition polymerization object is uniformly heated by the radiant heat from the inner wall of the apparatus 1 heated by the temperature control means 7 mentioned above.
Using the vapor deposition polymerization apparatus 1 configured as described above, with the porous member 5 disposed therein, first, the vacuum exhaust is operated by an exhaust valve (not shown) connected to the vacuum exhaust port 4 to thereby operate the internal pressure of the apparatus 1. The pressure is reduced to 10 −2 Pa, and while maintaining this pressure state, the temperature control means 7 heats the inside to 200 ° C. and maintains this state. Then, pyromellitic dianhydride (PMDA) in a gaseous state in the container 8 heated to 208 ° C. by the temperature control means 9 in advance is heated from the first gas inlet 2 to 190 ° C. by the temperature control means 11 in advance. 4,4′-diaminodiphenyl ether (ODA) in a gaseous state in the vessel 10 is simultaneously introduced from the second gas inlet 3, and in this state, the vapor deposition polymerization reaction is performed on the surface of the porous member 5 for 30 minutes. The polyimide member having a thickness of 6 μm was coated on the entire surface of the porous member 5.
Next, after raising the temperature of the vapor deposition polymerization apparatus 1, the polyimide film-covered porous member 5 was raised to 300 ° C. and held for 1 hour, and then temperature control was stopped and evacuated. When the temperature of the polyimide film-coated porous member 5 was lowered to 200 to 250 ° C. by natural cooling, oxygen was allowed to flow into the vapor deposition polymerization apparatus 1 through the valve 12 through the ozone generator at a flow rate of 20 L / min. When the vapor deposition polymerization apparatus 1 has become atmospheric pressure due to oxygen inflow, the oxygen and ozone flowing out by opening the leak valve of the vacuum exhaust system are released into the atmosphere through an ozone decomposer, although not shown. Yes. After 10 minutes in this state, ozone was removed and the polyimide film-covered porous member 5 was taken out and left in the atmosphere for 1 week.

次に、上記ポリイミド膜被覆多孔質部材5の抗菌性を確かめるために、上記処理が施されていない多孔質部材(セラミックス)を比較例1として、JIS Z 2801に従った試験方法で抗菌性の試験を行った。   Next, in order to confirm the antibacterial property of the polyimide film-covered porous member 5, a porous member (ceramics) that has not been subjected to the above treatment is set as Comparative Example 1, and the antibacterial property is tested by a test method according to JIS Z 2801. A test was conducted.

(実施例2)
上記実施例1と同様に蒸着重合法により、ポリエチレンテレフタレート被覆被膜が形成された多孔質部材を、加熱炉内で100℃に加熱し、酸素を流量20L/minでオゾン発生器を通し、この状態を20分間保持し、オゾンを除去し、ポリエチレンテレフタレート被覆被膜が形成された多孔質部材を取り出し、大気中に1週間放置した。
そして、実施例1及び比較例1同様に、JIS Z 2801に従った試験方法で抗菌性の試験を行った。
上記試験の結果を下記表1に示す。
(Example 2)
The porous member on which the polyethylene terephthalate coating film was formed by vapor deposition polymerization as in Example 1 was heated to 100 ° C. in a heating furnace, and oxygen was passed through an ozone generator at a flow rate of 20 L / min. Was kept for 20 minutes to remove ozone, and the porous member on which the polyethylene terephthalate coating film was formed was taken out and left in the atmosphere for one week.
Then, as in Example 1 and Comparative Example 1, antibacterial properties were tested by a test method according to JIS Z 2801.
The results of the above test are shown in Table 1 below.

Figure 0004669714
Figure 0004669714

表1から、実施例1及び2の処理がされた多孔質部材は、黄色ブドウ球菌、大腸菌、肺炎かん菌、緑膿菌、O−157、枯草菌、セラチア及びMRSAのいずれに対しても、抗菌性に優れることがわかった。これらの菌の中でも、黄色ブドウ球菌、大腸菌、肺炎かん菌、緑膿菌、O−157及びMRSAに対しては、抗菌活性値が4以上であり、これらの菌に対する抗菌性がより優れていることがわかった。   From Table 1, the porous member treated in Examples 1 and 2 is S. aureus, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, O-157, Bacillus subtilis, Serratia and MRSA. It was found to be excellent in antibacterial properties. Among these bacteria, the antibacterial activity value is 4 or more against S. aureus, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, O-157 and MRSA, and the antibacterial properties against these bacteria are more excellent. I understood it.

本発明の抗菌処理方法は、居住空間や自動車に使用される合成樹脂部材等に広く利用することができ、また、本発明の抗菌性フィルターは、空気調和機、空気清浄機や掃除機等の空気が内部を通過する機器に広く利用することができる。   The antibacterial treatment method of the present invention can be widely used for synthetic resin members used in living spaces and automobiles, and the antibacterial filter of the present invention is used in air conditioners, air purifiers, vacuum cleaners, etc. It can be widely used for devices through which air passes.

本発明の抗菌処理方法に使用される装置の説明図Explanatory drawing of the apparatus used for the antibacterial treatment method of this invention

符号の説明Explanation of symbols

1 蒸着重合装置
2,3 ガス導入口
4 真空排気口
5 多孔質部材
6 索条
7 温度制御手段
8 容器
9 温度制御手段
10 容器
11 温度制御手段
DESCRIPTION OF SYMBOLS 1 Deposition polymerization apparatus 2,3 Gas introduction port 4 Vacuum exhaust port 5 Porous member 6 Strip 7 Temperature control means 8 Container 9 Temperature control means 10 Container 11 Temperature control means

Claims (4)

多孔質部材の表面に蒸着重合法によりナイロン、ポリエチレン、ポリエチレンテレフタレート及びポリイミドの内の何れかの合成樹脂被膜を形成後、抗菌性を得るためにオゾン処理することにより前記多孔質部材に抗菌性を付与することを特徴とする多孔質部材の抗菌処理方法。 After forming a synthetic resin film of nylon, polyethylene, polyethylene terephthalate or polyimide on the surface of the porous member by vapor deposition polymerization method , the porous member is made antibacterial by ozone treatment to obtain antibacterial properties. An antibacterial treatment method for a porous member, characterized by comprising: 前記多孔質部材がセラミックスであることを特徴とする請求項1に記載の多孔質部材の抗菌処理方法。   The method according to claim 1, wherein the porous member is ceramic. 多孔質部材の表面に蒸着重合法によりナイロン、ポリエチレン、ポリエチレンテレフタレート及びポリイミドの内の何れかの合成樹脂被膜を形成後、抗菌性を得るためにオゾン処理することにより、前記多孔質部材に抗菌性が付与されたことを特徴とする抗菌性フィルター。 After forming a synthetic resin film of nylon, polyethylene, polyethylene terephthalate and polyimide on the surface of the porous member by vapor deposition polymerization, it is antibacterial to the porous member by treating with ozone to obtain antibacterial properties. An antibacterial filter characterized by being provided with 前記多孔質部材がセラミックスであることを特徴とする請求項3に記載の抗菌性フィルター。   The antibacterial filter according to claim 3, wherein the porous member is ceramic.
JP2005042856A 2005-02-18 2005-02-18 Antibacterial treatment method for porous member and antibacterial filter Active JP4669714B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005042856A JP4669714B2 (en) 2005-02-18 2005-02-18 Antibacterial treatment method for porous member and antibacterial filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005042856A JP4669714B2 (en) 2005-02-18 2005-02-18 Antibacterial treatment method for porous member and antibacterial filter

Publications (2)

Publication Number Publication Date
JP2006224033A JP2006224033A (en) 2006-08-31
JP4669714B2 true JP4669714B2 (en) 2011-04-13

Family

ID=36985851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005042856A Active JP4669714B2 (en) 2005-02-18 2005-02-18 Antibacterial treatment method for porous member and antibacterial filter

Country Status (1)

Country Link
JP (1) JP4669714B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5936879B2 (en) * 2012-02-29 2016-06-22 公益財団法人かずさDna研究所 Antibacterial treatment method of culture plate

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0827303A (en) * 1994-07-19 1996-01-30 Idemitsu Kosan Co Ltd Porous material and production thereof
JP2002292768A (en) * 2001-03-29 2002-10-09 Kurashiki Seni Kako Kk Honeycomb structure
JP2004115777A (en) * 2002-09-06 2004-04-15 Ulvac Japan Ltd Antibacterial polymer and its production method, antibacterial polymer coating film and its making method, and article having the coating film on its surface
JP2004350935A (en) * 2003-05-29 2004-12-16 Jigyo Sozo Kenkyusho:Kk Filter
JP2005213310A (en) * 2004-01-28 2005-08-11 Ulvac Japan Ltd Method for hydrophilizing surface of polyimide membrane
JP2007528451A (en) * 2004-02-02 2007-10-11 ナノシス・インク. Porous substrates, articles, systems and compositions containing nanofibers and methods for their use and production

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0827303A (en) * 1994-07-19 1996-01-30 Idemitsu Kosan Co Ltd Porous material and production thereof
JP2002292768A (en) * 2001-03-29 2002-10-09 Kurashiki Seni Kako Kk Honeycomb structure
JP2004115777A (en) * 2002-09-06 2004-04-15 Ulvac Japan Ltd Antibacterial polymer and its production method, antibacterial polymer coating film and its making method, and article having the coating film on its surface
JP2004350935A (en) * 2003-05-29 2004-12-16 Jigyo Sozo Kenkyusho:Kk Filter
JP2005213310A (en) * 2004-01-28 2005-08-11 Ulvac Japan Ltd Method for hydrophilizing surface of polyimide membrane
JP2007528451A (en) * 2004-02-02 2007-10-11 ナノシス・インク. Porous substrates, articles, systems and compositions containing nanofibers and methods for their use and production

Also Published As

Publication number Publication date
JP2006224033A (en) 2006-08-31

Similar Documents

Publication Publication Date Title
US6228502B1 (en) Material having titanium dioxide crystalline orientation film and method for producing the same
JP2021183902A (en) Clean rooms having dilute hydrogen peroxide (dhp) gas and methods of use thereof
WO2019022588A2 (en) Antimicrobial agent comprising mof and antimicrobial filter comprising same
US20060067854A1 (en) Air revitalization methods and systems
JP4669714B2 (en) Antibacterial treatment method for porous member and antibacterial filter
KR101609221B1 (en) Antibiotic filter having of copper based compound
KR20190013629A (en) Antimicrobial agent coomprising MOF and antimicrobial filter coomprising the same
CN103357057A (en) Internal air purification method and internal air purification system of railway carriage
WO2019156118A1 (en) Antibacterial porous material, antibacterial product containing this, and antibacterial method using this
JP6889569B2 (en) Organic gas reduction device
TWI727552B (en) Selectively permeable polymeric membrane
JP7232916B2 (en) Disinfection method and disinfection device
JP2006212193A (en) Fumigating chamber and apparatus, and removal method of fumigation gas
CN102278792A (en) Air filtering device of refrigeration storage matched with freeze drying equipment in aseptic workshop
JP5936879B2 (en) Antibacterial treatment method of culture plate
JP2004077002A (en) Air conditioner
JP5266516B2 (en) Resin molded body
KR20070099806A (en) Air conditioner
WO2021244477A1 (en) Copper-coated anti-microbial filter material
Elsworth Chapter IV Treatment of Process Air for Deep Culture
JP2008174498A (en) METHOD FOR PRODUCING ZnO-BASED ANTIMICROBIAL AGENT
RU2055632C1 (en) Sorption filtering material for bacterial filters and method of its production
JPH1147612A (en) Preparation of photocatalyst body
JP2006305547A (en) Porous composite material and filter using the same
KR20220105222A (en) Antimicrobial filter media, air cleaner comprising same, amd preperation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4669714

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250