JP4667882B2 - High thermal conductivity compound - Google Patents

High thermal conductivity compound Download PDF

Info

Publication number
JP4667882B2
JP4667882B2 JP2005017455A JP2005017455A JP4667882B2 JP 4667882 B2 JP4667882 B2 JP 4667882B2 JP 2005017455 A JP2005017455 A JP 2005017455A JP 2005017455 A JP2005017455 A JP 2005017455A JP 4667882 B2 JP4667882 B2 JP 4667882B2
Authority
JP
Japan
Prior art keywords
compound
mass
thermal conductivity
content
inorganic filler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005017455A
Other languages
Japanese (ja)
Other versions
JP2006210437A (en
Inventor
佳久 渡辺
光伸 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosmo Oil Lubricants Co Ltd
Original Assignee
Cosmo Oil Lubricants Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosmo Oil Lubricants Co Ltd filed Critical Cosmo Oil Lubricants Co Ltd
Priority to JP2005017455A priority Critical patent/JP4667882B2/en
Publication of JP2006210437A publication Critical patent/JP2006210437A/en
Application granted granted Critical
Publication of JP4667882B2 publication Critical patent/JP4667882B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Description

本発明は、極めて高い熱伝導率を有する高熱伝導性コンパウンドに関する。   The present invention relates to a high thermal conductivity compound having an extremely high thermal conductivity.

電子機器に使用されている半導体部品の中には、コンピュータのCPUや電源制御用のパワー半導体のように使用中に発熱をともなう部品がある。これらの半導体部品を熱から保護し、正常に機能させるためには、発生した熱をヒートシンク等の放熱部品へ伝導させ放熱する方法がある。熱伝導性コンパウンドは、これら半導体部品と放熱部品を密着させるように両者の間に塗布され、熱の伝導を高めるために用いられる。これら接合部の熱伝導は、熱伝導性コンパウンドの熱伝導率が高いほど優れ、また、塗布性が良いほど(塗膜が薄いほど、密着性が高いほど)高くなる。近年、特にコンピュータの性能向上はめざましく、CPUの放熱対策には熱伝導率の高い熱伝導性コンパウンドが求められている。   Among semiconductor components used in electronic devices, there are components that generate heat during use, such as a CPU for a computer and a power semiconductor for power control. In order to protect these semiconductor components from heat and to function normally, there is a method of conducting the generated heat to a heat radiating component such as a heat sink to dissipate heat. The thermally conductive compound is applied between the semiconductor component and the heat radiating component so that the semiconductor component and the heat radiating component are in close contact with each other, and is used to increase heat conduction. The thermal conductivity of these joints is better as the thermal conductivity of the thermal conductive compound is higher, and is higher as the coating property is better (the thinner the coating film, the higher the adhesion). In recent years, the performance of computers has been particularly improved, and a thermal conductive compound having a high thermal conductivity has been demanded as a heat dissipation measure for CPUs.

熱伝導性コンパウンドは、基油に熱伝導率の高い充填剤を多量に分散することで熱伝導率を高めたグリース状組成物である。充填剤としては酸化亜鉛、酸化アルミニウムなどの金属酸化物や、窒化珪素、窒化アルミ、窒化ホウ素などの窒化物、アルミニウムや銅、銀などの金属粉末が使用されている。この内、アルミニウムや銅、銀などの金属粉末は非常に熱伝導性が高く、より高い熱伝導性のコンパウンドの充填剤として用いられる場合がある(特許文献1参照)。
特開2000−63873
A thermal conductive compound is a grease-like composition having an increased thermal conductivity by dispersing a large amount of a filler having a high thermal conductivity in a base oil. As the filler, metal oxides such as zinc oxide and aluminum oxide, nitrides such as silicon nitride, aluminum nitride and boron nitride, and metal powders such as aluminum, copper and silver are used. Among these, metal powders such as aluminum, copper, and silver have extremely high thermal conductivity, and may be used as a filler for higher thermal conductivity compounds (see Patent Document 1).
JP 2000-63873 A

しかし、アルミニウムや銅、銀などの金属粉末は高熱伝導性ではあるものの、比較的柔らかい材質であるために、製造時のロールミル処理工程において金属粒子が潰れる場合がある。粒子が潰れた場合にはコンパウンドのちょう度が低くなり、コンパウンドを調製できなくなる場合があり、この潰れを改善する技術が望まれている。 However, although metal powders such as aluminum, copper, and silver are highly heat-conductive, they are relatively soft materials, and therefore, metal particles may be crushed in a roll mill treatment process during manufacturing. When the particles are crushed, the consistency of the compound is lowered, and the compound may not be prepared. A technique for improving the crushed is desired.

また、熱伝導性コンパウンドの熱伝導率は充填剤の量が多いほど高くなるが、充填剤の量が多すぎるとちょう度が低くなり十分な塗布性が得られなくなる場合がある。この場合、塗膜の膜厚が増えたり気泡が混入したりすることで、熱伝導性が低下するおそれがある。そのため、ちょう度が高く、塗布性を良好に保ちつつ、充填剤の量を多くできる技術が求められている。
本発明の目的は、高熱伝導性でありながら、ちょう度が高く、塗布性が良好な熱伝導性コンパウンドを提供することである。
Further, the thermal conductivity of the thermally conductive compound increases as the amount of the filler increases. However, if the amount of the filler is too large, the consistency decreases and sufficient coatability may not be obtained. In this case, there is a possibility that the thermal conductivity is lowered by increasing the film thickness of the coating film or mixing bubbles. Therefore, there is a demand for a technique that can increase the amount of filler while maintaining a high consistency and good coatability.
An object of the present invention is to provide a heat conductive compound having a high consistency and a good coating property while having a high heat conductivity.

そこで、本発明者らは、200W/m・K以上の熱伝導率を有する特定粒径の粗粒金属粉末と新モース硬度が6以上である硬度の高い特定粒径の粗粒無機充填剤とを併用し、さらに特定粒径の細粒無機充填剤及び特定の表面改質剤を組み合わせ、それぞれ特定量含有させた熱伝導性コンパウンドにすることで、粗粒金属粉末を潰れにくくし、ちょう度が高く、かつ優れた熱伝導率を有する熱伝導性コンパウンドが得られることを見出した。   Therefore, the inventors of the present invention provide a coarse metal powder having a specific particle size having a thermal conductivity of 200 W / m · K or more, a coarse inorganic filler having a specific particle size having a high hardness with a new Mohs hardness of 6 or more, and In combination, a fine inorganic filler with a specific particle size and a specific surface modifier are combined to make a heat conductive compound containing a specific amount of each, making the coarse metal powder difficult to crush and consistency. It was found that a thermally conductive compound having a high thermal conductivity and an excellent thermal conductivity can be obtained.

すなわち、本発明は、(A)熱伝導率が200W/m・K以上で平均粒径5〜50μmの金属粉末、(B)新モース硬度が6以上で平均粒径5〜50μmの粗粒無機充填剤、(C)平均粒径0.15〜2μmの細粒無機充填剤、(D)基油、及び(E)(ポリ)グリセリルエーテル、並びにアルケニルコハク酸イミド及びそのホウ素誘導体から選ばれる1種以上の表面改質剤を含有する高熱伝導性コンパウンドであって、(A)、(B)及び(C)の合計含有量がコンパウンド全量中88〜97質量%の範囲であり、かつ(A)と(B)の合計含有量と(C)の含有量の質量比が20:80〜85:15の範囲であり、(D)の含有量がコンパウンド全量中12質量%未満であり、さらに(E)の含有量がコンパウンド全量中それぞれ0.08〜4質量%である割合となるように(A)、(B)、(C)、(D)、及び(E)成分が配合されたものであることを特徴とする高熱伝導性コンパウンドを提供するものである。 That is, the present invention comprises (A) a metal powder having a thermal conductivity of 200 W / m · K or more and an average particle size of 5 to 50 μm, and (B) a coarse inorganic material having a new Mohs hardness of 6 or more and an average particle size of 5 to 50 μm. 1 selected from a filler, (C) a fine inorganic filler having an average particle size of 0.15 to 2 μm, (D) a base oil, and (E) (poly) glyceryl ether, and an alkenyl succinimide and a boron derivative thereof. A high thermal conductivity compound containing at least a seed surface modifier, wherein the total content of (A), (B) and (C) is in the range of 88 to 97% by mass in the total amount of the compound, and (A ) And (B) and the mass ratio of the content of (C) is in the range of 20:80 to 85:15, the content of (D) is less than 12% by mass in the total amount of the compound, The content of (E) is 0.08 in the total amount of the compound. As the ratio is 4 wt% (A), provides a high thermal conductivity compound, wherein (B), (C), in which (D), and component (E) is blended Is.

また、本発明は、上記高熱伝導性コンパウンドにおいて、さらに、(E)(ポリ)グリセリルエーテル、並びにアルケニルコハク酸イミド及びそのホウ素誘導体から選ばれる1種以上の表面改質剤がコンパウンド全量中それぞれ0.08〜4質量%含有する高熱伝導性コンパウンドを提供するものである。
また、本発明は、上記高熱伝導性コンパウンドにおいて、金属粉末(A)がアルミニウム粉末であり、粗粒無機充填剤(B)が酸化亜鉛粉末であり、金属粉末(A)と粗粒無機充填剤(B)の含有量の質量比が95:5〜5:95の範囲であり、細粒無機充填剤(C)が酸化亜鉛粉末である高熱伝導性コンパウンドを提供するものである。
In the high thermal conductivity compound, the present invention may further comprise (E) (poly) glyceryl ether, and one or more surface modifiers selected from alkenyl succinimide and its boron derivative in each of the total amount of the compound. The present invention provides a high thermal conductive compound containing 0.08 to 4% by mass.
Moreover, the present invention provides the high thermal conductive compound, wherein the metal powder (A) is an aluminum powder, the coarse inorganic filler (B) is a zinc oxide powder, the metal powder (A) and the coarse inorganic filler. The mass ratio of the content of (B) is in the range of 95: 5 to 5:95, and a highly thermally conductive compound in which the fine inorganic filler (C) is zinc oxide powder is provided.

また、本発明は、上記高熱伝導性コンパウンドにおいて、基油が、鉱油、合成炭化水素油、ジエステル、ポリオールエステル、及びフェニルエーテルから選ばれる少なくとも1種以上である高熱伝導性コンパウンドを提供するものである。
また、本発明は、上記高熱伝導性コンパウンドにおいて、基油がジエステル及びポリオールエステルから選ばれる1種以上を含有し、その含有量が基油中に2〜90質量%である高熱伝導性コンパウンドを提供するものである。
また、本発明は、(A)熱伝導率が200W/m・K以上で平均粒径5〜50μmの金属粉末、(B)新モース硬度が6以上で平均粒径5〜50μmの粗粒無機充填剤、(C)平均粒径0.15〜2μmの細粒無機充填剤、(D)基油、及び(E)(ポリ)グリセリルエーテル、並びにアルケニルコハク酸イミド及びそのホウ素誘導体から選ばれる1種以上の表面改質剤を、(A)、(B)及び(C)の合計含有量がコンパウンド全量中88〜97質量%の範囲であり、かつ(A)と(B)の合計含有量と(C)の含有量の質量比が20:80〜85:15の範囲であり、(D)の含有量がコンパウンド全量中12質量%未満であり、さらに(E)の含有量がコンパウンド全量中それぞれ0.08〜4質量%である割合になるように配合することを特徴とする高熱伝導性コンパウンドの製造方法を提供するものである。
The present invention also provides a high thermal conductivity compound, wherein the base oil is at least one selected from mineral oil, synthetic hydrocarbon oil, diester, polyol ester, and phenyl ether. is there.
Further, the present invention provides a high thermal conductivity compound in which the base oil contains one or more selected from diesters and polyol esters, and the content thereof is 2 to 90% by mass in the base oil. It is to provide.
The present invention also provides: (A) a metal powder having a thermal conductivity of 200 W / m · K or more and an average particle size of 5 to 50 μm; and (B) a coarse inorganic material having a new Mohs hardness of 6 or more and an average particle size of 5 to 50 μm. 1 selected from a filler, (C) a fine inorganic filler having an average particle size of 0.15 to 2 μm, (D) a base oil, and (E) (poly) glyceryl ether, and an alkenyl succinimide and a boron derivative thereof. The total content of (A), (B) and (C) is in the range of 88 to 97% by mass in the total amount of the compound, and the total content of (A) and (B). And the mass ratio of the content of (C) is in the range of 20:80 to 85:15, the content of (D) is less than 12% by mass in the total amount of the compound, and the content of (E) is the total amount of the compound It mix | blends so that it may become a ratio which is 0.08-4 mass% inside, respectively. The present invention provides a method for producing a high thermal conductivity compound.

本発明の高熱伝導性コンパウンドは、塗布性を損なうことなくより優れた熱伝導性を発揮できる。本発明の高熱伝導性コンパウンドは、熱対策の必要な電子部品の放熱性を向上でき、特にCPUやパワー半導体等の放熱材料として好適である。   The high thermal conductivity compound of the present invention can exhibit better thermal conductivity without impairing the coating property. The high thermal conductivity compound of the present invention can improve the heat dissipation of electronic components that require heat countermeasures, and is particularly suitable as a heat dissipation material for CPUs and power semiconductors.

本発明に用いられる無機充填剤は、高充填させるために粗粒無機充填剤と細粒無機充填剤を組み合わせて配合する。
金属粉末(A)は、熱伝導率が200W/m・K以上で、平均粒径が5〜50μmである。熱伝導率が200W/m・K以上の金属粉末としては、アルミニウムや銅や銀などの金属粉末が例示されるが、特にアルミニウム粉末が好ましい。金属粉末(A)の平均粒径は、5〜40μmが好ましく、8〜30μmが特に好ましい。
The inorganic filler used in the present invention is blended with a combination of a coarse inorganic filler and a fine inorganic filler for high filling.
The metal powder (A) has a thermal conductivity of 200 W / m · K or more and an average particle size of 5 to 50 μm. Examples of the metal powder having a thermal conductivity of 200 W / m · K or more include metal powders such as aluminum, copper, and silver, and aluminum powder is particularly preferable. 5-40 micrometers is preferable and, as for the average particle diameter of metal powder (A), 8-30 micrometers is especially preferable.

粗粒無機充填剤(B)は、新モース硬度が6以上で平均粒径5〜50μmの粗粒無機充填剤である。粗粒無機充填剤(B)を含まない場合や新モース硬度が6よりも低い場合には、ロールミル処理時に金属粉末(A)が潰れ、コンパウンドのちょう度が低くなったりコンパウンドを調製できなくなる場合がある。新モース硬度は、7以上が好ましく、7.5以上が特に好ましい。新モース硬度が6以上の粗粒無機充填剤としては、例えば、酸化亜鉛、酸化アルミニウム、酸化マグネシウム、酸化チタン、窒化アルミニウム、炭化ケイ素、シリカなどの粉末が例示される。より好ましくは酸化亜鉛粉末が挙げられる。粗粒無機充填剤(B)の平均粒径は、5〜40μmが好ましく、8〜30μmがより好ましく、8〜25μmが特に好ましい。粗粒無機充填剤(B)の最大粒径は、100μm以下が好ましく、75μm以下がより好ましく、50μm以下が特に好ましい。 The coarse inorganic filler (B) is a coarse inorganic filler having a new Mohs hardness of 6 or more and an average particle diameter of 5 to 50 μm. When the coarse inorganic filler (B) is not included, or when the new Mohs hardness is lower than 6, the metal powder (A) is crushed during the roll mill treatment, and the consistency of the compound is lowered or the compound cannot be prepared. There is. The new Mohs hardness is preferably 7 or more, particularly preferably 7.5 or more. Examples of the coarse inorganic filler having a new Mohs hardness of 6 or more include powders such as zinc oxide, aluminum oxide, magnesium oxide, titanium oxide, aluminum nitride, silicon carbide, and silica. More preferably, a zinc oxide powder is mentioned. The average particle diameter of the coarse inorganic filler (B) is preferably 5 to 40 μm, more preferably 8 to 30 μm, and particularly preferably 8 to 25 μm. The maximum particle size of the coarse inorganic filler (B) is preferably 100 μm or less, more preferably 75 μm or less, and particularly preferably 50 μm or less.

また、金属粉末(A)及び粗粒無機充填剤(B)、すなわち粗粒の平均粒径は、50μmを越えると塗膜が厚くなり熱伝導性が低下する傾向にある。一方、金属粉末(A)及び粗粒無機充填剤(B)の平均粒径を5μm以上とすることや、細粒無機充填剤(C)の平均粒径を2μm以下とすることで、無機充填剤を最密充填しやすくなり、結果として十分な熱伝導率を得やすくなる。 When the average particle size of the metal powder (A) and the coarse inorganic filler (B), that is, the coarse particles exceeds 50 μm, the coating film becomes thick and the thermal conductivity tends to be lowered. On the other hand, by setting the average particle size of the metal powder (A) and the coarse inorganic filler (B) to 5 μm or more, or by setting the average particle size of the fine inorganic filler (C) to 2 μm or less, the inorganic filling It becomes easy to close-pack the agent, and as a result, sufficient thermal conductivity is easily obtained.

細粒無機充填剤(C)は、平均粒径が0.15〜2μmの細粒無機充填剤である。細粒無機充填剤(C)の平均粒径は、0.2〜1.8μmが好ましく、0.3〜1.5μmが特に好ましい。細粒無機充填剤(C)の平均粒径は、0.15μm以上とすることで、無機充填剤の総表面積を適度に保つことができため、液体成分(基油と表面改質剤)を十分に保持することができたり、適度なちょう度とすることが出来るなどコンパウンドを調製しやすくなる。細粒無機充填剤(C)の平均粒径が2μm以下とすることで、無機充填剤を最密充填しやすくなり、結果として十分な熱伝導率を得やすくなる。細粒無機充填剤(C)としては、酸化亜鉛、酸化アルミニウム、窒化ホウ素(六方晶)などの粉末が例示される。より好ましくは酸化亜鉛粉末が挙げられる。 The fine inorganic filler (C) is a fine inorganic filler having an average particle size of 0.15 to 2 μm. The average particle size of the fine inorganic filler (C) is preferably 0.2 to 1.8 μm, particularly preferably 0.3 to 1.5 μm. By setting the average particle size of the fine inorganic filler (C) to 0.15 μm or more, the total surface area of the inorganic filler can be kept moderate, so that the liquid components (base oil and surface modifier) The compound can be easily prepared, for example, it can be held sufficiently or can have an appropriate consistency. By setting the average particle size of the fine inorganic filler (C) to 2 μm or less, it becomes easy to close-pack the inorganic filler, and as a result, sufficient thermal conductivity is easily obtained. Examples of the fine inorganic filler (C) include powders of zinc oxide, aluminum oxide, boron nitride (hexagonal crystal) and the like. More preferably, a zinc oxide powder is mentioned.

また、金属粉末(A)と粗粒無機充填剤(B)の合計含有量と細粒無機充填剤(C)の含有量の質量比は、20:80〜85:15の範囲であり、好ましくは30:70〜80:20の範囲であり、特に好ましくは35:65〜70:30の範囲である。細粒無機充填剤(C)が多すぎると、無機充填剤の表面積が大きくなりすぎて液体成分(基油と表面改質剤)が不足し、ちょう度が低くなったりコンパウンドを調製できなくなる場合がある。一方、細粒無機充填剤(C)が少な過ぎると、無機充填剤を最密充填できなくなり、結果として離油が生じたり十分な熱伝導率が得られない場合がある。 Moreover, the mass ratio of the total content of the metal powder (A) and the coarse inorganic filler (B) and the fine inorganic filler (C) is in the range of 20:80 to 85:15, preferably Is in the range of 30:70 to 80:20, particularly preferably in the range of 35:65 to 70:30. When there are too many fine-grained inorganic fillers (C), the surface area of the inorganic fillers becomes too large and the liquid components (base oil and surface modifier) are insufficient, resulting in low consistency or inability to prepare compounds. There is. On the other hand, when there are too few fine inorganic fillers (C), it becomes impossible to close-pack with an inorganic filler, and as a result, oil separation may occur or sufficient thermal conductivity may not be obtained.

金属粉末(A)と粗粒無機充填剤(B)の含有割合は、質量比で好ましくは95:5〜5:95であり、より好ましくは90:10〜5:95であり、特に好ましくは85:15〜5:95である。 The content ratio of the metal powder (A) and the coarse inorganic filler (B) is preferably 95: 5 to 5:95, more preferably 90:10 to 5:95, and particularly preferably, by mass ratio. 85: 15-5: 95.

無機充填剤の充填率は高いほど熱伝導性に優れており、本発明においては、(A)、(B)及び(C)の合計含有量がコンパウンド全量中88〜97質量%であり、好ましくは90〜96質量%である。88質量%以上とすることで4.5W/m・K以上の高熱伝導率が得やすくなり、また離油を生じたり基油が滲み出たりすることを抑制しやすくなる。一方、97質量%以下とすることでちょう度の低下を抑制し、コンパウンドを調製しやすくできる。   The higher the filling rate of the inorganic filler, the better the thermal conductivity. In the present invention, the total content of (A), (B) and (C) is 88 to 97% by mass in the total amount of the compound, preferably Is 90-96 mass%. By setting it as 88 mass% or more, it becomes easy to obtain high thermal conductivity of 4.5 W / m · K or more, and it becomes easy to suppress oil separation or base oil oozing out. On the other hand, by setting it as 97 mass% or less, the fall of the consistency can be suppressed and a compound can be prepared easily.

基油(D)としては、種々の基油が使用でき、例えば、鉱油、合成炭化水素油、エステル、ポリエーテル、リン酸エステル、シリコーン油及びフッ素油などが挙げられる。基油の分離を防止する点においては、表面張力の低いシリコーン油及びフッ素油は、あまり好ましくない。基油は1種単独で使用しても、2種以上を組み合わせて使用しても良い。
合成炭化水素油としては、例えば、エチレンやプロピレン、ブテン、及びこれらの誘導体などを原料として製造されたアルファオレフィンを、単独または2種以上混合して重合したものが挙げられる。具体的には、1−デセンのオリゴマーであるポリアルファオレフィン(PAO)や、1−ブテンやイソブチレンのオリゴマーであるポリブテン、エチレンとアルファオレフィンのコオリゴマー等が挙げられる。また、アルキルベンゼンやアルキルナフタレン等を用いることもできる。
Various base oils can be used as the base oil (D), and examples thereof include mineral oil, synthetic hydrocarbon oil, ester, polyether, phosphate ester, silicone oil, and fluorine oil. In terms of preventing separation of the base oil, silicone oil and fluorine oil having a low surface tension are less preferred. A base oil may be used individually by 1 type, or may be used in combination of 2 or more type.
Examples of the synthetic hydrocarbon oil include those obtained by polymerizing alpha olefins produced using ethylene, propylene, butene, and derivatives thereof as a raw material alone or in combination of two or more. Specific examples include polyalphaolefin (PAO) which is an oligomer of 1-decene, polybutene which is an oligomer of 1-butene and isobutylene, and a co-oligomer of ethylene and alphaolefin. Moreover, alkylbenzene, alkylnaphthalene, etc. can also be used.

エステルとしては、ジエステルやポリオールエステルが挙げられる。
ジエステルとしては、アジピン酸、アゼライン酸、セバシン酸、ドデカン二酸等の二塩基酸のエステルが挙げられる。
ポリオールエステルとしては、β位の炭素上に水素原子が存在していないネオペンチルポリオールのエステルで、具体的にはネオペンチルグリコール、トリメチロールプロパン、ペンタエリスリトール等のカルボン酸エステルなどが挙げられる。また、エチレングリコール、プロピレングリコール、ブチレングリコール、2−ブチル−2−エチルプロパンジオール、2,4−ジエチル−ペンタンジオールなどの脂肪族2価アルコールと、直鎖または分岐の飽和脂肪酸とのエステルも用いることができる。
Examples of esters include diesters and polyol esters.
Examples of the diester include esters of dibasic acids such as adipic acid, azelaic acid, sebacic acid, and dodecanedioic acid.
The polyol ester is an ester of neopentyl polyol having no hydrogen atom on the β-position carbon, and specifically includes carboxylic acid esters such as neopentyl glycol, trimethylolpropane, and pentaerythritol. Further, esters of aliphatic dihydric alcohols such as ethylene glycol, propylene glycol, butylene glycol, 2-butyl-2-ethylpropanediol, 2,4-diethyl-pentanediol and linear or branched saturated fatty acids are also used. be able to.

ポリエーテルとしては、ポリグリコールやフェニルエーテルなどが挙げられる。
ポリグリコールとしては、ポリエチレングリコールやポリプロピレングリコール、及びこれらの誘導体などが挙げられる。
フェニルエーテルとしては、下記一般式(1)のアルキル化ジフェニルエーテル等が挙げられる。
Examples of the polyether include polyglycol and phenyl ether.
Examples of the polyglycol include polyethylene glycol, polypropylene glycol, and derivatives thereof.
Examples of the phenyl ether include alkylated diphenyl ether represented by the following general formula (1).

Figure 0004667882
Figure 0004667882

(式中、R、R、R、R、R、R、R、R、R及びR10は、水素原子又は炭素数1〜22の炭化水素基であり、R〜R10のうち、少なくとも1つは炭素数8〜22の炭化水素基である。)
リン酸エステルとしては、トリエチルホスフェート、トリブチルホスフェート、トリフェニルホスフェート、トリクレジルホスフェート、トリキシレニルホスフェート等が挙げられる。
高熱伝導性コンパウンドは発熱部に塗布されるため、長時間高温にさらされる。このため、基油としては熱酸化安定性に優れることが望ましい。
(Wherein R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 and R 10 are a hydrogen atom or a hydrocarbon group having 1 to 22 carbon atoms, (At least one of R 1 to R 10 is a hydrocarbon group having 8 to 22 carbon atoms.)
Examples of phosphate esters include triethyl phosphate, tributyl phosphate, triphenyl phosphate, tricresyl phosphate, and trixylenyl phosphate.
Since the high thermal conductivity compound is applied to the heat generating portion, it is exposed to a high temperature for a long time. For this reason, it is desirable that the base oil has excellent thermal oxidation stability.

基油の動粘度は、40℃で10mm/s〜500mm/sであることが好ましく、20mm/s〜450mm/sであることが特に好ましい。粘度が低すぎると、高温になった時に、蒸発、離油などが生じる恐れがある。また、粘度が高すぎるとちょう度が低くなりコンパウンドが硬くなる恐れがある。
ジエステルやポリオールエステルは、他の基油成分と組み合わせて用いることでちょう度を高くすることができる。その際、組み合わせるジエステルやポリオールエステルは、1種であってもよいし、2種以上組み合わせてもよい。また、ジエステルやポリオールエステルの割合は、ジエステルやポリオールエステルを含む全ての基油成分100質量%に対して2〜90質量%が好ましく、より好ましくは2〜50質量%であり、さらに好ましくは4〜30質量%である。上記範囲でジエステルやポリオールエステルを配合することで、より高いちょう度とすることができる。
The kinematic viscosity of the base oil is preferably 10mm 2 / s~500mm 2 / s at 40 ° C., particularly preferably 20mm 2 / s~450mm 2 / s. If the viscosity is too low, evaporation or oil separation may occur at high temperatures. On the other hand, if the viscosity is too high, the consistency is lowered and the compound may be hardened.
Diesters and polyol esters can increase the consistency when used in combination with other base oil components. In that case, 1 type may be sufficient as the diester and polyol ester to combine, and 2 or more types may be combined. Further, the ratio of the diester or polyol ester is preferably 2 to 90% by mass, more preferably 2 to 50% by mass, and still more preferably 4 to 100% by mass of all base oil components including the diester or polyol ester. -30 mass%. By blending a diester or a polyol ester within the above range, a higher consistency can be achieved.

基油の含有量としては12質量%未満、好ましくは2〜12質量%であり、含有量がこれ以上の場合は、ちょう度が高くなりすぎ、コンパウンドが流れ出てしまう場合がある。さらに離油を生じたり、熱伝導性が低下する場合がある。
本発明に用いられる表面改質剤(E)は、無機充填剤粉末の表面に吸着して基油との親和性を向上させることにより、無機充填剤の充填量を増加させ熱伝導性を向上させたり、ちょう度を高めて塗布性を向上させる働きがある。なお、表面改質剤(E)を用いることで、塗膜をより一層薄くすることができ、発熱部品から放熱部品への熱伝導を効率よく行うことができる。
The content of the base oil is less than 12% by mass, preferably 2 to 12% by mass. When the content is more than this, the consistency becomes too high and the compound may flow out. In addition, oil separation may occur and thermal conductivity may decrease.
The surface modifier (E) used in the present invention improves the thermal conductivity by increasing the filling amount of the inorganic filler by adsorbing to the surface of the inorganic filler powder and improving the affinity with the base oil. It has the function of improving the coating properties by increasing the consistency. In addition, by using surface modifier (E), a coating film can be made still thinner and the heat conduction from a heat-emitting component to a heat radiating component can be performed efficiently.

さらに、本発明に用いられる表面改質剤(E)は、従来表面改質剤として用いられている物質と比較すると耐熱性が高い。そのため、油分の熱・酸化安定性が良好で、耐熱性の高いコンパウンドを得ることができる。 Furthermore, the surface modifier (E) used in the present invention has high heat resistance as compared with substances conventionally used as surface modifiers. Therefore, it is possible to obtain a compound having good heat and oxidation stability of oil and high heat resistance.

表面改質剤の種類としては、(ポリ)グリセリルエーテル、およびアルケニルコハク酸イミドやそのホウ素誘導体が好ましく使用できる。
(ポリ)グリセリルエーテルは、一般式(2)で表わされる化合物である。
As the type of the surface modifier, (poly) glyceryl ether, alkenyl succinimide and its boron derivative can be preferably used.
(Poly) glyceryl ether is a compound represented by the general formula (2).

Figure 0004667882
(式中、R11は炭素数8以上の炭化水素基を表わし、pはグリセリンの重合度を表わす係数であって、1以上の数である。)
一般式(2)において、R11は炭素数8以上の炭化水素基を表わし、例えば、炭素数8以上のアルキル基、アルケニル基、アリール基が挙げられ、炭素数8以上のアルキル基、アルケニル基が好ましい。R11の炭素数は、8〜30が好ましく、10〜26がより好ましく、12〜22が特に好ましい。また、一般式(2)において、pはグリセリンの重合度を表わす係数であって、1以上の数であり、好ましくは1〜5の数である。なお、pが1以上の場合は、pは平均値である。pが5を越えると基油への溶解性が悪くなる。
Figure 0004667882
(In the formula, R 11 represents a hydrocarbon group having 8 or more carbon atoms, and p is a coefficient representing the degree of polymerization of glycerin and is a number of 1 or more.)
In the general formula (2), R 11 represents a hydrocarbon group having 8 or more carbon atoms, and examples thereof include an alkyl group, alkenyl group, and aryl group having 8 or more carbon atoms, and an alkyl group and alkenyl group having 8 or more carbon atoms. Is preferred. The number of carbon atoms in R 11 is preferably 8 to 30, more preferably from 10 to 26, particularly preferably 12 to 22. Moreover, in General formula (2), p is a coefficient showing the polymerization degree of glycerol, is a number of 1 or more, preferably a number of 1-5. In addition, when p is 1 or more, p is an average value. If p exceeds 5, the solubility in the base oil will deteriorate.

アルケニルコハク酸イミドおよびそのホウ素誘導体は、一般式(3)で表わされる化合物である。

Figure 0004667882
The alkenyl succinimide and its boron derivative are compounds represented by the general formula (3).
Figure 0004667882

(式中、R12は炭素数1〜50のアルケニル基又はポリアルケニル基であり、2個のR12は同一でも異なっていてもよく、R13は炭素数2〜5のアルキレン基であり、qは1〜10であり、q+1個のR13は同一でも異なっていてもよい。Xはホウ素含有置換基である。)
一般式(3)においてR12は炭素数1〜50のアルケニル基又はポリアルケニル基であり、2個のR12は同一でも異なっていてもよい。アルケニル基としては、プロペニル基、ブテニル基、ペンテニル基などが挙げられ、ポリアルケニル基としては、ポリプロペニル基、ポリブテニル基、ポリペンテニル基などが挙げられる。R13は炭素数2〜5のアルキレン基である。qは1〜10であり、q+1個のR13は同一でも異なっていてもよい。Xはホウ素含有置換基であり、Xとしては、例えば化学式(4)の基が例示できる。
(In the formula, R 12 is an alkenyl group or polyalkenyl group having 1 to 50 carbon atoms, two R 12 groups may be the same or different, and R 13 is an alkylene group having 2 to 5 carbon atoms, q is 1 to 10, and q + 1 R 13 may be the same or different.X is a boron-containing substituent.)
In the general formula (3), R 12 is an alkenyl group or polyalkenyl group having 1 to 50 carbon atoms, and two R 12 may be the same or different. Examples of the alkenyl group include a propenyl group, a butenyl group, and a pentenyl group. Examples of the polyalkenyl group include a polypropenyl group, a polybutenyl group, and a polypentenyl group. R 13 is an alkylene group having 2 to 5 carbon atoms. q is 1 to 10, and q + 1 R 13 may be the same or different. X is a boron-containing substituent, and examples of X include a group of the chemical formula (4).

Figure 0004667882
Figure 0004667882

このとき、ポリアルケニル基の分子量は70〜50000程度のものが好ましく、200〜5000がより好ましく、500〜3000が特に好ましい。
表面改質剤(E)は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
また、ポリグリセリルエーテルと、アルケニルコハク酸イミドやそのホウ素誘導体は、組み合わせて使用することで、さらにちょう度を高めることができる。この組み合わせは、95:5〜20:80、好ましくは90:10〜40:60、さらに好ましくは80:20〜60:40とすることで、ちょう度をより一層高くすることができる。
本発明に用いる表面改質剤(E)は、高熱伝導性コンパウンド全量中0.08〜4.0質量%含有することが好ましい。さらに好ましくは0.1〜2.0質量%であり、特に好ましくは0.1〜1.0質量%であり、最も好ましくは0.1〜0.5質量%である。表面改質剤(E)は、含有量が0.08質量%以上とすることで、効果を得ることができる。一方、含有量は4.0質量%より多くしても、添加量に見合うだけの効果の向上は得られず経済的でない。
At this time, the molecular weight of the polyalkenyl group is preferably about 70 to 50000, more preferably 200 to 5000, and particularly preferably 500 to 3000.
A surface modifier (E) may be used individually by 1 type, and may be used in combination of 2 or more type.
Further, the use of polyglyceryl ether, alkenyl succinimide and its boron derivative in combination can further increase the consistency. This combination can further increase the consistency by setting 95: 5 to 20:80, preferably 90:10 to 40:60, and more preferably 80:20 to 60:40.
The surface modifier (E) used in the present invention is preferably contained in an amount of 0.08 to 4.0% by mass in the total amount of the high thermal conductivity compound. More preferably, it is 0.1-2.0 mass%, Most preferably, it is 0.1-1.0 mass%, Most preferably, it is 0.1-0.5 mass%. An effect can be acquired because content of a surface modifier (E) shall be 0.08 mass% or more. On the other hand, even if the content is more than 4.0% by mass, the improvement of the effect corresponding to the addition amount cannot be obtained and it is not economical.

また、本発明の高熱伝導性コンパウンドには必要に応じて、公知の添加剤を適宜配合することができる。これらとしては、例えば、酸化防止剤としてはフェノール系、アミン系、イオウ・リン系等の化合物が、さび止め剤としてはスルホン酸塩、カルボン酸、カルボン酸塩等の化合物が、腐食防止剤としてはベンゾトリアゾールおよびその誘導体等の化合物、チアジアゾール系化合物が、増粘剤・増ちょう剤としてはポリブテン、ポリメタクリレート、脂肪酸塩、ウレア化合物、石油ワックス、ポリエチレンワックス等が挙げられる。これらの添加剤の配合量は、通常の配合量であればよい。   Moreover, a well-known additive can be suitably mix | blended with the high heat conductive compound of this invention as needed. These include, for example, compounds such as phenols, amines and sulfur / phosphorus as antioxidants, and compounds such as sulfonates, carboxylic acids and carboxylates as corrosion inhibitors as rust inhibitors. Are compounds such as benzotriazole and derivatives thereof, and thiadiazole compounds, and examples of the thickener and thickener include polybutene, polymethacrylate, fatty acid salt, urea compound, petroleum wax, polyethylene wax and the like. The amount of these additives may be a normal amount.

本発明の高熱伝導性コンパウンドの製造に関しては、均一に成分を混合できればその方法にはよらない。一般的な製造方法としては、乳鉢、プラネタリーミキサー、2軸式押出機などにより混練りを行い、グリース状にした後、さらに三本ロールにて均一に混練りする方法がある。
本発明の高熱伝導性コンパウンドの不混和ちょう度は概ね200以上であれば使用可能である。本発明の高熱伝導性コンパウンドの不混和ちょう度は、好ましくは230以上であり、より好ましくは250以上であり、特に好ましくは280以上である。
本発明の高熱伝導性コンパウンドは、極めて優れた熱伝導性を発揮することができ、具体的には、好ましくは4.5W/m・K以上の熱伝導性を発揮することができ、より好ましくは4.7W/m・K以上の熱伝導性を発揮することができ、さらに好ましくは5.0W/m・K以上の熱伝導性を発揮することができ、特に好ましくは5.3W/m・K以上の熱伝導性を発揮することができる。
Regarding the production of the high thermal conductivity compound of the present invention, the method is not limited as long as the components can be mixed uniformly. As a general production method, there is a method of kneading with a mortar, a planetary mixer, a twin-screw extruder, or the like to form a grease and then uniformly kneading with three rolls.
The immiscible penetration of the high thermal conductivity compound of the present invention can be used if it is approximately 200 or more. The immiscibility of the high thermal conductivity compound of the present invention is preferably 230 or more, more preferably 250 or more, and particularly preferably 280 or more.
The high thermal conductivity compound of the present invention can exhibit extremely excellent thermal conductivity, specifically, preferably can exhibit thermal conductivity of 4.5 W / m · K or more, and more preferably Can exhibit a thermal conductivity of 4.7 W / m · K or more, more preferably 5.0 W / m · K or more, and particularly preferably 5.3 W / m. -It can exhibit thermal conductivity of K or higher.

以下、実施例により本発明を詳述するが、本発明はこれによって何等限定されるものではない。
実施例及び比較例に用いた充填剤と基油および表面改質剤を表1〜3に示す。
EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited at all by this.
Tables 1 to 3 show fillers, base oils and surface modifiers used in Examples and Comparative Examples.

Figure 0004667882
※表中における酸化亜鉛の新モース硬度=8
Figure 0004667882
* New Mohs hardness of zinc oxide in the table = 8

Figure 0004667882
表中、Phe1は、一般式(1)のR〜R10のうち、1つ又は2つが炭素数12と炭素数14の直鎖又は分岐鎖アルキル基のものを示す。
Figure 0004667882
In the table, Phe1 represents a linear or branched alkyl group having 12 or 14 carbon atoms, one or two of R 1 to R 10 in the general formula (1).

Figure 0004667882
Figure 0004667882

(実施例1〜8)
下記表4に実施例1〜8の組成を示す。なお、表中のその他※は、アミン系酸化防止剤を示す。
表4の組成になるように各成分を配合して、熱伝導性コンパウンドを以下の方法で調製した。
製造方法:基油に表面改質剤、酸化防止剤等の各種添加剤を溶解し、無機充填剤とともにプラネタリーミキサーまたは自動乳鉢に入れた。室温〜60℃で60分混練りを行いよく混合し、グリース状とした。その後、三本ロールによる混練りを2回実施して熱伝導性コンパウンドを調製した。
(Examples 1-8)
Table 4 below shows the compositions of Examples 1 to 8. In addition, other * in the table indicates an amine-based antioxidant.
Each component was mix | blended so that it might become a composition of Table 4, and the heat conductive compound was prepared with the following method.
Production method: Various additives such as surface modifiers and antioxidants were dissolved in the base oil, and placed in a planetary mixer or automatic mortar together with an inorganic filler. The mixture was kneaded at room temperature to 60 ° C. for 60 minutes and mixed well to obtain a grease. Thereafter, kneading with a three roll was carried out twice to prepare a heat conductive compound.

得られた熱伝導性コンパウンドを用いて、以下に示す性能を評価した。
ちょう度:JIS−K2220に準拠して不混和ちょう度を測定した。ちょう度の値が大きいほどコンパウンドが軟らかくなり、逆に小さいほど硬くなる。
離油度:JIS−K2220に準拠して測定した。
熱伝導率:熱線法により0℃で測定した。
The performance shown below was evaluated using the obtained heat conductive compound.
Consistency: An immiscible consistency was measured in accordance with JIS-K2220. The greater the consistency value, the softer the compound, and vice versa.
Oil separation: measured in accordance with JIS-K2220.
Thermal conductivity: measured at 0 ° C. by a hot wire method.

Figure 0004667882
表中、その他※:アミン系酸化防止剤
(比較例1〜8)
下記表5の組成になるように各成分を配合して、熱伝導性コンパウンドを実施例と同様の方法で調製した。
Figure 0004667882
In the table, other *: Amine-based antioxidant (Comparative Examples 1 to 8)
Each component was mix | blended so that it might become a composition of following Table 5, and the heat conductive compound was prepared by the method similar to an Example.

Figure 0004667882
表中、その他※:アミン系酸化防止剤
表6に実施例1〜8と比較例1〜8の不混和ちょう度、熱伝導率、離油度を示す。
Figure 0004667882
In the table, other *: amine-based antioxidant Table 6 shows the immiscible penetration, thermal conductivity, and oil separation degree of Examples 1-8 and Comparative Examples 1-8.

Figure 0004667882
Figure 0004667882

表6からわかるように実施例1〜8は、充填剤を高充填させて熱伝導性を高めても、ちょう度が高く塗布性に優れるとともに、離油の発生もみられない。
一方、金属粉末(A)を用いない比較例1、2では、熱伝導率が本願実施例に比べ低くなってしまう。粗粒無機充填剤(B)を除いた比較例3は、製造過程で金属粉末(A)の粒子が潰れてしまいグリース状にならない。表面改質剤が少なすぎるとコンパウンドが硬くなるかグリース状にならない(比較例4)。無機充填剤の量が少ない比較例5では、高いちょう度が得られるが、熱伝導率は低下してしまう。シラン系の表面改質剤やノニオン系の界面活性剤を用いた比較例6〜8では、ちょう度が低いか充填率を上げるとグリース状にならない。
As can be seen from Table 6, in Examples 1 to 8, even if the filler is highly filled to increase the thermal conductivity, the consistency is high and the coating property is excellent, and the occurrence of oil separation is not observed.
On the other hand, in Comparative Examples 1 and 2 in which the metal powder (A) is not used, the thermal conductivity is lower than that in the present example. In Comparative Example 3 excluding the coarse inorganic filler (B), the particles of the metal powder (A) are crushed during the production process and do not become grease. If the surface modifier is too little, the compound will be hard or not greased (Comparative Example 4). In Comparative Example 5 where the amount of the inorganic filler is small, a high consistency is obtained, but the thermal conductivity is lowered. In Comparative Examples 6 to 8 using a silane-based surface modifier or a nonionic surfactant, the grease does not become a grease when the consistency is low or the filling rate is increased.

また、実施例6の熱伝導性コンパウンドについては、下記の薄膜化測定方法により、薄膜の膜厚を測定した。膜厚は74μmであった。
<薄膜化測定方法>
熱伝導性コンパウンド0.05mlを表面粗さがRa=0.5μmの2枚のアルミニウム板に挟み、3kgの荷重をかけて押し潰し、300秒後の拡がり面積を測定し、膜厚を算出した。
Moreover, about the heat conductive compound of Example 6, the film thickness of the thin film was measured with the following thin film measurement method. The film thickness was 74 μm.
<Thin film measurement method>
A heat conductive compound of 0.05 ml was sandwiched between two aluminum plates with a surface roughness Ra = 0.5 μm and crushed by applying a load of 3 kg, and the spreading area after 300 seconds was measured to calculate the film thickness. .

Claims (5)

(A)熱伝導率が200W/m・K以上で平均粒径5〜50μmの金属粉末、
(B)新モース硬度が6以上で平均粒径5〜50μmの粗粒無機充填剤、
(C)平均粒径0.15〜2μmの細粒無機充填剤、
(D)基油、及び
(E)(ポリ)グリセリルエーテル、並びにアルケニルコハク酸イミド及びそのホウ素誘導体から選ばれる1種以上の表面改質剤を含有する高熱伝導性コンパウンドであって
(A)、(B)及び(C)の合計含有量がコンパウンド全量中88〜97質量%の範囲であり、かつ(A)と(B)の合計含有量と(C)の含有量の質量比が20:80〜85:15の範囲であり、(D)の含有量がコンパウンド全量中12質量%未満であり、さらに(E)の含有量がコンパウンド全量中それぞれ0.08〜4質量%である割合となるように(A)、(B)、(C)、(D)、及び(E)成分が配合されたものであることを特徴とする高熱伝導性コンパウンド。
(A) a metal powder having a thermal conductivity of 200 W / m · K or more and an average particle size of 5 to 50 μm,
(B) a coarse inorganic filler having a new Mohs hardness of 6 or more and an average particle size of 5 to 50 μm,
(C) a fine inorganic filler having an average particle size of 0.15 to 2 μm,
(D) a base oil, and (E) (poly) glyceryl ether, and a high thermal conductivity compound containing one or more surface modifiers selected from alkenyl succinimide and boron derivatives thereof,
The total content of (A), (B) and (C) is in the range of 88 to 97% by mass in the total amount of the compound, and the total content of (A) and (B) and the mass of the content of (C) The ratio is in the range of 20:80 to 85:15, the content of (D) is less than 12% by mass in the total amount of the compound, and the content of (E) is 0.08 to 4% by mass in the total amount of the compound, respectively. (A), (B), (C), (D), and (E) component are mix | blended so that it may become a ratio which is these, The high heat conductive compound characterized by the above-mentioned.
金属粉末(A)がアルミニウム粉末であり、粗粒無機充填剤(B)が酸化亜鉛粉末であり、金属粉末(A)と粗粒無機充填剤(B)の含有量の質量比が95:5〜5:95の範囲であり、細粒無機充填剤(C)が酸化亜鉛粉末である請求項1に記載の高熱伝導性コンパウンド。 The metal powder (A) is an aluminum powder, the coarse inorganic filler (B) is a zinc oxide powder, and the mass ratio of the content of the metal powder (A) and the coarse inorganic filler (B) is 95: 5. The high thermal conductivity compound according to claim 1, wherein the fine inorganic filler (C) is zinc oxide powder in a range of -5: 95. 基油が、鉱油、合成炭化水素油、ジエステル、ポリオールエステル、フェニルエーテルから選ばれる少なくとも1種以上である請求項1または2に記載の高熱伝導性コンパウンド。 The high thermal conductivity compound according to claim 1 or 2, wherein the base oil is at least one selected from mineral oil, synthetic hydrocarbon oil, diester, polyol ester, and phenyl ether. 基油がジエステル及びポリオールエステルから選ばれる1種以上を含有し、その含有量が基油中に2〜90質量%である請求項1〜3のいずれかに記載の高熱伝導性コンパウンド。 The base oil contains 1 or more types chosen from diester and a polyol ester, The content is 2-90 mass% in base oil, The high heat conductive compound in any one of Claims 1-3. (A)熱伝導率が200W/m・K以上で平均粒径5〜50μmの金属粉末、(A) a metal powder having a thermal conductivity of 200 W / m · K or more and an average particle size of 5 to 50 μm,
(B)新モース硬度が6以上で平均粒径5〜50μmの粗粒無機充填剤、(B) a coarse inorganic filler having a new Mohs hardness of 6 or more and an average particle size of 5 to 50 μm,
(C)平均粒径0.15〜2μmの細粒無機充填剤、(C) a fine inorganic filler having an average particle size of 0.15 to 2 μm,
(D)基油、及び(D) base oil, and
(E)(ポリ)グリセリルエーテル、並びにアルケニルコハク酸イミド及びそのホウ素誘導体から選ばれる1種以上の表面改質剤を、(E) (poly) glyceryl ether, and one or more surface modifiers selected from alkenyl succinimides and boron derivatives thereof,
(A)、(B)及び(C)の合計含有量がコンパウンド全量中88〜97質量%の範囲であり、かつ(A)と(B)の合計含有量と(C)の含有量の質量比が20:80〜85:15の範囲であり、(D)の含有量がコンパウンド全量中12質量%未満であり、さらに(E)の含有量がコンパウンド全量中それぞれ0.08〜4質量%である割合になるように配合することを特徴とする高熱伝導性コンパウンドの製造方法。The total content of (A), (B) and (C) is in the range of 88 to 97% by mass in the total amount of the compound, and the total content of (A) and (B) and the mass of the content of (C) The ratio is in the range of 20:80 to 85:15, the content of (D) is less than 12% by mass in the total amount of the compound, and the content of (E) is 0.08 to 4% by mass in the total amount of the compound, respectively. The manufacturing method of the high heat conductive compound characterized by mix | blending so that it may become a ratio.
JP2005017455A 2005-01-25 2005-01-25 High thermal conductivity compound Active JP4667882B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005017455A JP4667882B2 (en) 2005-01-25 2005-01-25 High thermal conductivity compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005017455A JP4667882B2 (en) 2005-01-25 2005-01-25 High thermal conductivity compound

Publications (2)

Publication Number Publication Date
JP2006210437A JP2006210437A (en) 2006-08-10
JP4667882B2 true JP4667882B2 (en) 2011-04-13

Family

ID=36966971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005017455A Active JP4667882B2 (en) 2005-01-25 2005-01-25 High thermal conductivity compound

Country Status (1)

Country Link
JP (1) JP4667882B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5489409B2 (en) 2007-04-10 2014-05-14 コスモ石油ルブリカンツ株式会社 High thermal conductivity compound
JP5269366B2 (en) * 2007-08-22 2013-08-21 コスモ石油ルブリカンツ株式会社 Heat-resistant thermal grease
JP5378861B2 (en) * 2009-03-31 2013-12-25 古河電気工業株式会社 Optical fiber laser
JP5318733B2 (en) * 2009-11-26 2013-10-16 コスモ石油ルブリカンツ株式会社 Thermally conductive grease
JP5781407B2 (en) * 2011-09-05 2015-09-24 コスモ石油ルブリカンツ株式会社 Thermally conductive compound
JP5944306B2 (en) * 2012-12-21 2016-07-05 コスモ石油ルブリカンツ株式会社 High thermal conductive grease
CN115244138A (en) * 2020-03-11 2022-10-25 住友金属矿山株式会社 Thermally conductive composition
JP2023151485A (en) * 2022-03-31 2023-10-16 コスモ石油ルブリカンツ株式会社 Thermally conductive grease composition

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5545770A (en) * 1978-09-29 1980-03-31 Toshiba Silicone Co Ltd Grease composition
US5098609A (en) * 1989-11-03 1992-03-24 The Research Foundation Of State Univ. Of N.Y. Stable high solids, high thermal conductivity pastes
JPH07278142A (en) * 1994-03-31 1995-10-24 Nippon Zeon Co Ltd Imidazoline derivative, its production and dispersing agent and oil composition obtained by adding these compositions
JPH115904A (en) * 1997-04-21 1999-01-12 Toray Dow Corning Silicone Co Ltd Surface modifier composition
JPH11246885A (en) * 1998-02-27 1999-09-14 Shin Etsu Chem Co Ltd Heat-conductive grease composition
JP2000063873A (en) * 1998-08-21 2000-02-29 Shin Etsu Chem Co Ltd Heat conductive grease composition and semiconductor device using same
JP2002003830A (en) * 2000-06-26 2002-01-09 Denki Kagaku Kogyo Kk Highly heat conductive composition and its application
JP2002201483A (en) * 2001-01-04 2002-07-19 Hitachi Ltd High thermal conductive grease composition and cooling apparatus using the same
JP2003105367A (en) * 2001-10-01 2003-04-09 Asahi Denka Kogyo Kk Lubricant composition
JP2003154253A (en) * 2001-11-26 2003-05-27 Nisshin Chem Ind Co Ltd Dispersant composition
JP2006096973A (en) * 2004-09-06 2006-04-13 Cosmo Sekiyu Lubricants Kk Highly heat-conductive compound

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5545770A (en) * 1978-09-29 1980-03-31 Toshiba Silicone Co Ltd Grease composition
US5098609A (en) * 1989-11-03 1992-03-24 The Research Foundation Of State Univ. Of N.Y. Stable high solids, high thermal conductivity pastes
JPH07278142A (en) * 1994-03-31 1995-10-24 Nippon Zeon Co Ltd Imidazoline derivative, its production and dispersing agent and oil composition obtained by adding these compositions
JPH115904A (en) * 1997-04-21 1999-01-12 Toray Dow Corning Silicone Co Ltd Surface modifier composition
JPH11246885A (en) * 1998-02-27 1999-09-14 Shin Etsu Chem Co Ltd Heat-conductive grease composition
JP2000063873A (en) * 1998-08-21 2000-02-29 Shin Etsu Chem Co Ltd Heat conductive grease composition and semiconductor device using same
JP2002003830A (en) * 2000-06-26 2002-01-09 Denki Kagaku Kogyo Kk Highly heat conductive composition and its application
JP2002201483A (en) * 2001-01-04 2002-07-19 Hitachi Ltd High thermal conductive grease composition and cooling apparatus using the same
JP2003105367A (en) * 2001-10-01 2003-04-09 Asahi Denka Kogyo Kk Lubricant composition
JP2003154253A (en) * 2001-11-26 2003-05-27 Nisshin Chem Ind Co Ltd Dispersant composition
JP2006096973A (en) * 2004-09-06 2006-04-13 Cosmo Sekiyu Lubricants Kk Highly heat-conductive compound

Also Published As

Publication number Publication date
JP2006210437A (en) 2006-08-10

Similar Documents

Publication Publication Date Title
JP4652085B2 (en) High thermal conductivity compound
JP5944306B2 (en) High thermal conductive grease
JP5489409B2 (en) High thermal conductivity compound
JP4603700B2 (en) High thermal conductive grease composition and cooling device using the same
JP4667882B2 (en) High thermal conductivity compound
JP6263042B2 (en) Thermally conductive grease with base oil diffusion prevention performance
JP5687167B2 (en) Heat-resistant thermal grease
JP5269366B2 (en) Heat-resistant thermal grease
JP5318733B2 (en) Thermally conductive grease
JP2007070492A (en) Heat conductive grease, adhesive and elastomer composition, and cooling device
JP7379940B2 (en) thermally conductive composition
JP4841341B2 (en) High thermal conductivity compound
JP2020002211A (en) Heat conductive grease
JP5781407B2 (en) Thermally conductive compound
JP2022030766A (en) Thermally conductive grease
JP7379939B2 (en) thermally conductive composition
JP7351236B2 (en) thermal conductive grease
JP6848816B2 (en) Thermal conductivity grease
JP7073939B2 (en) Thermally conductive grease
JP7275797B2 (en) Thermally conductive base oil-containing composition
JP2022183767A (en) Thermally conductive composition
TW202140677A (en) Thermally conductive composition
JP2021084921A (en) Thermoconductive grease
JP2023166735A (en) Heat-conductive grease, and production method of heat-conductive grease
JP2021105135A (en) Thermally conductive composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071030

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4667882

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250