JP4667848B2 - Polishing liquid composition for glass substrate - Google Patents

Polishing liquid composition for glass substrate Download PDF

Info

Publication number
JP4667848B2
JP4667848B2 JP2004359842A JP2004359842A JP4667848B2 JP 4667848 B2 JP4667848 B2 JP 4667848B2 JP 2004359842 A JP2004359842 A JP 2004359842A JP 2004359842 A JP2004359842 A JP 2004359842A JP 4667848 B2 JP4667848 B2 JP 4667848B2
Authority
JP
Japan
Prior art keywords
polishing
substrate
glass
weight
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004359842A
Other languages
Japanese (ja)
Other versions
JP2006167817A (en
Inventor
和彦 西本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2004359842A priority Critical patent/JP4667848B2/en
Priority to GB0525057A priority patent/GB2421955B/en
Priority to CN 201010226178 priority patent/CN101892032A/en
Priority to CNA2005101294959A priority patent/CN1789366A/en
Priority to MYPI20055822 priority patent/MY143652A/en
Publication of JP2006167817A publication Critical patent/JP2006167817A/en
Application granted granted Critical
Publication of JP4667848B2 publication Critical patent/JP4667848B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C19/00Surface treatment of glass, not in the form of fibres or filaments, by mechanical means
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/8404Processes or apparatus specially adapted for manufacturing record carriers manufacturing base layers

Description

本発明は、ガラス基板用研磨液組成物、及び該ガラス基板用研磨液組成物を用いるガラス基板の製造方法に関する。   The present invention relates to a polishing liquid composition for glass substrates and a method for producing a glass substrate using the polishing liquid composition for glass substrates.

従来から、半導体デバイスや磁気ディスク記録装置の分野においては、表面品質に優れた基板を安価で製造するために、種々の研磨液組成物が検討され、例えば、研磨速度と表面平滑性の観点から、研磨材として1μm付近の平均粒径を有するアルミナ砥粒がよく使用されてきた(特許文献1など)。   Conventionally, in the field of semiconductor devices and magnetic disk recording apparatuses, various polishing liquid compositions have been studied in order to produce a substrate with excellent surface quality at low cost. For example, from the viewpoint of polishing speed and surface smoothness. As an abrasive, alumina abrasive grains having an average particle diameter of about 1 μm have been often used (Patent Document 1, etc.).

しかしながら、近年、高密度化を実現できる、優れた表面品質を得る等の観点から、研磨液に用いる研磨砥粒は益々小径化してきており、これに伴い研磨後の基板上に研磨砥粒及び/又は研磨屑が残留しやすく、また洗浄しにくくなってきている。
かかる基板上に残留した研磨砥粒及び/又は研磨屑を除去する工程は、洗浄剤や純水を併用しながらポリビニルアルコール製等のパッドで擦るスクラブ洗浄が一般に用いられている。
However, in recent years, from the viewpoint of achieving high density and obtaining excellent surface quality, the abrasive grains used in the polishing liquid have been increasingly reduced in diameter, and along with this, abrasive grains and / Or polishing debris tends to remain and is difficult to clean.
As a process for removing polishing abrasive grains and / or polishing debris remaining on the substrate, scrub cleaning is generally used in which a scrubbing pad made of polyvinyl alcohol or the like is used while using a cleaning agent or pure water.

しかし、ガラス基板に代表される脆性材料基板は、耐衝撃性が低いため、スクラブ洗浄を行った場合、基板表面に新たな傷を生じる危険があり、また欠けや破損といった品質上致命的な問題を起こす可能性があった。   However, brittle material substrates such as glass substrates have low impact resistance, so there is a risk of new scratches on the substrate surface when scrub cleaning is performed, and critical quality issues such as chipping and breakage. There was a possibility of causing.

従って、ガラス基板の洗浄方法としては、残留した研磨砥粒及び/又は研磨屑を溶解除去する洗浄方法が一般に用いられている。具体的には、NaOH等の強アルカリ水溶液を用いて研磨砥粒及び/又は研磨屑表面の一部を溶解し、同時に超音波を印加することによって基板表面から離脱させ、次いで純水による超音波浸漬リンス、更にイソプロパノール等での水分除去、及びイソプロパノール等での蒸気乾燥を行う方法が挙げられる(特許文献2など)。ここで、基板汚れに起因する歩留まり悪化を改善するため、研磨後のアルカリ洗浄条件を強化した場合、例えば、アルカリ度の強化、超音波エネルギーの強化(低周波数)、超音波照射時間の延長等を行うと、基板に、凹部欠陥、溶解、亀裂等の不具合が生じやすいという傾向がある。   Therefore, as a method for cleaning the glass substrate, a cleaning method for dissolving and removing the remaining abrasive grains and / or polishing scraps is generally used. Specifically, a part of the surface of the polishing abrasive grains and / or polishing debris is dissolved using a strong alkaline aqueous solution such as NaOH, and simultaneously separated from the substrate surface by applying ultrasonic waves. Examples of the method include immersion rinsing, water removal with isopropanol, and vapor drying with isopropanol (Patent Document 2 and the like). Here, in order to improve yield deterioration due to substrate contamination, when alkali cleaning conditions after polishing are enhanced, for example, enhancement of alkalinity, enhancement of ultrasonic energy (low frequency), extension of ultrasonic irradiation time, etc. When it performs, there exists a tendency for malfunctions, such as a recessed part defect, melt | dissolution, and a crack, to arise easily on a board | substrate.

特に、基板表面の高平滑化の観点から、仕上げ研磨の研磨砥粒として用いられるシリカは、研磨されるガラス基板の部材と類似の組成を有するために、基板との親和性が高いことと、砥粒粒径が微細になることで、基板上に残存しやすく、研磨砥粒及び/又は研磨屑が洗浄しにくくなるという問題が顕著となる。
従って、ガラス基板への損傷が小さい通常の洗浄条件であっても、基板汚れが十分に低減できることは歩留まりを改善することに繋がり、意義は大きい。
特開2001−64631号公報 特開2003−173518号公報
In particular, from the viewpoint of high smoothness of the substrate surface, silica used as a polishing grain for finish polishing has a composition similar to that of a glass substrate member to be polished, and therefore has high affinity with the substrate, When the grain size of the abrasive grains becomes fine, the problem that the abrasive grains and / or polishing scraps are difficult to clean becomes prominent.
Therefore, even under normal cleaning conditions in which damage to the glass substrate is small, the fact that substrate contamination can be sufficiently reduced leads to improvement in yield, which is significant.
JP 2001-64631 A JP 2003-173518 A

本発明の目的は、洗浄後の基板汚れが極めて少なく、研磨速度が高く、且つ表面平滑性に優れたガラス基板用研磨液組成物、該ガラス基板用研磨液組成物を用いるガラス基板の製造方法を提供することにある。   An object of the present invention is to provide a glass substrate polishing liquid composition having extremely low substrate contamination after cleaning, a high polishing rate and excellent surface smoothness, and a method for producing a glass substrate using the glass substrate polishing liquid composition Is to provide.

即ち、本発明の要旨は、
〔1〕 一次粒子の平均粒径が1〜100nmであるシリカとスルホン酸基を有する重合体と水とを含有してなるガラス基板用研磨液組成物、
〔2〕 前記〔1〕記載の研磨液組成物を研磨パッドと被研磨基板の間に存在させ、3〜12kPaの研磨荷重で研磨する工程を有するガラス基板の製造方法
に関する。
That is, the gist of the present invention is as follows.
[1] A polishing composition for a glass substrate, comprising silica having an average primary particle diameter of 1 to 100 nm, a polymer having a sulfonic acid group, and water,
[2] The present invention relates to a method for producing a glass substrate, comprising the step of polishing the polishing composition according to [1] between a polishing pad and a substrate to be polished and polishing with a polishing load of 3 to 12 kPa.

本発明のガラス基板用研磨液組成物、又は本発明の基板の製造方法を用いて製造された基板は、研磨後の研磨砥粒及び/又は研磨屑の残留が少なく除去されやすいため、通常の洗浄後の基板汚れが極めて少なく、研磨速度が高く、且つ表面平滑性に優れたものである。本発明の研磨液組成物、又は本発明の基板の製造方法を用いることにより、表面平滑性に優れた基板が得られ、歩留まりを大きく改善することができる。   Since the substrate manufactured using the polishing composition for glass substrate of the present invention or the method for manufacturing a substrate of the present invention has little residual abrasive grains and / or polishing debris after polishing, it is easy to remove. Substrate contamination after cleaning is extremely small, the polishing rate is high, and the surface smoothness is excellent. By using the polishing composition of the present invention or the method for producing a substrate of the present invention, a substrate having excellent surface smoothness can be obtained, and the yield can be greatly improved.

(1)ガラス基板用研磨液組成物
本発明のガラス基板用研磨液組成物は、前記のように、一次粒子の平均粒径が1〜100nmであるシリカとスルホン酸基を有する重合体と水とを含有してなる点に一つの大きな特徴があり、かかる特徴を有することで、洗浄後の基板汚れが極めて少なく、高い研磨速度で、表面平滑性に優れたガラス基板を得るという効果が発現される。
(1) Polishing Liquid Composition for Glass Substrate As described above, the polishing liquid composition for glass substrate of the present invention is a polymer having silica and a sulfonic acid group having an average primary particle diameter of 1 to 100 nm and water. One major feature is that it contains the following, and by having such a feature, the effect of obtaining a glass substrate excellent in surface smoothness at a high polishing rate with very little substrate contamination after cleaning is exhibited. Is done.

本発明に用いられるシリカとしては、例えば、コロイダルシリカ、ヒュームドシリカ等が挙げられる。   Examples of the silica used in the present invention include colloidal silica and fumed silica.

コロイダルシリカは、珪酸ナトリウム等の珪酸アルカリ金属塩を原料とし、水溶液中で縮合反応させて粒子を成長させる水ガラス法、またはテトラエトキシシラン等のアルコキシシランを原料とし、アルコール等の水溶性有機溶媒を含有する水中で縮合反応させて成長させるアルコキシシラン法で得られる。   Colloidal silica is a water-glass method in which alkali metal silicates such as sodium silicate are used as raw materials, and are subjected to a condensation reaction in aqueous solution to grow particles, or alkoxysilanes such as tetraethoxysilane as raw materials, and water-soluble organic solvents such as alcohol It is obtained by an alkoxysilane method in which a condensation reaction is carried out in water containing.

ヒュームドシリカは、四塩化珪素等の揮発性珪素化合物を原料とし、酸素水素バーナーによる1000℃以上の高温下で加水分解させて成長させる気相法で得られる。   Fumed silica is obtained by a vapor phase method in which a volatile silicon compound such as silicon tetrachloride is used as a raw material and is hydrolyzed and grown at a high temperature of 1000 ° C. or higher with an oxygen-hydrogen burner.

他に、官能基でシリカを表面修飾あるいは表面改質したもの、界面活性剤や他の粒子で複合粒子化したもの等もシリカとして用いることができる。   In addition, silica surface-modified or surface-modified with functional groups, composite particles made of surfactant or other particles, and the like can be used as silica.

中でも、基板表面の表面粗さ及びスクラッチを低減する観点からコロイダルシリカが好ましい。これらのシリカは単独で又は2種以上を混合して用いても良い。   Among these, colloidal silica is preferable from the viewpoint of reducing the surface roughness and scratches on the substrate surface. These silicas may be used alone or in admixture of two or more.

シリカの一次粒子の平均粒径は、1〜100nmである。該平均粒径は、スクラッチを低減する観点及び表面粗さ(中心線平均粗さ:Ra)を低減する観点から、1〜80nmが好ましく、3〜60nmがより好ましく、5〜40nmがさらに好ましい。   The average particle diameter of the primary particles of silica is 1 to 100 nm. The average particle diameter is preferably 1 to 80 nm, more preferably 3 to 60 nm, and even more preferably 5 to 40 nm from the viewpoint of reducing scratches and reducing the surface roughness (centerline average roughness: Ra).

なお、一次粒子径の測定法としては、透過型電子顕微鏡(TEM)での観察画像から求める方法や、滴定法、BET法等が挙げられ、それぞれの方法で測定した時の平均粒径として求めることができる。
例えば、シリカ粒子を透過型電子顕微鏡(JEM−2000FX、製造元;日本電子)で、加速電圧80kV、撮影倍率1〜5万倍の条件で観察した写真を、スキャナにて画像データとして取り込み、画像解析ソフト(WinROOF、販売元;三谷商事)を用いて1個1個のシリカ粒子の円相当径(シリカ粒子の影像面積と同一面積を有する円の直径)を直径とみなして求め、1000個以上のシリカ粒子データを集積した後、表計算ソフト「EXCEL」(マイクロソフト社製)で算出し、小粒径側からの累積体積が50%となる粒径(D50)がここでいう一次粒子の平均粒径である。
In addition, as a measuring method of a primary particle diameter, the method calculated | required from the observation image with a transmission electron microscope (TEM), the titration method, the BET method, etc. are mentioned, and it calculates | requires as an average particle diameter when measuring by each method. be able to.
For example, a photograph obtained by observing silica particles with a transmission electron microscope (JEM-2000FX, manufacturer: JEOL) under conditions of an acceleration voltage of 80 kV and a photographing magnification of 1 to 50,000 times is captured as image data by a scanner, and image analysis is performed. Using software (WinROOF, distributor: Mitani Shoji), the equivalent circle diameter of each silica particle (the diameter of a circle having the same area as the image area of the silica particle) is regarded as the diameter, and 1000 or more After accumulating the silica particle data, the average particle size of the primary particles referred to here is the particle size (D50) calculated by the spreadsheet software “EXCEL” (manufactured by Microsoft Corporation) and the cumulative volume from the small particle size side becomes 50%. Is the diameter.

二次粒子を形成している場合は、二次粒子の平均粒径は、スクラッチを低減する観点及び表面粗さ(中心線平均粗さ:Ra)を低減する観点から、5〜150nmが好ましく、5〜100nmがより好ましく、5〜80nmがさらに好ましい。
二次粒子径の測定法としては、動的光散乱法や超音波減衰法、キャピラリー(CHDF)法等が挙げられる。
When the secondary particles are formed, the average particle diameter of the secondary particles is preferably 5 to 150 nm from the viewpoint of reducing scratches and the surface roughness (centerline average roughness: Ra). 5-100 nm is more preferable and 5-80 nm is further more preferable.
Examples of the method for measuring the secondary particle diameter include a dynamic light scattering method, an ultrasonic attenuation method, and a capillary (CHDF) method.

シリカの研磨液組成物中の含有量としては、研磨速度を向上させ、且つ経済的に表面品質を向上させる観点から、1〜50重量%が好ましく、2〜40重量%がより好ましく、3〜30重量%がさらに好ましく、5〜25重量%がさらに好ましい。   The content of the silica in the polishing composition is preferably 1 to 50% by weight, more preferably 2 to 40% by weight from the viewpoint of improving the polishing rate and economically improving the surface quality. 30 weight% is further more preferable, and 5-25 weight% is further more preferable.

本発明に用いられるスルホン酸基を有する重合体とは、単量体成分としてスルホン酸基を有する単量体(以下、スルホン酸ともいう)を少なくとも1種以上含んでなる共重合体である。また、スルホン酸基を有する単量体としては、例えば、イソプレンスルホン酸、(メタ)アクリルアミド−2−メチルプロパンスルホン酸、スチレンスルホン酸、メタリルスルホン酸、ビニルスルホン酸、アリルスルホン酸、イソアミレンスルホン酸等が挙げられる。好ましくは、イソプレンスルホン酸、(メタ)アクリルアミド−2−メチルプロパンスルホン酸である。
これらのスルホン酸基を有する単量体は、1種単独で使用しても、あるいは2種以上を混合して用いても良い。
The polymer having a sulfonic acid group used in the present invention is a copolymer containing at least one monomer having a sulfonic acid group (hereinafter also referred to as sulfonic acid) as a monomer component. Examples of the monomer having a sulfonic acid group include isoprene sulfonic acid, (meth) acrylamide-2-methylpropane sulfonic acid, styrene sulfonic acid, methallyl sulfonic acid, vinyl sulfonic acid, allyl sulfonic acid, isoamido Examples include lensulfonic acid. Isoprene sulfonic acid and (meth) acrylamido-2-methylpropane sulfonic acid are preferable.
These monomers having a sulfonic acid group may be used alone or in combination of two or more.

本発明のスルホン酸基を有する重合体は、スルホン酸基を有する単量体成分の単独重合体でも、更に他の単量体からなる単量体成分との共重合体でも良く、他の単量体からなる単量体成分としては、カルボン酸基を有する単量体が好ましい。例えば、イタコン酸、(メタ)アクリル酸、マレイン酸等が挙げられ、中でも、研磨速度及び基板汚れの観点から、アクリル酸が好ましく、即ち、アクリル酸/スルホン酸共重合体が好ましい。   The polymer having a sulfonic acid group of the present invention may be a homopolymer of a monomer component having a sulfonic acid group, or may be a copolymer with a monomer component composed of another monomer. As the monomer component composed of a monomer, a monomer having a carboxylic acid group is preferable. Examples thereof include itaconic acid, (meth) acrylic acid, maleic acid and the like. Among these, acrylic acid is preferable from the viewpoint of polishing rate and substrate contamination, that is, acrylic acid / sulfonic acid copolymer is preferable.

前記アクリル酸/スルホン酸共重合体を構成する単量体中のスルホン酸基含有単量体の割合は、研磨速度の維持及び共重合体自身の基板上への残存性の観点から、3モル%以上が好ましく、5モル%以上が更に好ましく、また、経済性の観点から、90モル%以下が好ましく、80モル%以下がより好ましい。また、該割合は、3〜90モル%が好ましく、5〜80モル%がより好ましい。   The proportion of the sulfonic acid group-containing monomer in the monomer constituting the acrylic acid / sulfonic acid copolymer is 3 mol from the viewpoint of maintaining the polishing rate and the residual property of the copolymer itself on the substrate. % Or more is preferable, 5 mol% or more is more preferable, and 90 mol% or less is preferable and 80 mol% or less is more preferable from the viewpoint of economy. Moreover, this ratio is preferably 3 to 90 mol%, more preferably 5 to 80 mol%.

前記スルホン酸基を有する重合体は、研磨液組成物の構成成分とするために、水溶性であることが好ましく、例えば、塩にすると良い。   The polymer having a sulfonic acid group is preferably water-soluble so as to be a constituent of the polishing composition, for example, a salt.

塩を形成させるための対イオンは、特に限定されないが、ナトリウム、カリウム等のアルカリ金属イオン、アンモニウムイオン、アルキルアンモニウムイオン等から1種以上を用いることができる。   Although the counter ion for forming a salt is not specifically limited, 1 or more types can be used from alkali metal ions, such as sodium and potassium, ammonium ion, alkylammonium ion, etc.

本発明に用いられるスルホン酸基を有する重合体は、例えば、ジエン構造あるいは芳香族構造を含むベースポリマーを、公知の方法、例えば、(社)日本化学会編集、新実験化学講座14(有機化合物の合成と反応III、1773頁、1978年)などに記載された方法でスルホン化して得られる。   The polymer having a sulfonic acid group used in the present invention is obtained by, for example, converting a base polymer containing a diene structure or an aromatic structure into a known method, for example, edited by The Chemical Society of Japan, New Experimental Chemistry Course 14 (Organic Compound). And reaction III, 1773, 1978) and the like.

スルホン酸基を有する重合体の重量平均分子量は、シリカ及び/又は研磨屑の分散効果と、研磨速度の観点から、1,000〜5,000が好ましく、1,000〜4,500がより好ましく、1,000〜4,000がさらに好ましい。     The weight average molecular weight of the polymer having a sulfonic acid group is preferably 1,000 to 5,000, more preferably 1,000 to 4,500, from the viewpoints of the dispersion effect of silica and / or polishing waste and the polishing rate. 1,000 to 4,000 are more preferable.

重合体の重量平均分子量の測定は、ゲルパーミエーションクロマトグラフィー(GPC)によって測定した結果を、ポリスチレンスルホン酸ナトリウムを標準サンプルとして作成した検量線を用いて換算する。GPC条件を以下に示す。   The measurement of the weight average molecular weight of a polymer is converted using the calibration curve which made the result measured by gel permeation chromatography (GPC) using polystyrene sulfonate sodium as a standard sample. The GPC conditions are shown below.

〔GPC条件〕
カラム;G4000PWXL+G2500PWXL
溶離液:0.2Mリン酸バッファー/アセトニトリル=9/1(容量比)
流速:1.0mL/min
温度:40℃
サンプル:濃度5mg/mL、注入量100μL
[GPC conditions]
Column; G4000PWXL + G2500PWXL
Eluent: 0.2M phosphate buffer / acetonitrile = 9/1 (volume ratio)
Flow rate: 1.0 mL / min
Temperature: 40 ° C
Sample: concentration 5 mg / mL, injection volume 100 μL

スルホン酸基を有する重合体の研磨液組成物中における含有量は、基板汚れを低減する観点から、0.001重量%以上が好ましく、0.01重量%以上がより好ましく、また、研磨速度の観点から、10重量%以下が好ましく、5重量%以下がより好ましく、3重量%以下がさらに好ましく、1重量%以下がさらに好ましく、0.5重量%以下がさらに好ましい。
即ち、基板汚れを低減し、且つ研磨速度の観点から、前記含有量は、0.001〜10重量%が好ましく、0.01〜5重量%がより好ましく、0.01〜3重量%がさらに好ましく、0.01〜1重量%がさらに好ましい。
The content of the polymer having a sulfonic acid group in the polishing composition is preferably 0.001% by weight or more, more preferably 0.01% by weight or more from the viewpoint of reducing substrate contamination, and the polishing rate. From the viewpoint, it is preferably 10% by weight or less, more preferably 5% by weight or less, further preferably 3% by weight or less, further preferably 1% by weight or less, and further preferably 0.5% by weight or less.
That is, the content is preferably 0.001 to 10% by weight, more preferably 0.01 to 5% by weight, and further 0.01 to 3% by weight from the viewpoint of reducing substrate contamination and polishing rate. Preferably, 0.01 to 1 weight% is more preferable.

また、本発明におけるシリカと重合体との配合量の関係は、研磨液組成物中のシリカと重合体の濃度比[シリカの濃度(重量%)/重合体の濃度(重量%)]が、研磨速度向上と基板汚れ防止の観点から、10〜5000が好ましく、20〜3000がより好ましく、30〜2000がさらに好ましく、50〜1000がさらに好ましい。   The relationship between the amount of silica and the polymer in the present invention is such that the concentration ratio of silica and polymer in the polishing composition [silica concentration (% by weight) / polymer concentration (% by weight)] From the viewpoint of improving the polishing rate and preventing substrate contamination, 10 to 5000 is preferable, 20 to 3000 is more preferable, 30 to 2000 is more preferable, and 50 to 1000 is more preferable.

本発明に用いられる水としては、イオン交換水、蒸留水、超純水等が好適に用いられる。水の研磨液組成物中における含有量としては、研磨液の流動性を保ち、且つ研磨速度を向上させる観点から、40〜99重量%が好ましく、50〜98重量%がより好ましく、50〜97重量%がさらに好ましく、50〜95重量%がさらに好ましい。   As the water used in the present invention, ion exchange water, distilled water, ultrapure water or the like is preferably used. The content of water in the polishing liquid composition is preferably 40 to 99% by weight, more preferably 50 to 98% by weight, and more preferably 50 to 97% from the viewpoint of maintaining the fluidity of the polishing liquid and improving the polishing rate. % By weight is more preferable, and 50 to 95% by weight is more preferable.

本発明が研磨の対象としているガラス基板の材質としては、例えば、石英ガラス、ソーダライムガラス、アルミノシリケートガラス、ボロシリケートガラス、アルミノボロシリケートガラス、無アルカリガラス、結晶化ガラス等が挙げられる。   Examples of the material of the glass substrate to be polished by the present invention include quartz glass, soda lime glass, aluminosilicate glass, borosilicate glass, aluminoborosilicate glass, alkali-free glass, and crystallized glass.

本発明の研磨液組成物は、ガラス基板の研磨工程で用いることにより、経済的な研磨速度を実現し、研磨後基板の表面平滑性が優れ、且つ洗浄後の基板汚れを顕著に低減できるため、表面性状に優れた高品質のガラス基板を製造することができる。
この基板汚れは、特に、ハードディスク基板において、高密度化に重要となる物性である。
基板汚れは、研磨液組成物中の研磨砥粒及び/又は研磨屑が基板表面に残留したもので、通常、光学顕微鏡や原子間力顕微鏡(AFM)で観察でき、品質検査で用いられる欠陥検出装置では凸部欠陥(ODT−P)として検出された個数により定量評価できる。
Since the polishing composition of the present invention is used in a glass substrate polishing step, it achieves an economical polishing rate, excellent surface smoothness of the substrate after polishing, and can significantly reduce substrate contamination after cleaning. It is possible to produce a high-quality glass substrate having excellent surface properties.
This substrate contamination is a physical property that is important for increasing the density, particularly in a hard disk substrate.
Substrate contamination is a residue of polishing abrasive grains and / or polishing debris in the polishing composition, which can usually be observed with an optical microscope or an atomic force microscope (AFM) and used for quality inspection. The apparatus can perform quantitative evaluation based on the number detected as convex defect (ODT-P).

基板汚れの低減機構は明らかでないが、研磨液組成物中に含有するスルホン酸基を有する重合体が、研磨砥粒及び/又は研磨屑の表面に吸着することによる立体的効果で、研磨後及び/又は洗浄後において、基板への付着(残留)を抑制していると考えられる。   Although the reduction mechanism of the substrate contamination is not clear, the three-dimensional effect caused by the polymer having a sulfonic acid group contained in the polishing liquid composition adsorbing on the surface of the abrasive grains and / or polishing scraps, after polishing and It is considered that adhesion (residual) to the substrate is suppressed after cleaning.

本発明の研磨液組成物は、各成分を公知の方法で混合することにより、調製することができる。研磨液組成物は経済性の観点から、通常、濃縮液として製造され、これを使用時に希釈する場合が多い。   The polishing liquid composition of this invention can be prepared by mixing each component by a well-known method. From the viewpoint of economy, the polishing liquid composition is usually produced as a concentrated liquid and is often diluted at the time of use.

本発明の研磨液組成物には、任意成分として、無機酸、有機ホスホン酸、カルボン酸、アミノカルボン酸、又はこれらの塩等が挙げられる。
また、前記塩の対イオン(陽イオン)は、ナトリウム、カリウム等のアルカリ金属イオン、アンモニウムイオン、アルキルアンモニウムイオン等が挙げられ、中でも、アルカリ金属イオンが好ましい。
In the polishing composition of the present invention, an inorganic acid, an organic phosphonic acid, a carboxylic acid, an aminocarboxylic acid, or a salt thereof can be used as an optional component.
Further, examples of the counter ion (cation) of the salt include alkali metal ions such as sodium and potassium, ammonium ions, alkylammonium ions, and the like, among which alkali metal ions are preferable.

また、他の任意成分としては、増粘剤、分散剤、塩基性物質、界面活性剤、キレート剤、消泡剤、抗菌剤、防錆剤等が挙げられる。   Examples of other optional components include thickeners, dispersants, basic substances, surfactants, chelating agents, antifoaming agents, antibacterial agents, and rust inhibitors.

これらの任意成分の研磨液組成物中における含有量としては、研磨速度の観点から、5重量%以下が好ましく、4重量%以下がより好ましく、3重量%以下がさらに好ましい。   The content of these optional components in the polishing composition is preferably 5% by weight or less, more preferably 4% by weight or less, and still more preferably 3% by weight or less from the viewpoint of polishing rate.

なお、各成分の濃度は、製造時の濃度、及び使用時の濃度のいずれであってもよい。   In addition, the density | concentration of each component may be either the density | concentration at the time of manufacture, and the density | concentration at the time of use.

(2)基板の製造方法
本発明の基板の製造方法は、前記研磨液組成物を研磨パッドと被研磨基板の間に存在させ、3〜12kPaの研磨荷重で研磨する工程を有する。
(2) Substrate Manufacturing Method The substrate manufacturing method of the present invention includes a step of polishing the substrate with a polishing load of 3 to 12 kPa by causing the polishing composition to exist between a polishing pad and a substrate to be polished.

研磨荷重は、研磨速度を向上し経済的に研磨を行う観点から、3kPa以上、4kPa以上が好ましく、5kPa以上がより好ましく、6kPa以上がさらに好ましい。また、表面品質を向上させ、且つ基板表面の残留応力を緩和する観点から、12kPa以下、11kPa以下が好ましく、10kPa以下がより好ましく、9kPa以下が好ましい。従って、研磨速度及び表面品質向上の観点から、3〜12kPa、好ましくは4〜11kPa、より好ましくは5〜10kPa、さらに好ましくは6〜9kPaである。   The polishing load is preferably 3 kPa or more, 4 kPa or more, more preferably 5 kPa or more, and further preferably 6 kPa or more from the viewpoint of improving the polishing rate and economically polishing. Further, from the viewpoint of improving the surface quality and relaxing the residual stress on the substrate surface, it is preferably 12 kPa or less, 11 kPa or less, more preferably 10 kPa or less, and preferably 9 kPa or less. Therefore, from the viewpoint of improving the polishing rate and surface quality, it is 3 to 12 kPa, preferably 4 to 11 kPa, more preferably 5 to 10 kPa, and further preferably 6 to 9 kPa.

研磨液の供給速度は、被研磨基板と接触する研磨パッドの面積と投入した基板の総面積によって、更に研磨液組成物の種類によって一概には決められないが、研磨速度を向上し、且つ経済的に研磨を行う観点から、被研磨基板の単位被研磨面積(1cm)当り、0.06〜5mL/minが好ましく、0.08〜4mL/minがより好ましく、0.1〜3mL/minがさらに好ましい。 The supply rate of the polishing liquid cannot be determined unconditionally depending on the area of the polishing pad that comes into contact with the substrate to be polished and the total area of the input substrate, but also depending on the type of the polishing liquid composition. From the viewpoint of performing polishing, 0.06 to 5 mL / min is preferable, 0.08 to 4 mL / min is more preferable, and 0.1 to 3 mL / min per unit polished area (1 cm 2 ) of the substrate to be polished. Is more preferable.

例えば、被研磨基板が、ガラスハードディスク基板である場合は、溶融ガラスの型枠プレス又はシートガラスから切り出す方法によって得られたガラス基板を、一般には粗研削工程、(結晶化工程)、形状加工工程、端面鏡面加工工程、精研削工程、研磨工程、洗浄工程、(化学強化工程)、及び磁気ディスク製造工程を経て行われる。   For example, when the substrate to be polished is a glass hard disk substrate, a glass substrate obtained by a mold press of molten glass or a method of cutting out from sheet glass is generally subjected to a rough grinding step (crystallization step), a shape processing step. , End mirror processing, fine grinding, polishing, cleaning, (chemical strengthening), and magnetic disk manufacturing.

例えば、粗研削工程では#400程度のアルミナ砥粒、形状加工工程では円筒状の砥石、端面鏡面加工工程ではブラシ、精研削工程では#1000程度のアルミナ砥粒が用いられる。   For example, about # 400 alumina abrasive grains are used in the rough grinding process, cylindrical grindstones are used in the shape processing process, brushes are used in the end mirror processing process, and # 1000 alumina abrasive grains are used in the fine grinding process.

研磨工程は、第一研磨工程と第二研磨工程に分かれるが、例えば表面品質の向上を目的として更に最終(仕上げ)研磨工程を行う場合が多い。   The polishing process is divided into a first polishing process and a second polishing process. For example, a final (finish) polishing process is often performed for the purpose of improving the surface quality.

第一研磨工程では酸化セリウムが、最終(仕上げ)研磨工程ではシリカが好適に用いられる。本発明の研磨液組成物は、第二研磨工程又は最終(仕上げ)研磨工程で使用されることが好ましい。   Cerium oxide is suitably used in the first polishing step, and silica is suitably used in the final (finish) polishing step. The polishing composition of the present invention is preferably used in the second polishing step or the final (finish) polishing step.

研磨工程後は、ガラス基板表面に残留したシリカ砥粒や研磨屑を溶解除去するために、NaOH水溶液等で強アルカリ超音波洗浄を行い、次いで純水、イソプロパノール等での浸漬洗浄、及びイソプロパノール等での蒸気乾燥が行われる。
その後、シード層、下地層、中間層、磁性層、保護層、及び潤滑層を成膜して磁気ディスクとなる。
After the polishing process, in order to dissolve and remove the silica abrasive grains and polishing debris remaining on the glass substrate surface, strong alkaline ultrasonic cleaning is performed with an aqueous NaOH solution, followed by immersion cleaning with pure water, isopropanol, and isopropanol. Steam drying at is performed.
Thereafter, a seed layer, an underlayer, an intermediate layer, a magnetic layer, a protective layer, and a lubricating layer are formed to form a magnetic disk.

この製造工程の途中、結晶化ガラス基板の場合は熱処理により結晶核を生成させて結晶相とする結晶化工程、強化ガラス基板の場合は硝酸カリウムと硝酸ナトリウムの化学強化塩を加熱した中に基板を浸漬処理して表層のイオンを置換させる化学強化工程が行われる。   In the middle of this manufacturing process, in the case of a crystallized glass substrate, a crystallizing step is performed in which crystal nuclei are generated by heat treatment to form a crystal phase. A chemical strengthening step of immersing and replacing ions on the surface layer is performed.

ガラスハードディスク基板には、磁気ヘッドの読み書きエラーが発生しない平滑面が要求される。即ち、基板表面の平坦性(粗さ、うねり等)や欠陥(砥粒等の凸部、スクラッチやピット等の凹部)に優れることが求められ、基板の製造工程の中で研磨工程がその役割を担い、第二研磨工程、又は最終(仕上げ)研磨工程が特に重要である。   The glass hard disk substrate is required to have a smooth surface that does not cause a read / write error of the magnetic head. That is, it is required to have excellent flatness (roughness, waviness, etc.) and defects (protrusions such as abrasive grains, recesses such as scratches and pits) on the substrate surface, and the polishing process plays a role in the substrate manufacturing process. The second polishing step or the final (finishing) polishing step is particularly important.

(3)研磨方法
本発明の研磨液組成物を用いるガラス基板の研磨装置としては、特に制限はなく、被研磨物を保持する冶具(キャリア:アラミド製等)と研磨布(研磨パッド)を備える研磨装置を用いることができる。中でも、ポリッシング工程に用いられる両面研磨装置が好適に用いられる。
(3) Polishing method The glass substrate polishing apparatus using the polishing liquid composition of the present invention is not particularly limited, and includes a jig (carrier: made of aramid, etc.) for holding an object to be polished and a polishing cloth (polishing pad). A polishing apparatus can be used. Especially, the double-side polish apparatus used for a polishing process is used suitably.

研磨パッドとしては、有機高分子系の発泡体、無発泡体、不織布状の研磨パッドを用いることができ、例えば、第一研磨工程ではスウェード調のウレタン製硬質パッド、第二研磨工程及び最終研磨工程ではスウェード調のウレタン製軟質パッドが好適に用いられる。   As the polishing pad, organic polymer foam, non-foamed, non-woven polishing pad can be used. For example, in the first polishing step, a suede-like urethane hard pad, the second polishing step and the final polishing are used. In the process, a suede-like urethane soft pad is preferably used.

該研磨装置を用いる研磨方法の具体例としては、被研磨物をキャリアで保持し研磨パッドを貼り付けた研磨定盤で挟み込み、本発明の研磨液組成物を研磨パッドと被研磨物との間に供給し、所定の圧力の下で研磨定盤及び/又は被研磨物を動かすことにより、本発明の研磨液組成物を被研磨物に接触させながら研磨する研磨方法が挙げられる。   As a specific example of the polishing method using the polishing apparatus, the object to be polished is held by a carrier and sandwiched by a polishing surface plate attached with a polishing pad, and the polishing composition of the present invention is interposed between the polishing pad and the object to be polished. And a polishing method in which the polishing liquid composition of the present invention is brought into contact with the object to be polished by moving the polishing surface plate and / or the object to be polished under a predetermined pressure.

前記研磨方法は、第二研磨工程以降に用いられることが好ましく、最終(仕上げ)研磨工程に用いられるのがより好ましい。   The polishing method is preferably used after the second polishing step, and more preferably used in the final (finishing) polishing step.

研磨液組成物の供給方法は、予め研磨液組成物の構成成分が十分に混合された状態で研磨パッドと被研磨物の間にポンプ等で供給する方法、研磨の直前の供給ライン内等で混合して供給する方法、シリカスラリーとスルホン酸基を有する重合体を溶解した水溶液とを別々に研磨装置に供給する方法等を用いることができる。   The method of supplying the polishing liquid composition is a method of supplying the polishing liquid composition between the polishing pad and the object to be polished with a pump or the like in a state where the constituents of the polishing liquid composition are sufficiently mixed in advance, in a supply line immediately before polishing, etc. A method of supplying by mixing, a method of supplying silica slurry and an aqueous solution in which a polymer having a sulfonic acid group is separately supplied to a polishing apparatus can be used.

効果的に基板汚れを低減するためには、本発明の研磨液組成物を用いて、あるいは本発明の研磨液組成物の組成となるように各成分を混合して研磨液組成物を調製し、被研磨基板を研磨する。これにより、被研磨基板の表面欠陥、特に基板汚れを顕著に低減でき、更に表面粗さの低い表面品質に優れた基板を製造することができる。
特に、本発明は、ガラスハードディスク基板の製造に好適である。
In order to effectively reduce substrate contamination, a polishing liquid composition is prepared by using the polishing liquid composition of the present invention or by mixing each component so as to be the composition of the polishing liquid composition of the present invention. The substrate to be polished is polished. Thereby, the surface defect of a to-be-polished substrate, especially board | substrate dirt can be reduced notably, and also the board | substrate excellent in surface quality with low surface roughness can be manufactured.
In particular, the present invention is suitable for manufacturing a glass hard disk substrate.

被研磨物の材質としては、例えば、石英ガラス、ソーダライムガラス、アルミノシリケートガラス、ボロシリケートガラス、アルミノボロシリケートガラス、無アルカリガラス、結晶化ガラス等が挙げられる。これらの中でも、強化ガラス基板用のアルミノシリケートガラスや、ガラスセラミック基板(結晶化ガラス基板)の研磨に適している。   Examples of the material of the object to be polished include quartz glass, soda lime glass, aluminosilicate glass, borosilicate glass, aluminoborosilicate glass, alkali-free glass, and crystallized glass. Among these, it is suitable for polishing aluminosilicate glass for tempered glass substrates and glass ceramic substrates (crystallized glass substrates).

アルミノシリケートガラスは、化学的耐久性が良好であり研磨後の基板上に残存するパーティクル除去を目的に行われるアルカリ洗浄でのダメージ(凹部欠陥)発生を低減でき、より高い表面品質が得られる点で好ましい。   Aluminosilicate glass has good chemical durability and can reduce the occurrence of damage (recess defects) in alkaline cleaning performed to remove particles remaining on the polished substrate, resulting in higher surface quality. Is preferable.

本発明の研磨液組成物は、第二研磨工程以降において特に効果があるが、これ以外の研磨工程、例えば第一研磨工程やラッピング工程にも同様に適用することができる。   The polishing composition of the present invention is particularly effective after the second polishing step, but can be similarly applied to other polishing steps such as the first polishing step and the lapping step.

基板の形状には、特に制限はなく、例えば、ディスク状、プレート状、スラブ状、プリズム状等の平坦部を有する形状や、レンズ等の曲面部を有する形状のものに用いられる。中でも、ディスク状の被研磨物の研磨に特に優れている。   The shape of the substrate is not particularly limited, and for example, it is used in a shape having a flat portion such as a disk shape, a plate shape, a slab shape, a prism shape, or a shape having a curved surface portion such as a lens. Among these, it is particularly excellent for polishing a disk-shaped workpiece.

表面平滑性の尺度である表面粗さについては、その評価方法は限られないが、例えば原子間力顕微鏡(AFM)における波長10μm以下の短い波長で測定可能な粗さとして評価し、中心線平均粗さRaとして表すことができる(AFM−Ra)。本発明の研磨液組成物は、ガラス基板の研磨工程、更には研磨後の基板の表面粗さ(AFM−Ra)を0.2nm以下にする研磨工程に適している。   The surface roughness, which is a measure of surface smoothness, is not limited in its evaluation method, but for example, it is evaluated as a roughness that can be measured at a short wavelength of 10 μm or less in an atomic force microscope (AFM), and the center line average It can be expressed as roughness Ra (AFM-Ra). The polishing liquid composition of the present invention is suitable for a polishing step of a glass substrate, and further a polishing step of setting the surface roughness (AFM-Ra) of the substrate after polishing to 0.2 nm or less.

基板の製造工程において、第二研磨工程以降に本発明の研磨液組成物が用いられるのが好ましく、基板汚れ及び表面粗さを顕著に低減し、優れた表面平滑性を得る観点から、仕上げ研磨工程に用いられるのがより好ましい。仕上げ研磨工程とは、複数の研磨工程がある場合、少なくとも一つの最後の研磨工程を指す。その際、前工程の研磨液組成物や研磨屑の混入を避けるために、それぞれ別の研磨装置を使用してもよく、またそれぞれ別の研磨装置を使用した場合には、各研磨工程毎に基板を洗浄することが好ましい。なお、研磨装置としては、特に限定されない。   In the production process of the substrate, the polishing composition of the present invention is preferably used after the second polishing step. From the viewpoint of significantly reducing substrate contamination and surface roughness and obtaining excellent surface smoothness, finish polishing. More preferably used in the process. The finish polishing process refers to at least one final polishing process when there are a plurality of polishing processes. In that case, in order to avoid mixing of the polishing liquid composition and polishing scraps of the previous process, each of the different polishing apparatuses may be used, and when each of the different polishing apparatuses is used, for each polishing process It is preferable to clean the substrate. The polishing apparatus is not particularly limited.

このようにして製造された基板は、基板汚れが顕著に低減されており、且つ表面平滑性に優れたものである。即ち、研磨後の表面粗さ(AFM−Ra)は、例えば0.2nm以下、好ましくは0.19nm以下、より好ましくは0.18nm以下である。   The substrate manufactured in this way has a significantly reduced substrate contamination and excellent surface smoothness. That is, the surface roughness after polishing (AFM-Ra) is, for example, 0.2 nm or less, preferably 0.19 nm or less, more preferably 0.18 nm or less.

本発明の研磨液組成物を用いた研磨工程に供する前の基板の表面性状は特に限定しないが、例えば、AFM−Raが1nm以下の表面性状を有する基板が適する。   The surface properties of the substrate before being subjected to the polishing step using the polishing liquid composition of the present invention are not particularly limited. For example, a substrate having a surface property with an AFM-Ra of 1 nm or less is suitable.

以上のようにして、本発明の研磨液組成物、又は本発明の基板の製造方法を用いて製造された基板は、表面平滑性に優れ、表面粗さ(AFM−Ra)が例えば0.2nm以下、好ましくは0.19nm以下、より好ましくは0.18nm以下のものが得られる。   As described above, the substrate manufactured using the polishing composition of the present invention or the substrate manufacturing method of the present invention is excellent in surface smoothness and has a surface roughness (AFM-Ra) of, for example, 0.2 nm or less. Preferably, it is 0.19 nm or less, more preferably 0.18 nm or less.

また、製造された基板は基板汚れが極めて少ないものである。従って、該基板が、例えば、メモリーハードディスク基板である場合には、記録密度100G bits/inch、更には125G bits/inchのものにも対応することができる。 In addition, the manufactured substrate has very little substrate contamination. Accordingly, the substrate is, for example, in the case of a memory hard disk substrate, the recording density of 100G bits / inch 2, more can also correspond to those of 125G bits / inch 2.

〔被研磨基板〕
被研磨基板として、セリア研磨材を含有する研磨液で予め第一及び第二研磨工程を行い、AFM−Raを0.3nmとした、厚さ0.635mmの外径65mmφで内径20mmφのハードディスク用アルミノシリケート製ガラス基板を用いて研磨評価を行った。
[Substrate to be polished]
As the substrate to be polished, the first and second polishing steps are performed in advance using a polishing liquid containing a ceria abrasive, and the AFM-Ra is 0.3 nm. The thickness of the outer diameter is 6535 mm and the inner diameter is 20 mm. Polishing evaluation was performed using a silicate glass substrate.

実施例1
研磨材として、コロイダルシリカスラリー(デュポン社製、一次粒子の平均粒径30nm、シリカ粒子濃度40重量%、残部は水)をシリカ粒子換算で9.5重量%、アクリル酸/アクリルアミド−2−メチルプロパンスルホン酸共重合体(モル比8/1、重量平均分子量2000、固形分濃度40重量%、ナトリウム中和品)0.04重量%、残部としてイオン交換水からなる研磨液組成物を調製した。
各成分を混合する順番は、イオン交換水で5倍に希釈した上記共重合体水溶液の所定量を撹拌下のコロイダルシリカスラリーに加えて混合し、最後に残部のイオン交換水を少しずつ加えて混合、調製した。
Example 1
As an abrasive, colloidal silica slurry (manufactured by DuPont, average particle size of primary particles 30 nm, silica particle concentration 40 wt%, balance is water) is 9.5 wt% in terms of silica particles, acrylic acid / acrylamido-2-methyl A polishing liquid composition comprising propanesulfonic acid copolymer (molar ratio 8/1, weight average molecular weight 2000, solid content concentration 40% by weight, sodium neutralized product) 0.04% by weight and the balance being ion-exchanged water was prepared. .
The order of mixing each component is to add a predetermined amount of the copolymer aqueous solution diluted 5-fold with ion-exchanged water to the stirred colloidal silica slurry, and finally add the remaining ion-exchanged water little by little. Mixed and prepared.

実施例2
研磨材として、コロイダルシリカスラリー(デュポン社製、一次粒子の平均粒径30nm、シリカ粒子濃度40重量%、残部は水)をシリカ粒子換算で9.3重量%、実施例1の共重合体0.10重量%、残部としてイオン交換水からなる研磨液組成物を調製した。
Example 2
As an abrasive, colloidal silica slurry (manufactured by DuPont, average particle size of primary particles 30 nm, silica particle concentration 40 wt%, balance is water) was 9.3% by weight in terms of silica particles, copolymer 0 of Example 1 A polishing composition comprising 10% by weight and the balance comprising ion-exchanged water was prepared.

実施例3
研磨材として、コロイダルシリカスラリー(デュポン社製、一次粒子の平均粒径20nm、シリカ粒子濃度40重量%、残部は水)をシリカ粒子換算で9.3重量%、実施例1の共重合体0.04重量%、残部としてイオン交換水からなる研磨液組成物を調製した。
Example 3
As an abrasive, colloidal silica slurry (manufactured by DuPont, average particle size of primary particles 20 nm, silica particle concentration 40% by weight, balance is water) is 9.3% by weight in terms of silica particles, copolymer 0 of Example 1 A polishing composition comprising 0.04% by weight and the balance being ion-exchanged water was prepared.

実施例4(参考例)
研磨材として、コロイダルシリカスラリー(触媒化成社製、一次粒子の平均粒径80nm、シリカ粒子濃度40重量%、残部は水)をシリカ粒子換算で9.5重量%、実施例1の共重合体0.04重量%、残部としてイオン交換水からなる研磨液組成物を調製した。
Example 4 (Reference Example)
Colloidal silica slurry (manufactured by Catalysts Kasei Co., Ltd., average particle size of primary particles 80 nm, silica particle concentration 40% by weight, balance is water) as the abrasive is 9.5% by weight in terms of silica particles, copolymer of Example 1 A polishing composition comprising 0.04% by weight and the balance comprising ion-exchanged water was prepared.

比較例1
研磨材として、コロイダルシリカスラリー(触媒化成社製、一次粒子の平均粒径150nm、シリカ粒子濃度16重量%、残部は水)をシリカ粒子換算で8.4重量%、残部としてイオン交換水からなる研磨液組成物を調製した。
Comparative Example 1
As an abrasive, colloidal silica slurry (manufactured by Catalyst Kasei Co., Ltd., average particle size of primary particles 150 nm, silica particle concentration 16% by weight, balance is water) is 8.4% by weight in terms of silica particles, and the balance is ion-exchanged water. A polishing composition was prepared.

比較例2
研磨材として、コロイダルシリカスラリー(デュポン社製、一次粒子の平均粒径20nm、シリカ粒子濃度40重量%、残部は水)をシリカ粒子換算で9.7重量%、残部としてイオン交換水からなる研磨液組成物を調製した。
Comparative Example 2
As an abrasive, a colloidal silica slurry (manufactured by DuPont, average particle size of primary particles 20 nm, silica particle concentration 40% by weight, balance is water) is 9.7% by weight in terms of silica particles, and the balance is made of ion-exchanged water. A liquid composition was prepared.

比較例3
研磨材として、コロイダルシリカスラリー(触媒化成社製、一次粒子の平均粒径150nm、シリカ粒子濃度16重量%、残部は水)をシリカ粒子換算で8.3重量%、実施例1の共重合体0.04重量%、残部としてイオン交換水からなる研磨液組成物を調製した。
Comparative Example 3
Colloidal silica slurry (Catalyst Kasei Co., Ltd., average particle size of primary particles 150 nm, silica particle concentration 16% by weight, balance is water) as the abrasive is 8.3% by weight in terms of silica particles, copolymer of Example 1 A polishing composition comprising 0.04% by weight and the balance comprising ion-exchanged water was prepared.

実施例1〜4及び比較例1〜3で得られた研磨液組成物を用いて研磨を行い、基板汚れ、研磨速度、及び表面粗さ(AFM−Ra)を以下の方法に基づいて測定・評価した。   Polishing is performed using the polishing composition obtained in Examples 1 to 4 and Comparative Examples 1 to 3, and the substrate contamination, polishing rate, and surface roughness (AFM-Ra) are measured based on the following methods. evaluated.

〔研磨条件〕
研磨試験機:ムサシノ電子社製、MA−300片面研磨機、定盤直径300mm
研磨パッド:ウレタン製仕上げ研磨用パッド
定盤回転数:90r/min
キャリア回転数:90r/min、強制駆動式
研磨液組成物供給速度:50g/min(約1.5mL/min/cm
研磨時間:15min
研磨荷重:5.9kPa(錘による一定荷重)
リンス条件:荷重=3.9kPa、時間=5min、イオン交換水供給量=約1L/min
ドレス条件:1回研磨毎にイオン交換水を供給しながらブラシドレスを0.5min行った。
[Polishing conditions]
Polishing tester: Musashino Electronics, MA-300 single-side polishing machine, surface plate diameter 300mm
Polishing pad: Urethane polishing pad Surface plate rotation speed: 90r / min
Carrier rotation speed: 90 r / min, forced drive type polishing composition supply speed: 50 g / min (about 1.5 mL / min / cm 2 )
Polishing time: 15 min
Polishing load: 5.9 kPa (constant load by weight)
Rinse conditions: Load = 3.9 kPa, time = 5 min, ion exchange water supply amount = about 1 L / min
Dressing condition: Brush dressing was performed for 0.5 min while supplying ion-exchanged water for each polishing.

〔基板の評価方法(汚れ、表面粗さ)〕
洗浄方法:研磨及びリンス終了後の被研磨基板を取り出し、イオン交換水で流水洗浄し、次に被研磨基板をイオン交換水中に浸漬した状態で超音波洗浄(100kHz、3min)を行い、更にイオン交換水で流水洗浄し、乾燥はスピンドライ法により行った。
評価方法:基板汚れは、光学顕微鏡と原子間力顕微鏡(AFM)を用いて観察した。
表面粗さは、原子間力顕微鏡(AFM)を用いてAFM−Raを求めた。
[Substrate evaluation method (dirt, surface roughness)]
Cleaning method: The substrate to be polished after polishing and rinsing is taken out, washed with running water with ion-exchanged water, then subjected to ultrasonic cleaning (100 kHz, 3 min) with the substrate to be polished immersed in ion-exchanged water, and further ionized Washed with running water with exchanged water and dried by a spin dry method.
Evaluation method: Substrate contamination was observed using an optical microscope and an atomic force microscope (AFM).
For the surface roughness, AFM-Ra was determined using an atomic force microscope (AFM).

〔AFM測定方法〕
測定機器:Veeco社製、TM−M5E
Mode:non−contact
Scanrate:1.0Hz
Scanarea:10×10μm
評価方法:基板汚れは、任意の基板中心線上の、内周と外周の中間付近を2点測定し、観察した。
表面粗さは、同様に2点測定(二次補正)した値の平均値を求め、AFM−Raとした。
[AFM measurement method]
Measuring instrument: Veeco, TM-M5E
Mode: non-contact
Scanrate: 1.0 Hz
Scanarea: 10 × 10 μm
Evaluation method: Substrate contamination was observed by measuring two points near the middle between the inner periphery and the outer periphery on an arbitrary substrate center line.
For the surface roughness, an average value of values obtained by two-point measurement (secondary correction) was obtained in the same manner as AFM-Ra.

〔研磨速度の算出方法〕
研磨前後の被研磨基板の重量差(g)を被研磨基板の密度(2.46g/cm)、被研磨基板の表面積(30.04cm)、及び研磨時間(min)で除して単位時間当たりの研磨量を計算し、研磨速度(μm/min)を算出した。
[Calculation method of polishing rate]
Unit by dividing weight difference (g) of substrate to be polished before and after polishing by density of substrate to be polished (2.46 g / cm 3 ), surface area of substrate to be polished (30.04 cm 2 ), and polishing time (min) The polishing amount per hour was calculated, and the polishing rate (μm / min) was calculated.

Figure 0004667848
Figure 0004667848

表1の結果より、実施例1〜4で得られた研磨液組成物は、比較例1〜3のものに比べて、基板汚れがなく、研磨速度が高く、且つ表面粗さの少ないものであることがわかる。   From the results shown in Table 1, the polishing liquid compositions obtained in Examples 1 to 4 have no substrate contamination, a high polishing rate, and a low surface roughness compared to those of Comparative Examples 1 to 3. I know that there is.

本発明のガラス基板用研磨液組成物は、例えば、ガラスハードディスク、強化ガラス基板用のアルミノシリケートガラスや、ガラスセラミック基板(結晶化ガラス基板)等の製造に好適に用いられる。   The polishing composition for glass substrates of the present invention is suitably used for the production of, for example, glass hard disks, aluminosilicate glass for tempered glass substrates, glass ceramic substrates (crystallized glass substrates) and the like.

Claims (11)

一次粒子の平均粒径が5〜40nmであるコロイダルシリカと、重量平均分子量が1,000〜4,500であるアクリル酸/スルホン酸共重合体と、水とを含有してなるガラス基板用研磨液組成物。 Polishing for glass substrates comprising colloidal silica having an average primary particle size of 5 to 40 nm, an acrylic acid / sulfonic acid copolymer having a weight average molecular weight of 1,000 to 4,500 , and water. Liquid composition. アクリル酸/スルホン酸共重合体が、アクリル酸/(メタ)アクリルアミド−2−メチルプロパンスルホン酸共重合体である、請求項1記載のガラス基板用研磨液組成物。   The polishing composition for glass substrates of Claim 1 whose acrylic acid / sulfonic acid copolymer is an acrylic acid / (meth) acrylamide-2-methylpropanesulfonic acid copolymer. 研磨液組成物中のコロイダルシリカの含有量が5〜25重量%である、請求項1又は2記載のガラス基板用研磨液組成物。   The polishing composition for glass substrates of Claim 1 or 2 whose content of colloidal silica in polishing composition is 5 to 25 weight%. アクリル酸/スルホン酸共重合体を構成する単量体中のスルホン酸基含有単量体の割合が5〜80モル%である、請求項1〜3いずれか記載のガラス基板用研磨液組成物。   The polishing liquid composition for glass substrates in any one of Claims 1-3 whose ratio of the sulfonic acid group containing monomer in the monomer which comprises acrylic acid / sulfonic acid copolymer is 5-80 mol%. . 研磨液組成物中におけるアクリル酸/スルホン酸共重合体の含有量が0.001〜10重量%である、請求項1〜4いずれか記載のガラス基板用研磨液組成物。   The polishing liquid composition for glass substrates in any one of Claims 1-4 whose content of acrylic acid / sulfonic acid copolymer in polishing liquid composition is 0.001 to 10 weight%. 研磨液組成物中のコロイダルシリカと重合体の濃度比[コロイダルシリカの濃度(重量%)/重合体の濃度(重量%)]が、10〜5000である、請求項1〜5いずれか記載のガラス基板用研磨液組成物。   The concentration ratio of the colloidal silica and the polymer in the polishing composition [concentration of colloidal silica (% by weight) / concentration of polymer (% by weight)] is 10 to 5,000. Polishing liquid composition for glass substrates. アクリル酸/(メタ)アクリルアミド−2−メチルプロパンスルホン酸共重合体において、アクリル酸と(メタ)アクリルアミド−2−メチルプロパンスルホン酸とのモル比が8/1である、請求項2記載のガラス基板用研磨液組成物。   The glass according to claim 2, wherein in the acrylic acid / (meth) acrylamide-2-methylpropanesulfonic acid copolymer, the molar ratio of acrylic acid to (meth) acrylamide-2-methylpropanesulfonic acid is 8/1. Polishing liquid composition for substrates. ガラス基板がガラスハードディスク基板である、請求項1〜7いずれか記載のガラス基板用研磨液組成物。   The polishing composition for glass substrates in any one of Claims 1-7 whose glass substrate is a glass hard disk substrate. 請求項1〜8いずれか記載の研磨液組成物を研磨パッドと被研磨基板の間に存在させ、3〜12kPaの研磨荷重で研磨する工程を有するガラス基板の製造方法。   The manufacturing method of the glass substrate which has the process of making the polishing liquid composition in any one of Claims 1-8 exist between a polishing pad and a to-be-polished substrate, and grind | polishing with a polishing load of 3-12 kPa. 被研磨基板がガラスハードディスク基板である請求項9記載のガラス基板の製造方法。   The method for producing a glass substrate according to claim 9, wherein the substrate to be polished is a glass hard disk substrate. 請求項1〜8いずれか記載の研磨液組成物を用いてガラス基板を研磨する、ガラス基板の汚れ低減方法。   A method for reducing dirt on a glass substrate, comprising polishing the glass substrate using the polishing composition according to claim 1.
JP2004359842A 2004-12-13 2004-12-13 Polishing liquid composition for glass substrate Expired - Fee Related JP4667848B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2004359842A JP4667848B2 (en) 2004-12-13 2004-12-13 Polishing liquid composition for glass substrate
GB0525057A GB2421955B (en) 2004-12-13 2005-12-08 Polishing composition for glass substrate
CN 201010226178 CN101892032A (en) 2004-12-13 2005-12-09 The manufacture method of glass hard disk substrate
CNA2005101294959A CN1789366A (en) 2004-12-13 2005-12-09 Polishing composition for glass substrate
MYPI20055822 MY143652A (en) 2004-12-13 2005-12-12 Polishing composition for glass substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004359842A JP4667848B2 (en) 2004-12-13 2004-12-13 Polishing liquid composition for glass substrate

Publications (2)

Publication Number Publication Date
JP2006167817A JP2006167817A (en) 2006-06-29
JP4667848B2 true JP4667848B2 (en) 2011-04-13

Family

ID=35735789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004359842A Expired - Fee Related JP4667848B2 (en) 2004-12-13 2004-12-13 Polishing liquid composition for glass substrate

Country Status (4)

Country Link
JP (1) JP4667848B2 (en)
CN (2) CN1789366A (en)
GB (1) GB2421955B (en)
MY (1) MY143652A (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102863943B (en) 2005-08-30 2015-03-25 花王株式会社 Polishing composition for hard disk substrate, polishing method and manufacture method of substrate
JP5283247B2 (en) * 2005-12-22 2013-09-04 花王株式会社 Polishing liquid composition for glass substrate
GB2433516B (en) * 2005-12-22 2010-11-03 Kao Corp Polishing composition for glass substrate
JP5008350B2 (en) * 2006-07-05 2012-08-22 花王株式会社 Polishing liquid composition for glass substrate
JP5606663B2 (en) * 2006-12-26 2014-10-15 花王株式会社 Polishing silica particle dispersion
JP5437571B2 (en) * 2006-12-26 2014-03-12 花王株式会社 Polishing fluid kit
KR101564922B1 (en) * 2008-05-09 2015-11-03 삼성디스플레이 주식회사 Method of treating soda-lime glass substrate and methode of manufacturing display substrate using the same
KR101604328B1 (en) 2008-06-18 2016-03-17 가부시키가이샤 후지미인코퍼레이티드 Polishing composition and polishing method using the same
JP5251861B2 (en) * 2009-12-28 2013-07-31 信越化学工業株式会社 Method for producing synthetic quartz glass substrate
US9053736B2 (en) 2010-04-20 2015-06-09 Kao Corporation Method for manufacturing an aluminosilicate glass substrate for hard disks
JP2013080530A (en) * 2011-09-30 2013-05-02 Hoya Corp Manufacturing method of glass substrate for magnetic disc and manufacturing method of magnetic disc
JPWO2013080885A1 (en) * 2011-12-02 2015-04-27 旭硝子株式会社 Glass plate polishing equipment
WO2014208762A1 (en) * 2013-06-29 2014-12-31 Hoya株式会社 Manufacturing method for glass substrate, manufacturing method for magnetic disk, and polishing solution composition for glass substrate
JP6393231B2 (en) 2015-05-08 2018-09-19 信越化学工業株式会社 Polishing agent for synthetic quartz glass substrate and method for polishing synthetic quartz glass substrate
JP6560155B2 (en) 2016-04-20 2019-08-14 信越化学工業株式会社 Polishing agent for synthetic quartz glass substrate and method for polishing synthetic quartz glass substrate
JP6694653B2 (en) 2017-04-10 2020-05-20 信越化学工業株式会社 Polishing agent for synthetic quartz glass substrate, manufacturing method thereof, and polishing method for synthetic quartz glass substrate
JP6985116B2 (en) * 2017-11-17 2021-12-22 信越化学工業株式会社 Abrasive for synthetic quartz glass substrate and polishing method for synthetic quartz glass substrate
CN108148507B (en) * 2017-12-18 2020-12-04 清华大学 Polishing composition for fused quartz
JP2021183655A (en) 2020-05-21 2021-12-02 信越化学工業株式会社 Abrasive agent for polishing synthetic quartz glass substrate and manufacturing method abrasive agent, and polishing method of synthetic quartz glass substrate
CN113618497A (en) * 2021-07-09 2021-11-09 维达力实业(赤壁)有限公司 Polishing liquid for polishing microcrystalline ceramic and microcrystalline ceramic polishing method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3884778T2 (en) * 1987-12-29 1994-05-11 Du Pont Fine polishing composition for badges.
SG78405A1 (en) * 1998-11-17 2001-02-20 Fujimi Inc Polishing composition and rinsing composition
US6821897B2 (en) * 2001-12-05 2004-11-23 Cabot Microelectronics Corporation Method for copper CMP using polymeric complexing agents
JP4095833B2 (en) * 2002-05-30 2008-06-04 株式会社フジミインコーポレーテッド Polishing composition
US20060096179A1 (en) * 2004-11-05 2006-05-11 Cabot Microelectronics Corporation CMP composition containing surface-modified abrasive particles

Also Published As

Publication number Publication date
JP2006167817A (en) 2006-06-29
CN1789366A (en) 2006-06-21
GB2421955A (en) 2006-07-12
CN101892032A (en) 2010-11-24
MY143652A (en) 2011-06-30
GB2421955B (en) 2009-10-14
GB0525057D0 (en) 2006-01-18

Similar Documents

Publication Publication Date Title
JP4667848B2 (en) Polishing liquid composition for glass substrate
JP5283247B2 (en) Polishing liquid composition for glass substrate
JP5008350B2 (en) Polishing liquid composition for glass substrate
US20070145014A1 (en) Polishing composition for glass substrate
CN102992600B (en) The manufacture method of chemcor glass goods
CN101950565B (en) Glass substrate for information recording medium and method for manufacturing the same, and magnetic recording medium
JP4336524B2 (en) Method for producing glass substrate for information recording medium
US8585463B2 (en) Process for producing glass substrate for information recording medium
US20120244388A1 (en) Glass substrate for information recording media, process for its production, and magnetic recording medium
US9053736B2 (en) Method for manufacturing an aluminosilicate glass substrate for hard disks
TW201736039A (en) Polishing composition and method for polishing silicon substrate
JP4115722B2 (en) Manufacturing method of glass substrate for information recording medium
JP6513454B2 (en) Method of manufacturing abrasive
JP5013986B2 (en) Manufacturing method of glass substrate
TW201742138A (en) Set of compositions for polishing, pre-polishing composition, and method of polishing silicon wafer
JP2003173518A (en) Method for manufacturing glass substrate for magnetic recording medium, method for manufacturing magnetic recording medium
WO2013118648A1 (en) Method for producing glass product and method for producing magnetic disk
JP5821188B2 (en) Manufacturing method of glass substrate for information recording medium
JP2010086631A (en) Method of manufacturing glass substrate for magnetic disk, and method of manufacturing magnetic disk
JP2014116046A (en) Manufacturing method of glass substrate for magnetic disk
WO2012090755A1 (en) Method for producing glass substrate for recording medium
JP2017041294A (en) Manufacturing method of glass substrate for magnetic disk
JP6015259B2 (en) Manufacturing method of glass substrate for information recording medium and manufacturing method of magnetic disk
JP2000149249A (en) Production of glass substrate for magnetic disk, glass substrate for magnetic disk, and magnetic disk
WO2012090597A1 (en) Method for producing glass substrate for recording medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090414

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091222

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091222

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20100226

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4667848

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees