JP4663899B2 - Circuit board manufacturing method - Google Patents

Circuit board manufacturing method Download PDF

Info

Publication number
JP4663899B2
JP4663899B2 JP2001112275A JP2001112275A JP4663899B2 JP 4663899 B2 JP4663899 B2 JP 4663899B2 JP 2001112275 A JP2001112275 A JP 2001112275A JP 2001112275 A JP2001112275 A JP 2001112275A JP 4663899 B2 JP4663899 B2 JP 4663899B2
Authority
JP
Japan
Prior art keywords
metal plate
circuit
ceramic substrate
dividing
dividing groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001112275A
Other languages
Japanese (ja)
Other versions
JP2002314220A (en
Inventor
好彦 辻村
信行 吉野
豪 岩元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2001112275A priority Critical patent/JP4663899B2/en
Publication of JP2002314220A publication Critical patent/JP2002314220A/en
Application granted granted Critical
Publication of JP4663899B2 publication Critical patent/JP4663899B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Ceramic Products (AREA)
  • Structure Of Printed Boards (AREA)
  • Manufacturing Of Printed Circuit Boards (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、パワーモジュールに使用される回路基板の生産性向上製法に関する。
【0002】
【従来の技術】
近年、ロボット・モーター等の産業機器の高性能化にともない、大電力・高効率インバーター等大電力モジュールの変遷が進み、半導体素子から発生する熱も増加の一途をたどっている。この熱を効率よく放散させるため、大電力モジュール基板では、良好な熱伝導を有する窒化アルミニウム、窒化珪素等のセラミック基板と、その表裏両面に銅板、アルミニウム板等の金属板とを接合し、エッチングによって一方の面に回路、他方の面に放熱板を形成させた後、そのままあるいはNi、Ni−P等のメッキ処理を施して回路基板となし、その回路部分に半導体素子、放熱板にベース板を半田付けしてからヒートシンクに取り付けて使用されている。
【0003】
【発明が解決しようとする課題】
当該分野における今日の課題は、これまでと同等又はそれ以上の高信頼性回路基板の低コスト化であり、本発明の目的はこの課題を達成することである。
【0004】
本発明の目的は、多数個取り回路基板の製造方法において、セラミック基板に分割溝を形成させる段階を、従来(特開平8−32204号公報)は金属板と接合する前の段階で行っていたのを金属板の接合後に行い、それによって、金属板接合時の熱膨張係数の違いによる応力に起因するセラミック基板が分割溝から割れるという不良を減少させ、生産性を著しく向上させることにより、達成させることができる。
【0005】
【課題を解決するための手段】
すなわち、本発明は、以下のa〜e工程を含むことを特徴とする回路基板の製造方法である。
a工程:セラミック基板(2)の表面に回路形成用金属板(1)、裏面に放熱板形成用金属板(3)を接合する工程
b工程:上記金属板(1)及び/又は金属板(3)の表面からセラミック基板内部に達する分割溝(4)を加工する工程
c工程:分割溝で区画された各々の領域に、回路パターンと放熱パターンをレジストインク(5)印刷し乾燥する工程
d工程:エッチングにより不要金属部分と接合層を除去して回路と放熱板を形成させるとともに、分割溝の上面をセラミック基板面に露出させる工程
e工程:レジストインクを剥離し、必要に応じてメッキを施した後、分割溝に沿って複数の回路基板に分割する工程、又は分割溝に沿って複数の回路基板に分割した後、レジストインクを剥離し、必要に応じてメッキを施す工程
【0006】
【発明の実施の形態】
以下、本発明を図面を参照しながら詳しく説明する。
【0007】
図1は、本発明の回路基板の製造方法の工程説明図であり、1は回路形成用金属板、2はセラミック基板、3は放熱板形成用金属板、4は分割溝、5はレジストインクである。
【0008】
本発明で用いられるセラミック基板2は、窒化アルミニウム又は窒化珪素を主体とするものが好ましい。窒化アルミニウムを主体とするものは、曲げ強度、熱伝導率、純度がそれぞれ400MPa以上、150W/mK以上、93%以上であることが好ましく、また窒化珪素を主体とするものは、それぞれ600MPa以上、50W/mK以上、93%以上であることが好ましい。これらのセラミック基板には市販品があるのでそれを用いることができる。セラミック基板の厚みは0.3mm〜1.0mm程度、広さは特に規定しないが、80mm×80mm以上のものが用いると効果が著しい。
【0009】
回路形成用金属板1、放熱板形成用金属板3としては、材質が銅又は銅合金、アルミニウム又はアルミニウム合金等、厚みが0.3mm〜1.0mm程度でセラミック基板よりも薄いもの、また広さがセラミック基板と同程度のものが使用される。
【0010】
セラミック基板と、回路形成用金属板、放熱板形成用金属板との接合にはろう材が用いられ、上記金属板が銅又は銅合金の場合は、Ti、Zr等の活性金属とAgとCuを含むろう材ペースト又は合金箔(例えば特許第2612093号公報)、また金属板がアルミニウム又はアルミニウム合金である場合は、Al−Cu−Mg系合金箔等(例えばヨーロッパ公開公報1056321号)が用いられる。
【0011】
その概要を説明すると、セラミック基板の表裏面にろう材を挟んで回路形成用金属板と放熱板形成用金属板を積層し、その積層体の1セット又は2セット以上を圧力0.5MPa以上で一軸加圧をしながら、真空中又は酸素濃度0.1〜100ppmの窒素雰囲気下、金属が銅の場合は、温度750〜850℃で0.5〜2時間保持して、また金属がアルミニウムの場合は、温度600〜700℃で0.1〜2時間保持して接合体を製造する。
【0012】
本発明の大きな特徴は、上記で製造された接合体の金属板表面から分割溝を加工し、後記エッチングによって個々の回路基板に分割できる状態にすることである。分割溝は、回路形成用金属板、放熱板形成用金属板又はその両方のいずれからでも形成させることできるが、いずれにしてもセラミック基板を貫通させないことが重要なことである。セラミック基板を貫通させて分割溝を形成させると、後でエッチングを行った直後にその部分から回路基板が切り離され不都合となる。セラミック基板内部への分割溝の到達深さは、手で折り曲げて容易にセラミック基板を割れることができる程度あれば良く、具体的には分割溝を形成させない長さを0.8mm以下とすることである。分割溝の形成面は、回路形成用金属板面、放熱板形成用金属板面のいずれでもよいが、一般的に回路よりも放熱板の厚みが薄く設計されるので、加工時の機器に対する負担を考慮し、放熱板側に形成させることが好ましい。図1には、放熱板形成用金属板の表面から分割溝を形成させ、セラミック基板の表面からほぼ中心にまでそれが到達している例を示した。
【0013】
分割溝の形成は、レーザー加工又は機械加工によって行われる。レーザー加工では出力の高い炭酸ガスレーザーが好ましく、機械加工では円盤状の砥石を回転させて切断する「スライサー」又は「ダイサー」と呼ばれる機械を用いることが好ましい。金属板の分割溝加工とセラミック基板の分割溝加工とで、その手法を違えてもよい。たとえば、銅板加工を円盤状砥石を用いた機械加工で行い、窒化アルミニウム基板の加工を炭酸ガスレーザーで行うことによって、分割溝以外の部分に損傷を与えることがなくなるという利点がある。
【0014】
本発明の特徴は、セラミック基板と金属板とを接合した後に分割溝を形成させるため、あらかじめセラミック基板に分割溝を形成させた場合に比べ、接合時の熱膨張差による応力に起因するセラミック基板の分割溝からの割れという問題が著しく減少することである。
【0015】
ついで、分割溝で区画された各領域に、所定形状の回路パターンと、放熱板パターンを形成させるようにレジストインクをスクリーン印刷する。この際、回路パターンと放熱金属板パターンの位置が合うように調整しておくことが肝要なことである。使用するレジストインクは、熱乾燥型、UV乾燥型のいずれでも良いが、過剰な熱履歴を嫌う場合はUV乾燥型が用いられる。
【0016】
その後、不要金属部分と接合層のエッチングを行う。金属部分のエッチング液には、塩化第二銅溶液、塩化第二鉄溶液等が、接合層のエッチング液には、フッ化物溶液、過酸化水素水等が用いられる。この際、分割溝が後の分割に際して問題がない程度にセラミック基板面に露出していることが必要である。
【0017】
エッチング後、レジストインクを剥離し、必要に応じてメッキを施した後、分割溝に沿って複数の回路基板に分割する。分割は、レジストインクの剥離前、また、メッキの前でも問題ないが、生産性を考慮した場合、全ての工程が終了した後分割することが効率的である。
【0018】
【実施例】
以下、本発明を実施例、比較例をあげて具体的に説明する。なお、本明細書に記載の「%」、「部」はいずれも質量基準である。
【0019】
実施例1
【0020】
窒化アルミニウム粉末(電気化学工業社製)96部、イットリア粉末(阿南化成社製)4部、オレイン酸2部を振動ミルにて予備混合を行い、次いで有機結合剤(エチルセルロース)6部、可塑剤(グリセリン)2部及び水12部を加えてミキサーで混合し、それを成形速度1.0m/min、成形圧力5〜7MPaで押出成形した。
【0021】
その後、遠赤外線にて温度120℃、10分間乾燥を行った後、プレス成形機で120×80mmの形状に1800枚打ち抜いた。この際の所要時間は2時間30分であった。これの表面にBN粉離型剤を塗布した後、空気中で温度450℃、5時間で脱脂を行い、1750℃にて6時間保持する条件で焼成し、窒化アルミニウム基板(サイズ:120mm×80mm×0.65mm 曲げ強さ:500MPa 熱伝導率:155W/mK、純度95%以上)を製造した
【0022】
銀粉末(1.1μm、99.3%)83部、銅粉末(14.1μm、99.8%)9部、チタン粉末(5.5μm、99.9%)8部を混合した金属成分と、ポリイソブチルメタアクリレートのテルピネオール溶液を加えて混練し、金属成分71.4%を含むろう材ペーストを調製した。
【0023】
このろう材ペーストを上記で製造された窒化アルミニウム基板の両面にロールコーターによって全面に塗布した。その際の塗布量は乾燥基準で9mg/cm2 とした。
【0024】
つぎに、窒化アルミニウム基板の銅回路形成面に120mm×80mm×0.3mmの無酸素銅板(酸素量:10ppm)を、また放熱銅板形成面に120mm×80mm×0.15mmの無酸素銅板(酸素量:10ppm)を1800枚分接触配置してから、850℃で1時間保持する条件で接合した。そして、後の分割によって、40mm×40mmの大きさの回路基板が6個とれるように、放熱板形成用銅板側から、不二越社製「高精度スライサーSMG20P」を用いて分割溝を加工した。分割溝は銅板を貫通し、窒化アルミニウム基板表面から0.2mmまでとした。
【0025】
銅回路形成用銅板面には所定形状の回路パターンに、放熱板形成用銅板面には放熱板パターンに、レジストインクをそれぞれスクリーン印刷してから不要銅部分と接合層のエッチングを行った後、分割溝に沿って個々の回路基板に分割して計10800枚の回路基板を製造した。レジストインクをスクリーン印刷する工程の所要時間は、2時間30分であった。また、分割溝から割れが発生しているものは1枚もなかった。
【0026】
実施例2
分割する前の基板の回路面と放熱板面に、無電解Ni−Pメッキ(厚み3μm)を施したこと以外は、実施例1と同様にして計10800枚の回路基板を作製した。その結果、途中の工程で分割溝から割れが発生しているものは1枚もなかった。
【0027】
実施例3
窒化珪素粉末(電気化学工業社製)92部、イットリア粉末(阿南化成社製)5部、酸化マグネシウム粉末(岩谷化学社製)3部、オレイン酸2部を振動ミルにて予備混合を行い、次いで有機結合剤(エチルセルロース)6部、可塑剤(グリセリン)2部及び水12部を加えてミキサーで混合し、それを成形速度1.0m/min、成形圧力5〜7MPaで押出成形した。
【0028】
その後、遠赤外線にて温度120℃、10分間乾燥を行った後、プレス成形機で120×80mmの形状に1800枚打ち抜いた。この際の所要時間は2時間30分であった。これの表面にBN粉離型剤を塗布した後、空気中で温度450℃、5時間で脱脂を行い、0.9MPaの圧力下、1850℃にて6時間保持する条件で焼成し、窒化珪素基板(サイズ:120mm×80mm×0.32mm曲げ強さ:700MPa 熱伝導率:70W/mK、純度92%以上)を製造した。
【0029】
上記窒化珪素基板を用いたこと以外は、実施例1と同様にして、計10800枚の回路基板を作製した。その結果、分割溝から割れが発生しているものは1枚もなかった。
【0030】
比較例1
実施例1と同様に窒化アルミニウム原料を押し出し成形し、プレス成形機で40×40mmの形状に10800枚打ち抜いた。この際の所要時間は15時間であった。これの表面にBN粉離型剤を塗布した後、空気中で温度450℃、5時間で脱脂を行い、1750℃にて6時間保持する条件で焼成し、窒化アルミニウム基板(サイズ:40mm×40mm×0.65mm 曲げ強さ:500MPa
熱伝導率:155W/mK、純度95%以上)を製造した。
【0031】
つぎに、窒化アルミニウム基板の銅回路形成面に40mm×40mm×0.3mmの無酸素銅板(酸素量:10ppm)を、また放熱銅板形成面に40mm×40mm×0.15mmの無酸素銅板(酸素量:10ppm)を10800枚分接触配置してから、850℃で1時間保持する条件で接合した。
【0032】
銅回路形成用銅板面には所定形状の回路パターンに、放熱板形成用銅板面には放熱板パターンに、レジストインクをそれぞれスクリーン印刷してから不要銅部分と接合層のエッチングを行い、回路基板を計10800枚作製した。この場合のレジストインクをスクリーン印刷する工程の所要時間は、15時間であった。
【0033】
以上のことから、同じ形状の回路基板を10800枚製造するのに、実施例1と比較例1とでは計25時間の差が生じた。しかし、ピール強度、ヒートサイクル後の強度、水平クラックの進展度合いを評価したところ、実施例1と比較例1とには差異が認められなかった。
【0034】
比較例2
あらかじめ深さ0.07mmの分割溝を設けた窒化アルミニウム基板を用いたこと以外は、実施例1に準じて銅板を接合し、レジストインク印刷、エッチングを行い、計10800枚の回路基板を製造した。その結果、分割溝から割れが発生しているものが、元の接合体1800枚中200枚あった。
【0035】
比較例3
あらかじめ深さ0.07mmの分割線を設けた窒化珪素基板を用いたこと以外は、実施例3に準じて銅板を接合し、レジストインク印刷、エッチングを行い、計10800枚の回路基板を製造した。その結果、分割溝から割れが発生しているものが、元の接合体1800枚中100枚あった。
【0036】
【発明の効果】
本発明によれば、高信頼性回路基板の生産性を著しく向上させることができるので低コスト化が可能となる。
【図面の簡単な説明】
【図1】本発明の工程説明図
【符号の説明】
1 回路形成用金属板
2 セラミック基板
3 放熱板形成用金属板
4 分割溝
5 レジストインク
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for improving productivity of a circuit board used in a power module.
[0002]
[Prior art]
In recent years, with the improvement in performance of industrial equipment such as robots and motors, the transition of high power modules such as high power and high efficiency inverters has progressed, and the heat generated from semiconductor elements has been increasing. In order to dissipate this heat efficiently, etching is performed on a high-power module substrate by bonding a ceramic substrate such as aluminum nitride or silicon nitride with good thermal conductivity and a metal plate such as a copper plate or aluminum plate on both front and back sides. After forming a circuit on one surface and a heat sink on the other surface, a circuit board is formed as it is or by plating with Ni, Ni-P or the like, a semiconductor element in the circuit portion, and a base plate in the heat sink It is used after being soldered and attached to a heat sink.
[0003]
[Problems to be solved by the invention]
Today's problem in this field is to reduce the cost of a highly reliable circuit board equivalent to or higher than before, and the object of the present invention is to achieve this problem.
[0004]
An object of the present invention is to form a dividing groove in a ceramic substrate in a method for manufacturing a multi-chip circuit board, and in the prior art (Japanese Patent Laid-Open No. 8-32204), it was performed at a stage before joining to a metal plate. Is achieved after joining the metal plates, thereby reducing the defect that the ceramic substrate breaks from the split groove due to the stress due to the difference in thermal expansion coefficient at the time of metal plate joining, and significantly improving productivity Can be made.
[0005]
[Means for Solving the Problems]
That is, this invention is a manufacturing method of the circuit board characterized by including the following ae processes.
Step a: Step of bonding the metal plate for circuit formation (1) to the front surface of the ceramic substrate (2) and the metal plate for heat sink formation (3) on the back surface Step b: The metal plate (1) and / or the metal plate ( 3) Step c of processing the dividing groove (4) reaching from the surface to the inside of the ceramic substrate: Step d of printing a circuit pattern and a heat radiation pattern on each region partitioned by the dividing groove and drying the resist ink (5) Process: Remove unnecessary metal parts and bonding layer by etching to form a circuit and a heat sink, and also expose the upper surface of the dividing groove to the ceramic substrate surface. E Process: Strip resist ink and apply plating if necessary After dividing, dividing into a plurality of circuit boards along the dividing grooves, or dividing into a plurality of circuit boards along the dividing grooves, and then removing the resist ink and plating as necessary
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the drawings.
[0007]
FIG. 1 is a process explanatory diagram of a method for producing a circuit board according to the present invention, wherein 1 is a metal plate for circuit formation, 2 is a ceramic substrate, 3 is a metal plate for heat dissipation plate, 4 is a dividing groove, and 5 is a resist ink. It is.
[0008]
The ceramic substrate 2 used in the present invention is preferably composed mainly of aluminum nitride or silicon nitride. Those mainly composed of aluminum nitride preferably have a bending strength, thermal conductivity and purity of 400 MPa or more, 150 W / mK or more and 93% or more, respectively, and those mainly composed of silicon nitride each have 600 MPa or more, It is preferably 50 W / mK or more and 93% or more. Since these ceramic substrates are commercially available, they can be used. The thickness of the ceramic substrate is about 0.3 mm to 1.0 mm, and the width is not particularly specified, but the effect is remarkable when a substrate of 80 mm × 80 mm or more is used.
[0009]
As the metal plate 1 for circuit formation and the metal plate 3 for heat radiation plate, the material is copper or copper alloy, aluminum or aluminum alloy, etc., and the thickness is about 0.3 mm to 1.0 mm, which is thinner than the ceramic substrate. The same size as the ceramic substrate is used.
[0010]
A brazing material is used to join the ceramic substrate, the metal plate for circuit formation, and the metal plate for heat dissipation plate. When the metal plate is copper or a copper alloy, an active metal such as Ti or Zr, Ag and Cu In the case where the metal plate is aluminum or an aluminum alloy, an Al—Cu—Mg alloy foil or the like (for example, European Publication No. 1056321) is used. .
[0011]
The outline will be described. A metal plate for circuit formation and a metal plate for heat dissipation plate are laminated with a brazing material sandwiched between the front and back surfaces of a ceramic substrate, and one set or two or more sets of the laminate is applied at a pressure of 0.5 MPa or more. When the metal is copper in a vacuum or in a nitrogen atmosphere with an oxygen concentration of 0.1 to 100 ppm with uniaxial pressurization, hold at a temperature of 750 to 850 ° C. for 0.5 to 2 hours. In this case, the joined body is manufactured by holding at a temperature of 600 to 700 ° C. for 0.1 to 2 hours.
[0012]
A major feature of the present invention is that the dividing grooves are processed from the surface of the metal plate of the joined body manufactured as described above and can be divided into individual circuit boards by etching described later. The dividing groove can be formed from any one of the circuit forming metal plate, the heat radiating plate forming metal plate, or both, but in any case, it is important not to penetrate the ceramic substrate. If the dividing groove is formed by penetrating the ceramic substrate, the circuit substrate is cut off from the portion immediately after the etching is performed later, which is inconvenient. The depth at which the dividing groove reaches the inside of the ceramic substrate may be as long as the ceramic substrate can be easily broken by bending by hand. Specifically, the length at which the dividing groove is not formed should be 0.8 mm or less. It is. The formation surface of the dividing groove may be either a metal plate surface for circuit formation or a metal plate surface for heat dissipation plate, but since the thickness of the heat dissipation plate is generally designed to be thinner than the circuit, the burden on the equipment during processing In view of the above, it is preferable to form it on the heat sink side. FIG. 1 shows an example in which a dividing groove is formed from the surface of the metal plate for heat radiation plate formation and reaches almost the center from the surface of the ceramic substrate.
[0013]
The division grooves are formed by laser processing or machining. In laser processing, a carbon dioxide laser with high output is preferable, and in machining, it is preferable to use a machine called “slicer” or “dicer” that rotates and cuts a disk-shaped grindstone. The method may be different between the dividing groove processing of the metal plate and the dividing groove processing of the ceramic substrate. For example, copper plate processing is performed by machining using a disk-shaped grindstone, and processing of the aluminum nitride substrate is performed by a carbon dioxide gas laser, so that there is an advantage that portions other than the division grooves are not damaged.
[0014]
The feature of the present invention is that the divided grooves are formed after the ceramic substrate and the metal plate are joined. Therefore, compared to the case where the divided grooves are formed in the ceramic substrate in advance, the ceramic substrate caused by the stress due to the difference in thermal expansion at the time of joining. The problem of cracks from the split grooves is significantly reduced.
[0015]
Next, a resist ink is screen-printed so as to form a circuit pattern of a predetermined shape and a heat sink pattern in each region partitioned by the dividing grooves. At this time, it is important to adjust the circuit pattern and the radiating metal plate pattern so that the positions match each other. The resist ink to be used may be either a heat-drying type or a UV-drying type, but a UV-drying type is used when an excessive heat history is disliked.
[0016]
Thereafter, the unnecessary metal portion and the bonding layer are etched. A cupric chloride solution, a ferric chloride solution, or the like is used as the metal portion etching solution, and a fluoride solution, hydrogen peroxide solution, or the like is used as the bonding layer etching solution. At this time, it is necessary that the dividing groove is exposed on the ceramic substrate surface to the extent that there is no problem in the subsequent division.
[0017]
After the etching, the resist ink is peeled off, plated if necessary, and then divided into a plurality of circuit boards along the dividing grooves. The division is not a problem even before the resist ink is peeled off or before plating. However, in consideration of productivity, it is efficient to divide after all the steps are completed.
[0018]
【Example】
Hereinafter, the present invention will be specifically described with reference to examples and comparative examples. In the present specification, “%” and “part” are based on mass.
[0019]
Example 1
[0020]
96 parts of aluminum nitride powder (manufactured by Denki Kagaku Kogyo Co., Ltd.), 4 parts of yttria powder (manufactured by Anan Kasei Co., Ltd.) and 2 parts of oleic acid are premixed in a vibration mill, and then 6 parts of organic binder (ethyl cellulose) and plasticizer 2 parts of (glycerin) and 12 parts of water were added and mixed with a mixer, which was extrusion molded at a molding speed of 1.0 m / min and a molding pressure of 5 to 7 MPa.
[0021]
Then, after drying for 10 minutes at a temperature of 120 ° C. with far infrared rays, 1800 sheets were punched into a 120 × 80 mm shape with a press molding machine. The required time at this time was 2 hours and 30 minutes. After applying a BN powder release agent on the surface of this, degreasing in air at a temperature of 450 ° C. for 5 hours and firing at 1750 ° C. for 6 hours, an aluminum nitride substrate (size: 120 mm × 80 mm) × 0.65 mm Bending strength: 500 MPa Thermal conductivity: 155 W / mK, purity of 95% or more) was produced.
A metal component in which 83 parts of silver powder (1.1 μm, 99.3%), 9 parts of copper powder (14.1 μm, 99.8%) and 8 parts of titanium powder (5.5 μm, 99.9%) were mixed, Then, a terpineol solution of polyisobutyl methacrylate was added and kneaded to prepare a brazing paste containing 71.4% of a metal component.
[0023]
This brazing material paste was applied to the entire surface of the aluminum nitride substrate produced above by a roll coater. The coating amount at that time was 9 mg / cm 2 on a dry basis.
[0024]
Next, an oxygen-free copper plate of 120 mm × 80 mm × 0.3 mm (oxygen amount: 10 ppm) is formed on the copper circuit forming surface of the aluminum nitride substrate, and an oxygen-free copper plate of 120 mm × 80 mm × 0.15 mm is formed on the heat-dissipating copper plate forming surface. The amount of 10 ppm) was placed in contact for 1800 sheets, and then bonded under the condition of holding at 850 ° C. for 1 hour. And the division | segmentation groove | channel was processed from the copper board for heat sink formation using the "high precision slicer SMG20P" by Fujikoshi so that six circuit boards of the magnitude | size of 40 mm x 40 mm could be taken by the subsequent division | segmentation. The dividing groove penetrated the copper plate and was 0.2 mm from the surface of the aluminum nitride substrate.
[0025]
After etching the unnecessary copper part and the bonding layer after screen printing the resist ink on the copper plate surface for copper circuit formation to a circuit pattern of a predetermined shape, to the heat sink plate pattern on the copper plate surface for heat sink, respectively, A total of 10800 circuit boards were manufactured by dividing into individual circuit boards along the dividing grooves. The time required for the step of screen printing the resist ink was 2 hours 30 minutes. In addition, none of the split grooves had cracks.
[0026]
Example 2
A total of 10800 circuit boards were fabricated in the same manner as in Example 1 except that the electroless Ni-P plating (thickness 3 μm) was applied to the circuit surface and the heat sink surface of the substrate before division. As a result, there was no sheet in which a crack was generated from the dividing groove in the middle of the process.
[0027]
Example 3
92 parts of silicon nitride powder (manufactured by Denki Kagaku Kogyo Co., Ltd.), 5 parts of yttria powder (manufactured by Anan Kasei Co., Ltd.), 3 parts of magnesium oxide powder (manufactured by Iwatani Chemical Co., Ltd.) and 2 parts of oleic acid are premixed in a vibration mill. Next, 6 parts of an organic binder (ethyl cellulose), 2 parts of a plasticizer (glycerin) and 12 parts of water were added and mixed with a mixer, which was extruded at a molding speed of 1.0 m / min and a molding pressure of 5 to 7 MPa.
[0028]
Then, after drying for 10 minutes at a temperature of 120 ° C. with far infrared rays, 1800 sheets were punched into a 120 × 80 mm shape with a press molding machine. The required time at this time was 2 hours and 30 minutes. After applying a BN powder release agent on the surface of this, degreasing was performed in air at a temperature of 450 ° C. for 5 hours, and firing was performed at a pressure of 0.9 MPa for 6 hours at 1850 ° C. A substrate (size: 120 mm × 80 mm × 0.32 mm bending strength: 700 MPa thermal conductivity: 70 W / mK, purity 92% or more) was produced.
[0029]
A total of 10800 circuit boards were produced in the same manner as in Example 1 except that the silicon nitride substrate was used. As a result, none of the cracks occurred from the dividing grooves.
[0030]
Comparative Example 1
In the same manner as in Example 1, an aluminum nitride raw material was extruded and punched out into a shape of 40 × 40 mm with a press molding machine. The required time at this time was 15 hours. After applying a BN powder release agent on the surface of this, degreasing was performed in air at a temperature of 450 ° C. for 5 hours and firing at 1750 ° C. for 6 hours to obtain an aluminum nitride substrate (size: 40 mm × 40 mm). × 0.65mm Bending strength: 500MPa
Thermal conductivity: 155 W / mK, purity of 95% or more) was produced.
[0031]
Next, an oxygen-free copper plate of 40 mm × 40 mm × 0.3 mm (oxygen amount: 10 ppm) is formed on the copper circuit forming surface of the aluminum nitride substrate, and an oxygen-free copper plate of 40 mm × 40 mm × 0.15 mm is formed on the heat-dissipating copper plate forming surface. (Amount: 10 ppm) was placed in contact for 10800 sheets, and then bonded under the condition of holding at 850 ° C. for 1 hour.
[0032]
Print a resist pattern on the copper circuit board surface for copper circuit formation and a heat sink pattern on the copper board surface for heatsink formation by screen-printing resist ink, and then etch unnecessary copper parts and bonding layers. A total of 10800 sheets were produced. In this case, the time required for the step of screen printing the resist ink was 15 hours.
[0033]
From the above, a total of 25 hours of difference between Example 1 and Comparative Example 1 occurred when 10800 circuit boards having the same shape were manufactured. However, when the peel strength, the strength after heat cycle, and the progress of horizontal cracks were evaluated, no difference was found between Example 1 and Comparative Example 1.
[0034]
Comparative Example 2
A total of 10800 circuit boards were manufactured by bonding a copper plate according to Example 1, performing resist ink printing, and etching, except that an aluminum nitride substrate provided with dividing grooves having a depth of 0.07 mm in advance was used. . As a result, 200 of the 1800 original bonded bodies were cracked from the dividing grooves.
[0035]
Comparative Example 3
Except for using a silicon nitride substrate provided with a dividing line having a depth of 0.07 mm in advance, a copper plate was bonded in accordance with Example 3, and resist ink printing and etching were performed to produce a total of 10800 circuit boards. . As a result, 100 of the 1800 original joined bodies were cracked from the dividing grooves.
[0036]
【The invention's effect】
According to the present invention, the productivity of the highly reliable circuit board can be remarkably improved, so that the cost can be reduced.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of the process of the present invention.
1 Metal plate for circuit formation 2 Ceramic substrate 3 Metal plate for heat sink plate 4 Dividing groove 5 Resist ink

Claims (1)

以下のa〜e工程を含むことを特徴とする回路基板の製造方法。
a工程:セラミック基板(2)の表面に回路形成用金属板(1)、裏面に放熱板形成用金属板(3)を接合する工程
b工程:上記金属板(1)及び/又は金属板(3)の表面からセラミック基板内部に達する分割溝(4)を加工する工程
c工程:分割溝で区画された各々の領域に、回路パターンと放熱パターンをレジストインク(5)印刷し乾燥する工程
d工程:エッチングにより不要金属部分と接合層を除去して回路と放熱板を形成させるとともに、分割溝の上面をセラミック基板面に露出させる工程
e工程:レジストインクを剥離し、必要に応じてメッキを施した後、分割溝に沿って複数の回路基板に分割する工程、又は分割溝に沿って複数の回路基板に分割した後、レジストインクを剥離し、必要に応じてメッキを施す工程
The manufacturing method of the circuit board characterized by including the following ae processes.
Step a: Step of joining the metal plate for circuit formation (1) to the front surface of the ceramic substrate (2) and the metal plate for heat sink formation (3) to the back surface Step b: The metal plate (1) and / or the metal plate ( 3) Step c of processing the dividing groove (4) reaching the inside of the ceramic substrate from the surface: Step d of printing the circuit pattern and the heat radiation pattern in each region partitioned by the dividing groove and drying the resist ink (5) Process: Remove unnecessary metal part and bonding layer by etching to form a circuit and a heat sink, and expose the upper surface of the dividing groove to the ceramic substrate surface. E Process: Strip resist ink and apply plating if necessary After the step, the step of dividing into a plurality of circuit boards along the dividing groove, or the step of dividing the resist ink after separation into the plurality of circuit boards along the dividing groove, and plating as necessary
JP2001112275A 2001-04-11 2001-04-11 Circuit board manufacturing method Expired - Lifetime JP4663899B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001112275A JP4663899B2 (en) 2001-04-11 2001-04-11 Circuit board manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001112275A JP4663899B2 (en) 2001-04-11 2001-04-11 Circuit board manufacturing method

Publications (2)

Publication Number Publication Date
JP2002314220A JP2002314220A (en) 2002-10-25
JP4663899B2 true JP4663899B2 (en) 2011-04-06

Family

ID=18963724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001112275A Expired - Lifetime JP4663899B2 (en) 2001-04-11 2001-04-11 Circuit board manufacturing method

Country Status (1)

Country Link
JP (1) JP4663899B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4744385B2 (en) * 2006-07-28 2011-08-10 京セラ株式会社 Heat dissipation board and electronic device using the same
KR101056154B1 (en) * 2008-11-13 2011-08-11 삼성전기주식회사 Unit board manufacturing method
JP5413485B2 (en) * 2012-05-18 2014-02-12 日立金属株式会社 Circuit board manufacturing method and circuit board
JP6398243B2 (en) * 2014-03-20 2018-10-03 三菱マテリアル株式会社 Power module substrate manufacturing method
WO2020105160A1 (en) * 2018-11-22 2020-05-28 日本碍子株式会社 Method for producing bonded substrate
JP7503069B2 (en) 2019-09-20 2024-06-19 デンカ株式会社 Composite substrate and manufacturing method thereof, and circuit substrate and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05198917A (en) * 1992-01-20 1993-08-06 Toshiba Corp Manufacture of ceramic circuit board
JPH0832204A (en) * 1994-07-19 1996-02-02 Dowa Mining Co Ltd Production of ceramic wiring board
JPH09157055A (en) * 1995-12-06 1997-06-17 Dowa Mining Co Ltd Metal-ceramic composite substrate having spot or line joint and its production
JPH09162521A (en) * 1995-12-04 1997-06-20 Shinko Electric Ind Co Ltd Manufacture of ceramic terminal

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05198917A (en) * 1992-01-20 1993-08-06 Toshiba Corp Manufacture of ceramic circuit board
JPH0832204A (en) * 1994-07-19 1996-02-02 Dowa Mining Co Ltd Production of ceramic wiring board
JPH09162521A (en) * 1995-12-04 1997-06-20 Shinko Electric Ind Co Ltd Manufacture of ceramic terminal
JPH09157055A (en) * 1995-12-06 1997-06-17 Dowa Mining Co Ltd Metal-ceramic composite substrate having spot or line joint and its production

Also Published As

Publication number Publication date
JP2002314220A (en) 2002-10-25

Similar Documents

Publication Publication Date Title
JP4401096B2 (en) Circuit board manufacturing method
JP2013235936A (en) Manufacturing method of cooler
JP7212700B2 (en) CERAMIC-COPPER COMPOSITE, CERAMIC CIRCUIT BOARD, POWER MODULE, AND CERAMIC-COPPER COMPOSITE MANUFACTURING METHOD
JP4812985B2 (en) Method of joining ceramic body and copper plate
JP6853455B2 (en) Manufacturing method of board for power module
JP4663899B2 (en) Circuit board manufacturing method
JP4674983B2 (en) Manufacturing method of joined body
JPH09148491A (en) Power semiconductor substrate, and its manufacture
JPH09181423A (en) Ceramic circuit board
JP6020256B2 (en) Manufacturing method of power module substrate with heat sink
JP2594475B2 (en) Ceramic circuit board
JP2005129625A (en) Circuit board with slit and manufacturing method therefor
JP3924479B2 (en) Manufacturing method of ceramic circuit board
JP3419620B2 (en) Method for manufacturing ceramic circuit board having metal circuit
JP3454331B2 (en) Circuit board and method of manufacturing the same
JP7330382B2 (en) Composite substrate
JPH04322491A (en) Manufacture of ceramic circuit board
JP3729637B2 (en) Electronic components
JP3537320B2 (en) Circuit board
JP3712378B2 (en) Circuit board with terminal and manufacturing method thereof
WO2022131273A1 (en) Ceramic scribe substrate, ceramic substrate, method for manufacturing ceramic scribe substrate, method for manufacturing ceramic substrate, method for manufacturing ceramic circuit board, and method for manufacturing semiconductor element
JPH10145039A (en) Printed circuit board and evaluation and manufacture thereof
JP7281603B2 (en) Composite substrate
JP3219545B2 (en) Method for manufacturing aluminum oxide substrate having copper circuit
JP2018195784A (en) Method for manufacturing ceramic circuit board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110106

R150 Certificate of patent or registration of utility model

Ref document number: 4663899

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term