JP4666104B2 - Water heat exchanger and hot water heat source equipment - Google Patents

Water heat exchanger and hot water heat source equipment Download PDF

Info

Publication number
JP4666104B2
JP4666104B2 JP2010008706A JP2010008706A JP4666104B2 JP 4666104 B2 JP4666104 B2 JP 4666104B2 JP 2010008706 A JP2010008706 A JP 2010008706A JP 2010008706 A JP2010008706 A JP 2010008706A JP 4666104 B2 JP4666104 B2 JP 4666104B2
Authority
JP
Japan
Prior art keywords
water
refrigerant
heat exchanger
tubes
water heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010008706A
Other languages
Japanese (ja)
Other versions
JP2010190564A (en
Inventor
かおり 吉田
光春 沼田
鉉永 金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2010008706A priority Critical patent/JP4666104B2/en
Publication of JP2010190564A publication Critical patent/JP2010190564A/en
Application granted granted Critical
Publication of JP4666104B2 publication Critical patent/JP4666104B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0008Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium
    • F28D7/0025Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium the conduits for one medium or the conduits for both media being flat tubes or arrays of tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0008Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium
    • F28D7/0025Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium the conduits for one medium or the conduits for both media being flat tubes or arrays of tubes
    • F28D7/0033Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium the conduits for one medium or the conduits for both media being flat tubes or arrays of tubes the conduits for one medium or the conduits for both media being bent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/04Tubular elements of cross-section which is non-circular polygonal, e.g. rectangular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/04Arrangements for sealing elements into header boxes or end plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本発明は、冷媒と水とを熱交換させる水熱交換器に関する。   The present invention relates to a water heat exchanger that exchanges heat between refrigerant and water.

従来、ヒートポンプ式給湯装置の冷凍装置としては、圧縮式冷媒回路で構成されるものが広く利用されている。冷媒回路は、例えば、CO2を冷媒とし、水熱交換器を備えている。水熱交換器は、冷媒が流通する冷媒管と、水が流通する水管とを有しており、流体同士を対向させて流して、両者の間で熱交換を行う。具体的には、高温高圧の冷媒と低温低圧の水との間で熱交換を行うことで、水を加熱する。この結果、CO2の超臨界域の特性を用いた高温出湯が可能になる。   2. Description of the Related Art Conventionally, as a refrigeration apparatus for a heat pump type hot water supply apparatus, one constituted by a compression refrigerant circuit has been widely used. The refrigerant circuit includes, for example, CO2 as a refrigerant and a water heat exchanger. The water heat exchanger has a refrigerant pipe through which a refrigerant flows and a water pipe through which water flows, and makes fluids face each other and exchange heat between them. Specifically, water is heated by performing heat exchange between a high-temperature and high-pressure refrigerant and low-temperature and low-pressure water. As a result, high temperature hot water using the characteristics of the supercritical region of CO2 becomes possible.

水熱交換器の従来技術としては、特許文献1(特開2004−218946号公報)のような、水管を扁平管として、さらにその複数の冷媒管を密着させた構造が知られている。   As a conventional technology for a water heat exchanger, a structure in which a water pipe is a flat pipe and a plurality of refrigerant pipes are in close contact with each other as in Patent Document 1 (Japanese Patent Laid-Open No. 2004-218946) is known.

しかしながら、特許文献1(特開2004−218946号公報)の技術では、実施例1において水管が冷媒管と接している部分以外の部分が大きい(少なくとも水管の表面の半分以上である)ため、水管を流通する水が冷媒から得た熱を外部に放出してしまうおそれがある。また、特許文献1(特開2004−218946号公報)の実施例2では、水管の断面形状を十字型にしてその周りを4本の冷媒管により密着させており、水管が冷媒管と接している部分以外の部分が実施例1よりも小さくなっているが、部品点数が実施例1の場合よりも増えており構造が複雑になっている。このため、製造が容易ではなく、実施例2の熱交換器を製造するのにコストが多くかかってしまう。   However, in the technique of Patent Document 1 (Japanese Patent Application Laid-Open No. 2004-218946), since the portion other than the portion where the water pipe is in contact with the refrigerant pipe in Example 1 is large (at least half the surface of the water pipe), the water pipe There is a risk that the water flowing through the heat will release the heat obtained from the refrigerant to the outside. Further, in Example 2 of Patent Document 1 (Japanese Patent Application Laid-Open No. 2004-218946), the cross-sectional shape of the water pipe is made into a cross shape and the periphery thereof is closely attached by four refrigerant pipes, and the water pipe is in contact with the refrigerant pipes. Although the part other than the part which is present is smaller than that of the first embodiment, the number of parts is larger than that of the first embodiment and the structure is complicated. For this reason, manufacture is not easy, and it will cost much to manufacture the heat exchanger of Example 2.

本発明の課題は、水と冷媒とを効率よく熱交換させることができ、かつ、製造が容易な水熱交換器を提供することにある。   An object of the present invention is to provide a water heat exchanger capable of efficiently exchanging heat between water and a refrigerant and easy to manufacture.

第1発明に係る水熱交換器は、一次冷媒と二次冷媒としての水とを熱交換させる水熱交換器であって、一対の冷媒管と、水管とを備える。一対の冷媒管は、冷媒が流通可能な複数の冷媒流路孔を有する多穴扁平管により構成される。水管は、少穴扁平管により構成される。少穴扁平管は、水が流通可能であって、冷媒管が有する冷媒流路孔の数よりも少ない数の水流路孔を有する。そして、一対の冷媒管と水管とは、断面長辺側の側面同士が密着している。さらに、水管は、周囲の空気に熱を伝えることを防ぐように、断面長辺側の側面の両面が一対の冷媒管に挟まれて密着される一対の冷媒管の内部を流通する高温の冷媒は、水管の内部の水と熱交換し、水管の内部の水を加熱する。 A water heat exchanger according to a first aspect of the present invention is a water heat exchanger that exchanges heat between primary refrigerant and water as a secondary refrigerant, and includes a pair of refrigerant tubes and a water tube. The pair of refrigerant tubes is configured by a multi-hole flat tube having a plurality of refrigerant flow holes through which the refrigerant can flow. A water pipe is comprised by a small hole flat tube. The small hole flat tube is capable of flowing water, and has a smaller number of water passage holes than the number of refrigerant passage holes of the refrigerant tube. And a pair of refrigerant | coolant pipe | tube and a water pipe | tube are closely_contact | adhering the cross-section long side side. Furthermore, the water pipe is in close contact with a pair of refrigerant pipes on both sides of the long side of the cross section so as to prevent heat from being transferred to the surrounding air. The high-temperature refrigerant flowing inside the pair of refrigerant tubes exchanges heat with the water inside the water tube, and heats the water inside the water tube.

本発明の水熱交換器は、水管を一対の冷媒管により挟み込むように構成されている。そして、一対の冷媒管に挟み込まれた水管は、冷媒管と断面長辺側の側面同士が密着している。   The water heat exchanger of the present invention is configured to sandwich a water pipe between a pair of refrigerant pipes. And as for the water pipe inserted | pinched between a pair of refrigerant | coolant pipe | tube, the side face of a refrigerant | coolant pipe | tube and the cross-sectional long side is closely_contact | adhered.

このように、水熱交換器を構成することにより、水管の周囲のほとんどは冷媒管と密着していることになるため、一旦冷媒が水に伝えた熱を水熱交換器の周囲の物質(例えば、水熱交換器周辺の空気)に伝えることを極力防ぐことができる。また、一対の冷媒管と水管とは断面長辺側の側面同士を密着させるため、平面である側面同士を密着させることになり、構成がシンプルになり組立を容易にすることができる。   In this way, since the water heat exchanger is configured, most of the periphery of the water pipe is in close contact with the refrigerant pipe, so the heat once transferred to the water by the refrigerant (substances surrounding the water heat exchanger ( For example, transmission to the air around the water heat exchanger can be prevented as much as possible. In addition, since the pair of refrigerant tubes and water tubes are brought into close contact with the side surfaces on the long side of the cross section, the flat side surfaces are brought into close contact with each other, thereby simplifying the configuration and facilitating assembly.

また、本願の水熱交換器では、冷媒管が複数の冷媒流路孔を有する多穴扁平管により構成されているため、管の細径化により冷媒側の熱伝達率を上げることができる。   Further, in the water heat exchanger of the present application, the refrigerant pipe is constituted by a multi-hole flat tube having a plurality of refrigerant flow passage holes, and therefore the heat transfer coefficient on the refrigerant side can be increased by reducing the diameter of the pipe.

第2発明に係る水熱交換器は、第1発明に係る水熱交換器であって、一対の冷媒管の断面長辺と水管の断面長辺とは等しい。  The water heat exchanger according to the second aspect of the present invention is the water heat exchanger according to the first aspect of the present invention, wherein the long cross section of the pair of refrigerant tubes is equal to the long cross section of the water tube.

発明に係る水熱交換器は、第1発明または第2発明に係る水熱交換器であって、少穴扁平管の水流路孔の数は、1または2である。 The water heat exchanger according to the third aspect of the present invention is the water heat exchanger according to the first aspect of the present invention or the second aspect of the present invention, wherein the number of the water passage holes of the small hole flat tube is one or two.

本発明の水熱交換器では、水管である少穴扁平管の内部に形成される水流路孔の数が1または2である。このように、水流路孔の数を1または2と少なくすることにより、少穴扁平管の成型を容易にでき、例えば少穴扁平管を成型するのに必要に応じていろいろな方法を採用することができる。   In the water heat exchanger of the present invention, the number of water passage holes formed in the small hole flat tube which is a water tube is 1 or 2. Thus, by reducing the number of water flow path holes to 1 or 2, it is possible to easily form a small-hole flat tube, for example, various methods are adopted as necessary to form a small-hole flat tube. be able to.

発明に係る水熱交換器は、第1発明から第3発明のいずれかに係る水熱交換器であって、一対の冷媒管と水管とは、ロウ付けまたは接着剤により接合される。 A water heat exchanger according to a fourth aspect of the present invention is the water heat exchanger according to any of the first to third aspects of the present invention , wherein the pair of refrigerant pipes and the water pipe are joined by brazing or an adhesive.

本発明の水熱交換器では、一対の冷媒管と水管との断面長辺側の側面同士(すなわち、平面同士)をロウ付けまたは接着剤により接合している。したがって、一対の冷媒管と水管との間にほとんど接触による熱抵抗が無い状態にすることができる。このため、冷媒と水との間の熱交換効率を向上させることができる。   In the water heat exchanger of the present invention, the side surfaces (that is, the flat surfaces) of the pair of refrigerant tubes and the water tube on the long side of the cross section are joined by brazing or an adhesive. Therefore, a state in which there is almost no thermal resistance due to contact between the pair of refrigerant pipes and the water pipe can be achieved. For this reason, the heat exchange efficiency between a refrigerant | coolant and water can be improved.

発明に係る水熱交換器は、第1発明から第4発明のいずれかに係る水熱交換器であって、冷媒管および/または水管は、引き抜き加工または押し出し加工により成型される。 A water heat exchanger according to a fifth aspect of the present invention is the water heat exchanger according to any of the first to fourth aspects of the present invention , wherein the refrigerant pipe and / or the water pipe are formed by drawing or extruding.

したがって、冷媒管および/または水管を容易に成型することができる。   Therefore, the refrigerant pipe and / or the water pipe can be easily molded.

発明に係る水熱交換器は、第1発明から第5発明のいずれかに係る水熱交換器であって、少穴扁平管は、平板に曲げ加工を施すことにより成型される。 A water heat exchanger according to a sixth aspect of the present invention is the water heat exchanger according to any of the first to fifth aspects of the present invention , wherein the small hole flat tube is formed by bending a flat plate.

本発明の水熱交換器では、少穴扁平管を、平板に曲げ加工を施すことにより成型している。例えば、平板を曲げ加工により円管状の形状に加工した後に、扁平形状の管を成型している。   In the hydrothermal exchanger of the present invention, the small hole flat tube is formed by bending a flat plate. For example, after a flat plate is processed into a circular tubular shape by bending, a flat tube is formed.

したがって、平板に何らかの加工(穴空け加工、凹凸加工、平板を材料の異なる複数層構造とする加工など)を行った後に扁平管を成型することができる。すなわち、少穴扁平管に対して、容易に所定の加工を行うことができる。   Therefore, a flat tube can be formed after performing some processing (perforation processing, uneven processing, processing of making a flat plate into a multi-layer structure with different materials, etc.) on a flat plate. That is, predetermined processing can be easily performed on the small hole flat tube.

発明に係る水熱交換器は、第発明に係る水熱交換器であって、少穴扁平管は、平板の2つの辺を、曲げ加工により接触させた後に、接合することにより成型される電縫管である。 A water heat exchanger according to a seventh aspect of the present invention is the water heat exchanger according to the sixth aspect of the present invention, wherein the small hole flat tube is formed by joining the two sides of the flat plate after contacting them by bending. It is an electric sewing tube.

本発明の水熱交換器では、少穴扁平管を、平板に曲げ加工を施すことにより、平板の両端部である2つの辺を突き合わせて、断面形状がC型の部材を成型する。そして、その後に、突き合わせた2つの辺に対して接合加工(例えば、電縫、ロウ付けなど)を行い管状の部材を成型する。   In the hydrothermal exchanger of the present invention, a small-tube flat tube is bent on a flat plate, so that two sides that are both ends of the flat plate are brought into contact with each other to form a C-shaped member. Then, after that, joining processing (for example, electric sewing, brazing, etc.) is performed on the two sides that are abutted to form a tubular member.

したがって、平板に何らかの加工(凹凸加工、穴空け加工、平板を材料の異なる複数層構造とする加工など)を行った後に扁平管を成型することができる。これにより、例えば、少穴扁平管の軸断面の形状(特に少穴扁平管の内面側の形状)を、水の流れ方向の位置によって異なる形状とすることができる。このため、少穴扁平管の内部の水の流れに乱れを起こして熱伝達率を向上させることができる。また、例えば、少穴扁平管の内部に、容易に防食処理を施すことができる。このため、水によって少穴扁平管が腐食することを防ぐことができる。   Therefore, a flat tube can be molded after performing some processing (such as uneven processing, drilling processing, processing of making the flat plate into a multi-layer structure with different materials) on the flat plate. Thereby, for example, the shape of the axial cross section of the small-hole flat tube (particularly the shape on the inner surface side of the small-hole flat tube) can be made different depending on the position in the water flow direction. For this reason, it is possible to improve the heat transfer rate by disturbing the flow of water inside the small hole flat tube. Further, for example, the anticorrosion treatment can be easily performed inside the small hole flat tube. For this reason, it can prevent that a small hole flat tube corrodes with water.

発明に係る水熱交換器は、第6発明または第7発明に係る水熱交換器であって、平板は、曲げ加工を施される前に、凹凸加工を施される。 A water heat exchanger according to an eighth aspect of the present invention is the water heat exchanger according to the sixth aspect of the present invention or the seventh aspect of the present invention , wherein the flat plate is subjected to uneven processing before being subjected to bending.

本発明の水熱交換器では、少穴扁平管を、平板に曲げ加工を施すことにより成型している。そして、その平板に曲げ加工を施す前に、凹凸加工を施している。   In the hydrothermal exchanger of the present invention, the small hole flat tube is formed by bending a flat plate. And the uneven | corrugated process is given before bending the flat plate.

したがって、平板に凹凸加工を行った後に扁平管を成型することができる。これにより、例えば、少穴扁平管の軸断面の形状(特に少穴扁平管の内面側の形状)を、水の流れ方向の位置によって異なる形状とすることができる。このため、少穴扁平管の内部の水の流れに乱流を起こして水の対流を促し、熱交換効率を促進させる形状とすることができる。   Therefore, the flat tube can be formed after the unevenness processing is performed on the flat plate. Thereby, for example, the shape of the axial cross section of the small-hole flat tube (particularly the shape on the inner surface side of the small-hole flat tube) can be made different depending on the position in the water flow direction. For this reason, it can be set as the shape which raise | generates a turbulent flow in the flow of the water inside a small hole flat tube, promotes the convection of water, and promotes heat exchange efficiency.

発明に係る水熱交換器は、第1発明から第8発明のいずれかに係る水熱交換器であって、冷媒管内部を流れる冷媒と、水管内部を流れる水とは、互いに対向する方向に流れる。 The water heat exchanger according to a ninth aspect of the present invention is the water heat exchanger according to any of the first to eighth aspects of the present invention , wherein the refrigerant flowing inside the refrigerant pipe and the water flowing inside the water pipe face each other. Flow in the direction.

したがって、冷媒と水との温度差を確保することができる。また、冷媒と水との温度差を水熱交換器全体において均一に近づけることができ、特に冷媒が超臨界冷媒のように熱交換全域で温度変化があり、熱交換器のはじめと終わりとで温度が大きく異なる冷媒である場合に、熱交換効率を向上させることができる。   Therefore, a temperature difference between the refrigerant and water can be ensured. In addition, the temperature difference between the refrigerant and water can be made uniform in the entire water heat exchanger, and in particular, the refrigerant changes in temperature throughout the heat exchange, like a supercritical refrigerant, and at the beginning and end of the heat exchanger. The heat exchange efficiency can be improved when the refrigerants are greatly different in temperature.

10発明に係る水熱交換器は、第1発明から第9発明のいずれかにかかる水熱交換器であって、冷媒は、CO2である。 A water heat exchanger according to a tenth aspect of the present invention is the water heat exchanger according to any of the first to ninth aspects of the present invention , wherein the refrigerant is CO2.

本発明では、冷媒としてCO2冷媒を利用している。CO2冷媒は、冷凍サイクルにおける高圧側が超臨界域となる、いわゆる超臨界冷媒である。例えば、本願の水熱交換器をヒートポンプ式の給湯機に適用した場合に、水熱交換器は放熱器として機能することになる。超臨界冷媒は、フロン系の冷媒とは異なり、水熱交換器内全域で温度変化があるため、例えば、水管の出口付近が冷媒管の中央部と接触していた場合、その部分の冷媒温度が水の出口付近温度よりも低くなる可能性もあり、熱ロスの原因となる。   In the present invention, CO2 refrigerant is used as the refrigerant. The CO2 refrigerant is a so-called supercritical refrigerant in which the high pressure side in the refrigeration cycle is a supercritical region. For example, when the water heat exchanger of the present application is applied to a heat pump type water heater, the water heat exchanger functions as a radiator. Supercritical refrigerants, unlike fluorocarbon refrigerants, vary in temperature throughout the water heat exchanger.For example, if the vicinity of the outlet of the water pipe is in contact with the central part of the refrigerant pipe, the temperature of the refrigerant in that part May become lower than the temperature near the outlet of water, causing heat loss.

本願の水熱交換器では、1本の少穴扁平管を2本の多穴扁平管で挟み込む構造としている。このため、一方の多穴扁平管の内部の冷媒の温度と、他方の多穴扁平管の内部の冷媒の温度と、に温度差があまりつかないようにすることができ、冷媒と水との熱交換効率をほとんど低下させることなく、高温の水を生成することができるようになる。   The water heat exchanger of the present application has a structure in which one small hole flat tube is sandwiched between two multi-hole flat tubes. Therefore, the temperature difference between the refrigerant inside one of the multi-hole flat tubes and the temperature of the refrigerant inside the other multi-hole flat tube can be kept from becoming too much. High-temperature water can be generated without substantially reducing the heat exchange efficiency.

また、CO2冷媒は、従来の冷媒、例えばフルオロカーボン冷媒などと比べて、地球温暖化係数が1であり、数百から1万程度のフルオロカーボン冷媒よりも遙かに低い。   In addition, CO2 refrigerant has a global warming potential of 1 compared with conventional refrigerants such as fluorocarbon refrigerants, and is much lower than fluorocarbon refrigerants of several hundred to 10,000.

このように、環境負荷が小さいCO2冷媒を利用することで、地球環境が悪化することを抑えることができる。   In this way, it is possible to suppress the deterioration of the global environment by using the CO2 refrigerant having a small environmental load.

11発明に係る温水熱源装置は、冷凍サイクルにおける高圧側が超臨界域となる超臨界冷媒を利用する冷媒回路を用いた温水熱源装置であって、圧縮機と、水熱交換器と、膨張機構と、蒸発器とを備える。圧縮機は、超臨界冷媒を圧縮する。水熱交換器は、圧縮機により圧縮された高温高圧の超臨界冷媒と水とを熱交換させて、超臨界冷媒を冷却し、かつ、水を加熱する。膨張機構は、水熱交換器により冷却された超臨界冷媒を減圧する。蒸発器は、膨張機構により減圧された冷媒を蒸発させる。水熱交換器は、一対の冷媒管と、水管と、冷媒入口ヘッダと、冷媒出口ヘッダとを含む。一対の冷媒管は、多穴扁平管により構成される。多穴扁平管は、冷媒が流通可能な複数の冷媒流路孔を有する。水管は、少穴扁平管により構成される。少穴扁平管は、水が流通可能であって、冷媒管が有する冷媒流路孔の数よりも少ない数の水流路孔、を有する。冷媒入口ヘッダには、一対の冷媒管の入口部が接続される。冷媒出口ヘッダには、一対の冷媒管の出口部が接続される。一対の冷媒管と水管とは、断面長辺側の側面同士が密着している。水管は、周囲の空気に熱を伝えることを防ぐように、断面長辺側の側面の両面が一対の冷媒管に挟まれて密着される一対の冷媒管の内部を流通する高温の冷媒は、水管の内部の水と熱交換し、水管の内部の水を加熱する。冷媒管内部を流れる冷媒と、水管内部を流れる水とは、互いに対向する方向に流れる。 A hot water heat source apparatus according to an eleventh aspect of the invention is a hot water heat source apparatus using a refrigerant circuit that uses a supercritical refrigerant whose high pressure side is in a supercritical region in a refrigeration cycle, and includes a compressor, a water heat exchanger, and an expansion mechanism. And an evaporator. The compressor compresses the supercritical refrigerant. The water heat exchanger causes heat exchange between the high-temperature and high-pressure supercritical refrigerant compressed by the compressor and water, cools the supercritical refrigerant, and heats the water. The expansion mechanism decompresses the supercritical refrigerant cooled by the water heat exchanger. The evaporator evaporates the refrigerant decompressed by the expansion mechanism. The water heat exchanger includes a pair of refrigerant pipes, a water pipe, a refrigerant inlet header, and a refrigerant outlet header. The pair of refrigerant tubes is constituted by a multi-hole flat tube. The multi-hole flat tube has a plurality of refrigerant flow holes through which the refrigerant can flow. A water pipe is comprised by a small hole flat tube. The small-hole flat tube has water channels through which water can flow and is smaller in number than the refrigerant channel holes of the refrigerant tube. An inlet part of a pair of refrigerant pipes is connected to the refrigerant inlet header. An outlet part of a pair of refrigerant pipes is connected to the refrigerant outlet header. The side surfaces on the long side of the cross section of the pair of refrigerant tubes and water tubes are in close contact with each other. The water tube is in close contact with a pair of refrigerant tubes on both sides of the long side of the cross section so as to prevent heat from being transferred to the surrounding air . The high-temperature refrigerant flowing inside the pair of refrigerant tubes exchanges heat with the water inside the water tube, and heats the water inside the water tube. The refrigerant flowing inside the refrigerant pipe and the water flowing inside the water pipe flow in directions opposite to each other.

本発明の温水熱源装置では、作動冷媒は、冷凍サイクルにおける高圧側が超臨界域となる、いわゆる超臨界冷媒である。例えば、本願の水熱交換器をヒートポンプ式の給湯機に適用した場合に、水熱交換器は放熱器として機能することになる。超臨界冷媒は、フロン系の冷媒とは異なり、水熱交換器全域において温度変化がある。   In the hot water heat source apparatus of the present invention, the working refrigerant is a so-called supercritical refrigerant in which the high pressure side in the refrigeration cycle is in the supercritical region. For example, when the water heat exchanger of the present application is applied to a heat pump type water heater, the water heat exchanger functions as a radiator. Supercritical refrigerants, unlike fluorocarbon refrigerants, vary in temperature across the entire water heat exchanger.

本発明の温水熱源装置では、1本の少穴扁平管を2本の多穴扁平管で挟み込む構造としている。一対の冷媒管では、冷媒入口ヘッダから一対の冷媒管の入口部へ冷媒が流入し、一対の冷媒管の出口部を経て冷媒出口ヘッダから冷媒が流出する。冷媒管内部を流れる冷媒と水管内部を流れる水とは、互いに対向する方向に流れる。一対の冷媒管である多穴扁平管の入口部は、どちらも冷媒入口ヘッダと接続されている。   The hot water heat source device of the present invention has a structure in which one small-hole flat tube is sandwiched between two multi-hole flat tubes. In the pair of refrigerant tubes, the refrigerant flows from the refrigerant inlet header to the inlet portions of the pair of refrigerant tubes, and the refrigerant flows out of the refrigerant outlet header through the outlet portions of the pair of refrigerant tubes. The refrigerant flowing inside the refrigerant pipe and the water flowing inside the water pipe flow in directions opposite to each other. Both the inlet portions of the multi-hole flat tube which is a pair of refrigerant tubes are connected to the refrigerant inlet header.

したがって、冷媒入口ヘッダから一対の冷媒管の内部へと流入してくる高温の冷媒と、水管の内部の水とを熱交換させることができる。このため、例えば折り曲げ蛇行させた1本の冷媒管と1本の水管とを組み合わせた場合とは異なり、水管からの大気放熱が小さく、水管の両側の冷媒にほとんど温度差が生じないため、効率よく高温水を得ることができる。   Therefore, heat exchange between the high-temperature refrigerant flowing from the refrigerant inlet header into the pair of refrigerant pipes and the water inside the water pipe can be performed. For this reason, for example, unlike the case where one bent and meandered refrigerant pipe and one water pipe are combined, the heat radiation from the water pipe is small, and the temperature difference hardly occurs between the refrigerants on both sides of the water pipe. High temperature water can be obtained well.

第1〜第発明に係る水熱交換器では、冷媒と水との間の熱交換効率を向上させることができる。 In the water heat exchanger according to the first to fourth inventions, the heat exchange efficiency between the refrigerant and the water can be improved.

発明に係る水熱交換器では、冷媒管および/または水管を容易に成型することができる。 In the water heat exchanger according to the fifth aspect of the invention, the refrigerant pipe and / or the water pipe can be easily molded.

発明に係る水熱交換器では、少穴扁平管に対して、容易に所定の加工を行うことができる。 In the water heat exchanger according to the sixth aspect of the invention, predetermined processing can be easily performed on the small-hole flat tube.

発明に係る水熱交換器では、平板に何らかの加工を行った後に扁平管を成型することができる。 In the water heat exchanger according to the seventh aspect of the invention, the flat tube can be molded after some processing is performed on the flat plate.

発明に係る水熱交換器では、少穴扁平管の内部の水の流れに乱流を起こして水の対流を促し、熱交換効率を促進させる形状とすることができる。 In the water heat exchanger according to the eighth aspect of the present invention, the water flow inside the small hole flat tube can be turbulent to promote convection of the water, thereby promoting the heat exchange efficiency.

発明に係る水熱交換器では、冷媒と水との温度差を確保することができる。 In the water heat exchanger according to the ninth aspect of the invention, a temperature difference between the refrigerant and water can be ensured.

10発明に係る水熱交換器では、環境負荷が小さいCO2冷媒を利用することで、地球環境が悪化することを抑えることができる。 In the water heat exchanger according to the tenth aspect of the invention, it is possible to suppress deterioration of the global environment by using a CO2 refrigerant with a small environmental load.

11発明に係る温水熱源装置では、効率よく高温水を得ることができる。 In the hot water heat source apparatus according to the eleventh aspect of the invention, high temperature water can be obtained efficiently.

第1実施形態に係る冷凍装置を含むヒートポンプ式給湯装置のシステム。The system of the heat pump type hot-water supply apparatus containing the freezing apparatus which concerns on 1st Embodiment. 冷凍装置の内部構造を示す断面図。Sectional drawing which shows the internal structure of a freezing apparatus. 冷凍装置の制御装置のブロック図。The block diagram of the control apparatus of a freezing apparatus. 冷凍装置の水熱交換器の構成を表す斜視図。The perspective view showing the structure of the water heat exchanger of a freezing apparatus. (a)水熱交換器の冷媒入口ヘッダおよび水出口ヘッダの部分を示す概略図。(b)水熱交換器の冷媒出口ヘッダおよび水入口ヘッダの部分を示す概略図。(A) Schematic which shows the part of the refrigerant | coolant inlet header and water outlet header of a water heat exchanger. (B) Schematic which shows the part of the refrigerant | coolant exit header and water inlet header of a water heat exchanger. 水熱交換器の断面図Cross section of water heat exchanger 水熱交換器の接合方法の概略図。Schematic of the joining method of a water heat exchanger. 変形例(1)における水熱交換器の内部配管図。The internal piping figure of the water heat exchanger in a modification (1). 変形例(4)における水熱交換器の接合方法の概略図。Schematic of the joining method of the water heat exchanger in a modification (4). 変形例(7)における水熱交換器の断面図。Sectional drawing of the water heat exchanger in a modification (7). 変形例(8)における平板に対して凹凸加工を施して凸部を成型する工程を表す図。The figure showing the process of giving an uneven | corrugated process with respect to the flat plate in a modification (8), and shape | molding a convex part. 変形例(8)における凸部を成型した平板に曲げ加工を行い、単穴扁平管を成型する工程を表す図。The figure showing the process of performing a bending process on the flat plate which shape | molded the convex part in a modification (8), and shape | molding a single hole flat tube. 変形例(9)における凸部を成型した平板に曲げ加工を行い、単穴扁平管を成型する工程を表す図。The figure showing the process of performing a bending process on the flat plate which shape | molded the convex part in a modification (9), and shape | molding a single hole flat tube. 変形例(10)における水熱交換器の接合方法の概略図。Schematic of the joining method of the water heat exchanger in a modification (10). 第2実施形態に係る冷凍装置を含む温水循環システム。The warm water circulation system containing the freezing apparatus which concerns on 2nd Embodiment.

<1>第1実施形態
<ヒートポンプ式給湯装置の構成>
第1実施形態に係る冷凍装置を含むヒートポンプ式給湯装置のシステムを図1に示す。ヒートポンプ式給湯装置1は、温水熱源装置である冷凍装置2と、貯湯装置3とによって構成されている。冷凍装置2は、圧縮機21、水熱交換器22内の冷媒管22a、減圧手段としての膨張弁23、及び空気熱交換器24が、冷媒配管25によって環状に接続される圧縮式の冷媒回路20を有する。
<1> First Embodiment <Configuration of Heat Pump Water Heater>
The system of the heat pump type hot water supply apparatus including the refrigeration apparatus according to the first embodiment is shown in FIG. The heat pump type hot water supply apparatus 1 includes a refrigeration apparatus 2 that is a hot water heat source apparatus and a hot water storage apparatus 3. The refrigeration apparatus 2 includes a compressor 21, a refrigerant pipe 22 a in the water heat exchanger 22, an expansion valve 23 as a decompression means, and an air heat exchanger 24 that are annularly connected by a refrigerant pipe 25. 20

さらに、冷媒回路20には、水熱交換器22から出る高圧高温の冷媒と、空気熱交換器24から出る低温低圧の冷媒との間で熱交換を行うため、ガス熱交換器26が配置されている。具体的には、水熱交換器22と膨張弁23とを連結する冷媒通路と、空気熱交換器と圧縮機21とを連結する冷媒通路との間で熱交換が行われる。   Further, the refrigerant circuit 20 is provided with a gas heat exchanger 26 in order to exchange heat between the high-pressure and high-temperature refrigerant coming out of the water heat exchanger 22 and the low-temperature and low-pressure refrigerant coming out of the air heat exchanger 24. ing. Specifically, heat exchange is performed between the refrigerant passage connecting the water heat exchanger 22 and the expansion valve 23 and the refrigerant passage connecting the air heat exchanger and the compressor 21.

貯湯装置3は、貯湯タンク31、水熱交換器22内の水管22b及び水循環ポンプ32が、水配管35によって環状に接続された水循環回路30を有する。   The hot water storage device 3 includes a water circulation circuit 30 in which a hot water storage tank 31, a water pipe 22 b in the water heat exchanger 22, and a water circulation pump 32 are annularly connected by a water pipe 35.

冷凍装置2には、設置場所の外気温を検出する外気温センサ8、圧縮機21の吐出管温度を検出する吐出管温度センサ9、及び空気熱交換器24の温度を検出する温度センサ10が設けられており、これらのセンサの検出信号は、マイコン6に入力される。   The refrigeration apparatus 2 includes an outside air temperature sensor 8 that detects the outside air temperature at the installation location, a discharge pipe temperature sensor 9 that detects the discharge pipe temperature of the compressor 21, and a temperature sensor 10 that detects the temperature of the air heat exchanger 24. The detection signals of these sensors are input to the microcomputer 6.

水熱交換器22で加熱された水の温度が例えば85℃となるように、水循環ポンプ32によって水の循環量が制御される。マイコン6は、85℃の水を得るために必要な冷媒温度を確保するために、膨張弁23の開度を制御する。   The circulation amount of water is controlled by the water circulation pump 32 so that the temperature of the water heated by the water heat exchanger 22 becomes, for example, 85 ° C. The microcomputer 6 controls the opening degree of the expansion valve 23 in order to ensure the refrigerant temperature necessary for obtaining 85 ° C. water.

<冷凍装置の構造>
図2は、冷凍装置2の内部構造を示す断面図である。図2において、断熱壁2cの右側区画が機械室2aであり、断熱壁2cの左側区画がファン室2bである。機械室2aには、圧縮機21、膨張弁23が配置されている。
<Structure of refrigeration equipment>
FIG. 2 is a cross-sectional view showing the internal structure of the refrigeration apparatus 2. In FIG. 2, the right compartment of the heat insulation wall 2c is the machine room 2a, and the left compartment of the heat insulation wall 2c is the fan room 2b. A compressor 21 and an expansion valve 23 are arranged in the machine room 2a.

ファン室2bには、図2正面視において、前方にファン27が配置されている。ファン27の後方には、ファン27を駆動するモータが、モータ支持台28に固定された状態で配置されている。ファン室2bの下方には、断熱壁2dを隔てて水熱交換器22が配置されている。水熱交換器22内にて、冷媒管22a(図1参照)を流れる冷媒と、水管22b(図1参照)を流れる水との間で熱交換が行われる。   In the fan chamber 2b, a fan 27 is disposed in front of the fan chamber 2b in a front view in FIG. A motor that drives the fan 27 is disposed behind the fan 27 in a state of being fixed to the motor support base 28. A water heat exchanger 22 is disposed below the fan chamber 2b with a heat insulating wall 2d interposed therebetween. In the water heat exchanger 22, heat exchange is performed between the refrigerant flowing through the refrigerant pipe 22a (see FIG. 1) and the water flowing through the water pipe 22b (see FIG. 1).

また、図2において、空気熱交換器24は、ファン室2bの左側壁と背面壁に沿って配置されており、空気熱交換器24の右端は機械室2aの中央まで延出している。制御ボックス4は、機械室2aの上部とファン室2bの上部を跨ぐように配置されている。制御ボックス4には、マイコン6(図3参照)、インバータ7(図3参照)を搭載した制御装置5が内蔵されている。   In FIG. 2, the air heat exchanger 24 is disposed along the left side wall and the back wall of the fan chamber 2b, and the right end of the air heat exchanger 24 extends to the center of the machine chamber 2a. The control box 4 is disposed so as to straddle the upper part of the machine room 2a and the upper part of the fan room 2b. The control box 4 incorporates a control device 5 equipped with a microcomputer 6 (see FIG. 3) and an inverter 7 (see FIG. 3).

<冷凍装置の運転制御>
図3は、冷凍装置2の制御ブロック図である。マイコン6は、外気温センサ8、空気熱交換器24の温度センサ10からの検出信号に基づき、目標吐出管温度設定部62で目標吐出管温度を設定する。そして、マイコン6は、吐出管温度センサ9で検出される吐出管温度が目標吐出管温度に近づくように、膨張弁開度制御部63を介して膨張弁23の開度を制御する。なお、目標吐出管温度の設定に必要なデータは、目標吐出管温度設定部62内に予め記憶されている。
<Operation control of refrigeration equipment>
FIG. 3 is a control block diagram of the refrigeration apparatus 2. The microcomputer 6 sets the target discharge pipe temperature at the target discharge pipe temperature setting unit 62 based on detection signals from the outside air temperature sensor 8 and the temperature sensor 10 of the air heat exchanger 24. The microcomputer 6 controls the opening of the expansion valve 23 via the expansion valve opening controller 63 so that the discharge pipe temperature detected by the discharge pipe temperature sensor 9 approaches the target discharge pipe temperature. Data necessary for setting the target discharge pipe temperature is stored in advance in the target discharge pipe temperature setting unit 62.

さらに、マイコン6は、冷凍装置2の炊上能力に及ぼす外気温の影響を考慮して、さらに給湯負荷が一日の時間帯によって変化することを考慮して、インバータ制御部64を介して圧縮機21の運転周波数を制御している。例えば、外気温が低く、給湯負荷が大きい時間帯では、湯切れを防止するため、効率を無視して圧縮機21の運転周波数を高める。一方、外気温が高く、給湯負荷が小さい時間帯では、圧縮機21の運転周波数を高効率点に設定する。   Further, the microcomputer 6 compresses via the inverter control unit 64 in consideration of the influence of the outside air temperature on the cooking capacity of the refrigeration apparatus 2 and further considering that the hot water supply load changes according to the time zone of the day. The operating frequency of the machine 21 is controlled. For example, in a time zone in which the outside air temperature is low and the hot water supply load is large, the operating frequency of the compressor 21 is increased by ignoring the efficiency in order to prevent hot water shortage. On the other hand, in the time zone when the outside air temperature is high and the hot water supply load is small, the operating frequency of the compressor 21 is set to a high efficiency point.

給湯負荷が大きいとき、マイコン6は、圧縮機21を保護する目的で、吐出管温度が120℃を超えないように圧縮機21の運転制御を行う。実際に、吐出管温度が120℃のとき、圧縮機21の内部温度は、140℃〜145℃に到達しており、内部温度がさらに上昇して150℃を超えると、圧縮機21内部のマグネットの磁力が低下、オイルの劣化が発生し故障に至る。したがって、本実施形態では、吐出管温度の上限を120℃と設定している。   When the hot water supply load is large, the microcomputer 6 controls the operation of the compressor 21 so that the discharge pipe temperature does not exceed 120 ° C. for the purpose of protecting the compressor 21. Actually, when the discharge pipe temperature is 120 ° C., the internal temperature of the compressor 21 reaches 140 ° C. to 145 ° C. When the internal temperature further rises and exceeds 150 ° C., the magnet inside the compressor 21 The magnetic force of the oil drops and oil deterioration occurs, leading to failure. Therefore, in this embodiment, the upper limit of the discharge pipe temperature is set to 120 ° C.

但し、外気温t1が−20℃以下のときは、圧縮機21が過負荷になり易いので、さらなる安全措置として吐出管温度センサ9の検出値の補正量を大きくとり、実際の吐出管温度が120℃に達する前に吐出管温度センサ9の検出値を120℃にする必要がある。そこで、外気温t1が−20℃以下のときの補正量が実験的に求められ、マイコン6の温度補正部61の第2補正手段61bに記憶されている。   However, when the outside air temperature t1 is −20 ° C. or less, the compressor 21 is likely to be overloaded. Therefore, as a further safety measure, the correction value of the detection value of the discharge pipe temperature sensor 9 is increased, and the actual discharge pipe temperature is reduced. Before reaching 120 ° C., the detection value of the discharge pipe temperature sensor 9 needs to be 120 ° C. Therefore, the correction amount when the outside air temperature t1 is −20 ° C. or less is obtained experimentally and stored in the second correction means 61b of the temperature correction unit 61 of the microcomputer 6.

なお、外気温t1>−20℃の温度範囲では、第1補正手段61aによって、補正されている。   In the temperature range of the outside air temperature t1> −20 ° C., the correction is made by the first correcting means 61a.

<水熱交換器の構造>
図4は、水熱交換器22の構成を表す斜視図である。この図では、水熱交換器22を模式的に表現している。
<Structure of water heat exchanger>
FIG. 4 is a perspective view illustrating the configuration of the water heat exchanger 22. In this figure, the water heat exchanger 22 is schematically represented.

水熱交換器22は、冷媒管22aと、水管22bと、冷媒入口ヘッダ53と、冷媒出口ヘッダ54と、水入口ヘッダ55と、水出口ヘッダ56とを有している。水熱交換器22は、冷媒管22aと、水管22bとの両者内を流れる流体間で熱交換を行うものである。具体的な構造としては、水熱交換器22は、冷媒管22aを構成する一対の多穴扁平管41A,41Bと、水管22bを構成する少穴扁平管としての単穴扁平管42と、冷媒入口ヘッダ53と、冷媒出口ヘッダ54と、水入口ヘッダ55と、水出口ヘッダ56とから主に構成されている。   The water heat exchanger 22 includes a refrigerant pipe 22 a, a water pipe 22 b, a refrigerant inlet header 53, a refrigerant outlet header 54, a water inlet header 55, and a water outlet header 56. The water heat exchanger 22 performs heat exchange between fluids flowing through both the refrigerant pipe 22a and the water pipe 22b. As a specific structure, the water heat exchanger 22 includes a pair of multi-hole flat tubes 41A and 41B constituting the refrigerant tube 22a, a single-hole flat tube 42 as a small-hole flat tube constituting the water tube 22b, and a refrigerant. It mainly comprises an inlet header 53, a refrigerant outlet header 54, a water inlet header 55, and a water outlet header 56.

図5(a)は、水熱交換器22の冷媒入口ヘッダ53および水出口ヘッダ56の部分を示す概略図である。図5(b)は、水熱交換器22の冷媒出口ヘッダ54および水入口ヘッダ55の部分を示す概略図である。水熱交換器22は、図5(a)に示すように、冷媒管22aの入口側に冷媒入口ヘッダ53が接続されており、冷媒管22aの出口側に冷媒出口ヘッダ54が接続されている。また、水熱交換器22は、図5(b)に示すように、水管22bの入口側に水入口ヘッダ55が接続されており、水管22bの出口側に水出口ヘッダ56が接続されている。本実施形態の水熱交換器22は、図4に示す水熱交換器22が3段積み重ねられており(図示せず)、各ヘッダ53〜56はその軸方向に向かって延びている。   FIG. 5A is a schematic diagram showing portions of the refrigerant inlet header 53 and the water outlet header 56 of the water heat exchanger 22. FIG. 5B is a schematic view showing portions of the refrigerant outlet header 54 and the water inlet header 55 of the water heat exchanger 22. As shown in FIG. 5A, the water heat exchanger 22 has a refrigerant inlet header 53 connected to the inlet side of the refrigerant pipe 22a and a refrigerant outlet header 54 connected to the outlet side of the refrigerant pipe 22a. . As shown in FIG. 5B, the water heat exchanger 22 has a water inlet header 55 connected to the inlet side of the water pipe 22b and a water outlet header 56 connected to the outlet side of the water pipe 22b. . In the water heat exchanger 22 of this embodiment, the water heat exchangers 22 shown in FIG. 4 are stacked in three stages (not shown), and the headers 53 to 56 extend in the axial direction.

一対の多穴扁平管41A,41Bは、図6に示すように、扁平部本体46を有している。扁平部本体46は、図4に示すように長く延びている。扁平部本体46は、互いに対向する対向面46aと、反対側の反対側面46bとを有している。扁平部本体46内には、冷媒が流通可能な複数の(この実施例では11個の)穴である冷媒流路孔47が一列に形成されている。このように扁平管に複数の穴を形成して冷媒管とすることで、冷媒側の熱伝達率が向上している。   As shown in FIG. 6, the pair of multi-hole flat tubes 41 </ b> A and 41 </ b> B has a flat portion main body 46. The flat part main body 46 extends long as shown in FIG. The flat portion main body 46 has a facing surface 46a facing each other and an opposite side surface 46b on the opposite side. In the flat part main body 46, a plurality of (in this embodiment, eleven) holes through which refrigerant can flow are formed in one row. Thus, by forming a plurality of holes in the flat tube to form a refrigerant tube, the heat transfer coefficient on the refrigerant side is improved.

多穴扁平管41A,41Bは、例えば、アルミニウム等からなる。なお、多穴扁平管41A,41Bは引き抜き加工や押し出し加工により製造されている。   The multi-hole flat tubes 41A and 41B are made of, for example, aluminum. The multi-hole flat tubes 41A and 41B are manufactured by drawing or extruding.

単穴扁平管42は、一対の多穴扁平管41A,41Bに沿って延びる部材であり、図から明らかなように、対向する二本の直線部分42aとその二本の直線部分をつなぐ2つの曲線部分42bとからなる断面形状である。そして、多穴扁平管41A,41Bとは異なり水が流通可能な1つの水流路孔48を構成している。直線部分42aは、対向面46aと同じ長さである。   The single-hole flat tube 42 is a member extending along a pair of multi-hole flat tubes 41A and 41B. As is apparent from the figure, the two straight portions 42a facing each other and the two straight portions are connected to each other. It is a cross-sectional shape composed of a curved portion 42b. Unlike the multi-hole flat tubes 41A and 41B, one water passage hole 48 through which water can flow is formed. The straight portion 42a has the same length as the facing surface 46a.

単穴扁平管42は、アルミニウム等からなる。   The single hole flat tube 42 is made of aluminum or the like.

多穴扁平管41A,41Bと単穴扁平管42とは、図7に示すように、間にロウ材49を挟み込んだ上でのロウ付けにより互いに密着している。これにより、単穴扁平管42の表面のほとんどの部分(すなわち、直線部分42aの部分)を多穴扁平管41A,41Bに密着させることができ、単穴扁平管42から周囲の空気への放熱を極力防ぐことができる。   As shown in FIG. 7, the multi-hole flat tubes 41 </ b> A and 41 </ b> B and the single-hole flat tube 42 are in close contact with each other by brazing with a brazing material 49 sandwiched therebetween. As a result, most of the surface of the single-hole flat tube 42 (that is, the portion of the straight portion 42a) can be brought into close contact with the multi-hole flat tubes 41A and 41B, and heat is released from the single-hole flat tube 42 to the surrounding air. Can be prevented as much as possible.

一対の多穴扁平管41A,41Bは、図4に示すように、平行に折り曲げられ、蛇行形状になっている。蛇行形状とは、例えば、図4においては、直線状に延びる直線部分と、ヘアピン状に屈曲された屈曲部分とが交互に繰り返され、その結果複数の直線部分が互いに近接した状態に配置されている形状をいう。言い換えると、複数の直線部分が互いに重ねられるように配置されている。このように水熱交換器22の全体形状が蛇行形状になっているので、コンパクトな構造を実現している。   As shown in FIG. 4, the pair of multi-hole flat tubes 41 </ b> A and 41 </ b> B is bent in parallel and has a meandering shape. For example, in FIG. 4, the meandering shape is such that a linear portion extending in a straight line and a bent portion bent in a hairpin shape are alternately repeated, and as a result, a plurality of linear portions are arranged close to each other. Refers to the shape. In other words, it arrange | positions so that a several linear part may mutually overlap. Thus, since the whole shape of the water heat exchanger 22 has a meandering shape, a compact structure is realized.

この水熱交換器22においては、CO2が冷媒管22a内を流れ、水がCO2と対向する方向に水管22b内を流れる(図5の実線矢印および破線矢印を参照)。その結果、両者内を流れる流体間で熱交換が行われ、水が加熱される。ここでは、扁平管を用いて伝熱面積を増大しているので、熱交換性能が高い。   In this water heat exchanger 22, CO2 flows in the refrigerant pipe 22a, and water flows in the water pipe 22b in a direction opposite to CO2 (see solid line arrows and broken line arrows in FIG. 5). As a result, heat exchange is performed between the fluids flowing in the both, and water is heated. Here, since the heat transfer area is increased using a flat tube, the heat exchange performance is high.

また、多穴扁平管41A,41Bは、自らの直線部分同士が積み重ね方向において近接しているが、隙間43を間に確保している。隙間43の大きさは、隣接する扁平管の各部分同士(温度の異なる管同士)が熱伝導による熱交換を行わない程度に設定されている。これにより、水熱交換器22は、全体の熱交換効率を低下させることなく、その結果高温の出湯が可能になる。また、熱変形の影響を小さく抑えることができて、信頼性が向上する。   The multi-hole flat tubes 41 </ b> A and 41 </ b> B have their straight portions close to each other in the stacking direction, but ensure a gap 43 therebetween. The size of the gap 43 is set to such an extent that adjacent portions of flat tubes (tubes having different temperatures) do not perform heat exchange by heat conduction. As a result, the water heat exchanger 22 can discharge hot water as a result without reducing the overall heat exchange efficiency. Further, the influence of thermal deformation can be suppressed to a small level, and the reliability is improved.

<特徴>
(1)
本実施形態の水熱交換器22は、単穴扁平管42を一対の多穴扁平管41A,41Bにより挟み込むように構成されている。そして、一対の多穴扁平管41A,41Bに挟み込まれた単穴扁平管42は、多穴扁平管41A,41Bと断面長辺側の側面同士が密着している。そして、多穴扁平管41A,41Bと単穴扁平管42とは、ロウ付けまたは接着剤により接合される。
<Features>
(1)
The water heat exchanger 22 of this embodiment is configured to sandwich a single-hole flat tube 42 between a pair of multi-hole flat tubes 41A and 41B. The single-hole flat tube 42 sandwiched between the pair of multi-hole flat tubes 41A and 41B is in close contact with the multi-hole flat tubes 41A and 41B and the side surfaces on the long side of the cross section. The multi-hole flat tubes 41A and 41B and the single-hole flat tube 42 are joined by brazing or an adhesive.

このように、水熱交換器を構成することにより、単穴扁平管42の周囲のほとんどは多穴扁平管41A,41Bと密着していることになるため、一旦冷媒が水に伝えた熱を水熱交換器の周囲の物質(例えば、水熱交換器周辺の空気)に伝えることを極力防ぐことができる。また、一対の多穴扁平管41A,41Bと単穴扁平管42とは断面長辺側の側面同士を密着させるため、平面である側面同士を密着させることになり、構成がシンプルになり組立を容易にすることができる。また、多穴扁平管41A,41Bと単穴扁平管42とをロウ付けにより接合しているため、一対の多穴扁平管41A,41Bと単穴扁平管42との間にほとんど熱抵抗が無い状態にすることができる。このため、冷媒と水との間の熱交換効率を向上させることができる。   Thus, by configuring the water heat exchanger, most of the periphery of the single-hole flat tube 42 is in close contact with the multi-hole flat tubes 41A and 41B. It is possible to prevent transmission to substances around the water heat exchanger (for example, air around the water heat exchanger) as much as possible. In addition, since the pair of multi-hole flat tubes 41A and 41B and the single-hole flat tube 42 bring the side surfaces on the long side of the cross section into close contact with each other, the side surfaces that are flat surfaces are brought into close contact with each other. Can be easily. Further, since the multi-hole flat tubes 41A and 41B and the single-hole flat tube 42 are joined by brazing, there is almost no thermal resistance between the pair of multi-hole flat tubes 41A and 41B and the single-hole flat tube 42. Can be in a state. For this reason, the heat exchange efficiency between a refrigerant | coolant and water can be improved.

(2)
本実施形態の水熱交換器22では、作動冷媒として超臨界冷媒であるCO2を利用している。CO2冷媒のような超臨界冷媒をヒートポンプ式給湯装置1に利用した場合に、水熱交換器22は放熱器として機能することになる。CO2冷媒は、フロン系の冷媒とは異なり、水熱交換器全域において温度変化がある。また、本実施形態の水熱交換器22は、1本の単穴扁平管42を2本の多穴扁平管41A,41Bで挟み込む構造としたものを、各ヘッダ53〜56により並列に接続したものである。
(2)
In the water heat exchanger 22 of this embodiment, CO2 which is a supercritical refrigerant is used as a working refrigerant. When a supercritical refrigerant such as a CO2 refrigerant is used in the heat pump hot water supply apparatus 1, the water heat exchanger 22 functions as a radiator. The CO2 refrigerant has a temperature change in the entire area of the water heat exchanger, unlike the fluorocarbon refrigerant. Moreover, the water heat exchanger 22 of the present embodiment has a structure in which one single-hole flat tube 42 is sandwiched between two multi-hole flat tubes 41A and 41B, and is connected in parallel by the headers 53 to 56. Is.

したがって、冷媒入口ヘッダ53から一対の冷媒管22aの内部へと流入してくる高温の冷媒と、水管22bの内部の水とを熱交換させることができる。このため、例えば折り曲げ蛇行させた1本の冷媒管と1本の水管を組み合わせた場合とは異なり、水管から大気放熱が小さく、水管の両側の冷媒にほとんど温度差が生じないため、高温水を得ることができる。   Therefore, heat exchange between the high-temperature refrigerant flowing from the refrigerant inlet header 53 into the pair of refrigerant pipes 22a and the water inside the water pipe 22b can be performed. For this reason, for example, unlike the case of combining one bent and meandering refrigerant pipe and one water pipe, the heat radiation from the water pipe is small, and there is almost no temperature difference between the refrigerant on both sides of the water pipe. Obtainable.

<変形例>
以上、本発明の第1実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、発明の要旨を逸脱しない範囲で種々の変更が可能である。
<Modification>
Although the first embodiment of the present invention has been described above, the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the invention.

(1)
上記実施の形態では、水熱交換器22は、図4に示すように、平行に折り曲げられ、蛇行形状になっているがこれに限らず、図8に示すように渦巻き形状であっても構わない。渦巻き形状とは、例えば、図8の水熱交換器52においては、直線状に延びる直線部分と、直角に曲げられた直角部分とが交互に繰り返され、直角部分の曲げ方向は全て同じ回転方向であり、直角部分の折り曲げ箇所が増えるにしたがって直線部分が短くなっていくように曲げられている形状を言う。言い換えると、渦巻き形状であっても蛇行形状と同様に複数の直線部分が互いに重ねられるように配置されることになり、コンパクトな構造を実現できる。なお、水熱交換器52においても、上記実施形態の水熱交換器22と同様であって、図5(a)に示すように、冷媒管52aの入口側に冷媒入口ヘッダ53が接続されており、冷媒管52aの出口側に冷媒出口ヘッダ54が接続されている。また、水熱交換器52は、図5(b)に示すように、水管52bの入口側に水入口ヘッダ55が接続されており、水管52bの出口側に水出口ヘッダ56が接続されている。
(1)
In the above embodiment, the water heat exchanger 22 is bent in parallel and has a meandering shape as shown in FIG. 4, but the present invention is not limited to this, and may have a spiral shape as shown in FIG. 8. Absent. For example, in the hydrothermal exchanger 52 of FIG. 8, the spiral shape is such that linear portions extending linearly and right-angle portions bent at right angles are alternately repeated, and the bending directions of the right-angle portions are all the same rotational direction. It is a shape that is bent so that the straight line portion becomes shorter as the number of bent portions at the right angle portion increases. In other words, even if it is a spiral shape, it will be arrange | positioned so that a some linear part may mutually overlap like a meandering shape, and a compact structure is realizable. The water heat exchanger 52 is the same as the water heat exchanger 22 of the above embodiment, and as shown in FIG. 5A, a refrigerant inlet header 53 is connected to the inlet side of the refrigerant pipe 52a. The refrigerant outlet header 54 is connected to the outlet side of the refrigerant pipe 52a. Moreover, as shown in FIG.5 (b), the water heat exchanger 52 has the water inlet header 55 connected to the inlet side of the water pipe 52b, and the water outlet header 56 connected to the outlet side of the water pipe 52b. .

また、渦巻き形状の水熱交換器52の方が、蛇行形状の水熱交換器22よりも折り曲げられている部分(曲げ部)の角度が大きいため、曲げ部において各扁平管41,42の厚み方向にかかる変形を極力生じないようにすることができる。このため、本変形例(1)の水熱交換器52では、各扁平管41,42(特に単穴扁平管42)の断面形状の変形量を小さくすることができる。なお、図8において、水熱交換器52の冷媒管52aは上記実施形態の水熱交換器22の冷媒管22aと対応しており、水熱交換器52の水管52bは上記実施形態の水熱交換器22の水管22bと対応している。   Further, the spiral-shaped water heat exchanger 52 has a larger angle of the bent portion (bending portion) than the meandering-shaped water heat exchanger 22, and therefore the thickness of each flat tube 41, 42 at the bent portion. It is possible to prevent the deformation in the direction as much as possible. For this reason, in the hydrothermal exchanger 52 of this modification (1), the deformation amount of the cross-sectional shape of each flat tube 41 and 42 (especially single hole flat tube 42) can be made small. In FIG. 8, the refrigerant pipe 52 a of the water heat exchanger 52 corresponds to the refrigerant pipe 22 a of the water heat exchanger 22 of the above embodiment, and the water pipe 52 b of the water heat exchanger 52 is the water heat of the above embodiment. It corresponds to the water pipe 22b of the exchanger 22.

(2)
上記実施の形態では、単穴扁平管42の断面形状は、二本の直線部分42aと二本の直線部分42aをつなぐ2つの曲線部分42bとから構成されているが、これに限らずに二本の直線部分42aをつなぐ2カ所の部分は曲線でなくとも良い。例えば、二本の直線部分よりも短い直線部分であっても構わない。
(2)
In the above embodiment, the cross-sectional shape of the single-hole flat tube 42 is composed of two straight portions 42a and two curved portions 42b that connect the two straight portions 42a. The two portions connecting the straight portions 42a of the book need not be curved. For example, it may be a straight line portion shorter than two straight line portions.

(3)
上記実施の形態では、多穴扁平管41A,41Bの扁平部本体46内には、11個の冷媒流路孔47が一列に並んで形成されているが、本発明はこれに限定されない。穴の個数や配置は任意に設定しても良い。
(3)
In the above embodiment, the eleven refrigerant passage holes 47 are formed in a line in the flat portion main body 46 of the multi-hole flat tubes 41A and 41B, but the present invention is not limited to this. The number and arrangement of holes may be arbitrarily set.

(4)
上記実施の形態では、多穴扁平管41A,41Bと単穴扁平管42とは、ロウ付けによって接合されているが、これに限らない。例えば、図9のように接着剤50を多穴扁平管41A,41Bの単穴扁平管42側の面に塗布して各部材を接合しても構わないし、逆に接着剤を単穴扁平管42の断面形状の直線部分側の面に塗布して各部材を接合しても構わない。
(4)
In the above embodiment, the multi-hole flat tubes 41A and 41B and the single-hole flat tube 42 are joined by brazing, but the present invention is not limited to this. For example, as shown in FIG. 9, the adhesive 50 may be applied to the surface of the multi-hole flat tubes 41A, 41B on the single-hole flat tube 42 side to join the respective members. Each member may be joined by coating on the surface of the straight section side of the cross-sectional shape of 42.

(5)
上記実施の形態では、図4などにおいて単穴扁平管42の二本の直線部分42aが水平方向になるように配置しているが、特にその方向を限定するものではない。例えば、二本の直線部分42aが垂直方向になるように配置しても構わない。
(5)
In the above embodiment, the two straight portions 42a of the single-hole flat tube 42 are arranged in the horizontal direction in FIG. 4 and the like, but the direction is not particularly limited. For example, you may arrange | position so that the two linear parts 42a may become a perpendicular direction.

(6)
上記実施の形態では、一対の多穴扁平管41A,41Bは、一体部材に成型された多穴構造であるが、その構造を一体部材に限定するものではない。例えば図10では、単穴扁平管42の一方の直線部分側の面に配置される多穴扁平管71Aは、2つの多穴扁平管71a,71bを並べたものであり、単穴扁平管42の他方の直線部分側の面に配置される多穴扁平管71Bは、2つの多穴扁平管71c,71dを並べたものである。このように、単穴扁平管42の片側の多穴扁平管が、複数本の多穴扁平管から構成されても構わない。また、複数の細管を接合して1つの多穴扁平管としても構わない。ただし、このように複数の部材によって多穴扁平管を構成しても、多穴扁平管を単穴扁平管の二本の直線部分側の面と密着させることにより単穴扁平管からの周囲の空気への放熱を防ぐことが可能である。
(6)
In the above embodiment, the pair of multi-hole flat tubes 41A and 41B has a multi-hole structure molded into an integral member, but the structure is not limited to the integral member. For example, in FIG. 10, the multi-hole flat tube 71 </ b> A disposed on the surface of the single-hole flat tube 42 on the side of one straight line portion is formed by arranging two multi-hole flat tubes 71 a and 71 b. The multi-hole flat tube 71B disposed on the surface of the other straight line portion is formed by arranging two multi-hole flat tubes 71c and 71d. Thus, the multi-hole flat tube on one side of the single-hole flat tube 42 may be composed of a plurality of multi-hole flat tubes. A plurality of thin tubes may be joined to form a single multi-hole flat tube. However, even if a multi-hole flat tube is constituted by a plurality of members in this way, the multi-hole flat tube is closely attached to the surface of the two straight portions of the single-hole flat tube, so that It is possible to prevent heat dissipation to the air.

(7)
上記実施の形態では、単穴扁平管42は、押し出し加工または引き抜き加工により成型されているが、これに限らず、例えば、図11、12のように平板80に対して凸部81を凹凸加工(エンボス加工)により成型した(図11参照)後に、断面が扁平形状の単穴扁平管82を成型しても良い。図11は、平板80に対して凹凸加工を施して凸部81を成型する工程を表す図である。このようにして、平板80には、複数の凸部81が一定間隔で点在する。本変形例(7)では、水の流れ方向に沿って並ぶ6列の複数の凸部81a〜81f(図11の破線で囲んだ部分を参照)が成型される。そして、1列目の凸部81aから3列目の凸部81cが単穴扁平管82の断面長辺側の側面の一方を形成する第1領域A1に配置され、4列目の凸部81dから6列目の凸部81fが単穴扁平管82の断面長辺側の側面の他方を形成する第2領域A2に配置される。より具体的には、平板80において短辺方向における中心線L1(図11の一点鎖線を参照)から後述する辺80a側の領域が第1領域A1であり、平板80において中心線L1から後述する辺80b側の領域が第2領域A2である。
(7)
In the above embodiment, the single-hole flat tube 42 is formed by extrusion or drawing, but is not limited to this. For example, the convex portion 81 is unevenly formed on the flat plate 80 as shown in FIGS. After molding by embossing (see FIG. 11), a single-hole flat tube 82 having a flat cross section may be molded. FIG. 11 is a diagram illustrating a process of forming the convex portion 81 by performing uneven processing on the flat plate 80. In this way, the flat plate 80 is dotted with a plurality of convex portions 81 at regular intervals. In the present modification (7), a plurality of convex portions 81a to 81f (see a portion surrounded by a broken line in FIG. 11) arranged in a line along the water flow direction are molded. And the convex part 81c of the 3rd row from the convex part 81a of the 1st row is arrange | positioned in 1st area | region A1 which forms one side of the cross-section long side side of the single hole flat tube 82, and convex part 81d of the 4th row The convex portions 81f in the sixth row are arranged in the second region A2 that forms the other side of the long side of the cross section of the single-hole flat tube 82. More specifically, a region on the side 80a, which will be described later, from the center line L1 (see the one-dot chain line in FIG. 11) in the short side direction in the flat plate 80 is the first region A1, and the region on the flat plate 80 will be described later from the center line L1. The region on the side 80b side is the second region A2.

凸部81が成型された平板80は、曲げ加工を施されて、断面形状がC型の部材83に成型される。断面形状がC型の部材83は、凸部81が成型された平板80の表面が内側になるように成型される(図12参照)。図12は、凸部81を成型した平板80に曲げ加工を行い、単穴扁平管82を成型する工程を表す図である。なお、図12の最上段の図は、図11の平板80におけるXII−XII断面である。図12のように平板80に曲げ加工を行うことにより平板80の両端の辺80a,80bが突き合わされることになる。突き合わされた平板の両端の辺80aと辺80bとは、電縫により接合される。電縫により接合されてできた電縫管84は、電縫を施した部分を挟み込むように両側面から押しつぶされる。そして、平板80における第1領域A1と第2領域A2とが、互いに対向する扁平管における断面長辺側の側面に配置された、単穴扁平管82が成型される。   The flat plate 80 on which the convex portions 81 are molded is subjected to a bending process, and is molded into a member 83 having a C-shaped cross section. The member 83 having a C-shaped cross-section is molded such that the surface of the flat plate 80 on which the convex portions 81 are molded is inside (see FIG. 12). FIG. 12 is a diagram illustrating a process of bending the flat plate 80 formed with the convex portion 81 to form the single-hole flat tube 82. 12 is an XII-XII cross section in the flat plate 80 of FIG. By bending the flat plate 80 as shown in FIG. 12, the sides 80a and 80b at both ends of the flat plate 80 are brought into contact with each other. The side 80a and the side 80b at both ends of the butted flat plates are joined by electric sewing. The electric sewing tube 84 joined by electric sewing is crushed from both side surfaces so as to sandwich the portion subjected to electric sewing. Then, the single-hole flat tube 82 in which the first region A1 and the second region A2 in the flat plate 80 are disposed on the side surface on the long side of the cross section of the flat tube facing each other is molded.

単穴扁平管82に成型された複数列の凸部81a〜81fは、以下のように配置される。第1領域A1に配置された1列目の凸部81aの先端と第2領域A2に配置された6列目の凸部81fの先端とが対向する。第1領域A1に配置された2列目の凸部81bの先端と第2領域A2に配置された5列目の凸部81eの先端とが対向する。第1領域A1に配置された3列目の凸部81cの先端と第2領域A2に配置された4列目の凸部81dの先端とが対向する。すなわち、第1領域A1に形成された凸部81a〜81cと第2領域A2に形成された凸部81d〜81fとは、互いに突き合わされる位置に配置されることになる。   The plurality of rows of convex portions 81a to 81f molded into the single-hole flat tube 82 are arranged as follows. The tip of the first row of convex portions 81a arranged in the first area A1 and the tip of the sixth row of convex portions 81f arranged in the second region A2 face each other. The tip of the second row of convex portions 81b arranged in the first area A1 and the tip of the fifth row of convex portions 81e arranged in the second area A2 face each other. The tip of the convex portion 81c in the third row arranged in the first area A1 and the tip of the convex portion 81d in the fourth row arranged in the second region A2 face each other. In other words, the convex portions 81a to 81c formed in the first region A1 and the convex portions 81d to 81f formed in the second region A2 are disposed at positions where they abut each other.

これにより、単穴扁平管82を曲げることによって、単穴扁平管82の厚み方向に変形が起こったとしても、凸部81a〜81cの先端と凸部81d〜81fの先端とが突き合うことになる。このため、単穴扁平管82が厚み方向に変形してつぶされることを最小限にすることができる。また、単穴扁平管82の内部に凸部81を設けることにより、水の流れに乱れを起こして熱伝達率を向上させることができる。   Thereby, even if the single-hole flat tube 82 is bent in the thickness direction by bending the single-hole flat tube 82, the tips of the convex portions 81a to 81c and the tips of the convex portions 81d to 81f abut each other. Become. For this reason, it can be minimized that the single-hole flat tube 82 is deformed and crushed in the thickness direction. Moreover, by providing the convex part 81 inside the single-hole flat tube 82, the flow of water can be disturbed to improve the heat transfer coefficient.

(8)
変形例(7)では、単穴扁平管82は、平板80に対して凹凸加工を施すことにより、変形を抑える構造としているが、他の方法をとることも可能である。例えば、図13のように、平板90に対して曲げ加工を施して単穴扁平管92を成型しても構わない。平板90を、その短辺方向に対して曲げて、平板90の両端の辺90a,90bが単穴扁平管92の内部に向かうように断面がB型の部材93(図13の中段の図を参照)を成型する。このようにして、平板90における両端の辺90a,90b近傍の部分を、単穴扁平管92の水の流れ方向に沿って延びる支持部91とする。そして、断面がB型の部材93において支持部91が成型された部分とその反対側の側面とを挟みこんで、断面がB型の部材93を両側面から押しつぶし、単穴扁平管92を成型する。以上のように加工することにより、変形を抑えるための支持部91が形成された単穴扁平管92を成型してもよい。なお、この場合に、2つの支持部91が互いに接触する部分には、上述の変形例(7)で記載した電縫などの接合加工を行わなくとも良い。この単穴扁平管92においては、電縫などの接合加工を行わなくとも、多穴扁平管41A,41Bに挟み込まれてロウ付けされることにより、水流路孔が形成されるからである。
(8)
In the modification (7), the single-hole flat tube 82 has a structure in which the flat plate 80 is subjected to uneven processing to suppress the deformation, but other methods can also be adopted. For example, as shown in FIG. 13, the single-hole flat tube 92 may be molded by bending the flat plate 90. The flat plate 90 is bent with respect to the short side direction, and a B-shaped member 93 (shown in the middle stage of FIG. 13) is formed so that the sides 90a and 90b at both ends of the flat plate 90 face the inside of the single-hole flat tube 92. Mold). In this manner, the portions in the vicinity of the sides 90 a and 90 b at both ends of the flat plate 90 serve as the support portions 91 extending along the water flow direction of the single hole flat tube 92. Then, the B-shaped member 93 is sandwiched between the portion where the support portion 91 is molded and the side surface on the opposite side, and the B-shaped member 93 is crushed from both sides to form a single-hole flat tube 92 To do. By processing as described above, the single-hole flat tube 92 in which the support portion 91 for suppressing deformation may be formed. In this case, the joining process such as the electric sewing described in the modification (7) may not be performed on the portion where the two support portions 91 are in contact with each other. This is because the single-hole flat tube 92 is sandwiched between the multi-hole flat tubes 41 </ b> A and 41 </ b> B and brazed to form a water channel hole without performing a joining process such as electric sewing.

このように、単穴扁平管92に支持部91を設けることにより、単穴扁平管92の厚み方向に対して、単穴扁平管92を曲げることによる変形が起こったとしても、支持部91がその変形を最小限にすることができる。なお、変形例(8)では、単穴扁平管92を水流路孔が1つのものとしているが、支持部91により水流路孔が2つに分割された形状であっても構わない。このように、支持部91が水流路孔を2つに分割している場合に、水管22bは二穴扁平管92となる。   In this way, by providing the support portion 91 in the single-hole flat tube 92, even if the single-hole flat tube 92 is deformed by bending the single-hole flat tube 92 in the thickness direction, the support portion 91 is The deformation can be minimized. In the modification (8), the single hole flat tube 92 has one water channel hole, but the water channel hole may be divided into two by the support portion 91. In this way, when the support portion 91 divides the water flow path hole into two, the water pipe 22b becomes a two-hole flat pipe 92.

(9)
変形例(7)および(8)では、平板80,90では、その材料が単層であるか複層であるかについて特に言及していないが、例えば、図14のように、この場合の平板80,90の片面もしくは両面に、予め平板80,90の母材85a,95aよりも低融点の合金であるロウ材85b,95bをクラッドした材料(クラッド材)を利用して、少なくとも外面側にロウ材85b,95bがクラッドされた状態の単穴扁平管82,92を成型するようにしても構わない。なお、図14の多穴扁平管41A,41Bは、上記実施の形態と同様のため符号を同じ番号とする。
(9)
In the modified examples (7) and (8), the flat plates 80 and 90 do not particularly mention whether the material is a single layer or a multi-layer. For example, as shown in FIG. Using a material (cladding material) clad with brazing materials 85b and 95b, which is an alloy having a lower melting point than the base materials 85a and 95a of the flat plates 80 and 90, on one side or both sides of the plates 80 and 90, at least on the outer surface side. You may make it shape | mold the single hole flat tubes 82 and 92 of the state by which the brazing | wax materials 85b and 95b were clad. Note that the multi-hole flat tubes 41A and 41B in FIG.

これにより、単穴扁平管82,92の外面側の材料がロウ材85b,95bになるため、上記実施の形態のように、別途ロウ材49を多穴扁平管41A,41Bと単穴扁平管42との間に挟み込まなくとも、ロウ付けを行うことができる。また、図示しないが、単穴扁平管82,92の内面側に、水に対する防食作用のある材料を採用した三層構造の材料を採用したり、防食用コーティング剤を塗布したりすることにより、単穴扁平管82,92の構造を、水による単穴扁平管82,92内部の腐食を防ぐ構造とすることも可能である。なお、図14では、説明の便宜上、凸部81や支持部91については省略している。   As a result, the material on the outer surface side of the single-hole flat tubes 82 and 92 becomes the brazing materials 85b and 95b, so that the brazing material 49 is separately provided with the multi-hole flat tubes 41A and 41B and the single-hole flat tubes as in the above embodiment. Brazing can be performed without being sandwiched between them. Although not shown, by adopting a three-layer structure material employing a material having an anticorrosive action against water on the inner surface side of the single-hole flat tubes 82 and 92, or applying an anticorrosion coating agent, The structure of the single hole flat tubes 82 and 92 may be a structure that prevents corrosion of the single hole flat tubes 82 and 92 due to water. In FIG. 14, the convex portion 81 and the support portion 91 are omitted for convenience of explanation.

(10)
上記実施の形態では、多穴扁平管41A,41Bと単穴扁平管42とは、間にロウ材49を挟み込んだ上で、ロウ付け(炉内ロウ付け)を行う硬ロウ付けにより互いに密着しているがロウ付けの方法はこれに限らずに、ロウ材として例えばハンダを利用する軟ロウ付けであっても良いし、硬ロウ付けであっても、誘導加熱ロウ付け、抵抗ロウ付け、雰囲気ロウ付け、真空ロウ付けや、赤外線ロウ付け、置きロウ付け、高周波加熱装置を用いたアルミロウ付け(超音波ハンダ付け)などであっても良い。
(10)
In the above-described embodiment, the multi-hole flat tubes 41A and 41B and the single-hole flat tube 42 are brought into close contact with each other by hard brazing that performs brazing (in-furnace brazing) with a brazing material 49 interposed therebetween. However, the brazing method is not limited to this, and may be soft brazing using, for example, solder as a brazing material, or hard brazing, induction heating brazing, resistance brazing, atmosphere Brazing, vacuum brazing, infrared brazing, placing brazing, aluminum brazing (ultrasonic soldering) using a high-frequency heating device, or the like may be used.

<2>第2実施形態
<温水循環システムの構成>
図15は、本発明の第2実施形態にかかる温水循環システム101の概略構成図である。
<2> Second Embodiment <Configuration of Hot Water Circulation System>
FIG. 15 is a schematic configuration diagram of a hot water circulation system 101 according to the second embodiment of the present invention.

温水循環システム101は、ヒートポンプ回路110、温水循環回路160、給湯回路190、中間圧水熱交換器140、および、高圧水熱交換器150を備えている。温水循環システム101は、ヒートポンプ回路110によって得られる熱を、温水循環回路160を介して暖房用の熱として利用するだけでなく、給湯回路190を介して給湯用の熱として利用するシステムである。なお、ヒートポンプ回路110は、温水熱源装置であるヒートポンプ装置102に備えられる。   The hot water circulation system 101 includes a heat pump circuit 110, a hot water circulation circuit 160, a hot water supply circuit 190, an intermediate pressure water heat exchanger 140, and a high pressure water heat exchanger 150. The hot water circulation system 101 is a system that not only uses the heat obtained by the heat pump circuit 110 as heat for heating via the hot water circulation circuit 160 but also uses it as heat for hot water supply via the hot water supply circuit 190. The heat pump circuit 110 is provided in the heat pump device 102 that is a hot water heat source device.

(水熱交換器)
中間圧水熱交換器140および高圧水熱交換器150では、ヒートポンプ回路110を循環する一次冷媒としてのCO2冷媒と、温水循環回路160を循環する二次冷媒としての水と、の間で熱交換を行わせる。なお、中間圧水熱交換器140および高圧水熱交換器150としては、第1実施形態における水熱交換器22や変形例(1)における水熱交換器52と同様の構成のものが適用される。
(Water heat exchanger)
In the intermediate pressure water heat exchanger 140 and the high pressure water heat exchanger 150, heat exchange is performed between the CO 2 refrigerant as the primary refrigerant circulating in the heat pump circuit 110 and the water as the secondary refrigerant circulating in the hot water circulation circuit 160. To do. In addition, as the intermediate pressure water heat exchanger 140 and the high pressure water heat exchanger 150, the thing of the structure similar to the water heat exchanger 22 in 1st Embodiment and the water heat exchanger 52 in a modification (1) is applied. The

(ヒートポンプ回路)
ヒートポンプ回路110は、一次冷媒としての自然冷媒であるCO2冷媒を用いた回路である。ヒートポンプ回路110は、低段側圧縮機121、高段側圧縮機125、エコノマイザ熱交換器107、インジェクション路170、一次冷媒間熱交換器108、一次バイパス180、膨張弁105a、蒸発器104ファン104f、および、制御部111を備えている。蒸発器104は、例えば、屋外に設置されている。
(Heat pump circuit)
The heat pump circuit 110 is a circuit using a CO2 refrigerant that is a natural refrigerant as a primary refrigerant. The heat pump circuit 110 includes a low-stage compressor 121, a high-stage compressor 125, an economizer heat exchanger 107, an injection path 170, a primary inter-refrigerant heat exchanger 108, a primary bypass 180, an expansion valve 105a, and an evaporator 104 fan 104f. And a control unit 111. The evaporator 104 is installed outdoors, for example.

中間圧水熱交換器140は、低段側圧縮機121の吐出側および高段側圧縮機125の吸入側に接続される。また、中間圧水熱交換器140の下流側端部と高段側圧縮機125の吸入側との間の冷媒配管には、後述するインジェクション路170からの冷媒配管が合流している。   The intermediate pressure water heat exchanger 140 is connected to the discharge side of the low stage compressor 121 and the suction side of the high stage compressor 125. In addition, a refrigerant pipe from an injection path 170 (to be described later) joins the refrigerant pipe between the downstream end of the intermediate pressure water heat exchanger 140 and the suction side of the high stage compressor 125.

高圧水熱交換器150は、高段側圧縮機125の吐出側と、一次冷媒間熱交換器108を介して膨張弁105a側に向かう一次冷媒の流れ方向における上流側端部とに接続される。エコノマイザ熱交換器107は、膨張弁105a側に向かう一次冷媒の流れ方向における下流側端部が、膨張弁105aに向かう一次冷媒の流れ方向における一次冷媒間熱交換器108の上流側端部に接続される。   The high-pressure water heat exchanger 150 is connected to the discharge side of the high-stage compressor 125 and the upstream end portion in the flow direction of the primary refrigerant toward the expansion valve 105a via the primary refrigerant heat exchanger 108. . In the economizer heat exchanger 107, the downstream end in the flow direction of the primary refrigerant toward the expansion valve 105a is connected to the upstream end of the heat exchanger 108 between the primary refrigerants in the flow direction of the primary refrigerant toward the expansion valve 105a. Is done.

一次冷媒間熱交換器108は、エコノマイザ熱交換器107を出て膨張弁105aに向かう一次冷媒と、蒸発器104により蒸発された後の冷媒とを熱交換させる。なお、一次冷媒間熱交換器108において、前者の冷媒が流れる流路を一次熱交高圧側流路108aとし、後者の冷媒が流れる流路を一次熱交低圧側流路108bとする。一次冷媒間熱交換器108は、一次熱交高圧側流路108aの下流側端部が膨張弁105aと接続される。一次冷媒間熱交換器108はまた、一次熱交低圧側流路108bの上流側端部が蒸発器104の下流側端部と接続され、一次熱交低圧側流路108bの下流側端部が低段側圧縮機121の吸入側に接続される。   The primary inter-refrigerant heat exchanger 108 exchanges heat between the primary refrigerant that leaves the economizer heat exchanger 107 and travels toward the expansion valve 105 a and the refrigerant evaporated by the evaporator 104. In the heat exchanger 108 between the primary refrigerants, the flow path through which the former refrigerant flows is referred to as a primary heat exchange high pressure side flow path 108a, and the flow path through which the latter refrigerant flows is referred to as a primary heat exchange low pressure side flow path 108b. In the primary inter-refrigerant heat exchanger 108, the downstream end of the primary heat exchange high-pressure side channel 108a is connected to the expansion valve 105a. In the primary inter-refrigerant heat exchanger 108, the upstream end of the primary heat exchange low-pressure side flow path 108b is connected to the downstream end of the evaporator 104, and the downstream end of the primary heat exchange low-pressure side flow path 108b is connected to the downstream end. It is connected to the suction side of the low stage compressor 121.

膨張弁105aは、蒸発器104の上流側端部と接続される。   The expansion valve 105 a is connected to the upstream end of the evaporator 104.

蒸発器104は、その下流側端部が一次冷媒間熱交換器108の一次熱交低圧側流路108bを介して低段側圧縮機121の吸入側に接続される。   The downstream end of the evaporator 104 is connected to the suction side of the low-stage compressor 121 via the primary heat exchange low-pressure side flow path 108 b of the primary inter-refrigerant heat exchanger 108.

インジェクション路170は、高圧水熱交換器150の冷媒配管下流側端部とエコノマイザ熱交換器107との間の冷媒配管から分岐する冷媒配管である。インジェクション路170は、インジェクション膨張弁173を有している。エコノマイザ熱交換器107では、インジェクション路170を流れインジェクション膨張弁173により減圧された冷媒と、高圧水熱交換器150により放熱された冷媒との熱交換が行われる。すなわち、インジェクション路170を流れる冷媒は、インジェクション膨張弁173により減圧された後に、エコノマイザ熱交換器107により高圧側の冷媒と熱交換を行い、高段側圧縮機125の吸入側と合流することになる。   The injection path 170 is a refrigerant pipe branched from the refrigerant pipe between the refrigerant pipe downstream end of the high-pressure water heat exchanger 150 and the economizer heat exchanger 107. The injection path 170 has an injection expansion valve 173. In the economizer heat exchanger 107, heat exchange is performed between the refrigerant that flows through the injection path 170 and is decompressed by the injection expansion valve 173, and the refrigerant that is radiated by the high-pressure water heat exchanger 150. That is, the refrigerant flowing through the injection passage 170 is decompressed by the injection expansion valve 173, and then exchanges heat with the high-pressure side refrigerant by the economizer heat exchanger 107, and joins the suction side of the high-stage compressor 125. Become.

このように、ヒートポンプ回路110では、インジェクション路170が採用されているため、ヒートポンプ回路110の成績係数を向上させることができている。そして、例えば、暖房負荷が小さい場合等、ヒートポンプ回路110の効率向上のための中間圧水熱交換器140における一次冷媒の冷却効果を十分に得られない場合であっても、このインジェクション路170を通過するインジェクション量を増大させることで、運転効率を向上させることができる。なお、ヒートポンプ回路110では、インジェクション路170は、中間圧水熱交換器140と高段側圧縮機125との間で合流しているため、低段側圧縮機121から吐出された高温の一次冷媒は、中間圧水熱交換器140に到達する前に冷却されることがなく、高温状態を維持したままで中間圧水熱交換器140に供給することができる。このため、中間圧水熱交換器140を通過する暖房用の水を十分高温にすることができる。   Thus, in the heat pump circuit 110, since the injection path 170 is employ | adopted, the coefficient of performance of the heat pump circuit 110 can be improved. Even when the cooling effect of the primary refrigerant in the intermediate pressure water heat exchanger 140 for improving the efficiency of the heat pump circuit 110 cannot be sufficiently obtained, for example, when the heating load is small, the injection path 170 is Driving efficiency can be improved by increasing the amount of injection that passes. In the heat pump circuit 110, since the injection path 170 is merged between the intermediate pressure water heat exchanger 140 and the high stage compressor 125, the high temperature primary refrigerant discharged from the low stage compressor 121 is used. Is not cooled before reaching the intermediate pressure water heat exchanger 140, and can be supplied to the intermediate pressure water heat exchanger 140 while maintaining a high temperature state. For this reason, the water for heating which passes the intermediate pressure water heat exchanger 140 can be made into high temperature sufficiently.

一次バイパス180は、エコノマイザ熱交換器107の下流側端部と一次冷媒間熱交換器108の一次熱交高圧側流路108aの上流側端部との間の冷媒配管と、膨張弁105aと蒸発器104の上流側端部との間の冷媒配管とをバイパスしている。一次バイパス180には、一次バイパス膨張弁105bが設けられる。   The primary bypass 180 includes a refrigerant pipe between the downstream end portion of the economizer heat exchanger 107 and the upstream end portion of the primary heat exchange high pressure side passage 108a of the primary refrigerant heat exchanger 108, the expansion valve 105a, and evaporation. The refrigerant piping between the upstream end of the vessel 104 is bypassed. The primary bypass 180 is provided with a primary bypass expansion valve 105b.

このように、一次バイパス180に一次バイパス膨張弁105bが設けられているため、制御部111は、一次冷媒間熱交換器108側を通過する一次冷媒の量を調節することができる。このため、低段側圧縮機121が吸入する一次冷媒が適当な過熱度を有するように調節することが可能になっている。具体的には、制御部111は、一次バイパス膨張弁105bの弁開度を下げた場合には、一次冷媒間熱交換器108を通過する一次冷媒の流量が増大し、低段側圧縮機121が吸入する一次冷媒の過熱度を上げることができ、これにより、低段側圧縮機121の吐出冷媒温度が目標温度となるために必要となる圧縮比を小さく抑えることができる。また、制御部111は、一次バイパス膨張弁105bの弁開度を上げた場合には、一次冷媒間熱交換器108を通過する一次冷媒の流量が減少し、低段側圧縮機121が吸入する一次冷媒の過熱度を下げることができ、これにより、低段側圧縮機121の吸入冷媒密度が著しく減少して循環量を確保できなくなってしまう事態を回避することができる。   Thus, since the primary bypass expansion valve 105b is provided in the primary bypass 180, the control part 111 can adjust the quantity of the primary refrigerant which passes the primary heat exchanger 108 side. For this reason, it is possible to adjust the primary refrigerant sucked by the low-stage compressor 121 to have an appropriate degree of superheat. Specifically, when the valve opening degree of the primary bypass expansion valve 105 b is lowered, the control unit 111 increases the flow rate of the primary refrigerant passing through the primary inter-refrigerant heat exchanger 108, and the low-stage compressor 121. Therefore, the degree of superheat of the primary refrigerant sucked in can be increased, and the compression ratio required for the refrigerant temperature discharged from the low-stage compressor 121 to reach the target temperature can be kept small. Further, when the valve opening degree of the primary bypass expansion valve 105b is increased, the control unit 111 decreases the flow rate of the primary refrigerant passing through the primary inter-refrigerant heat exchanger 108, and the low-stage compressor 121 sucks it. The degree of superheat of the primary refrigerant can be lowered, and this can avoid a situation where the suction refrigerant density of the low-stage compressor 121 is significantly reduced and the circulation amount cannot be secured.

制御部111は、各種センサ(図示せず)等が検知する値に基づいて、低段側圧縮機121、高段側圧縮機125、インジェクション膨張弁173、膨張弁105a、一次バイパス膨張弁105b、ファン104f等を制御する。   Based on values detected by various sensors (not shown) and the like, the control unit 111 includes a low-stage compressor 121, a high-stage compressor 125, an injection expansion valve 173, an expansion valve 105a, a primary bypass expansion valve 105b, The fan 104f and the like are controlled.

(温水循環回路)
温水循環回路160は、二次冷媒としての水が循環している。温水循環回路160は、ラジエータ161、温水ポンプ163、温水混合弁164、温水往き管165、温水戻り管166、中間圧側分岐路167、高圧側分岐路168、貯湯タンク191、温水分岐弁192、および、給湯側分岐路195を有している。
(Hot water circulation circuit)
The hot water circulation circuit 160 circulates water as a secondary refrigerant. The hot water circulation circuit 160 includes a radiator 161, a hot water pump 163, a hot water mixing valve 164, a hot water forward pipe 165, a hot water return pipe 166, an intermediate pressure side branch 167, a high pressure side branch 168, a hot water storage tank 191, a hot water branch valve 192, and The hot water supply side branch 195 is provided.

ラジエータ161および貯湯タンク191へは、温水分岐弁192が中間圧水熱交換器140または高圧水熱交換器150により加熱された温水をそれぞれの熱負荷に応じて分流している。   The hot water branch valve 192 divides the hot water heated by the intermediate pressure water heat exchanger 140 or the high pressure water heat exchanger 150 into the radiator 161 and the hot water storage tank 191 according to respective heat loads.

ラジエータ161は、暖房を行う対象となる空間に設置されており、内部を二次冷媒としての暖かい水が流れることにより、対象空間の空気を暖めて暖房を行う。ラジエータ161は、図示しないが、温水ポンプ163から送られてくる暖かい水を受け入れるための往き口と、ラジエータ161において放熱した後の水を中間圧水熱交換器140および高圧水熱交換器150に送り出すための戻り口と、を有している。温水戻り管166は、ラジエータ161の戻り口と接続されている。   The radiator 161 is installed in a space to be heated, and warm water as a secondary refrigerant flows inside to heat the air in the target space. Although not shown, the radiator 161 is provided with an outlet for receiving warm water sent from the hot water pump 163, and the water after radiating heat from the radiator 161 to the intermediate pressure water heat exchanger 140 and the high pressure water heat exchanger 150. And a return port for delivery. The hot water return pipe 166 is connected to the return port of the radiator 161.

給湯側分岐路195において分岐された水は、貯湯タンク191内部の給湯用熱交換部191aにおいて貯湯タンク191内部に貯められた給湯用の水と熱交換を行い、給湯用の水を加熱することにより放熱する。温水戻り管166は、貯湯タンク191の循環戻り口に接続されており、給湯用熱交換部191aにおいて放熱した水は、温水戻り管166へ合流する。ここで、貯湯タンク191には、図示しないが、循環往き口、および、循環戻り口が設けられている。   The water branched in the hot water supply side branch 195 exchanges heat with hot water stored in the hot water storage tank 191 in the hot water heat exchange section 191a in the hot water storage tank 191 to heat the hot water. To dissipate heat. The hot water return pipe 166 is connected to the circulation return port of the hot water storage tank 191, and the water radiated in the hot water supply heat exchange section 191 a joins the hot water return pipe 166. Here, although not shown, the hot water storage tank 191 is provided with a circulation outlet and a circulation return port.

温水戻り管166では、ラジエータ161または貯湯タンク191における放熱を終えた水を、中間圧水熱交換器140側に送る中間圧側分岐路167と、高圧水熱交換器150側に送る高圧側分岐路168と、に分流させる。   In the hot water return pipe 166, the intermediate pressure side branch 167 that sends the water that has radiated heat from the radiator 161 or the hot water storage tank 191 to the intermediate pressure water heat exchanger 140 side, and the high pressure side branch path that sends to the high pressure water heat exchanger 150 side And 168.

貯湯タンク191では、図示しない外部の市水を通じた後、給水管194を介して、常温の水が、貯湯タンク191の下端部近傍から貯湯タンク191内へと供給される。   In the hot water storage tank 191, after passing external city water (not shown), normal temperature water is supplied from the vicinity of the lower end of the hot water storage tank 191 into the hot water storage tank 191 through the water supply pipe 194.

給湯管198は、貯湯タンク191の上端部近傍から貯湯タンク191内に溜められているお湯を、図示しない利用される場所まで導く。給湯管198は、貯湯タンク191から利用される場所に向かう流れに合流させる。給水管194は、貯湯タンク191側に向かう流れから給湯バイパス管199により分岐されている。給湯バイパス管199は、給湯管198に設けられた給湯混合弁193に接続されている。給湯混合弁193は、給湯管198を通じて貯湯タンク191から送られてくるお湯と、給湯バイパス管199を通じて市水から供給される常温の水と、の混合比率を調節できる。この給湯混合弁193における混合比率が調節されることにより、利用される場所に送られる水の温度が調節される。   The hot water supply pipe 198 guides the hot water stored in the hot water storage tank 191 from the vicinity of the upper end of the hot water storage tank 191 to a place to be used (not shown). The hot water supply pipe 198 joins the flow from the hot water storage tank 191 toward the place where it is used. The water supply pipe 194 is branched by a hot water supply bypass pipe 199 from the flow toward the hot water storage tank 191 side. The hot water supply bypass pipe 199 is connected to a hot water supply mixing valve 193 provided in the hot water supply pipe 198. The hot water mixing valve 193 can adjust the mixing ratio between hot water sent from the hot water storage tank 191 through the hot water supply pipe 198 and normal temperature water supplied from city water through the hot water supply bypass pipe 199. By adjusting the mixing ratio in the hot water mixing valve 193, the temperature of the water sent to the place to be used is adjusted.

中間圧側分岐路167において分岐された水は、中間圧水熱交換器140において一次冷媒であるCO2冷媒と熱交換を行い加熱され、温水混合弁164により温水往き管165へ合流する。ここで、中間圧水熱交換器140では、一次冷媒としてのCO2冷媒と、暖房/給湯用二次冷媒としての水とは、互いに対向する方向に流れる。   The water branched in the intermediate pressure side branch passage 167 is heated by exchanging heat with the CO 2 refrigerant, which is the primary refrigerant, in the intermediate pressure water heat exchanger 140, and joined to the hot water outlet pipe 165 by the hot water mixing valve 164. Here, in the intermediate-pressure water heat exchanger 140, the CO2 refrigerant as the primary refrigerant and the water as the heating / hot water supply secondary refrigerant flow in directions opposite to each other.

高圧側分岐路168において分岐された水は、高圧水熱交換器150において一次冷媒であるCO2冷媒と熱交換を行い加熱され、温水混合弁164により温水往き管165へ合流する。ここで、高圧水熱交換器150では、一次冷媒としてのCO2冷媒と、暖房/給湯用二次冷媒としての水とは、互いに対向する方向に流れる。   The water branched in the high-pressure side branch 168 is heated by exchanging heat with the CO 2 refrigerant, which is the primary refrigerant, in the high-pressure water heat exchanger 150, and is joined to the hot water forward pipe 165 by the hot water mixing valve 164. Here, in the high-pressure water heat exchanger 150, the CO 2 refrigerant as the primary refrigerant and the water as the secondary refrigerant for heating / hot water flow in directions opposite to each other.

なお、制御部111は、各種センサ等が検知する温度等に基づいて、ラジエータ161において要求される温度の二次冷媒を供給することができるように、温水混合弁164における分流比率および温水ポンプ163の流量を制御したり、温水分岐弁192における分流比率を制御したりする。   Note that the control unit 111 supplies the secondary refrigerant having the temperature required by the radiator 161 based on the temperature detected by the various sensors and the like and the diversion ratio in the hot water mixing valve 164 and the hot water pump 163. Or the diversion ratio in the hot water branch valve 192 is controlled.

<特徴>
第2実施形態に係る中間圧水熱交換器140および高圧水熱交換器150は、第1実施形態とは異なり、水が二次冷媒として循環する閉回路において利用されている。このため、二次冷媒として循環する水に防腐剤を混入することにより、特に水管22b,52bの内面に防食処理を施さなくとも、水熱交換器22,52(特に水管22b,52b)の腐食を防ぐことができる。
<Features>
Unlike the first embodiment, the intermediate-pressure water heat exchanger 140 and the high-pressure water heat exchanger 150 according to the second embodiment are used in a closed circuit in which water circulates as a secondary refrigerant. For this reason, corrosion of the water heat exchangers 22 and 52 (especially the water pipes 22b and 52b) can be achieved by mixing a preservative into the water circulating as the secondary refrigerant, without particularly performing the anticorrosion treatment on the inner surfaces of the water pipes 22b and 52b. Can be prevented.

本発明に係る水熱交換器は、熱交換効率の低下を防ぎ、かつ、その構成を単純にすることができ、冷媒と水とを熱交換させる水熱交換器等として有用である。   The water heat exchanger according to the present invention can prevent a decrease in heat exchange efficiency and can simplify the configuration, and is useful as a water heat exchanger that exchanges heat between refrigerant and water.

2 冷凍装置
20 冷媒回路
21 圧縮機
22,52 水熱交換器
22a,52a 冷媒管
22b,52b 水管
23 膨張弁(膨張機構)
24 空気熱交換器(蒸発器)
41A,41B,71A,71B 多穴扁平管
42,82,92 単穴扁平管(少穴扁平管)
47 冷媒流路孔
48 水流路孔
49 ロウ材
50 接着剤
53 冷媒入口ヘッダ
54 冷媒出口ヘッダ
55 水入口ヘッダ
56 水出口ヘッダ
80,90 平板
80a,80b 両端の辺(2つの辺)
102 ヒートポンプ装置
104 蒸発器
105a 膨張弁(膨張機構)
105b 一次バイパス膨張弁(膨張機構)
110 ヒートポンプ回路(冷媒回路)
121 低段側圧縮機(圧縮機)
125 高段側圧縮機(圧縮機)
140 中間圧水熱交換器(水熱交換器)
150 高圧水熱交換器(水熱交換器)
2 Refrigerating device 20 Refrigerant circuit 21 Compressor 22, 52 Water heat exchanger 22a, 52a Refrigerant pipe 22b, 52b Water pipe 23 Expansion valve (expansion mechanism)
24 Air heat exchanger (evaporator)
41A, 41B, 71A, 71B Multi-hole flat tubes 42, 82, 92 Single-hole flat tubes (small-hole flat tubes)
47 Refrigerant channel hole 48 Water channel hole 49 Brazing material 50 Adhesive 53 Refrigerant inlet header 54 Refrigerant outlet header 55 Water inlet header 56 Water outlet headers 80, 90 Flat plates 80a, 80b Sides (two sides) at both ends
102 heat pump device 104 evaporator 105a expansion valve (expansion mechanism)
105b Primary bypass expansion valve (expansion mechanism)
110 Heat pump circuit (refrigerant circuit)
121 Low stage compressor (compressor)
125 High stage compressor (compressor)
140 Intermediate pressure water heat exchanger (water heat exchanger)
150 High pressure water heat exchanger (water heat exchanger)

特開2004−218946号公報JP 2004-218946 A

Claims (11)

一次冷媒と二次冷媒としての水とを熱交換させる水熱交換器(22,52)であって、
前記冷媒が流通可能な複数の冷媒流路孔(47)を有する多穴扁平管(41A,41B,71A,71B)により構成される一対の冷媒管(22a,52a)と、
前記水が流通可能であって、前記冷媒管が有する前記冷媒流路孔の数よりも少ない数の水流路孔(48)、を有する少穴扁平管(42,82,92)により構成される水管(22b,52b)と、
を備え、
前記一対の冷媒管(22a,52a)と前記水管(22b,52b)とは、断面長辺側の側面同士が密着しており、
前記水管(22b,52b)は、周囲の空気に熱を伝えることを防ぐように、前記断面長辺側の側面の両面が前記一対の冷媒管(22a,52a)に挟まれて密着し、
前記一対の冷媒管の内部を流通する高温の冷媒は、前記水管の内部の水と熱交換し、前記水管の内部の水を加熱する、
水熱交換器(22,52)。
A water heat exchanger (22, 52) for exchanging heat between primary refrigerant and water as a secondary refrigerant ,
A pair of refrigerant tubes (22a, 52a) constituted by multi-hole flat tubes (41A, 41B, 71A, 71B) having a plurality of refrigerant flow holes (47) through which the refrigerant can flow;
The water is circulated and is constituted by a small-hole flat tube (42, 82, 92) having a number of water passage holes (48) smaller than the number of the refrigerant passage holes of the refrigerant tube. Water pipes (22b, 52b);
With
The pair of refrigerant pipes (22a, 52a) and the water pipe (22b, 52b) are in close contact with each other on the long sides of the cross section.
The water pipes (22b, 52b) are in close contact with both sides of the long side of the cross section sandwiched between the pair of refrigerant pipes (22a, 52a) so as to prevent heat from being transferred to the surrounding air ,
The high-temperature refrigerant that circulates inside the pair of refrigerant tubes exchanges heat with the water inside the water tubes, and heats the water inside the water tubes.
Water heat exchanger (22, 52).
前記一対の冷媒管の断面長辺と前記水管の断面長辺とは等しい、
請求項1に記載の水熱交換器(22,52)。
The cross-sectional long side of the pair of refrigerant tubes and the cross-sectional long side of the water tube are equal,
The water heat exchanger (22, 52) according to claim 1.
前記少穴扁平管(42,82,92)の前記水流路孔(48)の数は、1または2である、
請求項1または2に記載の水熱交換器(22,52)。
The number of the water passage holes (48) of the small hole flat tubes (42, 82, 92) is 1 or 2.
The water heat exchanger (22, 52) according to claim 1 or 2 .
前記一対の冷媒管(22a)と前記水管(22b)とは、ロウ材(49)によるロウ付けまたは接着剤(50)により接合される、
請求項1から3のいずれかに記載の水熱交換器(22,52)。
The pair of refrigerant pipes (22a) and the water pipe (22b) are joined by brazing with a brazing material (49) or an adhesive (50).
The water heat exchanger (22, 52) according to any one of claims 1 to 3 .
前記多穴扁平管(41A,41B,71A,71B)および/または前記少穴扁平管(42)は、引き抜き加工または押し出し加工により成型される、
請求項1からのいずれかに記載の水熱交換器(22,52)。
The multi-hole flat tube (41A, 41B, 71A, 71B) and / or the small-hole flat tube (42) are formed by drawing or extruding.
The water heat exchanger (22, 52) according to any one of claims 1 to 4 .
前記少穴扁平管(82,92)は、平板(80、90)に曲げ加工を施すことにより成型される、
請求項1からのいずれかに記載の水熱交換器。
The small hole flat tube (82, 92) is formed by bending a flat plate (80, 90).
The water heat exchanger according to any one of claims 1 to 5 .
前記少穴扁平管(82)は、前記平板(80)の2つの辺(80a,80b)を、前記曲げ加工により接触させた後に、接合することにより成型される電縫管(84)である、
請求項に記載の水熱交換器。
The small hole flat tube (82) is an electric sewing tube (84) which is formed by joining the two sides (80a, 80b) of the flat plate (80) after contacting them by the bending process. ,
The water heat exchanger according to claim 6 .
前記平板(80)は、前記曲げ加工を施される前に、凹凸加工を施される、
請求項6または7に記載の水熱交換器。
The flat plate (80) is subjected to a concavo-convex process before being subjected to the bending process.
The water heat exchanger according to claim 6 or 7 .
前記冷媒管(22a,52a)内部を流れる前記冷媒と、前記水管(22b,52b)内部を流れる前記水とは、互いに対向する方向に流れる、
請求項1からのいずれかに記載の水熱交換器(22,52)。
The refrigerant flowing inside the refrigerant pipe (22a, 52a) and the water flowing inside the water pipe (22b, 52b) flow in directions opposite to each other.
The water heat exchanger (22, 52) according to any one of claims 1 to 8 .
前記冷媒は、CO2である、
請求項1からのいずれかに記載の水熱交換器(22,52)。
The refrigerant is CO2.
The water heat exchanger (22, 52) according to any one of claims 1 to 9 .
冷凍サイクルにおける高圧側が超臨界域となる超臨界冷媒を利用する冷媒回路(20,110)を用いた温水熱源装置(2,102)であって、
超臨界冷媒を圧縮する圧縮機(21,121,125)と、
前記圧縮機(21,121,125)により圧縮された高温高圧の超臨界冷媒と水とを熱交換させて、超臨界冷媒を冷却し、かつ、水を加熱する水熱交換器(22,52,140,150)と、
前記水熱交換器(22,52,140,150)により冷却された超臨界冷媒を減圧する膨張機構(23,105a,105b)と、
前記膨張機構(23,105a,105b)により減圧された冷媒を蒸発させる蒸発器(24,104)と、
を備え、
前記水熱交換器(22,52,140,150)は、
冷媒が流通可能な複数の冷媒流路孔(47)を有する多穴扁平管(41A,41B,71A,71B)により構成される一対の冷媒管(22a,52a)と、
水が流通可能であって、前記冷媒管が有する前記冷媒流路孔の数よりも少ない数の水流路孔(48)、を有する少穴扁平管(42)により構成される水管(22b,52b)と、
前記一対の冷媒管(22a,52a)の入口部が接続される冷媒入口ヘッダ(53)と、
前記一対の冷媒管(22a,52a)の出口部が接続される冷媒出口ヘッダ(54)と、
を含み、
前記一対の冷媒管(22a,52a)と前記水管(22b,52b)とは、断面長辺側の側面同士が密着しており、
前記水管(22b,52b)は、周囲の空気に熱を伝えることを防ぐように、前記断面長辺側の側面の両面が前記一対の冷媒管(22a,52a)に挟まれて密着され、
前記一対の冷媒管の内部を流通する高温の冷媒は、前記水管の内部の水と熱交換し、前記水管の内部の水を加熱する、
前記冷媒管(22a,52a)内部を流れる前記冷媒と、前記水管(22b,52b)内部を流れる前記水とは、互いに対向する方向に流れる、
温水熱源装置(2,102)。
A hot water heat source device (2,102) using a refrigerant circuit (20, 110) using a supercritical refrigerant whose high pressure side in the refrigeration cycle is in a supercritical region,
A compressor (21, 121, 125) for compressing the supercritical refrigerant;
A water heat exchanger (22, 52) that heat-exchanges heat between the high-temperature and high-pressure supercritical refrigerant compressed by the compressor (21, 121, 125) and water, cools the supercritical refrigerant, and heats water. , 140, 150),
An expansion mechanism (23, 105a, 105b) for depressurizing the supercritical refrigerant cooled by the water heat exchanger (22, 52, 140, 150);
An evaporator (24, 104) for evaporating the refrigerant decompressed by the expansion mechanism (23, 105a, 105b);
With
The water heat exchanger (22, 52, 140, 150)
A pair of refrigerant tubes (22a, 52a) constituted by multi-hole flat tubes (41A, 41B, 71A, 71B) having a plurality of refrigerant flow passage holes (47) through which refrigerant can flow;
Water pipes (22b, 52b) constituted by small flat tubes (42) through which water can flow and which have a smaller number of water flow path holes (48) than the number of the refrigerant flow path holes of the refrigerant pipes. )When,
A refrigerant inlet header (53) to which inlet portions of the pair of refrigerant pipes (22a, 52a) are connected;
A refrigerant outlet header (54) to which the outlet portions of the pair of refrigerant tubes (22a, 52a) are connected;
Including
The pair of refrigerant pipes (22a, 52a) and the water pipe (22b, 52b) are in close contact with each other on the long sides of the cross section.
The water pipes (22b, 52b) are in close contact with the pair of refrigerant pipes (22a, 52a) on both sides of the long side of the cross section so as to prevent heat from being transferred to the surrounding air ,
The high-temperature refrigerant that circulates inside the pair of refrigerant tubes exchanges heat with the water inside the water tubes, and heats the water inside the water tubes.
The refrigerant flowing inside the refrigerant pipe (22a, 52a) and the water flowing inside the water pipe (22b, 52b) flow in directions opposite to each other.
Hot water heat source device (2,102).
JP2010008706A 2009-01-20 2010-01-19 Water heat exchanger and hot water heat source equipment Expired - Fee Related JP4666104B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010008706A JP4666104B2 (en) 2009-01-20 2010-01-19 Water heat exchanger and hot water heat source equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009009599 2009-01-20
JP2010008706A JP4666104B2 (en) 2009-01-20 2010-01-19 Water heat exchanger and hot water heat source equipment

Publications (2)

Publication Number Publication Date
JP2010190564A JP2010190564A (en) 2010-09-02
JP4666104B2 true JP4666104B2 (en) 2011-04-06

Family

ID=42355790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010008706A Expired - Fee Related JP4666104B2 (en) 2009-01-20 2010-01-19 Water heat exchanger and hot water heat source equipment

Country Status (8)

Country Link
US (1) US20110271711A1 (en)
EP (1) EP2390611A1 (en)
JP (1) JP4666104B2 (en)
KR (1) KR20110106933A (en)
CN (1) CN102282436A (en)
AU (1) AU2010207400B2 (en)
BR (1) BRPI1007073A2 (en)
WO (1) WO2010084732A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5729910B2 (en) * 2010-03-05 2015-06-03 三菱重工業株式会社 Hot water heat pump and control method thereof
JP5287949B2 (en) * 2011-07-28 2013-09-11 ダイキン工業株式会社 Heat exchanger
JP6064883B2 (en) * 2013-12-09 2017-01-25 株式会社デンソー Heat exchanger, hot water supply apparatus provided with the same, and method for manufacturing heat exchanger
CN105202960A (en) * 2015-10-10 2015-12-30 安陆火凤凰铝材有限责任公司 Aluminum tube type heat exchanger
CN107796246A (en) * 2017-10-23 2018-03-13 杭州三花研究院有限公司 Heat-exchange system and its heat exchanger
BR112023000414A2 (en) * 2020-08-26 2023-03-07 Midea Group Co Ltd AIR CONDITIONING APPLIANCE AND ELECTRICAL CONTROL BOX.
CN214666271U (en) * 2020-08-26 2021-11-09 广东美的暖通设备有限公司 Heat exchanger, electric control box and air conditioning system
CN214676259U (en) * 2020-08-26 2021-11-09 广东美的暖通设备有限公司 Air conditioner and electric control box
EP4135495A4 (en) 2020-08-26 2023-11-01 GD Midea Heating & Ventilating Equipment Co., Ltd. Air conditioning device and electric control box
KR20220027562A (en) * 2020-08-27 2022-03-08 엘지전자 주식회사 Heat exchanger

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002098486A (en) * 2000-09-25 2002-04-05 Zexel Valeo Climate Control Corp Heat exchanger and manufacturing method therefor
JP2002107069A (en) * 2000-09-28 2002-04-10 Sanyo Electric Co Ltd Heat exchanger and heat pump water heater using the same
JP2004053128A (en) * 2002-07-19 2004-02-19 Oka Kogyo Kk Flat tube for heat exchanger and its manufacturing method
JP2004144430A (en) * 2002-10-25 2004-05-20 Denso Corp Heat exchange pipe and heat exchanger
JP2004218946A (en) * 2003-01-15 2004-08-05 Matsushita Electric Ind Co Ltd Heat exchanger and heat pump water heater using the same
JP2004340455A (en) * 2003-05-15 2004-12-02 Taiheiyo Seiko Kk Heat exchanger
JP2005061667A (en) * 2003-08-08 2005-03-10 Denso Corp Heat exchanger
JP2006234254A (en) * 2005-02-24 2006-09-07 Sanyo Electric Co Ltd Heat exchanger and heat pump type hot water supply device using the same
JP2007240092A (en) * 2006-03-10 2007-09-20 Corona Corp Water-refrigerant heat exchanger
JP2008002771A (en) * 2006-06-23 2008-01-10 Denso Corp Component for refrigerating cycle

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5188866U (en) * 1975-01-13 1976-07-16
US5242015A (en) * 1991-08-22 1993-09-07 Modine Manufacturing Co. Heat exchanger
JPH0719774A (en) * 1993-06-30 1995-01-20 Zexel Corp Flat tube of heat exchanger
US8272233B2 (en) * 2006-04-14 2012-09-25 Mitsubishi Electric Corporation Heat exchanger and refrigerating air conditioner

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002098486A (en) * 2000-09-25 2002-04-05 Zexel Valeo Climate Control Corp Heat exchanger and manufacturing method therefor
JP2002107069A (en) * 2000-09-28 2002-04-10 Sanyo Electric Co Ltd Heat exchanger and heat pump water heater using the same
JP2004053128A (en) * 2002-07-19 2004-02-19 Oka Kogyo Kk Flat tube for heat exchanger and its manufacturing method
JP2004144430A (en) * 2002-10-25 2004-05-20 Denso Corp Heat exchange pipe and heat exchanger
JP2004218946A (en) * 2003-01-15 2004-08-05 Matsushita Electric Ind Co Ltd Heat exchanger and heat pump water heater using the same
JP2004340455A (en) * 2003-05-15 2004-12-02 Taiheiyo Seiko Kk Heat exchanger
JP2005061667A (en) * 2003-08-08 2005-03-10 Denso Corp Heat exchanger
JP2006234254A (en) * 2005-02-24 2006-09-07 Sanyo Electric Co Ltd Heat exchanger and heat pump type hot water supply device using the same
JP2007240092A (en) * 2006-03-10 2007-09-20 Corona Corp Water-refrigerant heat exchanger
JP2008002771A (en) * 2006-06-23 2008-01-10 Denso Corp Component for refrigerating cycle

Also Published As

Publication number Publication date
EP2390611A1 (en) 2011-11-30
WO2010084732A8 (en) 2011-08-11
US20110271711A1 (en) 2011-11-10
WO2010084732A1 (en) 2010-07-29
AU2010207400A1 (en) 2011-09-01
CN102282436A (en) 2011-12-14
AU2010207400B2 (en) 2013-01-31
BRPI1007073A2 (en) 2016-02-10
KR20110106933A (en) 2011-09-29
JP2010190564A (en) 2010-09-02

Similar Documents

Publication Publication Date Title
JP4666104B2 (en) Water heat exchanger and hot water heat source equipment
US20110094257A1 (en) Micro-channel heat exchanger suitable for bending
EP2213953A1 (en) Air conditioning apparatus
WO2014147919A1 (en) Heat exchanger, refrigeration cycle device, and production method for heat exchanger
JP2012202609A (en) Water heat exchanger
US20190353427A1 (en) Double-tube internal heat exchanger
JP2006322636A (en) Heat exchanger
JP2003028582A (en) Heat exchanger
JP2005133999A (en) Heat pump type hot-water supplier
JP2001280862A (en) Brine heat exchanger
JP2010216773A (en) Water heat exchanger and method of manufacturing water heat exchanger
JP2003279275A (en) Heat exchanger and refrigerating cycle device using this heat exchanger
JP2017141979A (en) Heat exchanger and heat pump system
JP2010060214A (en) Refrigeration system
JP5257102B2 (en) Heat exchanger and refrigeration air conditioner
JP5171280B2 (en) Heat exchanger and heat pump type water heater using the same
JP5401876B2 (en) Refrigeration apparatus and water heat exchanger manufacturing method
JP2008134016A (en) Heat exchanger and its manufacturing method
JP2010255869A (en) Heat exchanger
JP2010261685A (en) Heat exchanger
JP4867569B2 (en) Heat exchanger and refrigeration air conditioner
JP2010078171A (en) Internal heat exchanger
JP2010060215A (en) Refrigerating device
JP2010091251A (en) Refrigerating device
JP5490160B2 (en) Heater and refrigeration cycle apparatus

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101227

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees