JP4665110B2 - Evaluation method and manufacturing method of organic solar cell - Google Patents

Evaluation method and manufacturing method of organic solar cell Download PDF

Info

Publication number
JP4665110B2
JP4665110B2 JP2003095801A JP2003095801A JP4665110B2 JP 4665110 B2 JP4665110 B2 JP 4665110B2 JP 2003095801 A JP2003095801 A JP 2003095801A JP 2003095801 A JP2003095801 A JP 2003095801A JP 4665110 B2 JP4665110 B2 JP 4665110B2
Authority
JP
Japan
Prior art keywords
organic
solar cell
organic solar
organic compounds
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003095801A
Other languages
Japanese (ja)
Other versions
JP2004303981A (en
Inventor
潤一 中村
千帆 横江
和彦 村田
一雄 鷺
光信 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanazawa University NUC
Nippon Shokubai Co Ltd
Original Assignee
Kanazawa University NUC
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanazawa University NUC, Nippon Shokubai Co Ltd filed Critical Kanazawa University NUC
Priority to JP2003095801A priority Critical patent/JP4665110B2/en
Publication of JP2004303981A publication Critical patent/JP2004303981A/en
Application granted granted Critical
Publication of JP4665110B2 publication Critical patent/JP4665110B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、有機太陽電池の評価方法および製造方法に関し、詳しくは、色素や導電性高分子などの有機化合物を組み合わせる有機太陽電池の性能を適切に評価する方法と、このような評価方法を利用して性能の優れた有機太陽電池を製造する方法とを対象にしている。
【0002】
【従来の技術】
有機太陽電池は、シリコンなどの無機半導体を用いた無機太陽電池に比べて、生産性良く経済的に製造できる技術として、研究開発が進められている。
有機太陽電池の光電変換作用を果たす半導体層の構造として、p型半導体となる有機化合物の層とn型半導体となる有機化合物の層とを積層したpn接合型の有機太陽電池や、2種類の有機化合物を混合した1つの有機半導体層からなる混合型の有機太陽電池が知られている。
このような2種の有機化合物を組み合わせた有機半導体層を備える有機太陽電池の性能は、どのような有機化合物を組み合わせるかによって、大きく変わる。そこで、様々な有機化合物の組み合わせが検討され、その結果として、光電変換効率が高く性能に優れた有機太陽電池が、種々提案されている。
【0003】
特許文献1には、pn接合型の有機半導体層として、p型半導体層:フタロシアニン誘導体と、n型半導体層:ペリレン誘導体とを組み合わせることで、光電変換効率の高い有機太陽電池を得る技術が示されている。
非特許文献1には、混合型の有機半導体層として、2種類のポルフィリン誘導体を組み合わせることで、光電変換効率η=1.5を達成している。
【0004】
【特許文献1】
米国特許第4281053号明細書
【0005】
【非特許文献1】
高橋光信、村田和彦ら著、J.Phys.chem.B 1999,103,4868
【0006】
【発明が解決しようとする課題】
新たに有機太陽電池を設計あるいは開発する際に、どのような有機化合物を組み合わせれば、有機太陽電池の性能を向上できるのかを予測することは、非常に難しい。
従来においては、既知の色素化合物や導電性ポリマーからなる有機化合物を種々に組み合わせて有機太陽電池を試作し、その性能試験を行なうことで、好ましい有機化合物の組み合わせを見出していた。また、高い性能を出すことが知られている有機化合物と構造的に似た有機化合物を新たに合成して、前記同様の試作および試験を繰り返すことで、有機太陽電池に有用な有機化合物を見出していた。
【0007】
このような試行錯誤を繰り返す方法では、目的とする性能の優れた有機太陽電池を得るまでに、多大の時間と労力を要し、開発コストが膨大にかかってしまう。
本発明の課題は、有機太陽電池の研究開発において、光電変換性能に優れた有機半導体層の材料選択や設計を、効率的に行えるようにすることである。
【0008】
【課題を解決するための手段】
本発明にかかる有機太陽電池の評価方法は、少なくとも2種の有機化合物を組み合わせた有機半導体の光電変換作用により発電する有機太陽電池の性能を評価する方法であって、
前記少なくとも2種の有機化合物のうちの2種の有機化合物について、それぞれの有機化合物の分子構造をもとに、分子軌道計算により、前記光電変換作用に関わる基準点間の距離Dを求める段階(a)と、前段階(a)で求められた基準点間距離Dが短い2種の有機化合物を組み合わせた有機太陽電池を、光電変換効率(光電流量子収量)の高い有機太陽電池であると評価する段階(b)とを含み、
前記段階(a)が、
それぞれの有機化合物について、π共役をなす原子団のうち最大となる共役グループを求める段階(a-1)と、
前段階(a-1)で得られた最大共役グループに含まれる全ての原子の座標から平均座標を求める段階(a-2)と、
前段階(a-2)で得られた平均座標に最も近い原子の座標を仮基準点とする段階(a-3)と、
前段階(a-3)で得られた両有機化合物の仮基準点間の距離が2〜3Åになるように両有機化合物を配置した状態から構造最適化計算を行う段階(a-4)と、
前段階(a-4)で得られた最適化状態で、両有機化合物の間で最も近接した原子の座標間距離を基準点間距離Dとして求める段階(a-5)とを含む、
ことを特徴とする
本発明にかかる有機太陽電池の製造方法は、有機半導体の光電変換作用により発電する有機太陽電池の製造方法であって、上記本発明の評価方法で光電変換効率(光電流量子収量)の高い有機太陽電池であると評価された組み合わせにかかる2種の有機化合物を含む有機半導体層を形成するようにする。
【0009】
〔有機太陽電池〕
有機半導体の光電変換作用により発電する有機太陽電池であれば、通常の有機太陽電池と共通する技術を組み合わせて構成できる。
有機太陽電池の基本的な構成は、透明電極層、有機半導体層、集電極層を有する。透明電極層側から有機半導体層に照射された太陽光などの光のエネルギーが、光電変換素子である有機半導体層で電気エネルギーに変換され、透明電極層と集電極層との間に起電力を発生する。
本発明では、2種の有機化合物を組み合わせて構成された有機半導体層を備える有機太陽電池の性能を評価する。
【0010】
〔有機太陽電池の評価〕
有機太陽電池の性能は、有機半導体層における光電変換特性のほか、電極層における電気的特性や光学的特性、有機半導体層と電極層との相互作用などが複合的に関係する。その中でも、有機半導体層の光電変換特性が有機太陽電池の性能評価に重要な影響を与える。
本発明では、有機半導体層を構成する2種の有機化合物の組み合わせと、それによる光電変換効率への影響との関係によって、有機太陽電池の光電変換効率を評価する。
【0011】
〔有機半導体層〕
有機半導体層を構成する2種の有機化合物は、積層させてもよいし、混合させてもよい。
具体的には、p型半導体層とn型半導体層とが積層されたpn接合型、p型半導体とn型半導体との混合層からなるpn混合型などが知られている。また、p型物質のみ、あるいは、n型物質のみを混合したり積層したりしたものも知られている。複数の有機半導体の混合層と単独の有機半導体層とを積層したものもある。基本的には2種の有機半導体の組み合わせであるが、3種以上の有機化合物を組み合わせて有機半導体を構成する場合もある。
【0012】
有機半導体層の材料として、π共役系を有する有機物質が使用できる。例えば、色素、高分子ポリマー、導電性ポリマーが使用できる。
具体例として、例えば、色素に包含される物質として、シアニン系、メロシアニン系、フタロシアニン系、ナフタロシアニン系、アゾ系、キノン系、キノイシン系、キナクドリン系、スクアリリウム系、トリフェニルメタン系、キサンテン系、ポルフィリン系、ペリレン系、インジコ系の物資などが挙げられる。
高分子物質として、ポリアセチン系、ポリピロール系、ポリチオフェン系、ポリパラフェニレン系、ポリパラフェニンビニレン系、ポリチエニレンビニロン系、ポリ(3,4−エチレンジオキシチオフェン)系、ポリフルオレン系、ポリアニリン系、ポリアセン系の物質などが挙げられる。
【0013】
TCNQに代表される有機超伝導物質も利用できる。
有機半導体層を、可溶性の有機半導体材料で形成している場合、あるいは、有機半導体層を構成する層の一つに可溶性有機半導体層を含む場合、不溶性の有機半導体材料の層だけからなる場合に比べて、分子レベルでの接合力が大きくなり、発生する電流値が大きくなり、太陽電池抵抗を少なくすることができる。
有機半導体層の具体的構造例として、Zntpp:5,10,15,20−テトラフェニルポルフィリン亜鉛錯体[5,10,15,20-tetraphenylporphyrinatozinc]とPth:ポリ(3−ヘキシルチオフェン−2,5−ジイル)[poly(3-hexylthiophene-2,5-diyl)]との混合構造や、H2t(bp)p:テトラ(4−ノルマルブチルフェニル)ポルフィリンメタルフリー[tetra(4-n-butylphenyl)porphyrin:metal free]と前記Pthとの混合構造が挙げられる。前記した特許文献1や非特許文献1に記載の有機半導体構造も採用できる。
【0014】
有機半導体層の厚みは、使用する材料や層構造によっても異なるが、通常は、100μm以下である。好ましくは、100〜5000Åである。
有機半導体層の作製は、通常の有機太陽電池の場合と同様の作製手段や作製条件が適用できる。各種の物理的または化学的薄膜形成手段が採用できる。金属材料などは蒸着技術が適用できる。可溶性の有機半導体材料であれば、溶液のスピンコーティングによる膜形成手段が利用できる。
2種の有機化合物が決定すれば、その有機化合物を組み合わせた有機半導体層を有する有機太陽電池の性能が評価できる。
【0015】
〔有機化合物と光電変換作用〕
有機半導体における光電変換作用が、光エネルギーによって励起される電子または正孔の移動、言い換えると光励起エネルギーの授受によることは良く知られている。
2種の有機化合物を用いた有機半導体層では、異種の有機化合物間で光励起エネルギーの授受が効率的に行われるほど、光電変換効率が高まる。有機化合物間における光励起エネルギーの授受は、有機化合物同士が近接して存在しているほど、良好に行われることが予想される。
【0016】
有機化合物のうち、光励起エネルギーの授受すなわち光電変換作用に重要な関与をするのは、有機化合物の分子構造を構成する全ての原子ではなく、特定の原子である。
そこで、2種の有機化合物について、それぞれの有機化合物の分子構造をもとに、分子軌道計算により、前記光電変換作用に関わる特定の原子の座標すなわち基準点間の距離Dを求めることで、有機半導体層すなわち有機太陽電池の性能が評価できる。基準点間距離Dが短いほど、光励起エネルギーの授受が良好に行われ、有機半導体層の光電変換効率が高くなり、有機太陽電池の性能が高いと評価できる。
【0017】
〔基準点間距離D〕
基準点間距離Dを求める基準点として、両方の有機化合物において、実際に光励起エネルギーの授受が行われる原子の座標を採用すれば、正確な基準点および基準点間距離Dが求められる。
実際の有機半導体層では、個々の有機化合物の姿勢や配置状態が違うので、光励起エネルギーの授受が行われる原子の座標を厳密に特定することは難しい。例えば、2種の有機化合物の混合層では、ランダムに混合している2種の有機化合物は、互いの姿勢および配置は全て同じにはなり得ない。それぞれの有機化合物分子によって光励起エネルギーの授受が行われる原子は違ってくる可能性がある。
【0018】
2種の有機化合物は、その分子構造によって、互いに取り易い姿勢や距離などの配置構造がある。このような2種の有機化合物が取り得る確率が最も高くなる安定した状態を、最適化状態と呼ぶ。最適化状態は、両方の有機化合物を構成する全ての原子同士の相互作用によって決まる。
最適化状態において、両方の有機化合物を構成する原子のうち、最も近接した原子間で光励起エネルギーの授受が行われる確率が最も高くなる。
そこで、最適化状態において、両有機化合物の間で最も近接した原子の座標間距離を基準点間距離Dとすれば、実際の有機半導体層で両有機化合物における光電変換作用に関わる基準点間の距離を適切に表す値が得られる。
【0019】
〔分子軌道計算〕
基準点間距離Dを求めるために分子軌道計算を行う。2種の有機化合物が決定すれば、その分子構造をもとにして、通常のコンピュータと分子軌道計算ソフトウェアを用いて、分子軌道計算を行うことができる。
<分子構造>
分子軌道計算の第1段階として、有機化合物の分子構造を解析する。有機化合物を構成する原子、原子団の数および配置などの分子構造に関する情報をもとにして、有機化合物の平面的あるいは立体的な分子構造が求められる。
【0020】
但し、高分子有機化合物の場合は、高性能のコンピュータを用いても、高分子有機化合物の全体の分子構造を求めて後述する構造最適化計算などを行うことは煩雑で手間がかかる。平均分子量付近の構造を用いて計算を行うこともできるが、それでも、面倒な計算になる。
そこで、高分子有機化合物の分子構造を、繰り返し単位が5〜10個からなる高分子有機化合物の分子構造で近似して分子軌道計算を行うことが有効である。繰り返し単位数が少な過ぎると、実際の有機半導体層における光電変換作用の評価が正確に行えない。繰り返し単位数が多過ぎると、過大な計算時間がかかったり、コンピュータおよびソフトウェアの能力を超えてしまったりする。
【0021】
また、本件発明の目的を損なわない範囲で、分子構造を簡略化あるいはモデル化した上で、分子軌道計算を行うことで、計算の効率化を図ることができる。例えば、置換基の一部または全部を省略するなどの手段が採用できる。
<最大共役グループ>
それぞれの有機化合物について、π共役をなす原子団のうち最大となる共役グループを求める。有機化合物同士における光励起エネルギーの授受は、最大共役グループ同士の間で行われる。
有機化合物には、前記共役グループが1つの場合と複数存在する場合とがある。同じ構造の共役グループが複数存在する場合、構造や大きさが異なる共役グループが存在する場合がある。
【0022】
有機化合物を構成する全ての共役グループについて、その大きさを比較して、最大共役グループを求める。最大共役グループが複数存在する場合には、何れかの最大共役グループを選択すればよい。
<平均座標・仮基準点>
最大共役グループに含まれる全ての原子の座標から平均座標を求める。
平均座標は、最大共役グループの中心を意味する計算上の仮想点である。この平均座標に最も近い原子の座標を仮基準点とする。
2種の有機化合物で、最大共役グループ同士が光励起エネルギーの授受を行うとすれば、最大共役グループの中心である平均座標が、光励起エネルギーの授受に関係する。
【0023】
仮基準点は、基準点間距離Dを計算する基準点である場合もあるし、仮基準点とは別の位置に基準点が存在する場合もある。
<構造最適化計算>
両有機化合物の仮基準点間の距離が2〜3Åになるように両有機化合物を配置した状態から構造最適化計算を行う。
構造最適化計算では、有機化合物同士を互いの原子間で作用する力の関係が最も安定する最適化状態を求める。初期状態での仮基準点間の距離を適切に設定することで、有機化合物間に働く力の相互作用の計算が行い易く、最適化計算が効率的に実行できる。
【0024】
<基準点間距離D>
最適化状態において、両有機化合物の間で最も近接した原子の座標間距離を基準点間距離Dとして求める。
構造最適化計算の初期状態と最終の最適化状態とで、有機化合物同士の姿勢や配置が変わる。初期状態と最適化状態とで、原子同士の距離が離れる個所や近づく個所が生じ、近づいたり離れたりする程度も違ってくる。
したがって、初期状態における仮基準点が、最適化状態においても、両有機化合物の間で最も近接した原子の座標すなわち基準点となる場合もあるし、仮基準点とは別の原子の座標が基準点になる場合もある。
【0025】
〔有機太陽電池の製造〕
有機太陽電池の製造は、基本的には、通常の有機太陽電池と共通する技術が適用できる。
前記した分子軌道計算を利用する評価方法で、光電変換効率が高い有機太陽電池になり得ると評価された2種の有機化合物を組み合わせる以外は、有機半導体層の構造、製造工程などは、通常の有機太陽電池と同様に行うことができる。
例えば、2種の有機化合物の混合層や積層構造を含む有機半導体層と、有機半導体層の両面に配置される一対の電極層とを積層形成することで、有機太陽電池の基本的な構造が作製できる。
【0026】
電極層の材料、作製方法は、通常の有機太陽電池と同様でよい。電極層に加えて、別の機能層を積層したり、有機半導体層と電極層を繰り返し積層した複層構造の有機太陽電池を作製することもできる。
【0027】
【発明の実施の形態】
〔有機太陽電池〕
図1は、有機太陽電池の構造を模式的に示している。
図に白矢印で示すように、下から上へと光が照射されるものとする。
下から順に、透明基板10、透明電極層20、有機半導体層30および集電極層40を備えている。透明電極層20と集電極層40には、外部に電力を取り出すための配線50、50が接続されている。有機半導体層20は、有機化合物の混合構造を備えている。
【0028】
光は、透明基板10から透明電極層20を通過して有機半導体層30に供給される。有機半導体層30では、光エネルギーが電気エネルギーに変換されて、有機半導体層30の両側に起電力が発生する。
有機半導体層30で発生した起電力は、集電極層40および透明電極層20から配線50、50を経て外部に取り出される。
有機太陽電池の光電変換効率は、有機半導体層20の2種の有機化合物による光エネルギーから電気エネルギーへの光電変換特性によって評価される。
【0029】
【実施例】
2種の有機化合物を組み合わせた有機半導体層を有する有機太陽電池を作製し、その性能を実験により測定した。また、前記した分子軌道計算による評価を行った。それらの結果を対比して、本発明の評価方法の有効性を検証した。
〔有機太陽電池の作製〕
透明基板であるスライドガラス(MATUNAMI社製、MICRO SLIDEGLASS)上に、集電極層となるAl膜を作製した。膜形成には、真空蒸着装置(VPC-260:ULVAC社製)および膜厚モニター(CRTM-5000:ULVAC社製)を用いた。電離真空計(GI-TL3:ULVAC社製)で測定された2×10-4torrの真空条件で真空蒸着を行った。得られたAl膜の光透過率(波長500nm)は10%であった。光透過率の測定には、吸光度計(UV-3100:島津製作所製)を用いた。
【0030】
Al膜の上に、有機化合物のクロロホルム溶液をスピンコートして、有機半導体層を作製した。使用装置は、スピンコーター(1H-D7:ミカサ社製)である。有機半導体層の膜厚は、既知量のクロロホルムに有機化合物を溶かしたときの吸光度を測定し、その結果をもとに有機化合物のモル濃度を求め、有機化合物の密度を1.3g/cm3として、モル濃度を膜厚に換算した。
有機半導体層の上に、前記同様の真空蒸着装置を用いて、集電極層となるAu層(120Å)を作製した。
表1に示すように、有機化合物の組み合わせを変えて2種類の有機太陽電池を製造した。この2種類の有機太陽電池の性能を、実測する前に、分子軌道計算によって評価した。
【0031】
<有機化合物の組み合わせ>
実施例1:Zntpp(有機化合物I)+Pth(有機化合物II)
実施例2:H2t(bp)p(有機化合物I)+Pth(有機化合物II)
ここで、ZntppおよびH2t(bp)pは、ポルフィリンに包含される色素であり、Pthは導電性ポリマーである。
Zntpp:5,10,15,20−テトラフェニルポルフィリン亜鉛錯体
H2t(bp)p:テトラ(4−ノルマルブチルフェニル)ポルフィリンメタルフリー
Pth:ポリ(3−ヘキシルチオフェン−2,5−ジイル)
アルドリッチ社販売、分子量87000。
【0032】
〔分子軌道計算による評価〕
実施例1について、具体的な計算の手順を説明する。実施例2については、詳細な説明を省略するが、実施例1と同様の手順で計算される。
具体的な計算は、分子軌道計算コンピュータソフトウェアVAMP(米国ACCERLYS社製)を搭載したコンピュータを用いて行った。計算パラメータとしてPM3、構造最適化アルゴリズムにはIISを採用した。以下では、計算の手順を判り易くするために段階的に分けて説明している。実際のコンピュータソフトウェアでの演算処理では、処理の効率化のために、処理手順が変更されたり一部省略されたりする場合がある。
【0033】
<Zntppの仮基準点x1>
まず、Zntppの分子構造式から、図2に示す分子構造が求められる。なお、図2は平面構造を示しているが、実際の分子構造は立体的である。
図2に示す分子構造で、Zntpp共役グループとして、中央の環状グループIと周辺のベンゼン環IIとが存在する。最大の共役グループは、環状グループIである。
環状グループIに含まれ、π共役をなす原子は、C、N、Znである。
上記各原子の座標から平均座標を計算する。Zntppの場合は、環状グループIのほぼ中心になる。平均座標に最も近い原子はZnである。このZnの座標を仮基準点x1として採用する。
【0034】
<Pthの仮基準点x2>
Pthの分子構造式から、図3に示す分子構造を有していることが判る。Pthはポリマーである。以下の計算では、繰り返し単位が5個である5量体からなるオリゴマーでモデル化した分子構造をもとに計算している。
Pthは、全体が一つの共役グループに属する。5量体モデルオリゴマーの全てのC、S原子について座標の平均を取って平均座標を求める。平均座標は、中央のモノマーユニットの中心近くに存在する。この平均座標に最も近い原子はSであり、このS原子の座標を仮基準点x2に設定する。
【0035】
<ZntppとPthとの基準点間距離D>
図4に示すように、ZntppとPthとを、互いの仮基準点x1およびx2が、2.5Åの距離D´になるように仮に配置する。このとき、互いの各原子が1.5Å以内に近づくことがないようにする。これは、原子同士を1.5Å以内に接近させるということは、無理に化学結合を生成させたことと等しくなるため、その状態からでは、次段階の構造最適化計算が適切に行えない場合があることによる。前記した仮配置条件によって、図4に示される上下の配置になる。
この状態を初期状態にして、構造最適化計算を開始する。計算の結果、図5に示す最適化構造が得られる。
【0036】
図5において、ZntppとPthとの最適化状態で最も近接した原子は、ZntppのZnとPthのSであり、その座標は、仮基準点x1およびx2である。この場合は、最適化後の仮基準点x1−x2間の距離がそのまま基準点間距離Dとなる。具体的にはD=2.6Åである。
<H2t(bp)pの仮基準点x3>
前記同様にして、H2t(bp)pの仮基準点x3を求める。詳細な説明は省略するが、図6に示すH2t(bp)pの分子構造で、中央のH原子の座標が仮基準点x3になる。
【0037】
<H2t(bp)pとPthとの基準点間距離D>
前記同様にして、H2t(bp)pとPthとの基準点間距離Dを求める。
図7に示す最適化構造において、H2t(bp)pのベンゼン環を構成するC原子とPthのベンゼン環を構成するC原子とが最も近接して配置されるので、このC原子の座標が基準点になり、C原子の座標間距離が基準点間距離Dになる。基準点間距離Dは、仮基準点x2−x3の距離よりも短い。具体的な基準点間距離Dは、4.0Åになる。
<計算結果の評価>
以上の分子軌道計算結果では、有機半導体層の材料として、実施例1〔ZntppとPthの組み合わせ(D=2.6Å)〕は、実施例2〔H2t(bp)pとPthの組み合わせ(D=4.0Å)〕に比べて、基準点間距離Dが短くなっている。
【0038】
このことから、実施例2よりも実施例1のほうが、光電変換効率が高く、高性能な有機太陽電池になるものと評価できる。
また、実施例1における基準点間距離D=2.6Åは、従来知られている種々の有機化合物の組み合わせに比べても、かなり狭い距離であり、実施例1の有機太陽電池は、優れた性能を発揮できるものと評価できる。
〔有機太陽電池の性能測定〕
光源として、赤外線カットフィルター(IRA-25S:東芝色ガラスフィルター、東芝社製)をつけた750Wのハロゲンタングステンランプを用いた。モノクロメーター(CT-10:JASCO社製、スリット幅1×1mm)を用いて単色化した。
【0039】
上記光源の照射によって発生する光電流を、デジタルエレクトロメーター(R8240:ADVANTEST社製)で測定した。
ポルフィリン色素であるZntppおよびH2t(bp)pについては、ポルフィリンのソーレー(soret)帯付近の吸収極大波長を吸光度計にて求め、求められた波長を用いて光電流を測定した。
有機太陽電池の光電変換効率を、以下で定義される光電流量子収量(φ)で評価した。
光電流量子収量(φ)=(光電流発生に使用された光子数)/(光電流発生界面のある電極と色素との界面に入射した光子数)
具体的には、φ%を下式で算出する。
【0040】
φ(%)=1.24×〔ip/(I×λ)〕×100
ip:短絡光電流密度(nA/cm2
I:電極/色素界面への入射光強度(μW/cm2
λ:波長(nm)
有機化合物Iの組成割合を下式で算出した。
組成割合(%)=
有機化合物I(mol)/〔有機化合物I(mol)+有機化合物II(mol)〕
ここで、有機化合物が高分子有機化合物である場合、すなわち有機化合物IIのmol数は、繰り返し単位の1ユニットを1分子と規定してmol数を計算した。
【0041】
有機半導体層の膜厚および組成を種々に変えて前記光電流量子収量を測定し、その最高値を示した実験データを以下に示す。
【0042】
【表1】

Figure 0004665110
【0043】
〔評価〕
(1) 表1に明らかなように、実施例1は実施例2に比べて、光電流量子収量が各段に大きく、性能の高い有機太陽電池であることが判る。
この結果は、分子軌道計算による基準点間距離Dにもとづく実施例1、2の性能評価と一致している。
(2) したがって、有機太陽電池を製造し性能を実測する前に、分子軌道計算による性能評価を行えば、予め有機太陽電池の性能を予測することが可能になる。
【0044】
【発明の効果】
本発明にかかる有機太陽電池の評価方法は、有機半導体層を構成する2種の有機化合物について、分子軌道計算を利用して求められる光電変換作用に関わる基準点間の距離Dの長短によって、有機太陽電池の光電変換効率を、適切に評価することができる。
その結果、有機化合物の合成や有機太陽電池の試作を行うことなく、有用な有機化合物の組み合わせを見つけることができる。有機太陽電池を試作し性能を実測した結果と、本発明による評価とを対比して、試作時の製造条件や有機半導体層以外の材料構造の適否を判断することもできる。
【0045】
煩雑で時間のかかる有機化合物の合成および有機太陽電池の試作を、何度も繰り返すことなく、目的の性能を達成できる可能性が高い有機化合物の組み合わせを見つけ出すことができ、有機太陽電池の研究開発にかかる手間とコストを大幅に削減することができる。
【図面の簡単な説明】
【図1】 本発明の実施形態を表す有機太陽電池の模式的断面図
【図2】 有機化合物Zntppの分子構造図
【図3】 有機化合物Pthの分子構造図
【図4】 有機化合物ZntppとPthとの仮配置構造図
【図5】 有機化合物ZntppとPthとの最適化配置構造図
【図6】 有機化合物H2t(bp)pの分子構造図
【図7】 有機化合物H2t(bp)pとPthとの最適化配置構造図
【符号の説明】
10 透明基板
20 透明導電極層
30 有機半導体層
40 集電極層
50 配線[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an evaluation method and a manufacturing method for an organic solar cell, and more particularly, a method for appropriately evaluating the performance of an organic solar cell in which an organic compound such as a dye or a conductive polymer is combined, and such an evaluation method is used. And a method for producing an organic solar cell having excellent performance.
[0002]
[Prior art]
Organic solar cells are being researched and developed as technologies that can be manufactured economically with high productivity compared to inorganic solar cells using inorganic semiconductors such as silicon.
As the structure of the semiconductor layer that performs the photoelectric conversion function of the organic solar cell, a pn junction type organic solar cell in which an organic compound layer that becomes a p-type semiconductor and an organic compound layer that becomes an n-type semiconductor are stacked, A mixed-type organic solar cell composed of one organic semiconductor layer mixed with an organic compound is known.
The performance of an organic solar cell including an organic semiconductor layer in which two kinds of organic compounds are combined varies greatly depending on which organic compound is combined. Thus, various combinations of organic compounds have been studied, and as a result, various organic solar cells with high photoelectric conversion efficiency and excellent performance have been proposed.
[0003]
Patent Document 1 discloses a technique for obtaining an organic solar cell with high photoelectric conversion efficiency by combining a p-type semiconductor layer: a phthalocyanine derivative and an n-type semiconductor layer: a perylene derivative as a pn junction type organic semiconductor layer. Has been.
Non-Patent Document 1 achieves a photoelectric conversion efficiency η = 1.5 by combining two types of porphyrin derivatives as a mixed organic semiconductor layer.
[0004]
[Patent Document 1]
US Pat. No. 4,281,053 Specification
[Non-Patent Document 1]
Mitsunobu Takahashi, Kazuhiko Murata et al., J. Phys. Chem. B 1999, 103,4868
[0006]
[Problems to be solved by the invention]
When designing or developing a new organic solar cell, it is very difficult to predict what kind of organic compound can be combined to improve the performance of the organic solar cell.
In the past, organic solar cells were prototyped by combining various organic compounds composed of known dye compounds and conductive polymers, and performance tests were conducted to find a preferable combination of organic compounds. In addition, organic compounds that are structurally similar to organic compounds that are known to produce high performance are newly synthesized, and by repeating the same trial production and testing as described above, organic compounds that are useful for organic solar cells are found. It was.
[0007]
In such a method of repeating trial and error, much time and labor are required to obtain an organic solar cell with excellent target performance, and the development cost is enormous.
An object of the present invention is to enable efficient material selection and design of an organic semiconductor layer excellent in photoelectric conversion performance in research and development of organic solar cells.
[0008]
[Means for Solving the Problems]
The method for evaluating an organic solar cell according to the present invention is a method for evaluating the performance of an organic solar cell that generates power by a photoelectric conversion action of an organic semiconductor in which at least two organic compounds are combined.
A step of obtaining a distance D between reference points related to the photoelectric conversion action by molecular orbital calculation based on the molecular structure of each of the at least two kinds of organic compounds based on the molecular structure of each organic compound ( An organic solar cell combining a) and two types of organic compounds having a short reference point distance D obtained in the previous step (a) is an organic solar cell having a high photoelectric conversion efficiency (photocurrent quantum yield). evaluation only contains the stage (b) that,
Said step (a) comprises
For each organic compound, a step (a-1) for obtaining the largest conjugated group among atomic groups forming π conjugation,
Obtaining average coordinates from coordinates of all atoms included in the maximum conjugate group obtained in the previous stage (a-1) (a-2);
Stage (a-3) with the coordinates of the atom closest to the average coordinates obtained in the previous stage (a-2) as a temporary reference point (a-3),
(A-4) performing the structural optimization calculation from the state in which both organic compounds are arranged so that the distance between the temporary reference points of both organic compounds obtained in the previous step (a-3) is 2-3 mm ,
A step (a-5) of obtaining the inter-coordinate distance of the closest atom between both organic compounds as the inter-reference point distance D in the optimized state obtained in the previous step (a-4).
It is characterized by that .
The manufacturing method of the organic solar cell concerning this invention is a manufacturing method of the organic solar cell which produces electric power by the photoelectric conversion effect | action of an organic semiconductor, Comprising: Organic with high photoelectric conversion efficiency (photocurrent quantum yield) by the evaluation method of the said invention An organic semiconductor layer containing two kinds of organic compounds in a combination evaluated as a solar cell is formed.
[0009]
[Organic solar cells]
If it is an organic solar cell which generates electric power by the photoelectric conversion action of an organic semiconductor, it can be configured by combining techniques common to ordinary organic solar cells.
The basic configuration of the organic solar cell includes a transparent electrode layer, an organic semiconductor layer, and a collector electrode layer. Light energy such as sunlight irradiated on the organic semiconductor layer from the transparent electrode layer side is converted into electric energy by the organic semiconductor layer, which is a photoelectric conversion element, and an electromotive force is generated between the transparent electrode layer and the collector electrode layer. appear.
In this invention, the performance of an organic solar cell provided with the organic-semiconductor layer comprised combining two types of organic compounds is evaluated.
[0010]
[Evaluation of organic solar cells]
The performance of the organic solar cell is complexly related to the photoelectric conversion characteristics in the organic semiconductor layer, the electrical characteristics and optical characteristics in the electrode layer, and the interaction between the organic semiconductor layer and the electrode layer. Among them, the photoelectric conversion characteristics of the organic semiconductor layer have an important influence on the performance evaluation of the organic solar cell.
In this invention, the photoelectric conversion efficiency of an organic solar cell is evaluated by the relationship between the combination of two types of organic compounds which comprise an organic-semiconductor layer, and the influence on the photoelectric conversion efficiency by it.
[0011]
[Organic semiconductor layer]
Two kinds of organic compounds constituting the organic semiconductor layer may be laminated or mixed.
Specifically, a pn junction type in which a p-type semiconductor layer and an n-type semiconductor layer are stacked, a pn mixed type including a mixed layer of a p-type semiconductor and an n-type semiconductor, and the like are known. In addition, a material obtained by mixing or laminating only a p-type material or only an n-type material is also known. There is also a laminate in which a mixed layer of a plurality of organic semiconductors and a single organic semiconductor layer are stacked. Basically, it is a combination of two types of organic semiconductors, but an organic semiconductor may be formed by combining three or more types of organic compounds.
[0012]
As a material for the organic semiconductor layer, an organic substance having a π-conjugated system can be used. For example, a pigment, a high molecular polymer, and a conductive polymer can be used.
As specific examples, for example, as a substance included in the pigment, cyanine, merocyanine, phthalocyanine, naphthalocyanine, azo, quinone, quinoisin, quinacrine, squarylium, triphenylmethane, xanthene, Examples include porphyrin-based, perylene-based, and indico-based materials.
Polymer materials include polyacetin, polypyrrole, polythiophene, polyparaphenylene, polyparaphenine vinylene, polythienylene vinylone, poly (3,4-ethylenedioxythiophene), polyfluorene, polyaniline And polyacene-based substances.
[0013]
Organic superconducting materials represented by TCNQ can also be used.
When the organic semiconductor layer is formed of a soluble organic semiconductor material, or when the organic semiconductor layer includes a soluble organic semiconductor layer as one of the layers constituting the organic semiconductor layer, the organic semiconductor layer is composed of only an insoluble organic semiconductor material layer. In comparison, the bonding force at the molecular level is increased, the generated current value is increased, and the solar cell resistance can be reduced.
As a specific structural example of the organic semiconductor layer, Zntpp: 5,10,15,20-tetraphenylporphyrin zinc complex [5,10,15,20-tetraphenylporphyrinatozinc] and Pth: poly (3-hexylthiophene-2,5- Diyl) [poly (3-hexylthiophene-2,5-diyl)] and H2t (bp) p: tetra (4-n-butylphenyl) porphyrin metal-free [tetra (4-n-butylphenyl) porphyrin: metal free] and the Pth mixed structure. The organic semiconductor structures described in Patent Document 1 and Non-Patent Document 1 can also be employed.
[0014]
Although the thickness of an organic-semiconductor layer changes also with the materials and layer structure to be used, it is usually 100 micrometers or less. Preferably, it is 100-5000cm.
For the production of the organic semiconductor layer, the same production means and production conditions as in the case of a normal organic solar cell can be applied. Various physical or chemical thin film forming means can be employed. Vapor deposition technology can be applied to metal materials. If it is a soluble organic semiconductor material, a film forming means by spin coating of a solution can be used.
If two types of organic compounds are determined, the performance of an organic solar cell having an organic semiconductor layer in which the organic compounds are combined can be evaluated.
[0015]
[Organic compounds and photoelectric conversion]
It is well known that the photoelectric conversion action in organic semiconductors is due to the movement of electrons or holes excited by light energy, in other words, transfer of light excitation energy.
In an organic semiconductor layer using two kinds of organic compounds, the photoelectric conversion efficiency increases as the photoexcitation energy is efficiently exchanged between different organic compounds. The exchange of photoexcitation energy between organic compounds is expected to be performed better as the organic compounds are closer to each other.
[0016]
Among the organic compounds, it is not specific atoms that constitute the molecular structure of the organic compound but specific atoms that play an important role in the exchange of photoexcitation energy, that is, the photoelectric conversion action.
Therefore, for two types of organic compounds, by calculating molecular orbital calculation based on the molecular structure of each organic compound, the coordinates of specific atoms related to the photoelectric conversion action, that is, the distance D between the reference points, the organic The performance of the semiconductor layer, that is, the organic solar cell can be evaluated. It can be evaluated that the shorter the distance D between the reference points, the better the exchange of photoexcitation energy, the higher the photoelectric conversion efficiency of the organic semiconductor layer, and the higher the performance of the organic solar cell.
[0017]
[Distance between reference points D]
As the reference point for obtaining the distance D between the reference points, if the coordinates of the atoms to which photoexcitation energy is actually exchanged are adopted in both organic compounds, the accurate reference point and the distance D between the reference points can be obtained.
In an actual organic semiconductor layer, since the postures and arrangement states of individual organic compounds are different, it is difficult to precisely specify the coordinates of atoms to which photoexcitation energy is transferred. For example, in a mixed layer of two kinds of organic compounds, the two kinds of organic compounds mixed at random cannot have the same posture and arrangement. The atoms to which photoexcitation energy is transferred by each organic compound molecule may be different.
[0018]
The two kinds of organic compounds have an arrangement structure such as a posture and a distance that can be easily taken according to their molecular structures. A stable state where the probability that such two kinds of organic compounds can be taken is the highest. The optimized state is determined by the interaction between all atoms constituting both organic compounds.
In the optimized state, among the atoms constituting both organic compounds, the probability that photoexcitation energy is transferred between the closest atoms is the highest.
Therefore, in the optimized state, if the distance between the coordinates of the closest atoms between the two organic compounds is the distance D between the reference points, the distance between the reference points related to the photoelectric conversion action in the two organic compounds in the actual organic semiconductor layer. A value that appropriately represents the distance is obtained.
[0019]
(Molecular orbital calculation)
In order to obtain the distance D between the reference points, molecular orbital calculation is performed. If two kinds of organic compounds are determined, molecular orbital calculation can be performed based on the molecular structure using a normal computer and molecular orbital calculation software.
<Molecular structure>
As the first step of molecular orbital calculation, the molecular structure of an organic compound is analyzed. A planar or three-dimensional molecular structure of an organic compound is required based on information on the molecular structure such as the atoms and atomic groups constituting the organic compound.
[0020]
However, in the case of a high molecular organic compound, even if a high-performance computer is used, it is complicated and troublesome to obtain the overall molecular structure of the high molecular organic compound and perform the structure optimization calculation described later. Calculations can be performed using structures around the average molecular weight, but this is still troublesome.
Therefore, it is effective to perform molecular orbital calculation by approximating the molecular structure of the polymer organic compound with the molecular structure of the polymer organic compound having 5 to 10 repeating units. If the number of repeating units is too small, the photoelectric conversion action in the actual organic semiconductor layer cannot be accurately evaluated. If there are too many repeating units, it may take too much computation time or exceed the capabilities of the computer and software.
[0021]
In addition, the efficiency of calculation can be improved by performing molecular orbital calculation after simplifying or modeling the molecular structure within a range not impairing the object of the present invention. For example, means such as omitting part or all of the substituents can be employed.
<Maximum conjugate group>
For each organic compound, the largest conjugated group among the atomic groups forming π conjugation is obtained. Transfer of photoexcitation energy between organic compounds is performed between the maximum conjugate groups.
There are cases where the organic compound has one conjugated group and a plurality of conjugated groups. When there are a plurality of conjugate groups having the same structure, there may be conjugate groups having different structures and sizes.
[0022]
The size of all conjugated groups constituting the organic compound is compared to determine the maximum conjugated group. If there are a plurality of maximum conjugate groups, one of the maximum conjugate groups may be selected.
<Average coordinates / temporary reference point>
The average coordinates are obtained from the coordinates of all atoms included in the maximum conjugate group.
The average coordinate is a calculated virtual point that means the center of the largest conjugate group. The coordinate of the atom closest to the average coordinate is taken as a temporary reference point.
In the case of two kinds of organic compounds, if the maximum conjugate group exchanges photoexcitation energy, the average coordinate that is the center of the maximum conjugate group is related to the exchange of photoexcitation energy.
[0023]
The temporary reference point may be a reference point for calculating the distance D between the reference points, or the reference point may exist at a position different from the temporary reference point.
<Structural optimization calculation>
The structure optimization calculation is performed from the state in which both organic compounds are arranged so that the distance between the temporary reference points of both organic compounds is 2 to 3 mm.
In the structure optimization calculation, an optimized state in which the relationship between forces acting on the organic compounds between the atoms is most stable is obtained. By appropriately setting the distance between the temporary reference points in the initial state, it is easy to calculate the interaction of forces acting between the organic compounds, and the optimization calculation can be executed efficiently.
[0024]
<Distance D between reference points>
In the optimized state, the distance between the coordinates of the closest atoms between the two organic compounds is determined as the distance D between the reference points.
The posture and arrangement of the organic compounds change between the initial state and the final optimized state of the structure optimization calculation. In the initial state and the optimized state, there are places where the distance between the atoms is separated or approaches, and the degree of approach or separation is also different.
Therefore, the temporary reference point in the initial state may be the coordinate of the closest atom between both organic compounds even in the optimized state, that is, the reference point, or the coordinate of an atom different from the temporary reference point may be the reference. It can be a point.
[0025]
[Manufacture of organic solar cells]
Basically, techniques common to ordinary organic solar cells can be applied to the production of organic solar cells.
The structure of the organic semiconductor layer, the manufacturing process, etc. are the same except for combining two kinds of organic compounds that have been evaluated to be an organic solar cell with high photoelectric conversion efficiency in the evaluation method using the molecular orbital calculation described above. It can be performed in the same manner as an organic solar cell.
For example, the basic structure of an organic solar cell can be obtained by laminating and forming an organic semiconductor layer including a mixed layer or a laminated structure of two organic compounds and a pair of electrode layers disposed on both sides of the organic semiconductor layer. Can be made.
[0026]
The material of the electrode layer and the manufacturing method may be the same as those of a normal organic solar cell. In addition to the electrode layer, another functional layer can be laminated, or an organic solar cell having a multilayer structure in which an organic semiconductor layer and an electrode layer are repeatedly laminated can be produced.
[0027]
DETAILED DESCRIPTION OF THE INVENTION
[Organic solar cells]
FIG. 1 schematically shows the structure of an organic solar cell.
It is assumed that light is irradiated from the bottom to the top as indicated by white arrows in the figure.
A transparent substrate 10, a transparent electrode layer 20, an organic semiconductor layer 30, and a collector electrode layer 40 are provided in order from the bottom. The transparent electrode layer 20 and the collector electrode layer 40 are connected to wirings 50 and 50 for extracting electric power to the outside. The organic semiconductor layer 20 has a mixed structure of organic compounds.
[0028]
Light is supplied from the transparent substrate 10 to the organic semiconductor layer 30 through the transparent electrode layer 20. In the organic semiconductor layer 30, light energy is converted into electric energy, and an electromotive force is generated on both sides of the organic semiconductor layer 30.
The electromotive force generated in the organic semiconductor layer 30 is taken out from the collector electrode layer 40 and the transparent electrode layer 20 through the wirings 50 and 50 to the outside.
The photoelectric conversion efficiency of the organic solar cell is evaluated by photoelectric conversion characteristics from light energy to electric energy by the two organic compounds of the organic semiconductor layer 20.
[0029]
【Example】
An organic solar cell having an organic semiconductor layer in which two kinds of organic compounds were combined was prepared, and the performance was measured by experiment. Moreover, the evaluation by the molecular orbital calculation described above was performed. The effectiveness of the evaluation method of the present invention was verified by comparing these results.
[Production of organic solar cells]
An Al film serving as a collector electrode layer was produced on a slide glass (manufactured by MATUNAMI, MICRO SLIDEGLASS), which is a transparent substrate. For film formation, a vacuum deposition apparatus (VPC-260: manufactured by ULVAC) and a film thickness monitor (CRTM-5000: manufactured by ULVAC) were used. Vacuum deposition was performed under a vacuum condition of 2 × 10 −4 torr measured with an ionization vacuum gauge (GI-TL3: manufactured by ULVAC). The light transmittance (wavelength 500 nm) of the obtained Al film was 10%. An absorptiometer (UV-3100: manufactured by Shimadzu Corporation) was used for the measurement of light transmittance.
[0030]
An organic semiconductor layer was produced by spin-coating a chloroform solution of an organic compound on the Al film. The apparatus used is a spin coater (1H-D7: manufactured by Mikasa). The thickness of the organic semiconductor layer is measured by measuring the absorbance when an organic compound is dissolved in a known amount of chloroform, and the molar concentration of the organic compound is obtained based on the result, and the density of the organic compound is 1.3 g / cm 3. The molar concentration was converted into a film thickness.
On the organic semiconductor layer, an Au layer (120 mm) serving as a collector electrode layer was produced using the same vacuum deposition apparatus as described above.
As shown in Table 1, two types of organic solar cells were manufactured by changing the combination of organic compounds. The performance of these two types of organic solar cells was evaluated by molecular orbital calculation before actual measurement.
[0031]
<Combination of organic compounds>
Example 1: Zntpp (organic compound I) + Pth (organic compound II)
Example 2: H2t (bp) p (organic compound I) + Pth (organic compound II)
Here, Zntpp and H2t (bp) p are pigments included in porphyrin, and Pth is a conductive polymer.
Zntpp: 5,10,15,20-tetraphenylporphyrin zinc complex H2t (bp) p: tetra (4-normalbutylphenyl) porphyrin metal-free Pth: poly (3-hexylthiophene-2,5-diyl)
Aldrich sales, molecular weight 87000.
[0032]
[Evaluation by molecular orbital calculation]
A specific calculation procedure will be described for the first embodiment. Although detailed description of Example 2 is omitted, calculation is performed in the same procedure as in Example 1.
Specific calculation was performed using a computer equipped with molecular orbital calculation computer software VAMP (manufactured by ACKERLYS, USA). PM3 was used as a calculation parameter, and IIS was used as a structure optimization algorithm. In the following, in order to make the calculation procedure easy to understand, it is described in stages. In arithmetic processing using actual computer software, the processing procedure may be changed or partially omitted in order to improve processing efficiency.
[0033]
<Temporary reference point x1 of Zntpp>
First, the molecular structure shown in FIG. 2 is obtained from the molecular structural formula of Zntpp. Although FIG. 2 shows a planar structure, the actual molecular structure is three-dimensional.
In the molecular structure shown in FIG. 2, as the conjugated groups ZnTPP, central benzene ring II near the annular group I are present. The largest conjugate group is annular group I.
The atoms included in the cyclic group I and forming π conjugation are C, N, and Zn.
The average coordinates are calculated from the coordinates of each atom. In the case of Zntpp, it is almost the center of the cyclic group I. The atom closest to the average coordinate is Zn. The Zn coordinate is adopted as the temporary reference point x1.
[0034]
<Pth temporary reference point x2>
From the molecular structural formula of Pth, it can be seen that it has the molecular structure shown in FIG. Pth is a polymer. In the following calculation, the calculation is based on a molecular structure modeled by an oligomer composed of a pentamer having five repeating units.
Pth as a whole belongs to one conjugate group. Average coordinates are obtained by averaging coordinates for all C and S atoms of the pentamer model oligomer. The average coordinates are near the center of the central monomer unit. The atom closest to the average coordinate is S, and the coordinate of this S atom is set as the temporary reference point x2.
[0035]
<Distance D between reference points of Zntpp and Pth>
As shown in FIG. 4, Zntpp and Pth are temporarily arranged such that the mutual reference points x1 and x2 are at a distance D 'of 2.5 mm. At this time, each atom is prevented from approaching within 1.5 cm. This means that making atoms close to each other within 1.5 mm is equivalent to forcibly generating chemical bonds, and from that state, the next stage of structure optimization calculation may not be performed properly. It depends. Depending on the provisional arrangement conditions described above, the upper and lower arrangements shown in FIG. 4 are obtained.
The structure optimization calculation is started with this state as an initial state. As a result of the calculation, the optimized structure shown in FIG. 5 is obtained.
[0036]
In FIG. 5, the closest atoms in the optimized state of Zntpp and Pth are Zn of Zntpp and S of Pth, and the coordinates thereof are temporary reference points x1 and x2. In this case, the distance between the temporary reference points x1 and x2 after optimization becomes the reference point distance D as it is. Specifically, D = 2.6 mm.
<Tentative reference point x3 of H2t (bp) p>
In the same manner as described above, a temporary reference point x3 of H2t (bp) p is obtained. Although detailed description is omitted, in the molecular structure of H2t (bp) p shown in FIG. 6, the coordinates of the central H atom are the temporary reference point x3.
[0037]
<Distance D between Reference Points between H2t (bp) p and Pth>
In the same manner as described above, the distance D between the reference points between H2t (bp) p and Pth is obtained.
In the optimized structure shown in FIG. 7, the C atom constituting the benzene ring of H2t (bp) p and the C atom constituting the benzene ring of Pth are arranged closest to each other. The distance between the coordinates of the C atom becomes the distance D between the reference points. The distance D between the reference points is shorter than the distance between the temporary reference points x2-x3. A specific distance D between the reference points is 4.0 mm.
<Evaluation of calculation results>
In the above molecular orbital calculation results, as the material of the organic semiconductor layer, Example 1 [combination of Zntpp and Pth (D = 2.6Å)] is Example 2 [combination of H2t (bp) p and Pth (D = 4.0)), the distance D between the reference points is shorter.
[0038]
From this, it can be evaluated that Example 1 has a higher photoelectric conversion efficiency and a higher performance organic solar cell than Example 2.
Further, the reference point distance D = 2.6 mm in Example 1 is considerably narrower than the conventionally known combinations of various organic compounds, and the organic solar cell of Example 1 is excellent. It can be evaluated that performance can be demonstrated.
[Measurement of organic solar cell performance]
A 750 W halogen tungsten lamp equipped with an infrared cut filter (IRA-25S: Toshiba color glass filter, manufactured by Toshiba Corporation) was used as the light source. It was made monochromatic using a monochromator (CT-10: manufactured by JASCO, slit width 1 × 1 mm).
[0039]
The photocurrent generated by the irradiation of the light source was measured with a digital electrometer (R8240: manufactured by ADVANTEST).
For Zntpp and H2t (bp) p, which are porphyrin dyes, the absorption maximum wavelength in the vicinity of the porphyrin soret band was determined with an absorptiometer, and the photocurrent was measured using the determined wavelength.
The photoelectric conversion efficiency of the organic solar cell was evaluated by the photocurrent quantum yield (φ) defined below.
Photocurrent quantum yield (φ) = (number of photons used for photocurrent generation) / (number of photons incident on the interface between the electrode having the photocurrent generation interface and the dye)
Specifically, φ% is calculated by the following equation.
[0040]
φ (%) = 1.24 × [ip / (I × λ)] × 100
ip: Short-circuit photocurrent density (nA / cm 2 )
I: Incident light intensity at the electrode / dye interface (μW / cm 2 )
λ: Wavelength (nm)
The composition ratio of the organic compound I was calculated by the following formula.
Composition ratio (%) =
Organic Compound I (mol) / [Organic Compound I (mol) + Organic Compound II (mol)]
Here, when the organic compound is a high molecular organic compound, that is, the mol number of the organic compound II was calculated by defining one unit of the repeating unit as one molecule.
[0041]
The photocurrent quantum yield was measured by varying the film thickness and composition of the organic semiconductor layer, and experimental data showing the maximum values are shown below.
[0042]
[Table 1]
Figure 0004665110
[0043]
[Evaluation]
(1) As is clear from Table 1, it can be seen that Example 1 is a high-performance organic solar cell with a higher photocurrent quantum yield at each stage than Example 2.
This result is consistent with the performance evaluation of Examples 1 and 2 based on the distance D between the reference points by molecular orbital calculation.
(2) Therefore, it is possible to predict the performance of the organic solar cell in advance by performing performance evaluation by molecular orbital calculation before manufacturing the organic solar cell and actually measuring the performance.
[0044]
【The invention's effect】
The evaluation method of the organic solar cell according to the present invention is based on whether the distance D between the reference points related to the photoelectric conversion action obtained by using molecular orbital calculation is long or short for the two organic compounds constituting the organic semiconductor layer. The photoelectric conversion efficiency of the solar cell can be appropriately evaluated.
As a result, it is possible to find a useful combination of organic compounds without synthesizing organic compounds or making prototypes of organic solar cells. It is also possible to determine the suitability of the manufacturing conditions and the material structure other than the organic semiconductor layer at the time of trial production by comparing the results of actually producing an organic solar cell and measuring the performance with the evaluation according to the present invention.
[0045]
Research and development of organic solar cells can be performed by finding combinations of organic compounds that are highly likely to achieve the desired performance without repeating complicated and time-consuming synthesis of organic compounds and trial production of organic solar cells. Can be greatly reduced in labor and cost.
[Brief description of the drawings]
1 is a schematic cross-sectional view of an organic solar cell representing an embodiment of the present invention. FIG. 2 is a molecular structure diagram of an organic compound Zntpp. FIG. 3 is a molecular structure diagram of an organic compound Pth. FIG. 5 shows an optimized arrangement structure of the organic compounds Zntpp and Pth. FIG. 6 shows a molecular structure of the organic compound H2t (bp) p. FIG. 7 shows an organic compound H2t (bp) p and Pth. Optimized layout structure diagram [Explanation of symbols]
10 transparent substrate 20 transparent conductive electrode layer 30 organic semiconductor layer 40 collector electrode layer 50 wiring

Claims (6)

少なくとも2種の有機化合物を組み合わせた有機半導体の光電変換作用により発電する有機太陽電池の性能を評価する方法であって、
前記少なくとも2種の有機化合物のうちの2種の有機化合物について、それぞれの有機化合物の分子構造をもとに、分子軌道計算により、前記光電変換作用に関わる基準点間の距離Dを求める段階(a)と、前段階(a)で求められた基準点間距離Dが短い2種の有機化合物を組み合わせた有機太陽電池を、光電変換効率(光電流量子収量)の高い有機太陽電池であると評価する段階(b)とを含み、
前記段階(a)が、
それぞれの有機化合物について、π共役をなす原子団のうち最大となる共役グループを求める段階(a-1)と、
前段階(a-1)で得られた最大共役グループに含まれる全ての原子の座標から平均座標を求める段階(a-2)と、
前段階(a-2)で得られた平均座標に最も近い原子の座標を仮基準点とする段階(a-3)と、
前段階(a-3)で得られた両有機化合物の仮基準点間の距離が2〜3Åになるように両有機化合物を配置した状態から構造最適化計算を行う段階(a-4)と、
前段階(a-4)で得られた最適化状態で、両有機化合物の間で最も近接した原子の座標間距離を基準点間距離Dとして求める段階(a-5)とを含む、
ことを特徴とする、有機太陽電池の評価方法。
A method for evaluating the performance of an organic solar cell that generates electric power by photoelectric conversion of an organic semiconductor in which at least two organic compounds are combined,
A step of obtaining a distance D between reference points related to the photoelectric conversion action by molecular orbital calculation based on the molecular structure of each of the at least two kinds of organic compounds based on the molecular structure of each organic compound ( An organic solar cell combining a) and two types of organic compounds having a short reference point distance D obtained in the previous step (a) is an organic solar cell having a high photoelectric conversion efficiency (photocurrent quantum yield). evaluation only contains the stage (b) that,
Said step (a) comprises
For each organic compound, a step (a-1) for obtaining the largest conjugated group among atomic groups forming π conjugation,
Obtaining average coordinates from coordinates of all atoms included in the maximum conjugate group obtained in the previous stage (a-1) (a-2);
Stage (a-3) with the coordinates of the atom closest to the average coordinates obtained in the previous stage (a-2) as a temporary reference point (a-3),
(A-4) performing the structural optimization calculation from the state in which both organic compounds are arranged so that the distance between the temporary reference points of both organic compounds obtained in the previous step (a-3) is 2-3 mm ,
A step (a-5) of obtaining the inter-coordinate distance of the closest atom between both organic compounds as the inter-reference point distance D in the optimized state obtained in the previous step (a-4).
A method for evaluating an organic solar cell, comprising:
前記2種の有機化合物の少なくとも一方が高分子有機化合物であり、前記段階(a)では、前記高分子有機化合物の分子構造を、繰り返し単位が5〜10個からなる高分子有機化合物の分子構造で近似して前記分子軌道計算を行う請求項1に記載の有機太陽電池の評価方法。At least one of the two kinds of organic compounds is a polymer organic compound, and in the step (a) , the molecular structure of the polymer organic compound is changed to a molecular structure of a polymer organic compound having 5 to 10 repeating units. in approximation to conduct the molecular orbital calculation, the evaluation method of the organic solar cell according to claim 1. 前記段階(b)では、前記基準点間距離Dが1.5Å<D≦3.5Åとなる2種の有機化合物を組み合わせた有機太陽電池を、光電変換効率の高い有機太陽電池であると評価する請求項に記載の有機太陽電池の評価方法。In the step (b) , an organic solar battery in which two kinds of organic compounds in which the distance D between the reference points is 1.5Å < D ≦ 3.5Å is combined is evaluated as an organic solar battery having high photoelectric conversion efficiency. to the method of evaluating organic solar cell according to claim 2. 記2種の有機化合物の組み合わせが色素と導電性ポリマー組み合わせであ請求項1から3までのいずれかに記載の有機太陽電池の評価方法。Ru combination der combinations dye and conductive polymer before Symbol two organic compounds, the evaluation method of the organic solar cell according to any one of claims 1 to 3. 有機半導体の光電変換作用により発電する有機太陽電池の製造方法であって、
請求項1から4までのいずれかに記載の評価方法で光電変換効率(光電流量子収量)の高い有機太陽電池であると評価された組み合わせにかかる2種の有機化合物を含む有機半導体層を形成するようにする、
有機太陽電池の製造方法。
A method for producing an organic solar cell that generates electricity by photoelectric conversion of an organic semiconductor,
The organic semiconductor layer including a photoelectric conversion efficiency (photocurrent quantum yield) high according to the combination evaluates to an organic solar cell two organic compounds in the evaluation method according to any one of claims 1 to 4 To form ,
A method for producing an organic solar cell.
前記基準点間距離Dが1.5Å<D≦3.5Åとなる2種の有機化合物を含む有機半導体層を形成するようにする、請求項5に記載の有機太陽電池の製造方法。The method for producing an organic solar cell according to claim 5, wherein an organic semiconductor layer containing two kinds of organic compounds in which the distance D between the reference points is 1.5Å <D ≦ 3.5Å is formed.
JP2003095801A 2003-03-31 2003-03-31 Evaluation method and manufacturing method of organic solar cell Expired - Fee Related JP4665110B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003095801A JP4665110B2 (en) 2003-03-31 2003-03-31 Evaluation method and manufacturing method of organic solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003095801A JP4665110B2 (en) 2003-03-31 2003-03-31 Evaluation method and manufacturing method of organic solar cell

Publications (2)

Publication Number Publication Date
JP2004303981A JP2004303981A (en) 2004-10-28
JP4665110B2 true JP4665110B2 (en) 2011-04-06

Family

ID=33408038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003095801A Expired - Fee Related JP4665110B2 (en) 2003-03-31 2003-03-31 Evaluation method and manufacturing method of organic solar cell

Country Status (1)

Country Link
JP (1) JP4665110B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112952008B (en) * 2021-03-08 2023-04-18 武汉宇微光学软件有限公司 Performance analysis optimization method and system for organic photovoltaic device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001284052A (en) * 2000-04-04 2001-10-12 Matsushita Electric Ind Co Ltd Organic luminous element
JP2002069427A (en) * 2000-06-13 2002-03-08 Matsushita Electric Ind Co Ltd Exciton forming substance; luminescent material, luminescent method, and luminescent element using the same; and device using luminescent element
JP2002100417A (en) * 2000-09-22 2002-04-05 Fuji Xerox Co Ltd Photosemiconductor electrode and photoelectric transfer device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001284052A (en) * 2000-04-04 2001-10-12 Matsushita Electric Ind Co Ltd Organic luminous element
JP2002069427A (en) * 2000-06-13 2002-03-08 Matsushita Electric Ind Co Ltd Exciton forming substance; luminescent material, luminescent method, and luminescent element using the same; and device using luminescent element
JP2002100417A (en) * 2000-09-22 2002-04-05 Fuji Xerox Co Ltd Photosemiconductor electrode and photoelectric transfer device

Also Published As

Publication number Publication date
JP2004303981A (en) 2004-10-28

Similar Documents

Publication Publication Date Title
Ren et al. Global performance evaluation of solar cells using two models: from charge-transfer and recombination mechanisms to photoelectric properties
CN105556693B (en) Organic photosensitive devices with exciton blocking type electric charge carrier filter layer
JP6342905B2 (en) Acceptor and donor energy sensitization in organic photovoltaics.
Heremans et al. Strategies for increasing the efficiency of heterojunction organic solar cells: material selection and device architecture
CN1826186B (en) Improved solar cells and its manufacture method
He et al. Fine-tuning π-spacer for high efficiency performance DSSC: a theoretical exploration with D− π− A based organic dye
Li et al. Recent progress in modeling, simulation, and optimization of polymer solar cells
US8993881B2 (en) Architectures and criteria for the design of high efficiency organic photovoltaic cells
CN102217111B (en) Organic photosensitive devices comprising a squaraine-containing organoheterojunction and methods of making the same
US10141531B2 (en) Hybrid planar-graded heterojunction for organic photovoltaics
Shen et al. Synthesis and photovoltaic properties of powerful electron-donating indeno [1, 2-b] thiophene-based green D–A− π–A sensitizers for dye-sensitized solar cells
He et al. Highly-efficient sensitizer with zinc porphyrin as building block: Insights from DFT calculations
JP6693882B2 (en) Organic photosensitive devices containing exciton blocking charge carrier filters
AU2006283607A1 (en) Increased open-circuit-voltage organic photosensitive devices
Madrid-Úsuga et al. Theoretical characterization of photoactive molecular systems based on BODIPY-derivatives for the design of organic solar cells
Sampson et al. Sequentially Solution-Deposited Active Layer: Ideal Organic Photovoltaic Device Architecture for Boron Subphthalocyanine as a Nonfullerene Acceptor
Zaier et al. Effect of Benzothiadiazole-Based π-Spacers on Fine-Tuning of Optoelectronic Properties of Oligothiophene-Core Donor Materials for Efficient Organic Solar Cells: A DFT Study
JP4665110B2 (en) Evaluation method and manufacturing method of organic solar cell
Cheng et al. Exploration of conjugated π-bridge units in N, N-bis (4-methoxyphenyl) naphthalen-2-amine derivative-based hole transporting materials for perovskite solar cell applications: a DFT and experimental investigation
CN107580730A (en) The organic photosensitive devices of stabilization with the exciton blocking charge carrier filter layer using high glass transition temperature materials
Goodson III Solar fuels: materials, physics, and applications
Saeed et al. Engineering of asymmetric A1-D1-A2-D2-A1 type non-fullerene acceptors of 4T2CSi–4F derivatives to enhance photovoltaic properties: A DFT study
Irfan Absorption spectra and electron injection study of the donor bridge acceptor sensitizers by long range corrected functional
Liang et al. Influence of para-orientating Methoxyl Units on the Electronic Structures and Light Absorption Properties of the Triphenylamine-based dyes by DFT Study
US20240023348A1 (en) Graphene Nanoribbon Photovoltaics

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101109

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees