JP4667638B2 - Manufacturing method of MgB2 superconducting wire - Google Patents

Manufacturing method of MgB2 superconducting wire Download PDF

Info

Publication number
JP4667638B2
JP4667638B2 JP2001138176A JP2001138176A JP4667638B2 JP 4667638 B2 JP4667638 B2 JP 4667638B2 JP 2001138176 A JP2001138176 A JP 2001138176A JP 2001138176 A JP2001138176 A JP 2001138176A JP 4667638 B2 JP4667638 B2 JP 4667638B2
Authority
JP
Japan
Prior art keywords
powder
mgb
heat treatment
superconducting wire
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001138176A
Other languages
Japanese (ja)
Other versions
JP2002334620A (en
Inventor
克則 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2001138176A priority Critical patent/JP4667638B2/en
Publication of JP2002334620A publication Critical patent/JP2002334620A/en
Application granted granted Critical
Publication of JP4667638B2 publication Critical patent/JP4667638B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は特性に優れ、かつ生産性に優れたMgB2超電導線の製造方法に関するものである。
【0002】
【従来の技術】
近年、従来のNbTi合金系やA15型化合物系の金属系超電導線に比べ、はるかに高い臨界温度(約39K)を備えた新超電導体MgB2が発見された。しかしながら、MgB2は脆く加工性に乏しいため、超電導線を製造する場合は以下の方法で行われている。すなわち、まず金属管にMgB2粉を詰めてビレットを作製し、これをスエージングやダイスによる伸線、あるいは、さらにロール圧延して減面加工し、所定の形状とする。次に、熱処理を行って、線材内部のMgB2粉を焼結して連続したフィラメントを形成せしめ、最終的にMgB2超電導線を得る。
【0003】
また、金属管にMgB2粉を詰めて減面加工した複合棒複数本を、さらに金属管に詰めて複合多芯ビレットを作製し、これを同様に減面加工した後に焼結熱処理を行うことで、複合多芯MgB2超電導線を得る方法も行われている。
【0004】
金属管は、通常TaまたはNb製である内管の外周に、Cu管またはCu合金製の外管を配置した2重管が用いられている。TaまたはNbが内管に使用される理由は、これらの金属がいずれも加工性が良好であり、かつ高融点金属であるため焼結熱処理時にMgB2とほとんど反応しないからである。一方、外管にCuやCu合金が用いられる理由は、これらが安価なためである。
【0005】
【発明が解決しようとする課題】
しかしながら、前述の方法では、MgB2粒子が非常に硬く塑性変形し難いので、減面加工後であっても線材中のMgB2粉の充填率や粒子同士の接合面積は、充填の時点のままでほとんど向上しない。そのため、焼結熱処理をしても粒子同士が全面接触したMgB2を得ることはかなり難しい。ところで、線材の長手方向に流せる臨界電流は、粒子同士の接触面積で決まるので、前述の方法では高臨界電流が得られないことになる。また、全面接触に至らなくても、少しでも接触面積を大きくするためには高温で長時間の焼結熱処理が必要となるので、生産性も悪くなる。
【0006】
本発明はかかる状況に鑑み、鋭意研究を行った結果なされたもので、その目的は、焼結の問題を抜本的に解決し、超電導特性と生産性に優れたMgB2超電導線の製造方法を提供することにある。
【0007】
【課題を解決するための手段】
前記課題を解決するために、本発明の第1の態様は、以下工程を備えたことを特徴とするMgB超電導線の製造方法である。
(a) 原料がMg粉とB粉からなる混合粉体を用意し、
(b) 前記混合粉体を金属管に詰め、減面加工した複合線を作製し、
(c) 複数の前記複合線を金属管に詰めて複合多芯ビレットを作製し、
(d) 前記複合多芯ビレットを減面加工した後に熱処理を行って複数のMgBフィラメントを得る。
また、本発明の第2の態様は、以下の工程を備えたことを特徴とするMgB 超電導線の製造方法である。
(a) 原料がMg粉とB粉からなる混合粉体を用意し、
(b) 前記混合粉体を金属多孔管に詰め、減面加工し、
(c) 前記減面加工した後に熱処理を行って複数のMgB フィラメントを得る。
【0008】
本発明の第3の態様は、前記混合粉体に、さらにMgB粉を加えたものであることを特徴とするMgB超電導線の製造方法である。
【0009】
本発明の第4の態様は、前記熱処理は、減面加工をした後に炉中を連続的に通して行うことを特徴とするMgB超電導線の製造方法である。
【0010】
本発明の第5の態様は、前記熱処理が650℃以上、1050℃以下の温度範囲で行われることを特徴とするMgB超電導線の製造方法である。
【0011】
本発明の第6の態様は、前記熱処理が非酸化性ガス雰囲気中で行われることを特徴とするMgB超電導線の製造方法である。
【0012】
【実施の形態】
本発明の実施の形態について以下に説明する。本発明のMgB2超電導線の製造方法では、金属管に充填する粉として、加工性や焼結反応性に乏しいMgB2粉の一部、あるいは全部をその構成元素であるMg粉とB粉で置き換えることを特徴とする。これらの混合物を金属管に詰めて減面加工を行った場合、MgB2化合物やB粒子は硬いのでほとんど塑性変形しない。ところが、Mg粉は柔らかく塑性変形して隙間を埋めることになるので金属管内部の充填率が著しく改良される。
【0013】
これを熱処理すると、B粒子と塑性変形したMgとの間に拡散反応がおきて、MgB2が隙間なく生成する。B粉とMg粉とにMgB2粉を加えた場合も、MgB2粒子間にMgB2が隙間なく生成する。つまり、B粉とMg粉を充填した場合、あるいは、さらにMgB2粉を加えた場合のいずれについても、フィラメント全体がMgB2化合物となる。
従って、極めて充填率が高い超電導MgB2フィラメントが得られるので臨界電流値が大幅に向上する。
【0014】
また、熱処理温度をMgの融点(650℃)以上にすれば、固体Bと液体Mgの固液拡散反応となるため、MgB2生成速度が著しく速くなり、熱処理時間を大幅に短縮できる。さらに、熱処理時のMgB2生成反応はB粒子へのMgの拡散が主であり、B粉とMgがすべてMgB2となるためのMgの拡散時間はB粉の粒子径の2乗に比例するため、B粉の粒子径を小さくすれば熱処理時間が大幅に短縮できる。従って、B粉の粒子径と熱処理温度を適度に選択することで、炉を通過させて線材を連続的に拡散熱処理することが可能となり生産性がさらに向上する。
【0015】
金属管に充填するMgとBは、粉体状のものが取扱いや反応上望ましいが、もちろん顆粒状、小塊状等の形状のものも用いることができる。金属管に充填するMg粉とB粉の混合比率は、MgB2の化学量論比率、すなわち、Mgは33.3原子パーセント、Bは66.7原子パーセントとすることが望ましい。
【0016】
Mg比率がこれより高いと、拡散反応後にMgのマトリクスの中心部が未反応のまま残り、生成MgB2化合物中に異物として混在するため、超電導電流の輸送流路が十分確保できなくなる。一方、Mg比率がこれより低いと、B粉粒子の中心部に未反応部分が残ったり、反応生成物がMgB2とならずに他の常電導物質のMgB4になったりするため、やはり生成MgB2の中に異物が存在することとなり、超電導電流の輸送流路が十分確保できなくなる。
【0017】
Mg粉とB粉との混合粉とMgB2粉との混合比率は、経済性と超電導特性(臨界電流値)の兼ね合いを考慮した上で自由に選ぶことができる。MgB2粉を用いずに、充填原料をMg粉とB粉のみの混合粉とすると、高純度のB粉が高額であるためコスト高となる。一方、Mg粉とB粉との混合粉の量がMgB2粉に比べて少ないと、塑性加工されたMgがMgB2粒子やB粒子の隙間を充分に埋めることができないため、熱処理後のMgB2粒同士の接合面積が小さくなり、臨界電流値の向上が望めない。Mg粉とB粉が粉全体(Mg粉、B粉、MgB2粉の合計)に占める重量割合は、超電導特性を重視すれば50%以上が望ましい。
【0018】
熱処理条件について以下に説明する。前述のように、減面加工後にはB粒子の周囲がMgで覆われるため、比較的低温の拡散熱処理でMgB2が生成する。ただし、低温になると拡散速度が指数関数的に遅くなるため、工業的には500℃以上で熱処理することが好ましい。より好ましい熱処理温度は、Mgの融点(650℃)以上で1050℃以下である。650℃以上とする理由は、固液拡散となって熱処理時間が短縮できるためであり、一方1050℃以下とする理由は、それ以上の温度ではMgB2が分解し、一部MgB4化合物が生成してしまうためである。
【0019】
熱処理雰囲気は、金属管を酸化させない雰囲気であれば良く、例えば、真空中や非酸化性ガスである窒素ガス、水素ガス、アルゴンガス、あるいはそれらの混合ガス等の雰囲気中で行うことができる。
【0020】
なお、拡散反応を促進させたり、MgB2の結晶構造を改善するために、例えば第3元素を添加したり、Mg、B、あるいはMgB2に、あらかじめ合金成分として添加することも、減面加工中のMgの塑性加工性を著しく損なわせなければ、本発明の製造方法が適用可能である。
【0021】
【実施例】
(実施例1)
純度99.9%、粒子径が180μmのMg粉と純度99%、粒子径が8μmのB粉を、33.3:66.7の原子パーセント比率で混合し、圧力が100MPaで冷間静水圧加工を施して外径が9.8mmの圧粉体を作製した。次に、圧粉体を内径が10mm、外径が11.8mmのTa製の管に入れ、さらにこれらを内径が12mm、外径が15mmのCu製の管に入れた後、両端にCu製の蓋を嵌め、嵌め込み部を真空中で電子ビーム溶接して複合ビレットを作製した。次に、ビレットをスエ−ジング、およびダイス伸線により直径が0.6mmまで減面加工した。
【0022】
図1はその断面を示したものである。図1において、符号1はMg粉とB粉の混合粉を示す。符号2はTa製の管である。符号3はCu製の管である。次に、この線材をアルゴンガス雰囲気中で熱処理した。熱処理温度は500℃、700℃、900℃、1050℃であり、熱処理時間は3分〜10日の間で選択して行った。
【0023】
(実施例2)
実施例1で作製した直径が0.6mmの熱処理前複合丸線を、アルゴンガス雰囲気、温度を1000℃として、長さが5mの炉を1.0m/minの速度で通過させた。図2に熱処理前複合丸線の断面を示した。図2において、符号1はMg粉とB粉の混合粉を示す。符号2はTa製の管である。符号3はCu製の管である。
【0024】
(実施例3)
実施例1で作製した直径が0.6mmの熱処理前複合丸線の一部を用いてロール圧延を行い、厚さが0.12mmで幅が1.5mmのテープを作製した。図3はその断面を示したものである。図3において、符号1はMg粉とB粉の混合粉を示す。符号2はTa製の管である。符号3はCu製の管である。次に、このテープをアルゴンガス雰囲気中で700℃、900℃、1050℃の温度で3分〜24時間熱処理した。
【0025】
(実施例4)
実施例1で作製した直径0.6mmの熱処理前複合丸線を一定の長さで切断し、それら19本を、再び内径が3.1mmで外径が5.5mmのCu製管の中に詰め、両端にCu製の蓋を嵌め、嵌め込み部を真空中で電子ビーム溶接して複合多芯ビレットを作製した。複合多芯ビレツトをスエージングおよびダイス伸線により直径2.0mmまで減面加工した。図4はその断面を示したものである。図4において、符号1はMg粉とB粉の混合粉を示す。符号2はTa製の管である。符号3はCu製の管である。符号4は前記符号1〜3で示したものを詰めたCu製の管である。次に、この多芯線を実施例3と同じ条件で熱処理した。
【0026】
(実施例5)
純度99.9%、粒子径が180μmのMg粉と純度99%、粒子径が8μmのB粉を、33.3:66.7の原子パーセント比率で混合し、圧力100Mpaで冷間静水圧加工を施して外径が2.9mmの圧粉体を19個作製した。次に、19個の圧粉体をそれぞれ、内径が3.0mm、外径が3.6mmのTa製の管に入れ、さらに、これらを直径3.7mmの孔が19個開けられた外径が27mmのCu製多孔管に入れた後、両端にCu製の蓋を嵌め、嵌め込み部を真空中で電子ビーム溶接して複合多芯ビレットを作製した。複合多芯ビレツトをスエージングおよびダイス伸線により直径1.3mmまで減面加工した。
【0027】
図5はその断面を示したものである。図5において、符号1はMg粉とB粉の混合粉を示す。符号2はTa製の管である。符号5は前記符号1、2で示したものを孔部に挿入したCu製の多孔管である。次に、この多芯線を実施例3と同じ条件で熱処理してMgB2超電導線を得た。
【0028】
(実施例6)
金属管に充填する粉を、純度99.9%、粒子径180μmのMg粉、純度99%、粒子径8μmのB粉、および純度99%、粒子径15μmのMgB2粉の3種類混合(混合モル比率=1:2:0.6)とした以外は、冷間静水圧加工以降、熱処理前までの加工条件を実施例1と同じとし、直径0.6mmの複合単芯線を作製した。図6はその断面を示したものである。図6において、符号6はMg粉、B粉、およびMgB2粉の混合粉を示す。符号2はTa製の管である。符号3はCu製の管である。次に、この線材を実施例3と同じ条件で熱処理してMgB2超電導線を得た。
【0029】
(比較例1)
充填する粉を純度99%、粒子径が15μmのMgB2のみとした以外は熱処理前までの加工条件を実施例1と同じとし、直径0.6mmの複合丸線を作製した。図7はその断面を示したものである。図7において、符号7はMgB2粉を示す。符号2はTa製の管である。符号3はCu製の管である。この線材を実施例2と同じ条件で熱処理した。
【0030】
(比較例2)
比較例1で作製した直径0.6mmの熱処理前複合丸線の一部を用いてロール圧延を行い、厚さが0.12mmで幅が1.5mmのテープを作製した。図8はその断面を示したものである。図8において、符号7はMgB2粉を示す。符号2はTa製の管である。符号3はCu製の管である。次に、このテープを実施例3と同じ条件で熱処理した。
【0031】
実施例1、3、4、5、6、および比較例1、2で作製した熱処理前の線材とテープについて、粉部分の充填率を算出した。測定はアルキメデス法により線材とテープの比重を測定し、それから金属管部分を計算で除外し、得られた粉部の比重を理論比重で割って充填率を求めた。その結果を図9としての表1に示した。充填粉の一部、あるいは全部をMg粉とB粉との混合粉とした実施例1、3、4、5、6は、いずれも減面加工中のMgの塑性変形により空隙が完全に埋められているが、MgB2粉のみを用いた比較例1、2では充填率が上がらず、ロール圧延で強圧縮されたテープでも88%にしか達しなかった。
【0032】
熱処理後の各サンプルについて、液体ヘリウム中で4端子法による臨界電流測定を行った。一方、熱処理後の各サンプルの横断面写真を撮り、金属管以外の部分の面積を算出した。得られた臨界電流値を金属管以外の部分の面積で割って、金属管以外の部分の臨界電流密度(以後Jcで表わす)を求めた。その結果を図10としての表2から図15としての表7に示した。表2から明らかなように、実施例1ではいずれも良好なJcが得られており、熱処理温度を高くするほどJc最高値への到達時間が短くなることがわかる。
【0033】
熱処理温度が500℃になると、10日間の熱処理でようやく他の熱処理温度と同等のJcが得られており、これ以下の温度での熱処理は生産性の観点から適当でない。一方、熱処理温度が1050℃になると、僅か3分で充分なJcが得られるが、熱処理時間が長くなるとともにJcは低下していく。これは生成したMgB2がMgB4に分解していくためである。
【0034】
実施例2は、実施例1で使用した熱処理前の隣接部を用い、1000℃に保った炉中を5分間で通過させたものであり、11.1×104A/cm2のJcが得られた。この値は、1050℃で3分〜30分の熱処理を行って得た実施例1のJc(表2参照)と同等の値である。
【0035】
図11としての表3は、実施例3のテープで得られたJcを示したものである。この結果を図10としての表2と比較すると明らかなように、ロール圧延の有無は熱処理後のJcに影響しない。この理由は、本発明では、丸線での減面加工の時点で粉部の充填率が既に100%となっているので、その後にロール圧延を行っても充填率に影響しないからである。
【0036】
図12としての表4、および図13としての表5は、実施例4、および実施例5の複合多芯線のJcを示したものである。いずれも、実施例1の単芯線と同等のJcが得られている。
【0037】
図14としての表6はMg粉、B粉、およびMgB2粉を充填した単芯線のJc示したものである。最高Jcは、Mg粉とB粉のみを充填した他の実施例と同等であり、超電導特性と経済性(高価なB粉の使用量減)が両立していることがわかる。ただし、900℃以上の高温熱処理では、他の実施例に比べJcの低下が早くなっている。これは、充填粉の一部に最初から超電導体であるMgB2を使用しているので、Mg粉とB粉の混合粉に比べてMgB4への分解反応が早い段階で開始するためである。
【0038】
一方、図15としての表7は比較例1のJcを示したものであるが、実施例1に較べてJcが低く、また最高Jcに到達するまでの時間も長くなる。この理由は、線材全体を減面加工してもMgB2粒子が塑性変形しないので、粒子同士の接触が少なくなって焼結反応が遅くなるとともに、焼結だけでは空隙を消滅させることができないためである。さらに、高温長時間熱処理では、実施例に比べJc低下が著しい。これは、既にMgB2として生成しているものを高温熱処理するため、MgB4化合物への分解反応が早い段階で開始するためである。
【0039】
図16としての表8は比較例2のJcを示したものである。ロール圧延を行うことにより粉部の充填率が向上したため、表7の比較例1のJcに比べ向上している。しかし、各熱処理温度で得られた比較例1、2のJcの最高値(表7、表8参照)と、同じ熱処理温度で得られた実施例1、および実施例3〜6のJcの最高値(表10〜表14参照)とを比べると、非常に低い値しか得られていないことがわかる。
【0040】
【発明の効果】
以上示したように、本発明のMgB2超電導線の製造方法は、優れた特性のMgB2超電導線を高い生産性で製造する方法を提供するものであり、その工業上の貢献は著しいものである。
【図面の簡単な説明】
【図1】本発明の実施例1の熱処理前単芯線の断面を示す説明図である。
【図2】本発明の実施例2の熱処理前単芯線の断面を示す説明図である。
【図3】本発明の実施例3の熱処理前単芯テープの断面を示す説明図である。
【図4】本発明の実施例4の熱処理前多芯線の断面を示す説明図である。
【図5】本発明の実施例5の熱処理前多芯線の断面を示す説明図である。
【図6】本発明の実施例6の熱処理前単芯線の断面を示す説明図である。
【図7】比較例1の熱処理前単芯線の断面を示す説明図である。
【図8】比較例2の熱処理前単芯テープの断面を示す説明図である。
【図9】図9として示した表1であり、減面加工後サンプル中の粉部分充填率を示した。
【図10】図10として示した表2であり、実施例1の臨界電流密度を示した。
【図11】図11として示した表3であり、実施例3の臨界電流密度を示した。
【図12】図12として示した表4であり、実施例4の臨界電流密度を示した。
【図13】図13として示した表5であり、実施例5の臨界電流密度を示した。
【図14】図14として示した表6であり、実施例6の臨界電流密度を示した。
【図15】図15として示した表7であり、比較例1の臨界電流密度を示した。
【図16】図16として示した表8であり、比較例2の臨界電流密度を示した。
【符号の説明】
1 Mg粉とB粉の混合粉
2 Ta製管
3 Cu製管
4 Cu製管
5 Cu製多孔管
6 Mg粉、B粉、およびMgB2粉の混合粉
7 MgB2
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a MgB 2 superconducting wire having excellent characteristics and productivity.
[0002]
[Prior art]
In recent years, a new superconductor MgB 2 with a much higher critical temperature (about 39 K) has been discovered compared to conventional NbTi alloy-based and A15-type compound-based metallic superconducting wires. However, since MgB 2 is brittle and has poor workability, superconducting wires are manufactured by the following method. That is, first, a billet is prepared by filling a metal tube with MgB 2 powder, and this is drawn by swaging or die drawing, or further roll-rolled to reduce the surface to obtain a predetermined shape. Next, heat treatment is performed to sinter the MgB 2 powder inside the wire to form a continuous filament, and finally an MgB 2 superconducting wire is obtained.
[0003]
In addition, a composite multi-core billet made by reducing the surface of a composite tube packed with MgB 2 powder into a metal tube and then packed into a metal tube to produce a composite multi-core billet, which is similarly subjected to surface reduction processing and then subjected to a sintering heat treatment Thus, a method of obtaining a composite multicore MgB 2 superconducting wire has also been carried out.
[0004]
As the metal tube, a double tube is used in which an outer tube made of Cu or Cu alloy is arranged on the outer periphery of an inner tube made of Ta or Nb. Reason for Ta or Nb is used for the inner tube, none of these metals has good workability and because hardly reacts with MgB 2 during sintering heat treatment for a refractory metal. On the other hand, the reason why Cu or Cu alloy is used for the outer tube is that they are inexpensive.
[0005]
[Problems to be solved by the invention]
However, in the above-mentioned method, the MgB 2 particles are very hard and difficult to be plastically deformed, so the MgB 2 powder filling rate and the bonding area between the particles in the wire remain the same as at the time of filling even after the surface reduction processing. But hardly improved. Therefore, it is quite difficult to obtain MgB 2 in which the particles are in full contact with each other even after sintering heat treatment. By the way, since the critical current that can flow in the longitudinal direction of the wire is determined by the contact area between the particles, a high critical current cannot be obtained by the above-described method. Further, even if the entire surface contact is not reached, in order to increase the contact area as much as possible, a long-time sintering heat treatment is required at a high temperature, resulting in poor productivity.
[0006]
The present invention has been made as a result of diligent research in view of such circumstances, and its purpose is to fundamentally solve the problem of sintering, and to provide a method for producing an MgB 2 superconducting wire excellent in superconducting properties and productivity. It is to provide.
[0007]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, a first aspect of the present invention is a method for manufacturing a MgB 2 superconducting wire, comprising the following steps.
(A) Prepare mixed powder consisting of Mg powder and B powder as raw materials,
(B) Packing the mixed powder into a metal tube to produce a composite wire having a reduced surface area ,
(C) A composite multi-core billet is produced by packing a plurality of the composite wires in a metal tube,
(D) After reducing the surface of the composite multi-core billet , heat treatment is performed to obtain a plurality of MgB 2 filaments.
A second aspect of the present invention is a method for manufacturing a MgB 2 superconducting wire , comprising the following steps .
(A) Prepare mixed powder consisting of Mg powder and B powder as raw materials,
(B) Packing the mixed powder in a metal porous tube, surface reduction processing,
(C) After the surface reduction process, a heat treatment is performed to obtain a plurality of MgB 2 filaments.
[0008]
A third aspect of the present invention is a method for producing a MgB 2 superconducting wire, wherein the mixed powder is further added with MgB 2 powder.
[0009]
A fourth aspect of the present invention, the heat treatment is a method for producing a MgB 2 superconducting wire which is characterized in that the furnace continuously through after the reduction process.
[0010]
A fifth aspect of the present invention is a method for producing a MgB 2 superconducting wire, wherein the heat treatment is performed in a temperature range of 650 ° C. or higher and 1050 ° C. or lower.
[0011]
A sixth aspect of the present invention is a method for producing a MgB 2 superconducting wire, wherein the heat treatment is performed in a non-oxidizing gas atmosphere.
[0012]
Embodiment
Embodiments of the present invention will be described below. In the method for producing a MgB 2 superconducting wire of the present invention, as powder to be filled in a metal tube, part or all of MgB 2 powder having poor workability and sintering reactivity is composed of Mg powder and B powder as its constituent elements. It is characterized by replacing. When these mixtures are packed in a metal tube and subjected to surface reduction, the MgB 2 compound and B particles are hard and hardly plastically deform. However, since the Mg powder is soft and plastically deformed to fill the gap, the filling rate inside the metal tube is remarkably improved.
[0013]
When this is heat-treated, a diffusion reaction occurs between the B particles and the plastically deformed Mg, and MgB 2 is generated without gaps. Even when MgB 2 powder is added to B powder and Mg powder, MgB 2 is generated without a gap between MgB 2 particles. That is, the whole filament becomes the MgB 2 compound in any of the case where B powder and Mg powder are filled or the case where MgB 2 powder is further added.
Accordingly, since a superconducting MgB 2 filament having a very high filling rate can be obtained, the critical current value is greatly improved.
[0014]
Further, if the heat treatment temperature is set to be equal to or higher than the melting point of Mg (650 ° C.), a solid-liquid diffusion reaction between the solid B and the liquid Mg occurs, so that the MgB 2 production rate is remarkably increased and the heat treatment time can be greatly shortened. Moreover, MgB 2 formation reaction during the heat treatment is mainly diffusion of Mg to B particles, B powder and Mg diffusion time of Mg for all the MgB 2 is proportional to the square of the particle diameter of the powder B Therefore, if the particle size of the B powder is reduced, the heat treatment time can be greatly shortened. Therefore, by appropriately selecting the particle size of B powder and the heat treatment temperature, the wire can be continuously subjected to diffusion heat treatment through the furnace, and the productivity is further improved.
[0015]
The Mg and B filled in the metal tube are preferably in the form of powder in terms of handling and reaction, but of course, those in the form of granules, small lumps, etc. can also be used. The mixing ratio of the Mg powder and the B powder filled in the metal tube is desirably a stoichiometric ratio of MgB 2 , that is, Mg is 33.3 atomic percent and B is 66.7 atomic percent.
[0016]
If the Mg ratio is higher than this, the central portion of the Mg matrix remains unreacted after the diffusion reaction and is mixed as foreign matter in the produced MgB 2 compound, so that a sufficient transport path for the superconducting current cannot be secured. On the other hand, if the Mg ratio is lower than this, an unreacted part remains in the center of the B powder particles, or the reaction product does not become MgB 2 but becomes MgB 4 of another normal conductive material, so it is also generated. Foreign matter is present in MgB 2 , and a sufficient transport path for the superconducting current cannot be secured.
[0017]
The mixing ratio of the mixed powder of Mg powder and B powder and MgB 2 powder can be freely selected in consideration of the balance between economy and superconducting characteristics (critical current value). If MgB 2 powder is not used and the filling material is a mixed powder of only Mg powder and B powder, high-purity B powder is expensive, resulting in high costs. On the other hand, if the amount of mixed powder of Mg powder and B powder is less than MgB 2 powder, the plastically processed Mg cannot sufficiently fill the gap between MgB 2 particles and B particles, so MgB after heat treatment The bonding area between the two grains is reduced, and the critical current cannot be improved. The weight ratio of Mg powder and B powder to the total powder (total of Mg powder, B powder, and MgB 2 powder) is preferably 50% or more if the superconducting characteristics are important.
[0018]
The heat treatment conditions will be described below. As described above, after reduction process for the surrounding B particles are covered with Mg, MgB 2 is produced at a relatively low temperature of diffusion heat treatment. However, since the diffusion rate decreases exponentially at low temperatures, it is preferable to heat-treat industrially at 500 ° C. or higher. A more preferable heat treatment temperature is not lower than the melting point of Mg (650 ° C.) and not higher than 1050 ° C. The reason why the temperature is set to 650 ° C. or higher is that the heat treatment time can be shortened by solid-liquid diffusion. On the other hand, the reason why the temperature is set to 1050 ° C. or lower is that MgB 2 decomposes and some MgB 4 compounds are produced. It is because it will do.
[0019]
The heat treatment atmosphere may be an atmosphere that does not oxidize the metal tube. For example, it can be performed in an atmosphere such as a vacuum or a non-oxidizing gas such as nitrogen gas, hydrogen gas, argon gas, or a mixed gas thereof.
[0020]
In order to promote the diffusion reaction or improve the crystal structure of MgB 2 , for example, a third element may be added, or it may be added to Mg, B, or MgB 2 in advance as an alloy component. The production method of the present invention can be applied as long as the plastic workability of Mg therein is not significantly impaired.
[0021]
【Example】
(Example 1)
Mixing 99.9% pure and 180μm Mg powder and 99% pure and 8μm B powder in an atomic percent ratio of 33.3: 66.7, and applying cold isostatic pressing at a pressure of 100MPa and outer diameter Produced a green compact of 9.8 mm. Next, the green compact is put into a Ta tube with an inner diameter of 10 mm and an outer diameter of 11.8 mm, and further put into a Cu tube with an inner diameter of 12 mm and an outer diameter of 15 mm. A lid was fitted, and the fitting portion was electron beam welded in vacuum to produce a composite billet. Next, the billet was surface-reduced to 0.6 mm in diameter by swaging and die drawing.
[0022]
FIG. 1 shows the cross section. In FIG. 1, reference numeral 1 indicates a mixed powder of Mg powder and B powder. Reference numeral 2 denotes a Ta tube. Reference numeral 3 denotes a Cu tube. Next, this wire was heat-treated in an argon gas atmosphere. The heat treatment temperatures were 500 ° C., 700 ° C., 900 ° C., and 1050 ° C., and the heat treatment time was selected from 3 minutes to 10 days.
[0023]
(Example 2)
The composite round wire with a diameter of 0.6 mm prepared in Example 1 was passed through a 5 m long furnace at a speed of 1.0 m / min under an argon gas atmosphere and a temperature of 1000 ° C. Fig. 2 shows a cross section of the composite round wire before heat treatment. In FIG. 2, reference numeral 1 indicates a mixed powder of Mg powder and B powder. Reference numeral 2 denotes a Ta tube. Reference numeral 3 denotes a Cu tube.
[0024]
(Example 3)
Roll rolling was performed using a part of the composite round wire with a diameter of 0.6 mm produced in Example 1 and a tape having a thickness of 0.12 mm and a width of 1.5 mm was produced. FIG. 3 shows the cross section. In FIG. 3, reference numeral 1 indicates a mixed powder of Mg powder and B powder. Reference numeral 2 denotes a Ta tube. Reference numeral 3 denotes a Cu tube. Next, this tape was heat-treated at 700 ° C., 900 ° C., and 1050 ° C. for 3 minutes to 24 hours in an argon gas atmosphere.
[0025]
(Example 4)
Cut the pre-heat treatment composite round wire of 0.6mm diameter prepared in Example 1 with a certain length, 19 of them were again packed in a Cu tube with an inner diameter of 3.1mm and an outer diameter of 5.5mm, both ends A Cu-made lid was fitted on the base, and the fitting portion was electron beam welded in vacuum to produce a composite multi-core billet. The composite multi-core billet was reduced to a diameter of 2.0 mm by swaging and die drawing. FIG. 4 shows a cross section thereof. In FIG. 4, reference numeral 1 indicates a mixed powder of Mg powder and B powder. Reference numeral 2 denotes a Ta tube. Reference numeral 3 denotes a Cu tube. Reference numeral 4 denotes a Cu tube filled with the reference numerals 1 to 3. Next, this multifilamentary wire was heat-treated under the same conditions as in Example 3.
[0026]
(Example 5)
Mixing 99.9% pure Mg powder with a particle size of 180μm and B powder with a purity of 99% and a particle size of 8μm in an atomic percentage ratio of 33.3: 66.7, and applying cold isostatic pressing at a pressure of 100Mpa, the outer diameter is Nineteen 2.9 mm green compacts were produced. Next, each of the 19 green compacts was put into a Ta tube with an inner diameter of 3.0 mm and an outer diameter of 3.6 mm, and these were further drilled with 19 holes with a diameter of 3.7 mm and an outer diameter of 27 mm. After putting in a Cu porous tube, a Cu lid was fitted to both ends, and the fitting portion was electron beam welded in vacuum to produce a composite multi-core billet. The composite multi-core billet was reduced to 1.3mm in diameter by swaging and die drawing.
[0027]
FIG. 5 shows the cross section. In FIG. 5, reference numeral 1 indicates a mixed powder of Mg powder and B powder. Reference numeral 2 denotes a Ta tube. Reference numeral 5 denotes a Cu porous tube in which the ones indicated by the reference numerals 1 and 2 are inserted into the holes. Next, this multi-core wire was heat-treated under the same conditions as in Example 3 to obtain a MgB 2 superconducting wire.
[0028]
(Example 6)
Three types of powder filling the metal tube: 99.9% purity, Mg powder with a particle size of 180μm, 99% purity, B powder with a particle size of 8μm, and MgB 2 powder with a purity of 99%, particle size of 15μm (mixing molar ratio) = 1: 2: 0.6) A composite single core wire having a diameter of 0.6 mm was manufactured under the same conditions as in Example 1 except for cold isostatic pressing and before heat treatment. FIG. 6 shows the cross section. In FIG. 6, reference numeral 6 indicates a mixed powder of Mg powder, B powder, and MgB 2 powder. Reference numeral 2 denotes a Ta tube. Reference numeral 3 denotes a Cu tube. Next, this wire was heat-treated under the same conditions as in Example 3 to obtain a MgB 2 superconducting wire.
[0029]
(Comparative Example 1)
Powder having a purity of 99% by filling, same city as in Example 1 processing conditions before the heat treatment except that the particle diameter is only MgB 2 of 15 [mu] m, to prepare a composite round wire having a diameter of 0.6 mm. FIG. 7 shows the cross section. In FIG. 7, reference numeral 7 denotes MgB 2 powder. Reference numeral 2 denotes a Ta tube. Reference numeral 3 denotes a Cu tube. This wire was heat-treated under the same conditions as in Example 2.
[0030]
(Comparative Example 2)
Roll rolling was performed using a part of the composite round wire with a diameter of 0.6 mm prepared in Comparative Example 1 before heat treatment, and a tape having a thickness of 0.12 mm and a width of 1.5 mm was prepared. FIG. 8 shows the cross section. In FIG. 8, reference numeral 7 denotes MgB 2 powder. Reference numeral 2 denotes a Ta tube. Reference numeral 3 denotes a Cu tube. Next, this tape was heat-treated under the same conditions as in Example 3.
[0031]
For the wire rods and tapes before heat treatment produced in Examples 1, 3, 4, 5, 6 and Comparative Examples 1 and 2, the filling ratio of the powder portion was calculated. The measurement was performed by measuring the specific gravity of the wire rod and the tape by the Archimedes method, and then the metal tube portion was excluded by calculation, and the specific gravity of the obtained powder portion was divided by the theoretical specific gravity to obtain the filling rate. The results are shown in Table 1 as FIG. In Examples 1, 3, 4, 5, and 6 in which part or all of the filling powder was a mixed powder of Mg powder and B powder, all of the gaps were completely filled by plastic deformation of Mg during surface-reduction processing. However, in Comparative Examples 1 and 2 using only MgB 2 powder, the filling rate did not increase, and even the tape strongly compressed by roll rolling reached only 88%.
[0032]
About each sample after heat processing, the critical current measurement by the 4-probe method was performed in liquid helium. On the other hand, the cross-sectional photograph of each sample after heat processing was taken, and the area of parts other than a metal pipe was computed. The critical current value obtained was divided by the area of the portion other than the metal tube to obtain the critical current density (hereinafter referred to as Jc) of the portion other than the metal tube. The results are shown in Table 2 as FIG. 10 and Table 7 as FIG. As is apparent from Table 2, in Example 1, good Jc was obtained, and it can be seen that the time required to reach the maximum Jc was shortened as the heat treatment temperature was increased.
[0033]
When the heat treatment temperature reaches 500 ° C., Jc equivalent to other heat treatment temperatures is finally obtained after 10 days of heat treatment, and heat treatment at temperatures below this is not suitable from the viewpoint of productivity. On the other hand, when the heat treatment temperature reaches 1050 ° C., sufficient Jc can be obtained in only 3 minutes, but Jc decreases as the heat treatment time increases. This is because the generated MgB 2 is decomposed into MgB 4 .
[0034]
In Example 2, the adjacent part before heat treatment used in Example 1 was passed through a furnace kept at 1000 ° C. for 5 minutes, and a Jc of 11.1 × 10 4 A / cm 2 was obtained. It was. This value is equivalent to Jc of Example 1 ( see Table 2) obtained by performing heat treatment at 1050 ° C. for 3 minutes to 30 minutes.
[0035]
Table 3 as FIG. 11 shows Jc obtained with the tape of Example 3. As is clear from comparison of this result with Table 2 as FIG. 10, the presence or absence of roll rolling does not affect Jc after heat treatment. The reason for this is that, in the present invention, the filling rate of the powder part is already 100% at the time of the surface-reducing process with the round wire, and therefore the filling rate is not affected even if roll rolling is performed thereafter.
[0036]
Table 4 as FIG. 12 and Table 5 as FIG. 13 show Jc of the composite multifilamentary wires of Example 4 and Example 5. In either case, Jc equivalent to that of the single core wire of Example 1 was obtained.
[0037]
Table 6 as FIG. 14 shows the Jc of single-core wires filled with Mg powder, B powder, and MgB 2 powder. The maximum Jc is equivalent to the other examples filled only with Mg powder and B powder, and it can be seen that the superconducting characteristics and the economy (reduction of the amount of expensive B powder used) are compatible. However, in the high temperature heat treatment at 900 ° C. or higher, the decrease in Jc is faster than in the other examples. This is because MgB 2 which is a superconductor is used as part of the filling powder from the beginning, so the decomposition reaction to MgB 4 starts earlier than the mixed powder of Mg powder and B powder. .
[0038]
On the other hand, Table 7 as FIG. 15 shows Jc of Comparative Example 1. However, Jc is lower than that of Example 1, and the time to reach the maximum Jc is also longer. The reason for this is that MgB 2 particles are not plastically deformed even if the entire wire is reduced, so the contact between the particles is reduced and the sintering reaction is slowed down, and the voids cannot be eliminated only by sintering. It is. Furthermore, in the high-temperature and long-time heat treatment, the decrease in Jc is significant compared to the examples. This is because the decomposition reaction into the MgB 4 compound is started at an early stage because the high-temperature heat treatment is already performed as MgB 2 .
[0039]
Table 8 as FIG. 16 shows Jc of Comparative Example 2. Since the filling ratio of the powder part was improved by performing roll rolling, it was improved as compared with Jc of Comparative Example 1 in Table 7. However, the maximum value of Jc of Comparative Examples 1 and 2 obtained at each heat treatment temperature (see Tables 7 and 8), and the maximum of Jc of Example 1 and Examples 3 to 6 obtained at the same heat treatment temperature. Comparing the values (see Table 10 to Table 14), it can be seen that only very low values are obtained.
[0040]
【The invention's effect】
As described above, the method for producing an MgB 2 superconducting wire of the present invention provides a method for producing an MgB 2 superconducting wire having excellent characteristics with high productivity, and its industrial contribution is significant. is there.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing a cross section of a single core wire before heat treatment in Example 1 of the present invention.
FIG. 2 is an explanatory view showing a cross section of a single core wire before heat treatment in Example 2 of the present invention.
FIG. 3 is an explanatory view showing a cross section of a single-core tape before heat treatment according to Example 3 of the present invention.
FIG. 4 is an explanatory view showing a cross section of a multi-core wire before heat treatment in Example 4 of the present invention.
FIG. 5 is an explanatory view showing a cross section of a multi-core wire before heat treatment in Example 5 of the present invention.
FIG. 6 is an explanatory view showing a cross section of a single core wire before heat treatment in Example 6 of the present invention.
7 is an explanatory view showing a cross section of a single core wire before heat treatment of Comparative Example 1. FIG.
8 is an explanatory view showing a cross section of a single-core tape before heat treatment of Comparative Example 2. FIG.
FIG. 9 is Table 1 shown as FIG. 9 and shows the powder partial filling rate in the sample after the surface-reduction processing.
10 is Table 2 shown as FIG. 10 and shows the critical current density of Example 1. FIG.
11 is Table 3 shown as FIG. 11 and shows the critical current density of Example 3. FIG.
12 is Table 4 shown as FIG. 12, showing the critical current density of Example 4. FIG.
13 is Table 5 shown as FIG. 13 and shows the critical current density of Example 5. FIG.
14 is Table 6 shown as FIG. 14 and shows the critical current density of Example 6. FIG.
15 is Table 7 shown as FIG. 15 and shows the critical current density of Comparative Example 1. FIG.
16 is Table 8 shown as FIG. 16 and shows the critical current density of Comparative Example 2. FIG.
[Explanation of symbols]
1 Mixed powder of Mg powder and B powder 2 Ta tube 3 Cu tube 4 Cu tube 5 Cu porous tube 6 Mixed powder of Mg powder, B powder, and MgB 2 powder 7 MgB 2 powder

Claims (6)

以下の工程を備えたことを特徴とするMgB超電導線の製造方法。
(a) 原料がMg粉とB粉からなる混合粉体を用意し、
(b) 前記混合粉体を金属管に詰め、減面加工した複合線を作製し、
(c) 複数の前記複合線を金属管に詰めて複合多芯ビレットを作製し、
(d) 前記複合多芯ビレットを減面加工した後に熱処理を行って複数のMgBフィラメントを得る。
Method of manufacturing a MgB 2 superconducting wire, characterized in that it includes the following steps.
(A) Prepare mixed powder consisting of Mg powder and B powder as raw materials,
(B) Packing the mixed powder into a metal tube to produce a composite wire having a reduced surface area ,
(C) A composite multi-core billet is produced by packing a plurality of the composite wires in a metal tube,
(D) After reducing the surface of the composite multi-core billet , heat treatment is performed to obtain a plurality of MgB 2 filaments.
以下の工程を備えたことを特徴とするMgBMgB characterized by comprising the following steps: 2 超電導線の製造方法。Superconducting wire manufacturing method.
(a) 原料がMg粉とB粉からなる混合粉体を用意し、(A) Prepare mixed powder consisting of Mg powder and B powder as raw materials,
(b) 前記混合粉体を金属多孔管に詰め、減面加工し、(B) Packing the mixed powder in a metal porous tube, surface reduction processing,
(c) 前記減面加工した後に熱処理を行って複数のMgB(C) After the surface reduction processing, heat treatment is performed to form a plurality of MgB 2 フィラメントを得る。Get the filament.
前記混合粉体に、さらにMgB粉を加えたものであることを特徴とする請求項1または請求項2に記載のMgB超電導線の製造方法。The method for producing a MgB 2 superconducting wire according to claim 1 or 2 , wherein MgB 2 powder is further added to the mixed powder. 前記熱処理は、減面加工をした後に炉中を連続的に通して行うことを特徴とする請求項1〜3のいずれか1項に記載のMgB超電導線の製造方法。The method of manufacturing an MgB 2 superconducting wire according to any one of claims 1 to 3, wherein the heat treatment is performed by continuously passing through a furnace after surface reduction. 前記熱処理が650℃以上、1050℃以下の温度範囲で行われることを特徴とする請求項1〜4のいずれか1項に記載のMgB超電導線の製造方法。The method for manufacturing a MgB 2 superconducting wire according to any one of claims 1 to 4, wherein the heat treatment is performed in a temperature range of 650 ° C or higher and 1050 ° C or lower. 前記熱処理が非酸化性ガス雰囲気中で行われることを特徴とする請求項1〜5のいずれか1項に記載のMgB超電導線の製造方法。The method for manufacturing a MgB 2 superconducting wire according to any one of claims 1 to 5, wherein the heat treatment is performed in a non-oxidizing gas atmosphere.
JP2001138176A 2001-05-09 2001-05-09 Manufacturing method of MgB2 superconducting wire Expired - Lifetime JP4667638B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001138176A JP4667638B2 (en) 2001-05-09 2001-05-09 Manufacturing method of MgB2 superconducting wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001138176A JP4667638B2 (en) 2001-05-09 2001-05-09 Manufacturing method of MgB2 superconducting wire

Publications (2)

Publication Number Publication Date
JP2002334620A JP2002334620A (en) 2002-11-22
JP4667638B2 true JP4667638B2 (en) 2011-04-13

Family

ID=18985155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001138176A Expired - Lifetime JP4667638B2 (en) 2001-05-09 2001-05-09 Manufacturing method of MgB2 superconducting wire

Country Status (1)

Country Link
JP (1) JP4667638B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013161930A1 (en) 2012-04-26 2013-10-31 国立大学法人東京大学 Superconducting wire, superconducting wire precursor body and fabrication method thereof, and superconducting multi-core conductor precursor body
WO2015087387A1 (en) 2013-12-10 2015-06-18 株式会社日立製作所 Mgb2 superconductive wire material, and production method therefor

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7226894B2 (en) * 2003-10-22 2007-06-05 General Electric Company Superconducting wire, method of manufacture thereof and the articles derived therefrom
JP4500901B2 (en) * 2004-10-01 2010-07-14 独立行政法人物質・材料研究機構 Composite sheathed magnesium diboride superconducting wire and its manufacturing method
JP4456016B2 (en) * 2005-02-04 2010-04-28 株式会社日立製作所 Metal sheath magnesium diboride superconducting wire and method for manufacturing the same
JP4807240B2 (en) * 2006-11-30 2011-11-02 株式会社日立製作所 Manufacturing method of MgB2 superconducting wire
ITTO20070840A1 (en) 2007-11-23 2009-05-24 Paramed Medical Systems S R L POSITIONING SYSTEM FOR MEDICAL EQUIPMENT, AND IMAGING EQUIPMENT WITH MAGNETIC RESONANCE INCLUDING SUCH A SYSTEM
JP5045396B2 (en) * 2007-11-30 2012-10-10 株式会社日立製作所 Manufacturing method of MgB2 superconducting wire
JP5356132B2 (en) * 2009-06-30 2013-12-04 株式会社日立製作所 Superconducting wire
JP5492691B2 (en) * 2010-07-16 2014-05-14 株式会社日立製作所 Manufacturing method of MgB2 superconducting multi-core wire

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002222619A (en) * 2001-01-24 2002-08-09 Hideyuki Shinagawa Magnesium diboride superconducting wire material
JP2002324445A (en) * 2001-04-26 2002-11-08 Sumitomo Electric Ind Ltd Long composite and its manufacturing method
JP2002343162A (en) * 2001-03-22 2002-11-29 Leibniz-Inst Fuer Festkoerper & Werkstofforschung Dresden Ev Manufacturing method of superconducting wire and band

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0315119A (en) * 1989-06-12 1991-01-23 Sumitomo Electric Ind Ltd Manufacture of oxide superconductor wire
JPH04138626A (en) * 1990-09-28 1992-05-13 Mitsubishi Cable Ind Ltd Continuous manufacture of oxide superconducting wire
JP3705853B2 (en) * 1995-11-21 2005-10-12 株式会社フジクラ Continuous heat treatment equipment for oxide superconducting wire

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002222619A (en) * 2001-01-24 2002-08-09 Hideyuki Shinagawa Magnesium diboride superconducting wire material
JP2002343162A (en) * 2001-03-22 2002-11-29 Leibniz-Inst Fuer Festkoerper & Werkstofforschung Dresden Ev Manufacturing method of superconducting wire and band
JP2002324445A (en) * 2001-04-26 2002-11-08 Sumitomo Electric Ind Ltd Long composite and its manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013161930A1 (en) 2012-04-26 2013-10-31 国立大学法人東京大学 Superconducting wire, superconducting wire precursor body and fabrication method thereof, and superconducting multi-core conductor precursor body
WO2015087387A1 (en) 2013-12-10 2015-06-18 株式会社日立製作所 Mgb2 superconductive wire material, and production method therefor
US10134508B2 (en) 2013-12-10 2018-11-20 Hitachi, Ltd. MgB2 superconductive wire material, and production method therefor

Also Published As

Publication number Publication date
JP2002334620A (en) 2002-11-22

Similar Documents

Publication Publication Date Title
US6170147B1 (en) Superconducting wire and method of manufacturing the same
EP1705721B1 (en) Method for manufacturing powder-metallurgy processed Nb3Sn superconducting wire and precursor to powder-metallurgy processed Nb3Sn superconducting wire
JP4259806B2 (en) Production method of superconducting wire and strip
US20020173428A1 (en) Processing of magnesium-boride superconductors
JPH01140520A (en) Manufacture of composite oxide ceramic superconductive wire
JP4667638B2 (en) Manufacturing method of MgB2 superconducting wire
JP4527399B2 (en) Method for manufacturing MgB2-based superconducting wire including heat treatment
EP0045584B1 (en) Methods of making multifilament superconductors
US20040116301A1 (en) Superconducting borides and wires made thereof
JP4762441B2 (en) MgB2 superconducting wire and manufacturing method thereof
WO2006030744A1 (en) METHOD FOR PRODUCING Nb3Sn SUPERCONDUCTIVE WIRE MATERIAL THROUGH POWDER METHOD
US6699821B2 (en) Nb3Al superconductor and method of manufacture
US5160794A (en) Superconductor and process of manufacture
JP3945600B2 (en) Method for producing Nb 3 Sn superconducting wire
JP3187829B2 (en) Superconductor and manufacturing method
JPH0855527A (en) Fabrication of nb3sn superconducting wire
JPS63285155A (en) Oxide type superconductive material and production thereof
JP3716309B2 (en) Manufacturing method of Nb3Sn wire
WO2002073709A2 (en) Processing of magnesium-boride superconductors
JPH04289615A (en) Manufacture of compound superconducting rod
CN1490825A (en) High temperature bismuth system superconductive bands and manufacture thereof
JPH0528860A (en) Manufacture of superconductive wire of nb3sn type
JPH04141916A (en) Manufacture of nb3sn compound superconducting wire
JP2004335355A (en) Oxide superconducting wire material, and manufacturing method of the same
JPH02129812A (en) Manufacture of ceramic superconductor product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080401

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20081023

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100818

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100915

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100921

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4667638

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

EXPY Cancellation because of completion of term