JP4669483B2 - Brake control device for vehicle - Google Patents

Brake control device for vehicle Download PDF

Info

Publication number
JP4669483B2
JP4669483B2 JP2007025495A JP2007025495A JP4669483B2 JP 4669483 B2 JP4669483 B2 JP 4669483B2 JP 2007025495 A JP2007025495 A JP 2007025495A JP 2007025495 A JP2007025495 A JP 2007025495A JP 4669483 B2 JP4669483 B2 JP 4669483B2
Authority
JP
Japan
Prior art keywords
wheel
driven wheel
state
deceleration
abnormality
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007025495A
Other languages
Japanese (ja)
Other versions
JP2008189127A (en
Inventor
智成 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Kogyo Co Ltd
Original Assignee
Nissin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Kogyo Co Ltd filed Critical Nissin Kogyo Co Ltd
Priority to JP2007025495A priority Critical patent/JP4669483B2/en
Publication of JP2008189127A publication Critical patent/JP2008189127A/en
Application granted granted Critical
Publication of JP4669483B2 publication Critical patent/JP4669483B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Regulating Braking Force (AREA)

Description

本発明は、車両用ブレーキ制御装置に関する。   The present invention relates to a vehicle brake control device.

アンチロックブレーキ制御機能等を有する車両用ブレーキ制御装置では、フェールセーフの観点から、複数の車輪それぞれに車輪速センサを備え、少なくとも一つの車輪速センサが、車輪速度が所定値以上で車両の走行状態を示しているにもかかわらず、車輪速センサが停止状態(車輪速度が所定値以下)を示す場合は、停止状態を示す車輪速センサが異常であると判定する機能を有するものが一般的である。
車輪速センサの異常判定の精度を高めるために、例えば、車輪加速度から駆動輪の空回り(ホイルスピン)を判定し、ホイルスピンをしていると判定された場合は、車輪速センサの異常判定を中止するものが知られている(特許文献1参照)。
特開平11−291886号公報(段落[0006])
In a vehicle brake control device having an anti-lock brake control function or the like, from the viewpoint of fail-safety, each of a plurality of wheels is provided with a wheel speed sensor, and at least one wheel speed sensor has a wheel speed of a predetermined value or more so that the vehicle travels. When the wheel speed sensor indicates a stopped state (the wheel speed is equal to or lower than a predetermined value) in spite of indicating the state, it is common to have a function for determining that the wheel speed sensor indicating the stopped state is abnormal. It is.
In order to improve the accuracy of determining the abnormality of the wheel speed sensor, for example, the idle rotation of the driving wheel (wheel spin) is determined from the wheel acceleration, and if it is determined that the wheel spin is being performed, the abnormality determination of the wheel speed sensor is performed. What is stopped is known (see Patent Document 1).
JP-A-11-291886 (paragraph [0006])

しかしながら、前記従来技術における車輪速センサの異常判定では、車輪速度が所定値以下の車輪速度を示す車輪が検出されることを基本にしているので、自動二輪車に適用した場合、ウィリー走行等の前輪が浮き上がったままの走行状態による前輪車輪速度の低下及び停止状態と、車輪速センサの異常による前輪車輪速度の停止状態とを識別できない場合があった。   However, the abnormality determination of the wheel speed sensor in the prior art is based on the fact that a wheel having a wheel speed of a predetermined value or less is detected. Therefore, when applied to a motorcycle, a front wheel such as a wheelie is used. In some cases, it is not possible to distinguish between a decrease and stop state of the front wheel speed due to a traveling state where the vehicle is lifted, and a stop state of the front wheel speed due to an abnormality in the wheel speed sensor.

本発明は、係る問題を解決することを課題とし、車輪速センサの異常判定をより精度良く行える車両用ブレーキ制御装置を提供することを目的とする。   It is an object of the present invention to provide a vehicle brake control device that can solve the problem and determine the abnormality of a wheel speed sensor with higher accuracy.

前記課題を解決するため請求項1に記載の発明は、従動輪及び駆動輪それぞれの車輪速度を取得する車輪速度取得手段と、車輪速度取得手段の異常の有無を判定する異常判定手段と、取得された車輪速度に基づいて従動輪及び駆動輪それぞれに設けられたブレーキ装置の制動力を制御するとともに、異常判定手段によって異常有りと判定された場合には、異常に対応する所定の異常対応制御を実行する制動力制御手段と、を備えた車両用ブレーキ制御装置であって、更に、従動輪の走行状態信号を出力する従動輪走行状態取得手段と、出力された走行状態信号から、当該従動輪が浮き上がったままの走行状態であるか否かを判定する走行状態判定手段を備え、
異常判定手段は、駆動輪に係る車輪速度取得手段が非停止状態を示し、従動輪に係る車輪速度取得手段が停止状態を示している場合には、走行状態判定手段により従動輪が浮き上がったままの走行状態ではないと判定されたときに、従動輪に係る車輪速度取得手段に異常があると判定し、走行状態判定手段により従動輪が浮き上がったままの走行状態であると判定されたときに、従動輪に係る車輪速度取得手段に異常が無いと判定することを特徴とする。
In order to solve the above-mentioned problem, the invention described in claim 1 includes a wheel speed acquisition unit that acquires wheel speeds of each of the driven wheel and the drive wheel, an abnormality determination unit that determines whether the wheel speed acquisition unit is abnormal, and an acquisition. The braking force of the brake device provided on each of the driven wheel and the drive wheel is controlled based on the wheel speed thus determined, and when the abnormality determining means determines that there is an abnormality, predetermined abnormality response control corresponding to the abnormality A braking force control unit for vehicle, further comprising: a driven wheel traveling state acquisition unit that outputs a traveling state signal of the driven wheel; A traveling state determination means for determining whether or not the driving wheel is in a traveling state while being lifted;
When the wheel speed acquisition unit related to the driving wheel indicates a non-stop state and the wheel speed acquisition unit related to the driven wheel indicates a stop state, the abnormality determination unit keeps the driven wheel floating by the traveling state determination unit. When it is determined that there is an abnormality in the wheel speed acquisition means related to the driven wheel, and when it is determined by the traveling state determination means that the driven wheel is in a floating state The wheel speed acquisition means for the driven wheel is determined to be normal.

請求項1に記載の発明によれば、駆動輪に係る車輪速度取得手段が非停止状態を示しているにもかかわらず、従動輪に係る車輪速度取得手段が停止状態を示している場合でも、走行状態が従動輪が浮き上がったままの走行状態であると判定される場合には、ウィリー走行等による従動輪の停止と判定し、従動輪に係る車輪速度取得手段の異常と判定しないようにできる。   According to the first aspect of the present invention, even when the wheel speed acquisition unit according to the driven wheel indicates the non-stop state, the wheel speed acquisition unit according to the driven wheel indicates the stop state. When it is determined that the traveling state is a traveling state in which the driven wheel is lifted, it is determined that the driven wheel is stopped due to wheelie traveling or the like, and it is possible not to determine that the wheel speed acquisition unit related to the driven wheel is abnormal. .

また、請求項2に記載の発明は、請求項1の構成に加えて、従動輪走行状態取得手段は、従動輪に設けられた荷重センサであって、荷重信号を出力し、走行状態判定手段は、荷重センサが所定の基準荷重未満を示す場合は、従動輪が浮き上がったままの走行状態であると判定し、所定の基準荷重以上を示す場合は、従動輪が浮き上がったままの走行状態ではないと判定することを特徴とする。   According to a second aspect of the present invention, in addition to the configuration of the first aspect, the driven wheel traveling state acquisition means is a load sensor provided on the driven wheel, and outputs a load signal to determine the traveling state determination means. When the load sensor indicates less than a predetermined reference load, it is determined that the driven wheel is in a lifted state, and when the load sensor indicates a predetermined reference load or more, the driven wheel is in a lifted state while being lifted. It is characterized by not determining.

請求項2に記載の発明によれば、車両の仕様に応じて基準荷重をあらかじめ設定しておくことで、従動輪に設けられた荷重センサからの荷重信号により、容易に従動輪が浮き上がったままの走行状態か否かが判定できる。   According to the second aspect of the present invention, the reference load is set in advance according to the specification of the vehicle, so that the driven wheel is easily lifted by the load signal from the load sensor provided on the driven wheel. It can be determined whether or not the vehicle is running.

請求項3に記載の発明は、請求項1の構成に加えて、従動輪走行状態取得手段は、従動輪に係る車輪速度取得手段からの車輪速度に基づいて車輪加速度を取得する従動輪加速度取得手段であって、走行状態信号として車輪加速度信号を出力し、走行状態判定手段は、従動輪の停止状態に至るまでの車輪加速度信号が所定の基準減速度未満の車輪減速度である場合は、従動輪が浮き上がったままの走行状態であると判定し、所定の基準減速度以上の車輪減速度である場合は、従動輪が浮き上がったままの走行状態ではないと判定することを特徴とする。   According to a third aspect of the present invention, in addition to the configuration of the first aspect, the driven wheel traveling state acquisition unit acquires the wheel acceleration based on the wheel speed from the wheel speed acquisition unit related to the driven wheel. A wheel acceleration signal is output as a driving state signal, and the driving state determination means is a wheel deceleration signal that is less than a predetermined reference deceleration when the wheel acceleration signal until the driven wheel is stopped. It is determined that the driven wheel is in a traveling state in which the driven wheel is lifted, and if the wheel deceleration is equal to or greater than a predetermined reference deceleration, it is determined that the driven wheel is not in a traveling state in which the driven wheel is lifted.

なお、従動輪の「車輪加速度」は、前進方向の車輪速度が増加する場合及び、前進方向の車輪速度が減少する場合の両方を含み、前進方向の車輪速度が減少する場合、つまり負の車輪加速度を、「車輪減速度」と特定して明確化したものである。   The “wheel acceleration” of the driven wheel includes both the case where the wheel speed in the forward direction increases and the case where the wheel speed in the forward direction decreases, and the case where the wheel speed in the forward direction decreases, that is, a negative wheel. The acceleration is clarified by specifying “wheel deceleration”.

請求項3に記載の発明によれば、例えば、ウィリー走行時の浮き上がった従動輪が停止状態に至ったときに、誤った車輪速度取得手段の異常判定を行わずに済む。
例えば、自動二輪車において、運転者が急激にスロットル開放動作を行うことにより、ウィリー走行が開始される際に、ブレーキ操作が行われていない場合、従動輪である前輪は非接地状態での空転減速状態となり、車輪速度は惰性による減速をし、停止に至る。つまり前輪の加速度が緩やかな車輪減速度を示す。従って、従動輪走行状態取得手段で取得した前輪が停止するまでの車輪加速度に基づいて従動輪が「急」停止したのか、「緩」停止したのかを判定することができる。よって、走行状態判定手段はウィリー走行状態か否かの判定をできる。
また、従動輪の加速度から従動輪が浮き上がったままの走行状態か否かを判定できるので、追加のセンサ、例えば荷重センサを必要とせず安価に判定できる。
According to the third aspect of the present invention, for example, when the driven wheel that has been lifted during wheelie travel reaches a stopped state, it is not necessary to make an erroneous determination of the wheel speed acquisition means.
For example, in a motorcycle, when the driver suddenly opens the throttle and the wheelie is started, if the brake operation is not performed, the front wheel that is the driven wheel is idled and decelerated in a non-grounded state. The wheel speed decelerates due to inertia and stops. In other words, the front wheel acceleration shows a slow wheel deceleration. Accordingly, it can be determined whether the driven wheel has stopped “suddenly” or “slowly” based on the wheel acceleration until the front wheel acquired by the driven wheel traveling state acquisition unit stops. Therefore, the traveling state determination means can determine whether or not the vehicle is in the wheelie traveling state.
Further, since it is possible to determine whether the driven wheel is in a traveling state while being lifted from the acceleration of the driven wheel, an additional sensor, for example, a load sensor is not required, and the determination can be made at low cost.

請求項4に記載の発明は、請求項3の構成に加えて、所定の基準減速度とは、従動輪の非接地状態での空転減速状態とみなせる車輪減速度に対応することを特徴とする。   According to a fourth aspect of the present invention, in addition to the configuration of the third aspect, the predetermined reference deceleration corresponds to a wheel deceleration that can be regarded as an idling deceleration state in a non-grounded state of the driven wheel. .

請求項4に記載した発明によれば、非接地状態での空転減速状態を従動輪の基準減速度として車両の仕様に応じて予め設定しておくことで、従動輪が「急」停止したのか、「緩」停止したのかを簡単に判定することができる。よって、従動輪の停止に至る車輪減速度からウィリー走行状態かそうでないかが容易に判定できる。   According to the fourth aspect of the present invention, whether the driven wheel has stopped “suddenly” by presetting the idle deceleration state in the non-grounded state as the reference deceleration of the driven wheel according to the vehicle specifications. It is possible to easily determine whether the “slow” stop has occurred. Therefore, it is possible to easily determine whether or not the vehicle is in the wheelie running state from the wheel deceleration leading to the stop of the driven wheel.

請求項5に記載の発明は、請求項4の構成に加えて、走行状態判定手段は、取得された車輪加速度の経時変化を示す履歴情報を記憶する履歴情報記憶手段を有し、履歴情報記憶手段に記憶された履歴情報に基づいて、従動輪の浮き上がったままの走行状態であるか否かを判定することを特徴とする。   According to a fifth aspect of the present invention, in addition to the configuration of the fourth aspect, the traveling state determination means includes history information storage means for storing history information indicating a change with time of the acquired wheel acceleration, and stores history information. Based on the history information stored in the means, it is determined whether or not the driven wheel is in a traveling state while being lifted.

請求項5に記載した発明によれば、車輪加速度の経時変化を履歴情報として記憶しておくことで、従動輪の回転が停止状態となる前の車輪加速度を参照可能にできる。ウィリー走行等により従動輪が非接地状態になって自然に従動輪が減速停止する空転減速状態の場合には、従動輪の車輪速度取得手段の異常による車輪速度の変化の場合と比較してゆっくりと減速することから、履歴情報の車輪加速度からゆっくりした減速であるか否かを判定することで、車輪速度取得手段の異常によるものかどうかを正確に判定できる。   According to the fifth aspect of the present invention, it is possible to refer to the wheel acceleration before the rotation of the driven wheel is stopped by storing the temporal change of the wheel acceleration as history information. In the idling deceleration state in which the driven wheel is ungrounded due to wheelie traveling etc. and the driven wheel naturally decelerates and stops, it is slower than the change in the wheel speed due to the abnormality in the wheel speed acquisition means of the driven wheel. Therefore, it is possible to accurately determine whether or not it is due to the abnormality of the wheel speed acquisition means by determining whether or not the deceleration is slow from the wheel acceleration of the history information.

請求項6に記載の発明は、請求項5の構成に加えて、異常判定手段は、駆動輪に係る車輪速度取得手段が非停止状態を示し、従動輪に係る車輪速度取得手段が停止状態を示している場合には、ブレーキ非操作状態で従動輪が停止したと判定されたときに、走行状態判定手段において、従動輪が停止状態となった時点よりも所定時間前の履歴情報を参照し、従動輪の浮き上がったままの走行状態であるか否かを判定することを特徴とする。   According to a sixth aspect of the present invention, in addition to the configuration of the fifth aspect, the abnormality determination means indicates that the wheel speed acquisition means related to the drive wheel indicates a non-stop state, and the wheel speed acquisition means related to the driven wheel indicates a stop state. If it is determined that the driven wheel is stopped in the brake non-operating state, the running state determination means refers to the history information for a predetermined time before the time when the driven wheel is stopped. It is characterized in that it is determined whether or not the driven state is in a state where the driven wheel is lifted.

請求項6に記載した発明によれば、従動輪が停止した時点よりも所定時間前からの履歴情報を参照するように、履歴情報を遡る時間を適当に設定することで、従動輪が停止する直前の一瞬の減速状態に基づいて判定してしまうという不具合を防ぎ、判定の精度を高めることができる。   According to the invention described in claim 6, the driven wheel is stopped by appropriately setting the time for tracing the history information so as to refer to the history information from a predetermined time before the time when the driven wheel is stopped. It is possible to prevent a problem that the determination is made based on the instantaneous deceleration state immediately before, and to improve the determination accuracy.

請求項7に記載の発明は、請求項6の構成に加えて、走行状態判定手段は、所定時間前の履歴情報に基づいた判定では、従動輪の浮き上がったままの走行状態に該当しないと判定された場合、所定時間よりも更に過去の前記履歴情報を参照し、参照した履歴情報における従動輪の車輪減速度が前記所定の基準減速度未満である場合には、従動輪の浮き上がったままの走行状態に該当すると判定することを特徴とする。   According to a seventh aspect of the present invention, in addition to the configuration of the sixth aspect, the traveling state determination means determines that the determination based on the history information of a predetermined time does not correspond to the traveling state where the driven wheel is lifted. In this case, the history information that is past the predetermined time is referred to, and if the wheel deceleration of the driven wheel in the referenced history information is less than the predetermined reference deceleration, the driven wheel remains lifted. It is characterized by determining that it corresponds to a driving state.

請求項7に記載した発明によれば、特に自動二輪車に適用した場合、運転者がウィリー走行を止めようとアクセルを戻した際にブレーキペダルの操作をし、非接地状態での空転減速中の従動輪が急制動され、車輪速度が急激に減速する場合にも、更に過去の履歴情報を遡って、その時点での従動輪が非接地状態での空転減速状態に該当するか否かを判定するので、より正確に判定できる。   According to the seventh aspect of the invention, particularly when applied to a motorcycle, the driver operates the brake pedal when returning the accelerator to stop the wheelie travel, and the vehicle is idling and decelerating in an ungrounded state. Even when the driven wheel is suddenly braked and the wheel speed decelerates rapidly, the past history information is further traced to determine whether or not the driven wheel at that time corresponds to the idling deceleration state in the non-grounded state. Therefore, it can be determined more accurately.

請求項8に記載の発明は、従動輪及び駆動輪それぞれの車輪速度を取得する車輪速度取得手段と、車輪速度取得手段の異常の有無を判定する異常判定手段と、取得された車輪速度に基づいて従動輪及び駆動輪それぞれに設けられたブレーキ装置の制動力を制御するとともに、異常判定手段によって異常有りと判定された場合には、異常に対応する所定の異常対応制御を実行する制動力制御手段と、を備えた車両用ブレーキ制御装置であって、
更に、従動輪の車輪加速度を取得する従動輪加速度取得手段を備え、異常判定手段は、駆動輪に係る車輪速度取得手段が非停止状態を示し、従動輪に係る車輪速度取得手段が停止状態を示したときには、従動輪加速度取得手段で取得した車輪加速度に基づいて、従動輪の停止状態に至るまでの車輪減速度が、従動輪の非接地状態での空転減速状態とみなせる所定の基準減速度未満である場合は、従動輪に係る車輪速度取得手段に異常が無いと判定し、所定の基準減速度以上である場合は、異常があると判定することを特徴とする。
The invention according to claim 8 is based on the wheel speed acquisition means for acquiring the wheel speed of each of the driven wheel and the drive wheel, the abnormality determination means for determining whether the wheel speed acquisition means is abnormal, and the acquired wheel speed. Braking force control for controlling the braking force of the brake device provided on each of the driven wheel and the driving wheel, and executing predetermined abnormality response control corresponding to the abnormality when the abnormality determining means determines that there is an abnormality A vehicle brake control device comprising:
Furthermore, it comprises driven wheel acceleration acquisition means for acquiring the wheel acceleration of the driven wheel, and the abnormality determination means indicates that the wheel speed acquisition means related to the drive wheel indicates a non-stop state, and the wheel speed acquisition means related to the driven wheel indicates a stop state. When indicated, based on the wheel acceleration acquired by the driven wheel acceleration acquisition means, the wheel deceleration until the driven wheel reaches the stop state is a predetermined reference deceleration that can be regarded as the idling deceleration state in the non-ground state of the driven wheel. If it is less than the threshold, it is determined that there is no abnormality in the wheel speed acquisition means related to the driven wheel, and if it is equal to or greater than a predetermined reference deceleration, it is determined that there is an abnormality.

請求項8に記載した発明によれば、例えば、ウィリー走行時の浮き上がった従動輪が停止状態に至ったときに、誤った車輪速センサの異常判定を行わずに済む。
例えば、自動二輪車において、運転者が急激にスロットル開放動作を行うことにより、ウィリー走行が開始される際に、ブレーキ操作が行われていない場合、従動輪である前輪は非接地状態での空転減速状態となり、車輪速度は惰性による減速をし、停止に至る。つまり前輪の加速度が緩やかな車輪減速度を示す。従って、従動輪走行状態取得手段で取得した前輪が停止するまでの車輪加速度に基づいて従動輪が非接地状態での空転減速状態で停止したのか否かが判定できる。よって、異常判定手段は、従動輪が非接地状態での空転減速状態で停止したのか否かが判定できる。
また、車両の仕様に応じて所定の基準減速度をあらかじめ設定しておくことで、簡単に従動輪の非接地状態の空転減速状態か、否かが判定できる。
According to the eighth aspect of the present invention, for example, when the driven wheel that has lifted during wheelie travel reaches a stopped state, it is not necessary to make an erroneous wheel speed sensor abnormality determination.
For example, in a motorcycle, when the driver suddenly opens the throttle and the wheelie is started, if the brake operation is not performed, the front wheel that is the driven wheel is idled and decelerated in a non-grounded state. The wheel speed decelerates due to inertia and stops. In other words, the front wheel acceleration shows a slow wheel deceleration. Therefore, it can be determined whether or not the driven wheel has stopped in the idling deceleration state in the non-grounded state, based on the wheel acceleration until the front wheel acquired by the driven wheel traveling state acquisition means stops. Therefore, the abnormality determination means can determine whether or not the driven wheel has stopped in the idling deceleration state in a non-grounded state.
In addition, by setting a predetermined reference deceleration in advance according to the specification of the vehicle, it is possible to easily determine whether or not the driven wheel is in a non-grounded idle deceleration state.

請求項9に記載の発明は、請求項8の構成に加えて、所定の基準減速度とは、従動輪の非接地状態での空転減速状態とみなせる車輪減速度に対応することを特徴とする。   The invention according to claim 9 is characterized in that, in addition to the configuration of claim 8, the predetermined reference deceleration corresponds to a wheel deceleration that can be regarded as an idling deceleration state in a non-grounded state of the driven wheel. .

請求項9に記載した発明によれば、非接地状態での空転減速状態を従動輪の基準減速度として車両の仕様に応じて予め設定しておくことで、従動輪が「急」停止したのか、「緩」停止したのかを簡単に判定することができる。よって、従動輪の停止に至る車輪減速度からウィリー走行状態かそうでないかが容易に判定できる。   According to the ninth aspect of the present invention, whether the driven wheel has stopped “suddenly” by presetting the idle deceleration state in the non-grounded state as a reference deceleration of the driven wheel according to the vehicle specifications. It is possible to easily determine whether the “slow” stop has occurred. Therefore, it is possible to easily determine whether or not the vehicle is in the wheelie running state from the wheel deceleration leading to the stop of the driven wheel.

以上、請求項1から請求項9の発明によれば、車輪速度取得手段、例えば、車輪速センサの異常判定をより精度良く行える車両用ブレーキ制御装置を提供することができる。   As described above, according to the first to ninth aspects of the present invention, it is possible to provide a vehicle brake control device that can perform abnormality determination of a wheel speed acquisition unit, for example, a wheel speed sensor, with higher accuracy.

《第1の実施の形態》
次に、本発明の車両用ブレーキ制御装置を適用した第1の実施の形態に係る二輪車用ブレーキ制御装置について適宜図1を参照しながら詳細に説明する。図1は第1の実施の形態に係る二輪車用ブレーキ制御装置の構造を示す概念図である。
<< First Embodiment >>
Next, the motorcycle brake control device according to the first embodiment to which the vehicle brake control device of the present invention is applied will be described in detail with reference to FIG. FIG. 1 is a conceptual diagram showing the structure of a two-wheeled vehicle brake control device according to a first embodiment.

図1に示すように、二輪車用ブレーキ制御装置1Aは、自動二輪車Bの前輪(従動輪)TFと後輪(駆動輪)TRのそれぞれの車輪速度を取得するための車輪速センサ(車輪速度取得手段)2F、2Rと、運転者のブレーキ操作子(ブレーキペダルBP及びブレーキレバーBL)によるブレーキ操作によって生じるブレーキ液圧を適宜制御して車輪ブレーキTB(前輪ブレーキTBF、後輪ブレーキTBR)に付与する液圧ユニット31と、前記ブレーキ操作と車輪速センサ2F、2Rからの車輪速度に基づいて液圧ユニット31を制御する制御ユニット30Aとを主に備えている。   As shown in FIG. 1, the motorcycle brake control device 1 </ b> A includes a wheel speed sensor (acquisition of wheel speed) for acquiring the respective wheel speeds of the front wheel (driven wheel) TF and the rear wheel (drive wheel) TR of the motorcycle B. Means) 2F, 2R and the brake fluid pressure generated by the brake operation by the driver's brake operator (brake pedal BP and brake lever BL) are appropriately controlled and applied to the wheel brake TB (front wheel brake TBF, rear wheel brake TBR). And a control unit 30A for controlling the hydraulic unit 31 based on the brake operation and the wheel speeds from the wheel speed sensors 2F and 2R.

なお、自動二輪車BのブレーキペダルBP及びブレーキレバーBLには、ブレーキ操作の有無を検出するブレーキ操作スイッチ(ブレーキ操作SW)3A、3Bがそれぞれ設けられている。ブレーキ操作スイッチ3A、3Bは、ブレーキ操作を検出したときはオン(ON)信号を、ブレーキ操作を検出しないときはオフ(OFF)信号を制御ユニット30Aに入力する。
ここで、液圧ユニット31と制御ユニット30Aは、自動二輪車Bの車体の適所に設けることが可能な程度の小さなものであるが、説明の便宜上、大きく図示している。また、ブレーキレバーBLは右のハンドルに、ブレーキペダルBPは車体の右側に設けられているが、図面上仮想線で示した車体の手前側(車体の左側)に示してある。
Note that the brake pedal BP and the brake lever BL of the motorcycle B are provided with brake operation switches (brake operation SW) 3A and 3B for detecting the presence or absence of a brake operation, respectively. The brake operation switches 3A and 3B input an ON signal when the brake operation is detected, and an OFF signal when the brake operation is not detected, to the control unit 30A.
Here, the hydraulic unit 31 and the control unit 30A are small enough to be provided at appropriate positions on the vehicle body of the motorcycle B, but are greatly illustrated for convenience of explanation. Further, the brake lever BL is provided on the right handle and the brake pedal BP is provided on the right side of the vehicle body, but is shown on the front side of the vehicle body (left side of the vehicle body) indicated by the phantom line in the drawing.

液圧ユニット31は、図示しない、油路や各種部品(電磁弁やポンプ等)を有している。制御ユニット30Aは、内蔵する制動力制御手段35により液圧ユニット31内に設けられる各種部品を適宜制御して、各車輪ブレーキTBF、TBRに加わるブレーキ液圧を増圧・減圧・保持させる。   The hydraulic unit 31 has an oil passage and various parts (such as a solenoid valve and a pump) not shown. The control unit 30A appropriately controls various components provided in the hydraulic pressure unit 31 by the built-in braking force control means 35, thereby increasing, reducing, and maintaining the brake hydraulic pressure applied to the wheel brakes TBF and TBR.

(制御ユニットの構成)
次に、制御ユニット30Aの詳細な構成を説明する。
制御ユニット30Aは、従動輪加速度取得手段32と、走行状態判定手段33Aと、異常判定手段34と、制動力制御手段35とを有している。
ここで、制御ユニット30Aは、CPU、RAM、ROM及び入出力回路を備えており、各車輪速センサ2F、2Rからの車輪速度信号と、ブレーキ操作スイッチ3A、3Bからのブレーキ操作有無のオン/オフ信号と、ROMに記憶されたプログラムやデータとに基づいて各種演算処理を行うことによってブレーキ液圧制御を実行するように構成されている。
(Configuration of control unit)
Next, a detailed configuration of the control unit 30A will be described.
The control unit 30 </ b> A includes driven wheel acceleration acquisition means 32, traveling state determination means 33 </ b> A, abnormality determination means 34, and braking force control means 35.
Here, the control unit 30A includes a CPU, a RAM, a ROM, and an input / output circuit. The wheel speed signals from the wheel speed sensors 2F and 2R and the presence / absence of brake operation from the brake operation switches 3A and 3B are turned on / off. The brake fluid pressure control is performed by performing various arithmetic processes based on the off signal and programs and data stored in the ROM.

制御ユニット30Aは、車輪速センサ2Fにより取得した前輪車輪速度と、車輪速センサ2Rにより取得した後輪車輪速度とに基づいて推定車体速度と前輪TFのスリップ率を算出し、この推定車体速度とスリップ率に基づいて、制動力制御手段35において液圧ユニット31を適宜制御することで前輪TFのロックを防止する公知のアンチロック制御を実行する機能を有している。   The control unit 30A calculates the estimated vehicle body speed and the slip ratio of the front wheel TF based on the front wheel speed acquired by the wheel speed sensor 2F and the rear wheel speed acquired by the wheel speed sensor 2R. Based on the slip ratio, the brake force control means 35 appropriately controls the hydraulic unit 31 to perform a known antilock control for preventing the front wheel TF from being locked.

また、同様に制御ユニット30Aは、車輪速センサ2Fにより取得した前輪車輪速度と、車輪速センサ2Rにより取得した後輪車輪速度とに基づいて推定車体速度と後輪TRのスリップ率を算出し、この推定車体速度とスリップ率に基づいて、制動力制御手段35において液圧ユニット31の各種部品を適宜制御することで後輪TRのロックを防止する公知のアンチロック制御を実行する機能を有している。   Similarly, the control unit 30A calculates the estimated vehicle body speed and the slip ratio of the rear wheel TR based on the front wheel speed acquired by the wheel speed sensor 2F and the rear wheel speed acquired by the wheel speed sensor 2R. Based on the estimated vehicle body speed and slip ratio, the braking force control means 35 appropriately controls various components of the hydraulic unit 31 to perform a known antilock control for preventing the rear wheel TR from being locked. ing.

更に、制御ユニット30Aは、前輪TFまたは後輪TRの少なくとも一方のアンチロック制御を行っている場合は、各車輪速センサ2F、2Rで取得した前輪車輪速度と後輪車輪速度とを比較して大きい方の車輪速度に基づいて推定車体速度を算出し、前輪TF及び後輪TRのいずれもアンチロック制御を行っていない場合は、車輪速センサ2Fで取得した前輪車輪速度に基づいて推定車体速度を算出する機能を有している。   Further, when the anti-lock control of at least one of the front wheel TF or the rear wheel TR is performed, the control unit 30A compares the front wheel speed and the rear wheel speed acquired by the wheel speed sensors 2F and 2R. When the estimated vehicle body speed is calculated based on the larger wheel speed and neither the front wheel TF nor the rear wheel TR performs anti-lock control, the estimated vehicle body speed is calculated based on the front wheel speed acquired by the wheel speed sensor 2F. It has a function to calculate.

更に、制御ユニット30Aの従動輪加速度取得手段32において、車輪速センサ2Fで取得した前輪車輪速度に基づいて前輪TFの車輪加速度を算出し、算出した車輪加速度(走行状態信号)を走行状態判定手段33Aの後記する履歴情報記憶手段41に入力する機能を有している。
なお、従動輪加速度取得手段32は、車輪加速度を算出するとしたが、厳密な意味での車輪加速度を算出する必要は無く、車輪加速度を一定の周期で算出する繰り返しループにおいて、前回ループの車輪速度と今回ループの車輪速度の差分、つまり、[(今回ループの車輪速度)−(前回ループの車輪速度)]を以って車輪加速度として代用しても良い。
Further, in the driven wheel acceleration acquisition means 32 of the control unit 30A, the wheel acceleration of the front wheel TF is calculated based on the front wheel speed acquired by the wheel speed sensor 2F, and the calculated wheel acceleration (travel state signal) is calculated as the travel state determination means. 33A has a function of inputting to the history information storage means 41 described later.
The driven wheel acceleration acquisition unit 32 calculates the wheel acceleration. However, it is not necessary to calculate the wheel acceleration in a strict sense, and the wheel speed of the previous loop is calculated in a repeated loop in which the wheel acceleration is calculated at a constant cycle. And the difference between the wheel speeds of the current loop, that is, [(wheel speed of the current loop) − (wheel speed of the previous loop)] may be substituted for the wheel acceleration.

走行状態判定手段33Aは、履歴情報記憶手段41を有している。履歴情報記憶手段41は、例えば、前記RAMで構成され、従動輪加速度取得手段32が算出した前輪TFの車輪加速度の経時データ(履歴情報)を、所定の周期で常時最寄りの過去の所定時間分だけ記憶し、所定時間以上古いデータはオーバーフローさせて消去する。   The traveling state determination unit 33 </ b> A has a history information storage unit 41. The history information storage means 41 is composed of, for example, the RAM, and the time-dependent data (history information) of the wheel acceleration of the front wheels TF calculated by the driven wheel acceleration acquisition means 32 is always stored at a predetermined period for the past predetermined time. Only data is stored, and data older than a predetermined time is overflowed and deleted.

なお、履歴情報記憶手段41への車輪加速度の経時データの記憶は、前輪TFが停止状態と判定された後は、再び前輪TFが走行状態と判定されるまで車輪加速度の経時データの記憶を一時停止し、再び前輪TFが走行状態と判定されたときは、車輪加速度の経時データを一旦消去してから車輪加速度の経時データの記憶を開始することが好ましい。   In addition, the temporal data of the wheel acceleration is stored in the history information storage means 41 after the front wheel TF is determined to be in the stopped state, until the front wheel TF is determined to be in the traveling state again. When the vehicle is stopped and the front wheel TF is determined to be in the running state again, it is preferable to temporarily store the wheel acceleration time-lapse data and then start storing the wheel acceleration time-lapse data.

走行状態判定手段33Aは、必要に応じて履歴情報記憶手段41から前輪TFの車輪加速度の経時データを読み出し、前輪TFの停止に至る所定時間前の車輪減速度(負の車輪加速度)が所定の基準減速度未満か否かを判定し、ブレーキ操作スイッチ3Bからのオン/オフ信号も参照して、前輪TFが非接地状態での空転減速状態か否かを判定することによって、二輪自動車Bの走行状態が、従動輪(前輪TF)が浮き上がったままの走行状態、つまりウィリー走行状態か否かを判定する。走行状態の判定結果は異常判定手段34に入力される。以下、非接地での空転減速状態を「非接地空転減速状態」と略称する。   The traveling state determination unit 33A reads the time-lapse data of the wheel acceleration of the front wheel TF from the history information storage unit 41 as necessary, and the wheel deceleration (negative wheel acceleration) before the predetermined time until the front wheel TF stops is predetermined. By determining whether or not the vehicle is less than the reference deceleration and referring to the on / off signal from the brake operation switch 3B, it is determined whether or not the front wheel TF is in the idling deceleration state in the non-grounded state. It is determined whether the traveling state is a traveling state in which the driven wheel (front wheel TF) is lifted, that is, a wheelie traveling state. The determination result of the running state is input to the abnormality determination means 34. Hereinafter, the non-grounded idle deceleration state is abbreviated as “non-ground idle deceleration state”.

また、制御ユニット30Aの異常判定手段34においては、車輪速センサ2F、2Rに異常があるかどうかを判定し、その判定結果を制動力制御手段35に入力し、その判定結果に応じて制動力制御手段35において、液圧ユニット31の各種部品を適宜制御する。例えば、異常判定手段34において、車輪速センサ2F、2Rいずれかに異常があると判定された場合は、制動力制御手段35は、アンチロック制御をしないものとする。   In addition, the abnormality determination means 34 of the control unit 30A determines whether or not the wheel speed sensors 2F and 2R are abnormal, and inputs the determination result to the braking force control means 35, and the braking force according to the determination result. In the control means 35, various components of the hydraulic unit 31 are appropriately controlled. For example, when the abnormality determination unit 34 determines that there is an abnormality in one of the wheel speed sensors 2F and 2R, the braking force control unit 35 does not perform antilock control.

(異常判定手段の詳細な機能)
次に、異常判定手段34の詳細な機能を説明する。
異常判定手段34は、車輪速センサ2F、2Rの異常判定を行うために、車輪速センサ2F、2Rからの車輪速度を常時監視し、所定値以下、例えば、4km/h以下の場合は当該車輪Tが停止状態、所定値を超える場合、例えば、4km/hを超える場合は当該車輪Tが走行状態と判定する。そして、駆動輪である後輪TRが走行状態と判定されたときに、従動輪である前輪TFが停止状態と判定されたとき、以下のように車輪速センサ2Fに対する異常判定を行う。
(Detailed functions of abnormality judgment means)
Next, detailed functions of the abnormality determination unit 34 will be described.
The abnormality determination means 34 constantly monitors the wheel speeds from the wheel speed sensors 2F, 2R in order to determine the abnormality of the wheel speed sensors 2F, 2R. When T exceeds the predetermined value in the stopped state, for example, when it exceeds 4 km / h, the wheel T is determined to be in the traveling state. Then, when it is determined that the rear wheel TR, which is the driving wheel, is in the traveling state, and the front wheel TF, which is the driven wheel, is determined to be in the stopped state, an abnormality determination is performed on the wheel speed sensor 2F as follows.

異常判定手段34は、後輪TRの車輪速センサ2Rが走行状態を示し、前輪TFの車輪速センサ2Fが停止状態を示している場合には、走行状態判定手段33Aに従動輪(前輪TF)が浮き上がったままの走行状態、つまり、ウィリー走行状態か否かの判定をさせる。異常判定手段34は、走行状態判定手段33Aにおいて、ウィリー走行状態と判定された場合は、車輪速センサ2Fに異常が無いと判定し、ウィリー走行状態と判定されなかった場合は、車輪速センサ2Fに異常が有ると判定して、車輪速センサ2Fの異常の有無の判定結果を制動力制御手段35に出力する。   When the wheel speed sensor 2R of the rear wheel TR indicates the traveling state and the wheel speed sensor 2F of the front wheel TF indicates the stopped state, the abnormality determining unit 34 is driven by the traveling state determining unit 33A (front wheel TF). It is determined whether or not the vehicle is in a traveling state in which it is lifted, that is, whether or not it is a wheely traveling state. The abnormality determination unit 34 determines that the wheel speed sensor 2F is normal when the driving state determination unit 33A determines that it is in the wheelie driving state, and the wheel speed sensor 2F when it is not determined that it is in the wheelie driving state. Is determined to be abnormal, and the determination result of whether or not the wheel speed sensor 2F is abnormal is output to the braking force control means 35.

制動力制御手段35は、車輪速センサ2Fに異常がある場合は、例えば、アンチロックブレーキ制御等を行わず、運転者のブレーキペダルBP、ブレーキレバーBLの操作に応じた制御を液圧ユニット31に対して行う。
また、異常判定手段34は、車輪速センサ2Fの異常を運転者に対して表示させても良い。
When there is an abnormality in the wheel speed sensor 2F, for example, the braking force control unit 35 does not perform anti-lock brake control or the like, and performs control according to the driver's operation of the brake pedal BP and the brake lever BL. To do.
Moreover, the abnormality determination means 34 may display the abnormality of the wheel speed sensor 2F to the driver.

(異常判定の制御の流れ)
次に、適宜図2及び図3を参照しながら本実施の形態の二輪車用ブレーキ制御装置における前輪TFに対する異常判定の制御の流れを説明する。図2は異常判定手段及び走行状態判定手段における前輪の車輪速センサの異常判定の制御の流れを示すフローチャートである。
(Flow of abnormal judgment control)
Next, the flow of control for determining an abnormality for the front wheel TF in the two-wheeled vehicle brake control device of the present embodiment will be described with reference to FIGS. FIG. 2 is a flowchart showing the flow of control for abnormality determination of the wheel speed sensor for the front wheels in the abnormality determination means and the traveling state determination means.

ステップS11では、異常判定手段34は、後輪TRが走行状態かどうかをチェックする。具体的には、車輪速センサ2Rからの後輪車輪速度が所定値以下、例えば、4km/h以下の場合は後輪TRが停止状態、所定値を超える場合、例えば、4km/hを超える場合は後輪TRが走行状態と判定する。後輪TRが走行状態の場合(Yes)はステップS12へ進み、停止状態の場合(No)はステップS15に進む。
ステップS12では、異常判定手段34は、前輪TFは停止状態かどうかをチェックする。具体的には、車輪速センサ2Fからの前輪車輪速度が所定値以下、例えば、4km/h以下の場合は前輪TFが停止状態、所定値を超える場合、例えば、4km/hを超える場合は前輪TFが走行状態と判定する。前輪TFが停止状態の場合(Yes)はステップS13へ進み、走行状態の場合(No)はステップS15に進む。
In step S11, the abnormality determination means 34 checks whether or not the rear wheel TR is in a traveling state. Specifically, when the rear wheel speed from the wheel speed sensor 2R is equal to or lower than a predetermined value, for example, 4 km / h or lower, the rear wheel TR is in a stopped state, exceeds the predetermined value, for example, exceeds 4 km / h. Determines that the rear wheel TR is in a running state. If the rear wheel TR is in the traveling state (Yes), the process proceeds to step S12. If the rear wheel TR is in the stopped state (No), the process proceeds to step S15.
In step S12, the abnormality determination unit 34 checks whether the front wheel TF is in a stopped state. Specifically, when the front wheel speed from the wheel speed sensor 2F is equal to or less than a predetermined value, for example, 4 km / h or less, the front wheel TF is in a stopped state. TF determines that the vehicle is running. If the front wheel TF is in a stopped state (Yes), the process proceeds to step S13. If the front wheel TF is in a traveling state (No), the process proceeds to step S15.

ステップS13では、異常判定手段34は、運転者が前輪TFのブレーキ操作をしたかどうか(ON/OFF)をチェックする。ブレーキ操作のON/OFFは、ブレーキ操作スイッチ3Bからのオン、オフ信号で判定する。ONの場合はステップS15へ進み、OFFの場合はステップS14に進む。   In step S13, the abnormality determination means 34 checks whether or not the driver has operated the front wheel TF (ON / OFF). Whether the brake operation is on or off is determined by an on / off signal from the brake operation switch 3B. If it is ON, the process proceeds to step S15. If it is OFF, the process proceeds to step S14.

ステップS14では、走行状態判定手段33Aにおいて、前輪TFが惰性による減速(非接地空転減速状態で減速)後に停止かどうかを判定する。この判定は履歴情報記憶手段41から、車輪減速度の経時データ(履歴情報)を読み出し、車輪停止時点から所定の時間遡った時点の車輪減速度データに基づいて判定する。このとき、1個の車輪減速度データを用いて判定しても良いし、連続する複数個の車輪減速度データの平均値を用いて判定しても良い。   In step S14, the traveling state determination means 33A determines whether the front wheel TF is stopped after deceleration due to inertia (deceleration in the non-ground idling deceleration state). This determination is made based on the wheel deceleration data at a time point that is a predetermined time after the wheel stop point by reading the wheel deceleration time-lapse data (history information) from the history information storage means 41. At this time, the determination may be made using one wheel deceleration data, or may be made using an average value of a plurality of continuous wheel deceleration data.

前輪TFが惰性による減速後に停止かどうかを判定する方法を具体例で説明する。図3は、横軸を時間(t)、縦軸を車輪速度(km/h)として前輪TFの車輪速度が停止状態と判定される所定値以下、この場合4km/h以下になって、ある程度時間経過するまでの車輪速度の変化を示したものである。
図中に示した黒丸は、従動輪加速度取得手段32が、車輪速センサ2Fからの車輪速度に基づいて車輪減速度を算出する繰り返しループのサンプリングタイミングを示す。
A method for determining whether the front wheel TF is stopped after deceleration due to inertia will be described as a specific example. In FIG. 3, the horizontal axis is time (t) and the vertical axis is the wheel speed (km / h), and the wheel speed of the front wheel TF is less than a predetermined value determined to be in a stopped state. It shows the change in wheel speed until the time has passed.
The black circles shown in the figure indicate the sampling timing of a repetitive loop in which the driven wheel acceleration acquisition unit 32 calculates the wheel deceleration based on the wheel speed from the wheel speed sensor 2F.

ここでは、前回ループの車輪速度と今回ループの車輪速度の差分[(前回ループの車輪速度)−(今回ループの車輪速度)]を「車輪減速度」として用いている場合を例に説明する。
また、異常判定手段34は、車輪速度が4km/h以下になった場合、停止状態と判定するものとする。更に走行状態判定手段33Aは、車輪減速度(前回ループの車輪速度と今回ループの車輪速度の差分)が所定の基準減速度未満、例えば、3km/h未満で停止状態に至った場合、惰性による減速(非接地空転減速状態で減速)後に停止と判定するものとする。なお、所定の基準減速度は自動二輪車Bの仕様に応じて予め前記ROMに記憶させておくものとする。
Here, a case where the difference between the wheel speed of the previous loop and the wheel speed of the current loop [(wheel speed of the previous loop) − (wheel speed of the current loop)] is used as “wheel deceleration” will be described as an example.
Moreover, the abnormality determination means 34 shall determine with a stop state, when wheel speed becomes 4 km / h or less. Further, the traveling state determination unit 33A determines that the vehicle is in a stopped state when the wheel deceleration (difference between the wheel speed of the previous loop and the wheel speed of the current loop) is less than a predetermined reference deceleration, for example, less than 3 km / h. It shall be determined to stop after deceleration (deceleration in the non-ground idling deceleration state). The predetermined reference deceleration is stored in advance in the ROM according to the specifications of the motorcycle B.

図3の(a)に示す実線の場合は、車輪が停止状態と判定された時点tから、所定時間遡った時点の車輪減速度、例えば1個及び2個のループ分過去のサンプリングタイミング(図中のt、t)の車輪速度の差分が2km/hなので、走行状態判定手段33Aは、停止に至る前の減速状態が惰性による減速(非接地空転減速状態)であると判定する。つまり、緩い車輪減速度で停止(「緩」停止)と判定する。従って、走行状態判定手段33Aは、自動二輪車Bの走行状態はウィリー走行状態と判定する。
(b)に示す実線の場合は、車輪が停止状態と判定された時点(t)から、所定時間遡った時点の車輪減速度、この場合1個及び2個のループ分過去のサンプリングタイミング(図中のt、t)の車輪速度の差分が3km/hなので、走行状態判定手段33Aは、停止に至る前の減速状態が惰性による減速(非接地空転減速状態)であるとは判定しない。つまり、比較的大きい車輪減速度で停止(「急」停止)と判定する。従って、走行状態判定手段33Aは、自動二輪車Bの走行状態はウィリー走行状態ではないと判定する。
For solid line shown in FIG. 3 (a), from the time t 0 when the wheel is determined to be stopped, the wheel deceleration at the time of going back a predetermined time, for example one and two loops minute past sampling times ( Since the difference between the wheel speeds of t 1 and t 2 ) in the figure is 2 km / h, the traveling state determination means 33A determines that the deceleration state before stopping is deceleration by inertia (non-ground idling deceleration state). . That is, it is determined that the vehicle is stopped at a slow wheel deceleration ("slow" stop). Therefore, the traveling state determination means 33A determines that the traveling state of the motorcycle B is the wheelie traveling state.
In the case of the solid line shown in (b), the wheel deceleration at a time point that is a predetermined time back from the time point when the wheel is determined to be stopped (t 0 ), in this case, the past sampling timing for one and two loops ( Since the difference between the wheel speeds of t 1 and t 2 ) in the figure is 3 km / h, the traveling state determining means 33A determines that the deceleration state before stopping is deceleration due to inertia (non-ground idling deceleration state). do not do. That is, it is determined to stop at a relatively large wheel deceleration (“rapid” stop). Therefore, the traveling state determination means 33A determines that the traveling state of the motorcycle B is not the wheelie traveling state.

ステップS14において、惰性による減速後に停止と判定した場合(Yes)は、ステップS15へ進む。
ステップS14において、「急」停止と判定した場合(No)は、ステップS16へ進み、異常判定手段34は、前輪TFの車輪速センサ2Fに異常が有ると判定する。ステップS16の後ステップS17へ進む。
In step S14, when it determines with a stop after deceleration by inertia (Yes), it progresses to step S15.
If it is determined in step S14 that the stop is “sudden” (No), the process proceeds to step S16, and the abnormality determination unit 34 determines that there is an abnormality in the wheel speed sensor 2F of the front wheel TF. It progresses to step S17 after step S16.

ステップS15では、異常判定手段34は、前輪TFの車輪速センサ2Fに異常は無いと判定する。ステップS14からステップS15へ進んだ場合は、前輪TFは非接地空転減速状態で停止に至ったもの、言い換えると自動二輪車Bがウィリー走行して前輪TFが浮き上がって空転しながらゆっくり停止(惰性による減速後に停止)したものとみなされる。またステップS11、S12、S13からステップS15に進んだ場合は、通常状態とみなされて、車輪速センサ2Fは正常とみなされる。
ステップS15の後ステップS17へ進む。
In step S15, the abnormality determination means 34 determines that there is no abnormality in the wheel speed sensor 2F of the front wheel TF. When the process proceeds from step S14 to step S15, the front wheel TF has stopped in the non-ground idling deceleration state, in other words, the motorcycle B will travel in a wheelie and the front wheel TF floats up and idles slowly (deceleration due to inertia). Later). When the process proceeds from step S11, S12, S13 to step S15, it is regarded as a normal state, and the wheel speed sensor 2F is regarded as normal.
It progresses to step S17 after step S15.

ステップS17では、制動力制動手段35は、前輪TFの車輪速センサ2Fの異常状態に応じたブレーキ制御の対応をする。
例えば、車輪速センサ2Fに異常があると判定された場合は、運転者のブレーキ操作に対して、アンチロック制御をしないようにし、車輪速センサ2Fに異常が無いと判定された場合は、アンチロック制御を可能とする。
また、異常判定手段34は、ステップS16からステップS17へ進む際に、車輪速センサ2Fが異常であるとの表示を運転者に表示するようにしても良い。
ステップS17の後、一連の車輪速センサ2Fに対する異常判定の処理は終了し、ステップS11に戻り繰り返す。
In step S17, the braking force braking means 35 responds to the brake control according to the abnormal state of the wheel speed sensor 2F of the front wheel TF.
For example, when it is determined that there is an abnormality in the wheel speed sensor 2F, anti-lock control is not performed for the driver's brake operation, and when it is determined that there is no abnormality in the wheel speed sensor 2F, anti-lock control is performed. Enable lock control.
Further, the abnormality determination means 34 may display to the driver that the wheel speed sensor 2F is abnormal when proceeding from step S16 to step S17.
After step S17, the abnormality determination process for the series of wheel speed sensors 2F ends, and the process returns to step S11 and is repeated.

(第1の実施の形態の効果)
以上説明した本実施の形態では、後輪TRが走行状態で、前輪TFが停止状態に至ったときに、それがウィリー走行時の浮き上がった前輪TFの停止による場合に、車輪速センサ2Fに対して誤った異常判定を行わずに済む。
例えば、自動二輪車Bにおいて、運転者が急激にスロットル開放動作を行うことにより、ウィリー走行が開始されるが、前輪TFに対してブレーキ操作が行われていない場合には、前輪TFは非接地空転減速状態となり、前輪車輪速度は惰性による減速後に停止状態に至る。つまり前輪TFの加速度は緩やかな車輪減速度を示す。この前輪TFの非接地空転減速状態の後に停止状態に至った場合は、車輪速センサ2Fに異常はないと判定するので、車輪速センサ2Fに対して正確な異常判定ができる。
(Effects of the first embodiment)
In the present embodiment described above, when the rear wheel TR is in a traveling state and the front wheel TF reaches a stopped state, when the front wheel TF is lifted during wheelie traveling, the wheel speed sensor 2F is Therefore, it is not necessary to make an erroneous abnormality determination.
For example, in the motorcycle B, when the driver suddenly opens the throttle, the wheelie travel is started. However, when the front wheel TF is not braked, the front wheel TF is not grounded. The vehicle is decelerated and the front wheel speed is stopped after deceleration due to inertia. That is, the acceleration of the front wheel TF shows a gradual wheel deceleration. When the front wheel TF is stopped after the non-ground idling deceleration state, it is determined that there is no abnormality in the wheel speed sensor 2F, and therefore an accurate abnormality determination can be made for the wheel speed sensor 2F.

また、自動二輪車Bの仕様に応じて基準減速度のデータをあらかじめROMに記憶しておくことで、車両の仕様に応じ簡単に前輪TFの非接地空転減速状態か、否かが判定できる。   Further, by storing the reference deceleration data in the ROM in advance according to the specification of the motorcycle B, it is possible to easily determine whether or not the front wheel TF is in the non-ground idling deceleration state according to the vehicle specification.

車輪減速度の経時データを履歴情報として履歴情報記憶手段41に記憶しておくことで、前輪TFの回転が停止状態となる前の車輪減速度を参照可能になる。
ブレーキレバーBLの非操作状態で前輪TFが停止状態と判定された場合、走行状態判定手段33Aにおいて、停止状態と判定された時点よりも所定時間前の履歴情報を参照し、参照した履歴情報における前輪TFの車輪減速度が基準減速度未満である場合、前輪TFは非接地空転減速状態で停止に至ったと判定するので、前輪TFが停止に至る直前の、普通正確な空転減速を示さない一瞬の減速状態に基づいて判定してしまうという不具合を防ぎ、判定の精度を高めることができる。
例えば、図3の(b)において、時間t、tのサンプリングタイミングで車輪減速度を判定せず、停止状態と判定した時間tのサンプリングタイミングと、その一つ前のループの時間tのサンプリングタイミングとで車輪減速度を算出すると、明らかに2km/hの車輪減速度と誤算出してしまう。
従って、このような車輪減速度の誤算出を防止でき、車輪速センサ2Fの異常判定をより精度良く行える車両用ブレーキ制御装置を提供することができる。
By storing the time-lapse data of wheel deceleration as history information in the history information storage means 41, it becomes possible to refer to the wheel deceleration before the rotation of the front wheel TF is stopped.
When it is determined that the front wheel TF is in a stopped state when the brake lever BL is not operated, the traveling state determination unit 33A refers to history information that is a predetermined time before the point in time when it is determined to be in the stopped state. When the wheel deceleration of the front wheel TF is less than the reference deceleration, it is determined that the front wheel TF has come to a stop in the non-ground idling deceleration state. Therefore, it is possible to prevent a problem that the determination is made based on the deceleration state, and to improve the determination accuracy.
For example, in FIG. 3B, the wheel deceleration is not determined at the sampling timings at times t 1 and t 2 , and the sampling timing at time t 0 at which it is determined that the vehicle is stopped and the time t of the previous loop t If the wheel deceleration is calculated with a sampling timing of 1 , it is clearly erroneously calculated as a wheel deceleration of 2 km / h.
Accordingly, it is possible to provide a vehicle brake control device that can prevent such erroneous calculation of the wheel deceleration and can perform the abnormality determination of the wheel speed sensor 2F with higher accuracy.

なお、前輪TFの非接地空転減速状態の車輪減速度が十分小さく、図3の(b)を例に説明した時間t、tのサンプリングタイミングで車輪減速度を算出しても、非接地空転減速状態か否かの判定に支障がない場合は、時間t、tのサンプリングタイミングで車輪減速度を算出しても良い。 Note that the wheel deceleration in the non-ground idling deceleration state of the front wheel TF is sufficiently small, and even if the wheel deceleration is calculated at the sampling timings at times t 0 and t 1 described with reference to FIG. If there is no problem in determining whether the vehicle is idling or decelerating, the wheel deceleration may be calculated at the sampling timings at times t 0 and t 1 .

なお、本実施の形態のフローチャートのステップS14において、惰性による減速後に停止と判定した場合は、制御ユニット30Aの推定車体速度を計算する機能において、前輪TF及び後輪TRのいずれもアンチロック制御を行っていない場合の推定車体速度を後輪車輪速度に基づいて算出するようにし、前輪TFが接地して前輪車輪速度が後輪車輪速度の所定値比率以上、例えば80%以上になったとき前輪車輪速度に基づいて算出するようにしても良い。   If it is determined in step S14 of the flowchart of the present embodiment that the vehicle is stopped after deceleration due to inertia, the anti-lock control is performed on both the front wheel TF and the rear wheel TR in the function of calculating the estimated vehicle body speed of the control unit 30A. The estimated vehicle body speed when the vehicle is not in operation is calculated based on the rear wheel speed, and when the front wheel TF touches down and the front wheel speed becomes equal to or greater than a predetermined value ratio of the rear wheel speed, for example, 80% or more, the front wheel It may be calculated based on the wheel speed.

このように、前輪TFが惰性による減速後に停止と判定した場合は、運転者がウィリー走行をしている状態に対応するので、前輪TFの車輪速度をもって推定車体速度を算出しても意味が無く、またウィリー走行が終わった直後の前輪車輪速度も十分実際の車体速度に追随していないので、上記の期間は後輪車輪速度をもって推定車体速度とするのがスリップ率の算出上適切である。   As described above, when it is determined that the front wheel TF is stopped after deceleration due to inertia, it corresponds to the state where the driver is traveling in a wheelie, so it is meaningless to calculate the estimated vehicle speed based on the wheel speed of the front wheel TF. In addition, since the front wheel speed immediately after the end of the wheelie run does not sufficiently follow the actual vehicle speed, it is appropriate for the calculation of the slip ratio to use the rear wheel speed as the estimated vehicle speed during the above period.

(第1の実施形態の変形)
次に、本実施の形態の変形例を説明する。
本変形例では、ステップS14において、図3の(a)に破線で示すような場合、例えば、前輪TFが停止状態と判定された時点(t)直前の、1つ手前のループ(時間t、tのサンプリングタイミング)における車輪減速が基準減速度以上の場合は、更に1つ前のループ(時間t、tのサンプリングタイミング)における車輪減速度をチェックして、前輪TFが惰性による減速をしていたかどうかを判定する。時間t、tのサンプリングタイミングの車輪減速度が基準減速度以上の場合は、履歴情報記憶手段41に記憶された車輪加速度の履歴情報を順次遡りチェックする。このように更に遡った時点において前輪TFが惰性による減速をしていたことを検出した場合は、ステップS15へ進み、履歴情報を順次遡っても基準減速度以上の車輪減速度を検出した場合はステップS16へ進む。
(Modification of the first embodiment)
Next, a modification of the present embodiment will be described.
In this modification, in step S14, in the case shown by the broken line in FIG. 3A, for example, the immediately preceding loop (time t) immediately before the time point when the front wheel TF is determined to be stopped (t 0 ). 1, if the wheel deceleration is greater than or equal to the reference deceleration at t 2 sampling timing), check the wheel deceleration in further preceding loops (sampling timing of time t 2, t 3), the front wheel TF is coasting Determine if you were slowing down. If the wheel deceleration at the sampling timings at times t 2 and t 3 is equal to or greater than the reference deceleration, the history information of the wheel acceleration stored in the history information storage means 41 is sequentially retroactively checked. If it is detected that the front wheel TF has been decelerated due to inertia at the time of further retrogression in this way, the process proceeds to step S15, and if wheel deceleration more than the reference deceleration is detected even if the history information is sequentially traced back, Proceed to step S16.

このようにすることで、運転者がウィリー走行を止めようとアクセルを戻し、その際にブレーキペダルBPを踏み込み、前輪TFが後輪TRと連動して制動された場合でも、非接地空転減速中の車輪速度が「急」停止する場合に、ステップ16へ進んで車輪速センサ2Fの異常と判断せず、ステップS15へ進むので、車輪速センサ2Fの異常の有無をより正確に判定できる。従って、車輪速度取得手段、例えば、車輪速センサの異常判定をより精度良く行える車両用ブレーキ制御装置を提供することができる。   By doing so, the driver returns the accelerator to stop the wheelie travel, and at that time, the brake pedal BP is depressed, and even when the front wheel TF is braked in conjunction with the rear wheel TR, the non-ground idling deceleration is in progress. When the wheel speed of the vehicle stops “suddenly”, the routine proceeds to step 16 and does not determine that the wheel speed sensor 2F is abnormal, but proceeds to step S15. Therefore, it is possible to more accurately determine whether or not the wheel speed sensor 2F is abnormal. Accordingly, it is possible to provide a vehicle brake control device that can perform abnormality determination of a wheel speed acquisition unit, for example, a wheel speed sensor with higher accuracy.

なお、第1の実施の形態における、走行状態判定手段33Aが異常判定手段34の中に含まれる構成としても良い。     In the first embodiment, the traveling state determination unit 33A may be included in the abnormality determination unit 34.

《第2の実施の形態》
次に、本発明の車両用ブレーキ制御装置を適用した第2の実施の形態に係る二輪車用ブレーキ制御装置について適宜図4、図5を参照しながら詳細に説明する。図4は第2の実施形態に係る二輪車用ブレーキ制御装置の構造を示す概念図である。
<< Second Embodiment >>
Next, a motorcycle brake control device according to a second embodiment to which the vehicle brake control device of the present invention is applied will be described in detail with reference to FIGS. 4 and 5 as appropriate. FIG. 4 is a conceptual diagram showing the structure of the brake control device for a motorcycle according to the second embodiment.

図4に示すように、二輪車用ブレーキ制御装置1Bは、第1の実施の形態における二輪車用ブレーキ制御装置1Aと比較して、前輪TFのフォークに荷重センサ(従動輪走行状態取得手段)5を備え、制御ユニット30Aに替わって制御ユニット30Bを備えている点が異なる。   As shown in FIG. 4, the motorcycle brake control device 1 </ b> B includes a load sensor (driven wheel traveling state acquisition means) 5 on the fork of the front wheel TF, as compared with the motorcycle brake control device 1 </ b> A in the first embodiment. Provided that a control unit 30B is provided instead of the control unit 30A.

荷重センサ5は、例えば、図5に示すようなテレスコピック型のフロントサスペンションの場合、ダンパーユニット23のクッションスプリング21に対する座面に取り付ける。通常、クッションスプリング21にはセット荷重が掛かっており、更に車両重量及び運転者の体重が掛かってセット荷重より高い荷重が荷重センサ5で検出される。(a)はフロントサスペンションに車体重量や運転者の体重が掛かって入る場合を示し、(b)は車体重量や運転者の体重が掛かっておらずクッションスプリング21のセット荷重だけが掛かった、フロントフォークが伸びきった状態を示す。
第1の実施の形態と同じ構成は同一符号を付し説明を省略する。
For example, in the case of a telescopic front suspension as shown in FIG. 5, the load sensor 5 is attached to a seating surface of the damper unit 23 with respect to the cushion spring 21. Usually, a set load is applied to the cushion spring 21. Further, a load higher than the set load is detected by the load sensor 5 due to the weight of the vehicle and the weight of the driver. (A) shows a case where the vehicle weight and the driver's weight are applied to the front suspension, and (b) shows that the vehicle weight and the driver's weight are not applied and only the set load of the cushion spring 21 is applied. The fork is fully extended.
The same components as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.

(制御ユニットの構成)
次に、制御ユニット30Bの詳細な構成を説明する。
制御ユニット30Bは、走行状態判定手段33Bと、異常判定手段34と、制動力制御手段35とを有している。
ここで、制御ユニット30Bは、CPU、RAM、ROM及び入出力回路を備えており、各車輪速センサ2F、2Rからの車輪速度信号と、ブレーキ操作スイッチ3A、3Bからのブレーキ操作有無のオン/オフ信号と、荷重センサ5からの荷重信号と、ROMに記憶されたプログラムやデータとに基づいて各種演算処理を行うことによってブレーキ液圧制御を実行するように構成されている。
(Configuration of control unit)
Next, a detailed configuration of the control unit 30B will be described.
The control unit 30B includes a traveling state determination unit 33B, an abnormality determination unit 34, and a braking force control unit 35.
Here, the control unit 30B includes a CPU, a RAM, a ROM, and an input / output circuit. The wheel speed signals from the wheel speed sensors 2F and 2R and the on / off state of the brake operation from the brake operation switches 3A and 3B. The brake fluid pressure control is executed by performing various arithmetic processes based on the off signal, the load signal from the load sensor 5, and the program and data stored in the ROM.

制御ユニット30Bは、第1の実施の形態において説明したものと同様に、前輪TF及び後輪TRのロックを防止する公知のアンチロック制御を実行する機能を有している。
また、制御ユニット30Bは、第1の実施の形態において説明したと同様に推定車体速度を算出する機能を有している。
The control unit 30B has a function of executing a known anti-lock control for preventing the front wheel TF and the rear wheel TR from being locked, as described in the first embodiment.
In addition, the control unit 30B has a function of calculating the estimated vehicle body speed as described in the first embodiment.

走行状態判定手段33Bは、荷重センサ5からの荷重信号(走行状態信号)を読み出し、荷重信号に基づいて従動輪(前輪TF)が浮き上がったままの走行状態、つまり、ウィリー走行状態か否かを判定し、判定結果を異常判定手段34に送る機能を有している。走行状態判定手段33Bは、荷重センサ5からの荷重信号が、所定値以下、例えば、前記セット荷重(所定の基準荷重)以下の場合、従動輪が浮き上がったままの走行状態判定し、前記セット荷重を超える場合、通常走行状態と判定する。なお、所定の基準荷重は、ROMに予め記憶させておくものとする。   The traveling state determination means 33B reads the load signal (traveling state signal) from the load sensor 5, and determines whether the driven wheel (front wheel TF) is lifted based on the load signal, that is, whether or not the wheelie traveling state. It has a function of determining and sending the determination result to the abnormality determining means 34. When the load signal from the load sensor 5 is not more than a predetermined value, for example, not more than the set load (predetermined reference load), the traveling state determination unit 33B determines the traveling state in which the driven wheel is lifted, and the set load When it exceeds, it determines with a normal driving | running | working state. The predetermined reference load is stored in advance in the ROM.

また、異常判定手段34は、車輪速センサ2F、2Rに異常があるかどうかを判定し、その判定結果を制動力制御手段35に出し、その判定結果に応じて制動力制御手段35において液圧ユニット31の各種部品を適宜制御する。例えば、異常判定手段34において、車輪速センサ2F、2Rいずれかに異常があると判定された場合は、制動力制御手段35は、アンチロック制御をしないものとする。   Further, the abnormality determination means 34 determines whether or not the wheel speed sensors 2F and 2R are abnormal, outputs the determination result to the braking force control means 35, and the hydraulic force is controlled in the braking force control means 35 according to the determination result. Various components of the unit 31 are controlled as appropriate. For example, when the abnormality determination unit 34 determines that there is an abnormality in one of the wheel speed sensors 2F and 2R, the braking force control unit 35 does not perform antilock control.

(異常判定手段の詳細な機能)
次に、異常判定手段34の詳細な機能を説明する。
異常判定手段34は、車輪速センサ2F、2Rの異常判定を行うために、車輪速センサ2F、2Rからの車輪速度を常時監視し、所定値以下、例えば、4km/h以下の場合は当該車輪Tが停止状態と判定し、所定値を超える場合、例えば、4km/hを超える場合は当該車輪Tが走行状態と判定する。そして、駆動輪である後輪TRが走行状態と判定されたときに、従動輪である前輪TFが停止状態と判定されたとき、後記のように車輪速センサ2Fに対する異常判定を行う。
(Detailed functions of abnormality judgment means)
Next, detailed functions of the abnormality determination unit 34 will be described.
The abnormality determination means 34 constantly monitors the wheel speeds from the wheel speed sensors 2F, 2R in order to determine the abnormality of the wheel speed sensors 2F, 2R. When T is determined to be in a stopped state and exceeds a predetermined value, for example, when it exceeds 4 km / h, the wheel T is determined to be in a traveling state. Then, when it is determined that the rear wheel TR, which is the driving wheel, is in the traveling state, and the front wheel TF, which is the driven wheel, is determined to be in the stopped state, abnormality determination is performed on the wheel speed sensor 2F as described later.

異常判定手段34は、後輪TRの車輪速センサ2Rが走行状態を示し、前輪TFの車輪速センサ2Fが停止状態を示している場合には、走行状態判定手段33Bに従動輪(前輪TF)が浮き上がったままの走行状態、つまり、ウィリー走行状態か否かの判定をさせる。異常判定手段34は、走行状態判定手段33Bにおいて、ウィリー走行状態と判定された場合は、車輪速センサ2Fに異常が無いと判定し、ウィリー走行状態と判定されなかった場合は、車輪速センサ2Fに異常が有ると判定して、車輪速センサ2Fの異常の有無の判定結果を制動力制御手段35に出力する。   When the wheel speed sensor 2R of the rear wheel TR indicates the traveling state and the wheel speed sensor 2F of the front wheel TF indicates the stopped state, the abnormality determining unit 34 is driven by the traveling state determining unit 33B (front wheel TF). It is determined whether or not the vehicle is in a traveling state in which it is lifted, that is, whether or not it is a wheely traveling state. The abnormality determining unit 34 determines that the wheel speed sensor 2F is normal when the traveling state determining unit 33B determines that it is in the wheelie traveling state, and the wheel speed sensor 2F when it is not determined that it is in the wheelie traveling state. Is determined to be abnormal, and the determination result of whether or not the wheel speed sensor 2F is abnormal is output to the braking force control means 35.

(第2の実施の形態の効果)
以上説明した本実施の形態では、後輪TRが走行状態で前輪TFが停止状態に至った場合であっても、それがウィリー走行に起因するものと判定された場合には、車輪速センサ2Fの異常と判断しないので、異常判定の精度が高まる。
具体的には、フロントフォークが伸びきって、荷重センサ5がセット荷重以下の荷重である場合は、ウィリー走行状態と判定して、車輪速センサ2Fが停止状態を示しても異常はないと判定するので、車輪速センサ2Fに対して正確な異常判定ができる。
(Effect of the second embodiment)
In the present embodiment described above, even if the rear wheel TR is in a traveling state and the front wheel TF is in a stopped state, if it is determined that it is caused by wheelie traveling, the wheel speed sensor 2F Therefore, the accuracy of the abnormality determination is increased.
Specifically, when the front fork is fully extended and the load sensor 5 is a load equal to or less than the set load, it is determined that the vehicle is in the wheelie traveling state, and it is determined that there is no abnormality even if the wheel speed sensor 2F indicates the stopped state. Therefore, accurate abnormality determination can be performed for the wheel speed sensor 2F.

また、自動二輪車Bの仕様に応じてセット荷重のデータをあらかじめROMに記憶しておくことで、車両の仕様に応じ簡単に自動二輪車Bのウィリー走行状態か、否かが判定できる。   Further, by storing the set load data in the ROM in advance according to the specifications of the motorcycle B, it is possible to easily determine whether or not the motorcycle B is in the wheelie running state according to the specifications of the vehicle.

本発明の第1実施形態に係る二輪用アンチロックブレーキ装置の構造概念図である。1 is a structural conceptual diagram of a two-wheeled antilock brake device according to a first embodiment of the present invention. 前輪の車輪速センサの異常判定の制御の流れを示すフローチャートである。It is a flowchart which shows the flow of control of abnormality determination of the wheel speed sensor of a front wheel. 前輪TFが非接地空転減速状態か否かの判定を説明する図である。It is a figure explaining determination of whether front wheel TF is in a non-grounding idling deceleration state. 本発明の第2実施形態に係る二輪用アンチロックブレーキ装置の構造概念図である。It is a structure conceptual diagram of the anti-lock brake device for two wheels which concerns on 2nd Embodiment of this invention. (a)は、通常走行状態でのフロントサスペンションの状態を、(b)はウィリー走行状態でのフロントサスペンションの状態を示す図である。(A) is a figure which shows the state of the front suspension in a normal driving state, (b) is a figure which shows the state of the front suspension in a wheelie driving state.

符号の説明Explanation of symbols

1A、1B 二輪車用ブレーキ制御装置
2F、2R 車輪速センサ(車輪速度取得手段)
3A、3B ブレーキ操作スイッチ
5 荷重センサ(従動輪走行状態取得手段)
21 クッションスプリング
23 ダンパーユニット
31 液圧ユニット
30A、30B 制御ユニット
32 従動輪加速度取得手段(従動輪走行状態取得手段)
33A、33B 走行状態判定手段
34 異常判定手段
35 制動力制御手段
41 履歴情報記憶手段
B 自動二輪車
TF 前輪(従動輪)
TR 後輪(駆動輪)
TBF 前輪ブレーキ
TBR 後輪ブレーキ
BP ブレーキペダル
BL ブレーキレバー
1A, 1B Motorcycle brake control device 2F, 2R Wheel speed sensor (wheel speed acquisition means)
3A, 3B Brake operation switch 5 Load sensor (driven wheel running state acquisition means)
21 Cushion spring 23 Damper unit 31 Hydraulic unit 30A, 30B Control unit 32 Drive wheel acceleration acquisition means (driven wheel running state acquisition means)
33A, 33B Traveling state determination means 34 Abnormality determination means 35 Braking force control means 41 History information storage means B Motorcycle TF Front wheel (driven wheel)
TR rear wheel (drive wheel)
TBF Front wheel brake TBR Rear wheel brake BP Brake pedal BL Brake lever

Claims (9)

従動輪及び駆動輪それぞれの車輪速度を取得する車輪速度取得手段と、前記車輪速度取得手段の異常の有無を判定する異常判定手段と、前記取得された車輪速度に基づいて前記従動輪及び駆動輪それぞれに設けられたブレーキ装置の制動力を制御するとともに、前記異常判定手段によって異常有りと判定された場合には、前記異常に対応する所定の異常対応制御を実行する制動力制御手段と、を備えた車両用ブレーキ制御装置であって、
更に、前記従動輪の走行状態信号を出力する従動輪走行状態取得手段と、
前記出力された走行状態信号から、当該従動輪が浮き上がったままの走行状態であるか否かを判定する走行状態判定手段を備え、
前記異常判定手段は、
前記駆動輪に係る前記車輪速度取得手段が非停止状態を示し、前記従動輪に係る前記車輪速度取得手段が停止状態を示している場合には、
前記走行状態判定手段により前記従動輪が浮き上がったままの走行状態ではないと判定されたときに、前記従動輪に係る車輪速度取得手段に異常があると判定し、
前記走行状態判定手段により前記従動輪が浮き上がったままの走行状態であると判定されたときに、前記従動輪に係る車輪速度取得手段に異常が無いと判定することを特徴とする車両用ブレーキ制御装置。
Wheel speed acquisition means for acquiring the wheel speed of each of the driven wheel and drive wheel, abnormality determination means for determining whether or not the wheel speed acquisition means is abnormal, and the driven wheel and drive wheel based on the acquired wheel speed Braking force control means for controlling a braking force of each brake device provided to each of the brake devices and executing a predetermined abnormality response control corresponding to the abnormality when the abnormality determination means determines that there is an abnormality. A vehicular brake control device comprising:
Furthermore, driven wheel running state acquisition means for outputting a running state signal of the driven wheel;
From the output traveling state signal, it is provided with traveling state determination means for determining whether or not the driven wheel is in a traveling state while being lifted,
The abnormality determining means includes
When the wheel speed acquisition means related to the driving wheel shows a non-stop state, and the wheel speed acquisition means related to the driven wheel shows a stop state,
When it is determined by the traveling state determination means that the driven wheel is not in a traveling state in which the driven wheel is lifted, it is determined that there is an abnormality in the wheel speed acquisition means related to the driven wheel,
Brake control for a vehicle, wherein when it is determined by the traveling state determining means that the driven wheel is in a traveling state while being lifted, it is determined that there is no abnormality in the wheel speed acquisition means related to the driven wheel. apparatus.
前記従動輪走行状態取得手段は、前記従動輪に設けられた荷重センサであって、前記走行状態信号として荷重信号を出力し、
前記走行状態判定手段は、
前記荷重センサが所定の基準荷重以下を示す場合は、前記従動輪が浮き上がったままの走行状態であると判定し、
前記所定の基準荷重を超える荷重を示す場合は、前記従動輪が浮き上がったままの走行状態ではないと判定することを特徴とする請求項1に記載の車両用ブレーキ制御装置。
The driven wheel traveling state acquisition means is a load sensor provided on the driven wheel, and outputs a load signal as the traveling state signal,
The traveling state determination means includes
When the load sensor indicates a predetermined reference load or less, it is determined that the driven wheel is in a traveling state while being lifted,
2. The vehicle brake control device according to claim 1, wherein when the load exceeding the predetermined reference load is indicated, it is determined that the driven wheel is not in a traveling state while being lifted.
前記従動輪走行状態取得手段は、前記従動輪に係る車輪速度取得手段からの車輪速度に基づいて車輪加速度を取得する従動輪加速度取得手段であって、前記走行状態信号として車輪加速度信号を出力し、
前記走行状態判定手段は、
前記従動輪の停止状態に至るまでの車輪加速度信号が所定の基準減速度未満の車輪減速度である場合は、前記従動輪が浮き上がったままの走行状態であると判定し、前記所定の基準減速度以上の車輪減速度である場合は、前記従動輪が浮き上がったままの走行状態ではないと判定することを特徴とする請求項1に記載の車両用ブレーキ制御装置。
The driven wheel travel state acquisition means is driven wheel acceleration acquisition means for acquiring wheel acceleration based on a wheel speed from a wheel speed acquisition means related to the driven wheel, and outputs a wheel acceleration signal as the travel state signal. ,
The traveling state determination means includes
If the wheel acceleration signal until the driven wheel is stopped is a wheel deceleration less than a predetermined reference deceleration, it is determined that the driven wheel is in a traveling state while being lifted, and the predetermined reference deceleration is determined. 2. The vehicle brake control device according to claim 1, wherein when the wheel deceleration is equal to or greater than a speed, it is determined that the driven wheel is not in a traveling state in which the driven wheel is lifted.
前記所定の基準減速度とは、前記従動輪の非接地状態での空転減速状態とみなせる最大の車輪減速度に対応することを特徴とする請求項3に記載の車両用ブレーキ制御装置。   4. The vehicle brake control device according to claim 3, wherein the predetermined reference deceleration corresponds to a maximum wheel deceleration that can be regarded as an idling deceleration state in a non-grounded state of the driven wheel. 前記走行状態判定手段は、
前記取得された車輪加速度の経時変化を示す履歴情報を記憶する履歴情報記憶手段を有し、
該履歴情報記憶手段に記憶された履歴情報に基づいて、前記従動輪が浮き上がったままの走行状態であるか否かを判定することを特徴とする請求項3または請求項4に記載の車両用ブレーキ制御装置。
The traveling state determination means includes
History information storage means for storing history information indicating a change with time of the acquired wheel acceleration,
5. The vehicle according to claim 3, wherein it is determined whether or not the driven wheel is in a traveling state while being lifted based on the history information stored in the history information storage means. Brake control device.
前記異常判定手段は、
前記駆動輪に係る車輪速度取得手段が非停止状態を示し、前記従動輪に係る車輪速度取得手段が停止状態を示している場合には、ブレーキ非操作状態で前記従動輪が停止したと判定されたときに、
前記走行状態判定手段において、前記従動輪が停止状態となった時点よりも所定時間前の前記履歴情報を参照し、前記従動輪の浮き上がったままの走行状態であるか否かを判定することを特徴とする請求項5に記載の車両用ブレーキ制御装置。
The abnormality determining means includes
When the wheel speed acquisition means related to the driving wheel shows a non-stop state and the wheel speed acquisition means related to the driven wheel shows a stop state, it is determined that the driven wheel has stopped in a brake non-operation state. When
The travel state determining means refers to the history information a predetermined time before the time when the driven wheel is in a stopped state, and determines whether or not the driven wheel is in a traveling state where the driven wheel remains lifted. 6. The vehicle brake control device according to claim 5, wherein
前記走行状態判定手段は、
前記所定時間前の前記履歴情報に基づいた判定では、前記従動輪の浮き上がったままの走行状態に該当しないと判定された場合、前記所定時間よりも更に過去の前記履歴情報を参照し、参照した履歴情報における従動輪の車輪減速度が前記所定の基準減速度未満である場合には、前記従動輪の浮き上がったままの走行状態に該当すると判定することを特徴とする請求項6に記載の車両用ブレーキ制御装置。
The traveling state determination means includes
In the determination based on the history information before the predetermined time, when it is determined that it does not correspond to the traveling state in which the driven wheel is lifted, the history information is referred to and referred to before the predetermined time. The vehicle according to claim 6, wherein when the wheel deceleration of the driven wheel in the history information is less than the predetermined reference deceleration, the vehicle is determined to correspond to a traveling state in which the driven wheel is lifted. Brake control device.
従動輪及び駆動輪それぞれの車輪速度を取得する車輪速度取得手段と、前記車輪速度取得手段の異常の有無を判定する異常判定手段と、前記取得された車輪速度に基づいて前記従動輪及び駆動輪それぞれに設けられたブレーキ装置の制動力を制御するとともに、前記異常判定手段によって異常有りと判定された場合には、前記異常に対応する所定の異常対応制御を実行する制動力制御手段と、を備えた車両用ブレーキ制御装置であって、
更に、前記従動輪の車輪加速度を取得する従動輪加速度取得手段を備え、
前記異常判定手段は、
前記駆動輪に係る前記車輪速度取得手段が非停止状態を示し、前記従動輪に係る車輪速度取得手段が停止状態を示したときには、前記従動輪加速度取得手段で取得した車輪加速度に基づいて、前記従動輪の停止状態に至るまでの車輪減速度が、従動輪の非接地状態での空転減速状態とみなせる所定の基準減速度未満である場合は、前記従動輪に係る車輪速度取得手段に異常が無いと判定し、前記所定の基準減速度以上である場合は、異常があると判定することを特徴とする車両用ブレーキ制御装置。
Wheel speed acquisition means for acquiring the wheel speed of each of the driven wheel and drive wheel, abnormality determination means for determining whether or not the wheel speed acquisition means is abnormal, and the driven wheel and drive wheel based on the acquired wheel speed Braking force control means for controlling a braking force of each brake device provided to each of the brake devices and executing a predetermined abnormality response control corresponding to the abnormality when the abnormality determination means determines that there is an abnormality. A vehicular brake control device comprising:
Furthermore, it comprises driven wheel acceleration acquisition means for acquiring wheel acceleration of the driven wheel,
The abnormality determining means includes
When the wheel speed acquisition unit related to the driving wheel indicates a non-stop state and the wheel speed acquisition unit related to the driven wheel indicates a stop state, based on the wheel acceleration acquired by the driven wheel acceleration acquisition unit, If the wheel deceleration until the driven wheel is stopped is less than a predetermined reference deceleration that can be regarded as the idling deceleration state in the non-grounded state of the driven wheel, there is an abnormality in the wheel speed acquisition means related to the driven wheel. A vehicle brake control device characterized by determining that there is no abnormality and determining that there is an abnormality when the vehicle is greater than or equal to the predetermined reference deceleration.
前記所定の基準減速度とは、前記従動輪の非接地状態での空転減速状態とみなせる最大の車輪減速度に対応することを特徴とする請求項8に記載の車両用ブレーキ制御装置。   9. The vehicle brake control device according to claim 8, wherein the predetermined reference deceleration corresponds to a maximum wheel deceleration that can be regarded as an idling deceleration state in a non-grounded state of the driven wheel.
JP2007025495A 2007-02-05 2007-02-05 Brake control device for vehicle Expired - Fee Related JP4669483B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007025495A JP4669483B2 (en) 2007-02-05 2007-02-05 Brake control device for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007025495A JP4669483B2 (en) 2007-02-05 2007-02-05 Brake control device for vehicle

Publications (2)

Publication Number Publication Date
JP2008189127A JP2008189127A (en) 2008-08-21
JP4669483B2 true JP4669483B2 (en) 2011-04-13

Family

ID=39749647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007025495A Expired - Fee Related JP4669483B2 (en) 2007-02-05 2007-02-05 Brake control device for vehicle

Country Status (1)

Country Link
JP (1) JP4669483B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5422376B2 (en) 2009-12-28 2014-02-19 川崎重工業株式会社 Vehicle control system, wheelie determination method and output suppression method
JP5460557B2 (en) * 2010-11-05 2014-04-02 本田技研工業株式会社 Anti-lock brake control device
JP5798387B2 (en) * 2011-06-17 2015-10-21 川崎重工業株式会社 Start control device for riding type vehicle
WO2022091695A1 (en) * 2020-10-26 2022-05-05 日立Astemo株式会社 Brake device for vehicle

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60128056A (en) * 1983-12-13 1985-07-08 Nissan Motor Co Ltd Monitor device in antiskid control system
JPH0597085A (en) * 1991-10-08 1993-04-20 Honda Motor Co Ltd Method and device for detecting car body state
JPH1071943A (en) * 1996-08-30 1998-03-17 Toyota Central Res & Dev Lab Inc Control start discriminating method
JPH10203344A (en) * 1997-01-20 1998-08-04 Nippon Abs Ltd Anti-skid control method for two wheeler
JPH11291886A (en) * 1998-04-10 1999-10-26 Unisia Jecs Corp Abnormality detector for wheel speed sensor
JP2001088670A (en) * 1999-09-27 2001-04-03 Denso Corp Vehicle behavior estimation method and device therefor
JP2002070709A (en) * 2000-09-01 2002-03-08 Yamaha Motor Co Ltd Wheelie protecting system of motorcycle
JP2003191832A (en) * 2001-12-27 2003-07-09 Bosch Automotive Systems Corp Reference speed calculation method, anti-lock brake system and anti-lock brake control program
JP2007191832A (en) * 2006-01-20 2007-08-02 Bridgestone Corp Reinforcing material for tire and pneumatic tire

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60128056A (en) * 1983-12-13 1985-07-08 Nissan Motor Co Ltd Monitor device in antiskid control system
JPH0597085A (en) * 1991-10-08 1993-04-20 Honda Motor Co Ltd Method and device for detecting car body state
JPH1071943A (en) * 1996-08-30 1998-03-17 Toyota Central Res & Dev Lab Inc Control start discriminating method
JPH10203344A (en) * 1997-01-20 1998-08-04 Nippon Abs Ltd Anti-skid control method for two wheeler
JPH11291886A (en) * 1998-04-10 1999-10-26 Unisia Jecs Corp Abnormality detector for wheel speed sensor
JP2001088670A (en) * 1999-09-27 2001-04-03 Denso Corp Vehicle behavior estimation method and device therefor
JP2002070709A (en) * 2000-09-01 2002-03-08 Yamaha Motor Co Ltd Wheelie protecting system of motorcycle
JP2003191832A (en) * 2001-12-27 2003-07-09 Bosch Automotive Systems Corp Reference speed calculation method, anti-lock brake system and anti-lock brake control program
JP2007191832A (en) * 2006-01-20 2007-08-02 Bridgestone Corp Reinforcing material for tire and pneumatic tire

Also Published As

Publication number Publication date
JP2008189127A (en) 2008-08-21

Similar Documents

Publication Publication Date Title
CN101549708B (en) Adaptive steering control for a motor vehicle
JP2002029403A (en) Rear wheel floating detection method and brake control method for two-wheel vehicle
WO2010113308A1 (en) Brake control device
KR100615486B1 (en) Roll over rreventive control device of vehicle
JPH10157585A (en) Method for performing automatic braking effect
JP2000108872A (en) Automobile overturning preventing device and method in braking process or acceleration process
KR101368876B1 (en) Vehicle braking force controller
JP5752668B2 (en) Brake hydraulic pressure control device for vehicles
US20110264349A1 (en) Travel controlling apparatus of vehicle
JP4669483B2 (en) Brake control device for vehicle
JPH0327419B2 (en)
JPWO2007086135A1 (en) Brake control method and apparatus for motorcycle
JP6726298B2 (en) CONTROL DEVICE CONTROLLING BRAKE STRENGTH WHICH WHICH BRAKE SYSTEM OF VEHICLE WHICH WHICH WHEELS WHICH
JP3794091B2 (en) Vehicle tire puncture countermeasure device
JP2007296908A (en) Anti-lock brake control method and device thereof
EP2772392A1 (en) Signal cancelling device for rocking vehicle
JP6223663B2 (en) Brake control device for motorcycles
EP2767438B1 (en) Straight-travelling/turning determination device
JP6243684B2 (en) Vehicle control device
JP5007068B2 (en) Brake control method
JP2007015593A (en) Car body speed computation device
TW202229058A (en) Controller and control method
JP4650174B2 (en) Vehicle traction control device and vehicle traction control method
JP2009280083A (en) Braking control device of vehicle
JP3608667B2 (en) Anti-skid control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4669483

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees