JP4661242B2 - スペーサの製造方法、及び平面型表示装置の組立方法 - Google Patents

スペーサの製造方法、及び平面型表示装置の組立方法 Download PDF

Info

Publication number
JP4661242B2
JP4661242B2 JP2005023707A JP2005023707A JP4661242B2 JP 4661242 B2 JP4661242 B2 JP 4661242B2 JP 2005023707 A JP2005023707 A JP 2005023707A JP 2005023707 A JP2005023707 A JP 2005023707A JP 4661242 B2 JP4661242 B2 JP 4661242B2
Authority
JP
Japan
Prior art keywords
panel
spacer
electron emission
fine particles
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005023707A
Other languages
English (en)
Other versions
JP2006210258A (ja
Inventor
紳治 久保田
知生 小杉
靖 伊藤
敦司 関
直彦 鈴村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2005023707A priority Critical patent/JP4661242B2/ja
Publication of JP2006210258A publication Critical patent/JP2006210258A/ja
Application granted granted Critical
Publication of JP4661242B2 publication Critical patent/JP4661242B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)
  • Vessels, Lead-In Wires, Accessory Apparatuses For Cathode-Ray Tubes (AREA)
  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)

Description

本発明は、例えば、文字や画像等の情報を表示する平面型表示装置において使用されるスペーサ、係るスペーサが組み込まれた平面型表示装置及びその組立方法、並びに、蛍光体層の表面形状に特徴を有する平面型表示装置に関する。
現在主流の陰極線管(CRT)に代わる画像表示装置として、平面型(フラットパネル形式)の表示装置が種々検討されている。このような平面型の表示装置として、液晶表示装置(LCD)、エレクトロルミネッセンス表示装置(ELD)、プラズマ表示装置(PDP)を例示することができる。また、電子放出素子を組み込んだ平面型表示装置の開発も進められている。ここで、電子放出素子として、冷陰極電界電子放出素子、金属/絶縁膜/金属型素子(MIM素子も呼ばれる)、表面伝導型電子放出素子が知られており、これらの冷陰極電子源から構成された電子放出素子を組み込んだ平面型表示装置は、高解像度、高輝度のカラー表示、及び、低消費電力の観点から注目を集めている。
冷陰極電界電子放出素子を組み込んだ平面型表示装置である冷陰極電界電子放出表示装置(以下、表示装置と略称する場合がある)は、一般に、2次元マトリクス状に配列された各画素に対応した電子放出領域を有するカソードパネルと、電子放出領域から放出された電子との衝突により励起されて発光する蛍光体層を有するアノードパネルとが、真空層を介して対向配置された構成を有する。電子放出領域には、通常、1又は複数の冷陰極電界電子放出素子(以下、電界放出素子と略称する場合がある)が設けられている。電界放出素子として、スピント型、扁平型、エッジ型、平面型等を挙げることができる。
一例として、スピント型電界放出素子を有する表示装置の概念的な一部端面図を図2に示し、カソードパネルCP及びアノードパネルAPを分解したときのカソードパネルCPとアノードパネルAPの一部分の模式的な分解斜視図を図3に示す。この表示装置を構成するスピント型電界放出素子は、支持体10に形成されたカソード電極11と、支持体10及びカソード電極11上に形成された絶縁層12と、絶縁層12上に形成されたゲート電極13と、ゲート電極13及び絶縁層12に設けられた開口部14(ゲート電極13に設けられた第1開口部14Aと、絶縁層12に設けられた第2開口部14B)と、開口部14の底部に位置するカソード電極11上に形成された円錐形の電子放出部15から構成されている。
あるいは又、略平面状の電子放出部15Aを有する、所謂扁平型電界放出素子を有する表示装置の概念的な一部端面図を図4に示す。この電界放出素子は、支持体10上に形成されたカソード電極11と、支持体10及びカソード電極11上に形成された絶縁層12と、絶縁層12上に形成されたゲート電極13と、ゲート電極13及び絶縁層12に設けられた開口部14(ゲート電極13に設けられた第1開口部14A、及び、絶縁層12に設けられた第2開口部14B)と、開口部14の底部に位置するカソード電極11上に形成された電子放出部15Aから構成されている。電子放出部15Aは、例えば、マトリックスに一部分が埋め込まれた多数のカーボン・ナノチューブから構成されている。
これらの表示装置において、カソード電極11は、第1方向に延びる帯状であり、ゲート電極13は、第1方向とは異なる第2方向に延びる帯状である(図3参照)。一般に、カソード電極11とゲート電極13とは、これらの両電極11,13の射影像が互いに直交する方向に各々帯状に形成されている。帯状のカソード電極11と帯状のゲート電極13とが重複する重複領域が、電子放出領域EAであり、1サブピクセルに相当する。そして、係る電子放出領域EAが、カソードパネルCPの有効領域(実際の表示部分として機能する領域)内に、通常、2次元マトリックス状に配列されている。
一方、アノードパネルAPは、基板20上に所定のパターンを有する蛍光体層22(具体的には、赤色発光蛍光体層22R、緑色発光蛍光体層22G、及び、青色発光蛍光体層22B)が形成され、蛍光体層22がアノード電極24で覆われた構造を有する。尚、これらの蛍光体層22の間は、カーボン等の光吸収性材料から成る光吸収層(ブラックマトリックス)23で埋め込まれており、表示画像の色濁り、光学的クロストークの発生を防止している。尚、図中、参照番号21は隔壁を表し、参照番号140は従来のスペーサを表し、参照番号25はスペーサ保持部を表し、参照番号26は枠体を表し、参照番号16は収束電極を表す。図3及び図4においては、隔壁やスペーサ、スペーサ保持部、収束電極の図示を省略した。
アノード電極24は、蛍光体層22からの発光を反射させる反射膜としての機能の他、蛍光体層22から反跳した電子、あるいは、蛍光体層22から放出された2次電子(以下、これらの電子を総称して、後方散乱電子と呼ぶ)を反射させる反射膜としての機能、蛍光体層22の帯電防止といった機能を有する。また、隔壁21は、後方散乱電子が他の蛍光体層22に衝突し、所謂光学的クロストーク(色濁り)が発生することを防止する機能を有する。
1サブピクセルは、カソードパネル側の電子放出領域EAと、これらの電界放出素子の一群に対面したアノードパネル側の蛍光体層22とによって構成されている。有効領域には、係る画素が、例えば数十万〜数百万個ものオーダーにて配列されている。
そして、アノードパネルAPとカソードパネルCPとを、電子放出領域EAと蛍光体層22とが対向するように配置し、周縁部において枠体26を介して接合した後、排気し、封止することによって、表示装置を作製することができる。アノードパネルAPとカソードパネルCPと枠体26とによって囲まれた空間は高真空(例えば、1×10-3Pa以下)となっている。
従って、アノードパネルAPとカソードパネルCPとの間にスペーサ140を配設しておかないと、大気圧によって表示装置が損傷を受けてしまう。尚、従来のスペーサ140の表面には、通常、例えば、CrOxやCrAlxyから成る帯電防止膜(図示せず)が形成されている。
カソード電極11には相対的に負電圧がカソード電極制御回路31から印加され、ゲート電極13には相対的に正電圧がゲート電極制御回路32から印加され、アノード電極24にはゲート電極13よりも更に高い正電圧がアノード電極制御回路33から印加される。係る表示装置において表示を行う場合、例えば、カソード電極11にカソード電極制御回路31から走査信号を入力し、ゲート電極13にゲート電極制御回路32からビデオ信号を入力する。あるいは、カソード電極11にカソード電極制御回路31からビデオ信号を入力し、ゲート電極13にゲート電極制御回路32から走査信号を入力する。カソード電極11とゲート電極13との間に電圧を印加した際に生ずる電界により、量子トンネル効果に基づき電子放出部15,15Aから電子が放出され、この電子がアノード電極24に引き付けられ、アノード電極24を通過して蛍光体層22に衝突する。その結果、蛍光体層22が励起されて発光し、所望の画像を得ることができる。つまり、この冷陰極電界電子放出表示装置の動作は、基本的に、ゲート電極13に印加される電圧、及び、カソード電極11に印加される電圧によって制御される。
図25、図26、図27に、スペーサ140の近傍に位置する1サブピクセルにおける電子あるいは電子ビームの軌道を模式的に示す。尚、図25、図26、図27にあっては、アノード電極や光吸収層(ブラックマトリックス)の図示を省略している。また、ゲート電極13は図面の紙面垂直方向に延び、カソード電極11は図面の紙面と平行な方向に延びる。
図25に示すように、アノードパネルAPにおけるアノード電極(図示せず)を通過し、蛍光体層22に衝突した電子の一部は、図26に示すように、蛍光体層22で後方散乱され、後方散乱電子の一部はスペーサ140に衝突する。
ところで、このような後方散乱電子は様々な問題を引き起こす。
即ち、第1の問題として、色純度の低下を挙げることができる。後方散乱電子は、本来発光させようとしている蛍光体層に隣接する蛍光体層に再衝突し、係る蛍光体層を発光させる。特に、単色表示時に異なる色が発光することが色純度低下を引き起こし、画質低下といった非常に大きな問題を生じさせる。隔壁21が設けられているが、このような問題を解決するには十分ではない。従って、後方散乱電子量を低減することが重要である。また、スペーサ140の近傍にあっては、スペーサ140の近傍に位置する蛍光体層22等からの後方散乱電子に起因した色純度低下がスペーサ140の存在によって抑制されるために、色ムラとしてスペーサが認識されてしまう。
第2の問題として、スペーサ140がチャージアップする(帯電する)ことによって、電子ビーム軌道が変化する結果、スペーサ140が視認されてしまうといった問題を挙げることができる。
即ち、スペーサ140の近傍において、後方散乱電子の一部はスペーサ140に衝突する。一般に、絶縁耐圧に優れているセラミック材料やガラス等の材料は、全2次電子放出係数(TSEEY)の値が比較的高く、スペーサ140に電子が衝突する広いエネルギー領域で、全2次電子放出係数の値は1を超える値である。ここで、全2次電子放出係数(TSEEY)は、2次電子放出係数(SEEC)と反射電子係数(BC)の和で表される。そして、図28に示すように、全2次電子放出係数は、電子ビームのエネルギーの関数であり、概ね全ての物質において450eV付近で最大値を取る。また、物質の表面に入射する入射角θによっても、全2次電子放出係数は変化する。ここで、図28には、入射角θが0度、30度、60度、80度における、電子ビームのエネルギーと全2次電子放出係数(TSEEY)の関係を示している。図28からも、電子がスペーサ140に斜めから入射した場合には、全2次電子放出係数の値は大きくなることが判る。
図29の(A)に、スペーサ140に衝突する電子のエネルギー分布を示し、図29の(B)に、スペーサ140に衝突する電子の角度分布を示す。10keVのエネルギーを有する電子ビームを蛍光体層22に照射した場合の後方散乱電子は、一旦、カソードパネルCP側に向かうが、電界はアノードパネルAP側が正になっているので、後述するように、所謂、放物線軌道を取る。このため、電子は、スペーサ140に対して様々なエネルギー分布(図29の(A)参照)及び様々な角度で入射(衝突)する(図29の(B)参照)。理想的には、スペーサ140の表面の全2次電子放出係数が1であれば、スペーサ140の表面においてチャージアップは生じない。しかしながら、様々な角度、様々なエネルギーでスペーサ140に入射(衝突)する電子に対して、全2次電子放出係数を1にすることは殆ど不可能である。尚、帯電防止膜は、十分に機能しているとは云い難い。
その結果、スペーサ140の表面では正の帯電が生じ、この正の帯電により、スペーサ140の近傍にあっては、平行な電界が曲げられ、電子ビーム軌道が湾曲する。更には、この電子ビーム軌道の湾曲により、一層、電子がスペーサ140に衝突するようになり、スペーサ140においては、更にチャージアップが増大し、更に一層、電子ビーム軌道が曲がる(図27参照)。このような状態になると、電子ビームが所望の蛍光体層22に衝突せず、スペーサ140近傍の電子ビーム軌道の乱れにより、形成される画像がスペーサ140の近傍で歪み、画像形成に深刻な影響を及ぼす。
更には、第3の問題として、後方散乱電子がスペーサ140に衝突すると、スペーサ140の抵抗値が変動するという問題を挙げることができる。先に述べたように、一般に、スペーサ140の表面には帯電防止膜として、CrOxやCrAlxyから成る遷移金属酸化膜を塗布するが、この遷移金属酸化膜が電子ビームにより還元作用を受ける結果、抵抗が変動する場合がある。あるいは又、電子ビーム衝撃により帯電防止膜の表面に炭化物系の導電性物質が付着する結果、抵抗が変動する場合がある。
また、第4の問題として、スペーサ140に電子が衝突すると、スペーサ140からガスが放出され、係るガスの分子等が電子放出部15,15Aの表面に付着し、あるいは、吸着し、電子放出部15,15Aにおける電子放出特性を劣化させるという問題がある。
特開平11−250839号 特開2001−216925 特開2002−150977 特開2003−22744 特開2000−219901 特開2002−338959 特開昭49−107173号公報 特開平3−266339号公報 特開平6−231701号公報
後方散乱電子量を低減する方法の1つとして、アノード電極24の上にカーボン等の原子量の小さな物質を塗布する方法が、例えば、特開昭49−107173号公報、特開平3−266339号公報、特開平6−231701号公報から周知である。カーボンのような原子量の小さな物質は電子の反射率を低減する効果を有する。カーボン膜厚は厚いほど効果的である。しかしながら、カーボン膜厚を厚くすると、電子放出源から放出され、カーボン膜厚を通過し、蛍光体層に衝突する電子のエネルギー損失が大きくなり、発光効率が低下してしまう。一方、カーボン膜厚が薄いと後方散乱電子量を低減する効果が失われてしまう。
先に述べたように、従来においては、隔壁21を設けることにより後方散乱電子を出来る限り遮蔽している。ところで、後方散乱電子は、1次電子エネルギーと同一エネルギーを最大とした図30の(A)に示すようなエネルギー分布を有し、しかも、図30の(B)に示すようなコサイン型の散乱角度分布を有する。
また、
後方散乱電子の初速 :v0
基板と成す散乱角 :θ
電子の単位電荷 :e
電子の質量 :me
アノード電極と電子放出部との間の距離:d
アノード電極への印加電圧 :VA
としたとき、時間tが経過した後の後方散乱電子の軌道は、以下の式で表すことができる。ここで、X(t)は、時間tが経過した後の後方散乱電子のX座標を示し、Z(t)は、時間tが経過した後の後方散乱電子のZ座標を示し、X軸は基板20の表面上に位置し、Z軸は基板20の表面に垂直であり、座標の原点は電子が衝突した位置である。
X(t)=v0・t・cos(θ)
Z(t)=v0・t・sin(θ)−(1/2)(e/me)(VA/d)t2
また、後方散乱電子の最大散乱高さZhは、アノード電極を基準面としたとき、以下の式で表すことができる。尚、弾性散乱時、v0 2=2(e/me)VAとする。
h=(1/2)(me/e)(d/VA)v0 2・sin2(θ)
<d・sin2(θ)
更には、後方散乱電子の最大散乱距離Xsは、以下の式で表すことができる。
s=(me/e)(d/VA)v0・sin(2θ)
ここで、θ=45度のとき、
s<(me/e)(d/VA)v0 2
<2d
である。
以上の計算結果から、後方散乱電子の最大散乱距離Xsは、散乱角(θ)が45度において最大となり、弾性散乱時には、アノード電極と電子放出部との間の距離dの2倍にまで後方散乱電子は到達する。一方、後方散乱電子の最大散乱高さZhは、散乱角(θ)が90度において最大となり、弾性散乱時には、電子放出源にまで後方散乱電子は到達する。
従って、隔壁21によって後方散乱電子を遮蔽するには、隔壁と隔壁との間の距離をL1、隔壁高さをH1としたとき、隔壁アスペクト比(H1/L1)を十分に大きくする必要がある。電子放出部から放出され、蛍光体層22に衝突する電子のエネルギーを9keVとしたときの、隔壁アスペクト比と後方散乱電子放出比との関係を図31に示す。図31から、90%の後方散乱電子を遮蔽する場合には、隔壁アスペクト比は約5となる。即ち、隔壁と隔壁との間の距離を100μmとしたとき、隔壁21の高さは約500μmが必要とされる。しかしながら、このような高さの隔壁を形成するための適切なプロセスは見当たらない。
例えば、特開平11−250839号公報に開示された技術にあっては、アノード電極上にスリット構造を有するコレクター電極を設けて、コレクター電極に適切な電位を与えることによって、後方散乱電子が他の蛍光体層に入射することを防いでいる。後方散乱電子を遮蔽する効果は優れているが、コレクター電極を形成する上でのアライメント精度やコストが問題である。
また、特開2001−216925や特開2002−150977には、蛍光体の発光効率を上昇させ、輝度を向上させ、あるいは又、蛍光体層に衝突する電子の電流密度を低く保ち、輝度の経時的な低下を抑制するために、蛍光体層を凹んだ形状とした平面型表示装置が開示されているが、これらの特許公開公報にあっては、スペーサに衝突する後方散乱電子の量を低減するといった観点からの議論はなされていない。
カソードパネルCPとアノードパネルAPとによって挟まれた空間のガスをゲッターで除去する技術は、周知である。しかしながら、通常、ゲッターは、表示装置の無効領域(有効領域を取り囲み、表示に寄与しない領域)において、最大、数カ所に配置されているだけである。従って、ゲッターから遠く離れた所に位置するスペーサから放出されたガスをゲッターで確実に吸着することは困難である。それ故、たとえ、スペーサから放出されるガスが極微量であっても、スペーサ近傍に位置する電子放出部とスペーサから離れた場所に位置する電子放出部とでは、スペーサから放出されたガスの影響の度合いが異なる。その結果、スペーサの近傍に位置する電子放出部とスペーサから離れた場所に位置する電子放出部とでは電子放出特性の変化(劣化)状態に差が生じ、輝度に不均一が生じる。
特開2003−22744には、粉末射出成形によって成形された非蒸発型ゲッターをスペーサの一部に圧入、固定する技術が開示されているが、このような構造のスペーサは、構造が複雑になる。
従って、本発明の第1の目的は、スペーサの表面に電子が衝突してスペーサ表面に吸着したガスが放出された場合であっても、電子放出部において電子放出特性が劣化することを確実に抑制することができ、しかも、簡素な構造を有する、文字や画像等の情報を表示する平面型表示装置において使用されるスペーサ、係るスペーサが組み込まれた平面型表示装置及びその組立方法を提供することにある。また、本発明の第2の目的は、蛍光体層から飛び出し、スペーサに衝突し、あるいは又、隣接する蛍光体層に侵入する後方散乱電子の量を確実に低減し得る構造を有する平面型表示装置を提供することにある。
上記の第1の目的を達成するための本発明のスペーサは、電子を放出する電子放出源が支持体に複数、形成されて成る第1パネルと、電子放出源から放出された電子が衝突する蛍光体層及びアノード電極が基板に形成されて成る第2パネルとが、それらの周縁部において接合され、第1パネルと第2パネルとによって挟まれた空間が真空に保持される平面型表示装置において使用され、第1パネルと第2パネルとの間に配置されるスペーサであって、
ゲッター効果を有する微粒子から成る微粒子層が表面に形成されていることを特徴とする。
上記の第1の目的を達成するための本発明の第1の態様に係る平面型表示装置は、電子を放出する電子放出源が支持体に複数、形成されて成る第1パネルと、電子放出源から放出された電子が衝突する蛍光体層及びアノード電極が基板に形成されて成る第2パネルとが、それらの周縁部において接合され、第1パネルと第2パネルとによって挟まれた空間が真空に保持された平面型表示装置であって、
ゲッター効果を有する微粒子から成る微粒子層が表面に形成されたスペーサが、第1パネルと第2パネルとの間に配置されていることを特徴とする。
上記の第1の目的を達成するための本発明の平面型表示装置の組立方法は、電子を放出する電子放出源を複数、備えた第1パネルと、電子放出源から放出された電子が衝突する蛍光体層及びアノード電極を備えた第2パネルとが、それらの周縁部において接合されて成り、ゲッター効果を有する微粒子から成る微粒子層が表面に形成されたスペーサを備えた平面型表示装置の組立方法であって、
第1パネルと第2パネルとの間にスペーサを配置し、第1パネルと第2パネルとをそれらの周縁部において接合し、第1パネルと第2パネルとによって挟まれた空間を排気して真空とした後、電子放出源から電子を放出させてスペーサの微粒子層に衝突させることによって微粒子を活性化させることで、ゲッター効果を生じさせることを特徴とする。
本発明のスペーサ、本発明の第1の態様に係る平面型表示装置あるいは本発明の平面型表示装置の組立方法において、微粒子がゲッター効果を有するとは、微粒子の表面に化学結合が可能な化学手が多く存在し、酸素、二酸化炭素、一酸化炭素等の常温で安定した気体を成すガス成分を、表面において化学結合せしめて、吸着する性質を有することを意味する。一般に、微粒子の集合体を密閉された真空容器に封入し、少なくとも0.1Pa以下の真空中に放置した場合、一般的な微粒子にあっては、表面に吸着したガスが真空中に放出されるため、密閉された真空容器の圧力は徐々に上昇する。一方、ゲッター効果を有する微粒子の場合には、密閉された真空容器内部の圧力は、真空容器内の気体がこの微粒子によって吸着されるため、徐々に低下する。このように、ある真空度(0.1Pa以下)において、微粒子のガス放出量よりガス吸収量が大きい場合、『微粒子がゲッター効果を有する』と定義する。
本発明のスペーサ、本発明の第1の態様に係る平面型表示装置あるいは本発明の平面型表示装置の組立方法において、微粒子層の厚さは、ゲッター効果の確実な発揮といった観点から、限定するものではないが、0.1μm乃至30μmであることが好ましい。
本発明の平面型表示装置の組立方法にあっては、電子放出源から電子を放出させてスペーサの微粒子層に衝突させることによって微粒子を活性化させることでゲッター効果を生じさせるときにも、第1パネルと第2パネルとによって挟まれた空間を排気し続けることが好ましく、この場合には、ゲッター効果を生じさせた後に、第1パネルと第2パネルとによって挟まれた空間を適切な方法で封じることが望ましい。
本発明のスペーサ、本発明の第1の態様に係る平面型表示装置あるいは本発明の平面型表示装置の組立方法において、微粒子は、金属若しくは合金から成ることが好ましく、この場合、微粒子として、鉛(Pb)、白金(Pt)、ルテニウム(Ru)、銀(Ag)、金(Au)、チタン(Ti)、インジウム(In)、銅(Cu)、クロム(Cr)、鉄(Fe)、亜鉛(Zn)、錫(Sn)、タンタル(Ta)、タングステン(W)、アルミニウム(Al)、バナジウム(V)、マンガン(Mn)、ジルコニウム(Zr)、ニッケル(Ni)、コバルト(Co)、及び、モリブデン(Mo)から成る群から選択された少なくとも1種類の金属若しくはその合金を挙げることができる。ここで、合金として、例えば、Zr−Ni合金、Ti−Zr−V−Fe合金、Ti−Zr−Al合金、Ti−Mn−V合金を挙げることができる。あるいは又、この場合、微粒子の表面の一部分は、酸化膜又は窒化膜で被覆されていることが、例えば、微粒子層をスペーサの表面に大気雰囲気中で形成するとき、微粒子層を構成する微粒子が不要なガスを吸着することを防止するといった観点から好ましい。即ち、一般に、金属をナノオーダー(1μm以下)の微粒子にした場合、極めて反応活性な状態となる。例えば、モリブデン(Mo)の微粒子の場合、空気中の酸素と直ちに反応して酸化されてしまう。そのため、表面を不活性な状態にしてスペーサに付着させる必要がある。従って、スペーサの表面に微粒子層を形成する前における微粒子の表面の全てを、酸化膜又は窒化膜(あるいは、後述するように、微粒子を炭素(C)から構成する場合には、有機膜)によって被覆し、微粒子の表面を不活性な状態としておくことが望ましい。但し、このように微粒子の表面の全てを酸化膜、窒化膜又は有機膜で被覆した状態としたままでは、微粒子の表面を不活性な状態のままとなってしまう。従って、微粒子の表面を酸化膜、窒化膜又は有機膜で被覆した後、最終的に、酸化膜、窒化膜又は有機膜の一部を除去することが、微粒子がゲッターとしての機能を果たす上で必要とされる。尚、このような酸化膜、窒化膜又は有機膜の一部の除去は、上述した活性化の処理によって行うことができる。あるいは又、この場合、微粒子の平均粒径は、1×10-8m乃至1×10-5mであることが、微粒子にゲッター効果を確実に発揮させるといった観点から好ましい。
あるいは又、本発明のスペーサ、本発明の第1の態様に係る平面型表示装置あるいは本発明の平面型表示装置の組立方法において、微粒子はケイ素(Si)から成ることが好ましく、この場合、微粒子の表面の一部は、酸化膜又は窒化膜で被覆されていることが、上述したとおりの観点から好ましい。あるいは又、この場合、微粒子の平均粒径は、1×10-8m乃至1×10-5mであることが、微粒子にゲッター効果を確実に発揮させるといった観点から好ましい。
あるいは又、本発明のスペーサ、本発明の第1の態様に係る平面型表示装置あるいは本発明の平面型表示装置の組立方法において、微粒子は炭素(C)、具体的には、例えば、カーボンファイバー及びグラファイトから成る群から選択された少なくとも1種類の炭素から成ることが好ましく、この場合、微粒子の表面の一部は、有機膜、例えば、エチレングリコール、フォトレジスト材料、ポリイミド樹脂、ケイ素樹脂、塩化ビニール、ポリスチレン、ポリエチレン、ポリプロピレン、ポリアミド、ポリカーボネート、ポリエチレンテレフタレート、フッ素樹脂等で被覆されていることが、上述したとおりの観点から好ましい。あるいは又、この場合、微粒子の平均粒径は、1×10-8m乃至1×10-5mであることが、微粒子にゲッター効果を確実に発揮させるといった観点から好ましい。
ここで、微粒子の形状は真球に近い程好ましいが、柱状及び多角形等の任意の形状とすることもできる。微粒子の形状を任意の形状とする場合、微粒子の平均体積を求め、係る平均体積に相当する球の直径を微粒子の平均粒径とすればよい。
以上の種々の好ましい形態を含む本発明のスペーサ、本発明の第1の態様に係る平面型表示装置あるいは本発明の平面型表示装置の組立方法において、微粒子層は、多孔質状であり、その比抵抗は、微粒子と微粒子の接触する面積で決まるが、105Ω/□〜1012Ω/□であることが、微粒子層におけるガス吸着面積を大とし、且つ、微粒子層を介して第2パネルから第1パネルへと過剰な電流が流れることを防止するといった観点から好ましい。
以上の種々の好ましい形態を含む本発明の第1の態様に係る平面型表示装置にあっては、電子放出源から放出された電子を微粒子層に衝突させることによって微粒子を活性化させることで、ゲッター効果を生じさせることが、組立工程の簡素化といった観点から好ましい。
本発明のスペーサ、本発明の第1の態様に係る平面型表示装置あるいは本発明の平面型表示装置の組立方法において、電子放出源から放出された電子を微粒子層に衝突させることによって微粒子を活性化させることで、ゲッター効果を生じさせることができるが、これは、電子が微粒子の表面に形成された酸化膜、窒化膜あるいは有機膜と衝突する結果、これらの酸化膜、窒化膜あるいは有機膜が除去される(例えば、酸化膜が還元される結果、活性な微粒子表面の少なくとも一部分が露出し、窒化膜がNH3、NO、NO2の形態となって除去される結果、活性な微粒子表面の少なくとも一部分が露出し、有機膜がCHx等の形態となって除去される結果、活性な微粒子表面の少なくとも一部分が露出する)ためである。酸化膜、窒化膜あるいは有機膜の膜厚は、限定するものではないが、1nm〜10nm程度であることが望ましい。
また、以上の種々の好ましい形態を含む本発明の第1の態様に係る平面型表示装置にあっては、更に、上記の第2の目的を達成するために、第2パネルにおいて、蛍光体層は基板表面に形成されており、アノード電極は蛍光体層上に形成されており;蛍光体層が形成された基板の部分を基板に垂直な仮想平面で切断したときの、該蛍光体層の表面形状は略「V」字状であることが好ましい。そして、この場合、蛍光体層が形成された基板の部分を基板に垂直な仮想平面で切断したときの、該基板の部分の表面形状は略「V」字状であることが望ましく、更には、略「V」字状の表面形状のアスペクト比は、0.29以上(傾斜角30度以上)、好ましくは0.87以上(傾斜角60度以上)であることが望ましい。
尚、略「V」字状の表面形状のアスペクト比とは、略「V」字状の表面形状の上端部分の開口した長さ(距離)をL0、略「V」字状の表面形状の深さをD0としたとき、(D0/L0)で表すことができる。また、略「V」字状の表面形状を有する区画は、1つのサブピクセルを構成する蛍光体層の領域に1つ、形成されていてもよいし、複数、形成されていてもよい。後者の場合であって、係る区画の平面形状が、凹んだ円錐形状、凹んだ楕円錐形状、凹んだ角錐(三角錐、四角錐を含む多角錐)形状の場合、1つのサブピクセルを構成する蛍光体層の単位面積当たりの区画の数として、2個/mm2乃至2000個/mm2を例示することができる。あるいは又、後者の場合であって、係る区画の平面形状が溝状である場合、1つのサブピクセルを構成する蛍光体層の単位長さ当たりの区画(溝)の本数として、2本/mm乃至40本/mmを例示することができる。更には、略「V」字状の表面形状を有する基板の部分の平面形状として、円形、楕円形を例示することができる。即ち、基板の係る部分の形状として、凹んだ円錐形状、凹んだ楕円錐形状、凹んだ角錐形状(三角錐、四角錐を含む多角錐)を例示することができる。後述する本発明の第2の態様に係る平面型表示装置においても同様である。尚、隔壁を設ける場合、(隔壁高さH1)/(隔壁と隔壁との間の距離L1)の値である隔壁アスペクト比(H1/L1)は3未満であることが望ましく、また、蛍光体層の頂面から隔壁の頂面までの高さの差は、10μm以上、200μm以下であることが望ましい。
以上の種々の好ましい形態を含む本発明の第1の態様に係る平面型表示装置の組立方法にあっては、アノード電極に印加する電圧を制御することで、電子放出源から電子を放出させてスペーサの微粒子層に衝突させることが好ましく、あるいは又、電子放出源には、電子放出源から放出される電子の軌道を制御する収束電極が備えられており、収束電極に印加する電圧を制御することでスペーサの微粒子層に衝突させることが好ましい。
上記の第2の目的を達成するための本発明の第2の態様に係る平面型表示装置は、電子を放出する電子放出源が支持体に複数、形成されて成る第1パネルと、電子放出源から放出された電子が衝突する蛍光体層及びアノード電極が基板に形成されて成る第2パネルとが、それらの周縁部において接合され、第1パネルと第2パネルとによって挟まれた空間が真空に保持された平面型表示装置であって、
第2パネルにおいて、蛍光体層は基板表面に形成されており、アノード電極は蛍光体層上に形成されており、
蛍光体層が形成された基板の部分を基板に垂直な仮想平面で切断したときの、該蛍光体層の表面形状は略「V」字状であることを特徴とする。
本発明の第2の態様に係る平面型表示装置にあっては、蛍光体層が形成された基板の部分を基板に垂直な仮想平面で切断したときの、該基板の部分の表面形状が略「V」字状であることが望ましく、更には、略「V」字状の表面形状のアスペクト比は、0.29以上(傾斜角30度以上)、好ましくは0.87以上(傾斜角60度以上)であることが望ましい。
以上の種々の好ましい形態を含む本発明の第1の態様に係る平面型表示装置あるいは本発明の平面型表示装置の組立方法、本発明の第2の態様に係る平面型表示装置にあっては、平面型表示装置を、冷陰極電界電子放出表示装置とすることができるし、あるいは又、金属/絶縁膜/金属型素子(MIM素子も呼ばれる)が組み込まれた平面型表示装置、表面伝導型電子放出素子が組み込まれた平面型表示装置とすることもできる。
本発明において、スペーサは、例えばセラミックスやガラスから構成することができる。スペーサをセラミックスから構成する場合、セラミックスとして、ムライトやアルミナ、チタン酸バリウム、チタン酸ジルコン酸鉛、ジルコニア、コーディオライト、硼珪酸塩バリウム、珪酸鉄、ガラスセラミックス材料、これらに、酸化チタンや酸化クロム、酸化鉄、酸化バナジウム、酸化ニッケルを添加したもの等を例示することができる。この場合、所謂グリーンシートを成形して、グリーンシートを焼成し、係るグリーンシート焼成品を切断することによってスペーサを製造することができる。また、スペーサを構成するガラスとして、ソーダライムガラスを挙げることができる。スペーサは、例えば、隔壁と隔壁との間に挟み込んで固定すればよく、あるいは又、例えば、アノードパネルにスペーサ保持部を形成し、スペーサ保持部によって固定すればよい。スペーサの表面に微粒子層を形成する具体的な方法については、後述する。
ここで、平面型表示装置を、冷陰極電界電子放出表示装置とする場合、冷陰極電界電子放出素子(以下、電界放出素子と略称する)は、
(a)支持体上に形成され、第1の方向に延びる帯状のカソード電極、
(b)カソード電極及び支持体上に形成された絶縁層、
(c)絶縁層上に形成され、第1の方向とは異なる第2の方向に延びる帯状のゲート電極、
(d)カソード電極とゲート電極の重複する重複領域に位置するゲート電極及び絶縁層の部分に設けられ、底部にカソード電極が露出した開口部、及び、
(e)開口部の底部に露出したカソード電極上に設けられた電子放出部、
から成る。
電界放出素子の型式は特に限定されず、スピント型電界放出素子(円錐形の電子放出部が、開口部の底部に位置するカソード電極の上に設けられた電界放出素子)や扁平型電界放出素子(略平面の電子放出部が、開口部の底部に位置するカソード電極の上に設けられた電界放出素子)を挙げることができる。
カソード電極の射影像とゲート電極の射影像とは直交することが、即ち、第1の方向と第2の方向とは直交することが、冷陰極電界電子放出表示装置の構造の簡素化といった観点から好ましい。そして、カソードパネルにおいては、電子放出領域が2次元マトリックス状に配列されており、各電子放出領域には、1又は複数の電界放出素子が設けられている。
電界放出素子は、一般に、以下の方法で製造することができる。
(1)支持体上にカソード電極を形成する工程、
(2)全面(支持体及びカソード電極上)に絶縁層を形成する工程、
(3)絶縁層上にゲート電極を形成する工程、
(4)カソード電極とゲート電極との重複領域におけるゲート電極及び絶縁層の部分に開口部を形成し、開口部の底部にカソード電極を露出させる工程、
(5)開口部の底部に位置するカソード電極上に電子放出部を形成する工程。
あるいは又、電界放出素子は、以下の方法で製造することもできる。
(1)支持体上にカソード電極を形成する工程、
(2)カソード電極上に電子放出部を形成する工程、
(3)全面(支持体及び電子放出部上、あるいは、支持体、カソード電極及び電子放出部上)に絶縁層を形成する工程、
(4)絶縁層上にゲート電極を形成する工程、
(5)カソード電極とゲート電極との重複領域におけるゲート電極及び絶縁層の部分に開口部を形成し、開口部の底部に電子放出部を露出させる工程。
先に説明したように、電界放出素子には収束電極が備えられていてもよい。即ち、例えばゲート電極及び絶縁層上には更に層間絶縁層が設けられ、層間絶縁層上に収束電極が設けられている電界放出素子、あるいは又、ゲート電極の上方に収束電極が設けられている電界放出素子とすることもできる。ここで、収束電極とは、開口部から放出され、アノード電極へ向かう放出電子の軌道を収束させ、以て、輝度の向上や隣接画素間の光学的クロストークの防止を可能とするための電極である。アノード電極とカソード電極との間の電位差が数キロボルトのオーダーであって、アノード電極とカソード電極との間の距離が比較的長い、所謂高電圧タイプの冷陰極電界電子放出表示装置において、収束電極は特に有効である。収束電極には、収束電極制御回路から相対的な負電圧(例えば、0ボルト)が印加される。収束電極は、必ずしも各電界放出素子毎に設けられている必要はなく、例えば、電界放出素子の所定の配列方向に沿って延在させることにより、複数の電界放出素子に共通の収束効果を及ぼすこともできる。
スピント型電界放出素子にあっては、電子放出部を構成する材料として、モリブデン、モリブデン合金、タングステン、タングステン合金、チタン、チタン合金、ニオブ、ニオブ合金、タンタル、タンタル合金、クロム、クロム合金、及び、不純物を含有するシリコン(ポリシリコンやアモルファスシリコン)から成る群から選択された少なくとも1種類の材料を挙げることができる。スピント型電界放出素子の電子放出部は、真空蒸着法の他、例えばスパッタリング法やCVD法によっても形成することができる。
扁平型電界放出素子にあっては、電子放出部を構成する材料として、カソード電極を構成する材料よりも仕事関数Φの小さい材料から構成することが好ましく、どのような材料を選択するかは、カソード電極を構成する材料の仕事関数、ゲート電極とカソード電極との間の電位差、要求される放出電子電流密度の大きさ等に基づいて決定すればよい。電界放出素子におけるカソード電極を構成する代表的な材料として、タングステン(Φ=4.55eV)、ニオブ(Φ=4.02〜4.87eV)、モリブデン(Φ=4.53〜4.95eV)、アルミニウム(Φ=4.28eV)、銅(Φ=4.6eV)、タンタル(Φ=4.3eV)、クロム(Φ=4.5eV)を例示することができる。電子放出部は、これらの材料よりも小さな仕事関数Φを有していることが好ましく、その値は概ね3eV以下であることが好ましい。係る材料として、炭素(Φ<1eV)、セシウム(Φ=2.14eV)、LaB6(Φ=2.66〜2.76eV)、BaO(Φ=1.6〜2.7eV)、SrO(Φ=1.25〜1.6eV)、Y23(Φ=2.0eV)、CaO(Φ=1.6〜1.86eV)、BaS(Φ=2.05eV)、TiN(Φ=2.92eV)、ZrN(Φ=2.92eV)を例示することができる。仕事関数Φが2eV以下である材料から電子放出部を構成することが、一層好ましい。尚、電子放出部を構成する材料は、必ずしも導電性を備えている必要はない。
あるいは又、扁平型電界放出素子において、電子放出部を構成する材料として、係る材料の2次電子利得δがカソード電極を構成する導電性材料の2次電子利得δよりも大きくなるような材料から適宜選択してもよい。即ち、銀(Ag)、アルミニウム(Al)、金(Au)、コバルト(Co)、銅(Cu)、モリブデン(Mo)、ニオブ(Nb)、ニッケル(Ni)、白金(Pt)、タンタル(Ta)、タングステン(W)、ジルコニウム(Zr)等の金属;ゲルマニウム(Ge)等の半導体;炭素やダイヤモンド等の無機単体;及び酸化アルミニウム(Al23)、酸化バリウム(BaO)、酸化ベリリウム(BeO)、酸化カルシウム(CaO)、酸化マグネシウム(MgO)、酸化錫(SnO2)、フッ化バリウム(BaF2)、フッ化カルシウム(CaF2)等の化合物の中から、適宜選択することができる。尚、電子放出部を構成する材料は、必ずしも導電性を備えている必要はない。
あるいは又、扁平型電界放出素子にあっては、特に好ましい電子放出部の構成材料として、炭素、より具体的にはアモルファスダイヤモンドやグラファイト、カーボン・ナノチューブ構造体、ZnOウィスカー、MgOウィスカー、SnO2ウィスカー、MnOウィスカー、Y23ウィスカー、NiOウィスカー、ITOウィスカー、In23ウィスカー、Al23ウィスカーを挙げることができる。電子放出部をこれらから構成する場合、5×106V/m以下の電界強度にて、冷陰極電界電子放出表示装置に必要な放出電子電流密度を得ることができる。また、電子放出部を構成する材料が電気抵抗体であれば、各電子放出部から得られる放出電子電流を均一化することができ、よって、冷陰極電界電子放出表示装置に組み込まれた場合の輝度ばらつきの抑制が可能となる。更に、これらの材料は、冷陰極電界電子放出表示装置内の残留ガスのイオンによるスパッタ作用に対して極めて高い耐性を有するので、電界放出素子の長寿命化を図ることができる。
カーボン・ナノチューブ構造体として、具体的には、カーボン・ナノチューブ及び/又はグラファイト・ナノファイバーを挙げることができる。より具体的には、カーボン・ナノチューブから電子放出部を構成してもよいし、グラファイト・ナノファイバーから電子放出部を構成してもよいし、カーボン・ナノチューブとグラファイト・ナノファイバーの混合物から電子放出部を構成してもよい。カーボン・ナノチューブやグラファイト・ナノファイバーは、巨視的には、粉末状であってもよいし、薄膜状であってもよいし、場合によっては、カーボン・ナノチューブ構造体は円錐状の形状を有していてもよい。カーボン・ナノチューブやグラファイト・ナノファイバーは、周知のアーク放電法やレーザアブレーション法といったPVD法、プラズマCVD法やレーザCVD法、熱CVD法、気相合成法、気相成長法といった各種のCVD法によって製造、形成することができる。
カソード電極、ゲート電極、収束電極の構成材料として、アルミニウム(Al)、タングステン(W)、ニオブ(Nb)、タンタル(Ta)、モリブデン(Mo)、クロム(Cr)、銅(Cu)、金(Au)、銀(Ag)、チタン(Ti)、ニッケル(Ni)、コバルト(Co)、ジルコニウム(Zr)、鉄(Fe)、白金(Pt)、亜鉛(Zn)等の金属;これらの金属元素を含む合金(例えばMoW)あるいは化合物(例えばTiN等の窒化物や、WSi2、MoSi2、TiSi2、TaSi2等のシリサイド);シリコン(Si)等の半導体;ダイヤモンド等の炭素薄膜;ITO(酸化インジウム−錫)、酸化インジウム、酸化亜鉛等の導電性金属酸化物を例示することができる。また、これらの電極の形成方法として、例えば、電子ビーム蒸着法や熱フィラメント蒸着法といった蒸着法、スパッタリング法、CVD法やイオンプレーティング法とエッチング法との組合せ;スクリーン印刷法;メッキ法(電気メッキ法や無電解メッキ法);リフトオフ法;レーザアブレーション法;ゾル−ゲル法等を挙げることができる。スクリーン印刷法やメッキ法によれば、直接、例えば帯状のカソード電極やゲート電極を形成することが可能である。
絶縁層や層間絶縁層の構成材料として、SiO2、BPSG、PSG、BSG、AsSG、PbSG、SiON、SOG(スピンオングラス)、低融点ガラス、ガラスペーストといったSiO2系材料;SiN系材料;ポリイミド等の絶縁性樹脂を、単独あるいは適宜組み合わせて使用することができる。絶縁層や層間絶縁層の形成には、CVD法、塗布法、スパッタリング法、スクリーン印刷法等の公知のプロセスが利用できる。
第1開口部(ゲート電極に形成された開口部)あるいは第2開口部(絶縁層に形成された開口部)の平面形状(支持体表面と平行な仮想平面で開口部を切断したときの形状)は、円形、楕円形、矩形、多角形、丸みを帯びた矩形、丸みを帯びた多角形等、任意の形状とすることができる。第1開口部の形成は、例えば、異方性エッチング、等方性エッチング、異方性エッチングと等方性エッチングの組合せによって行うことができ、あるいは又、ゲート電極の形成方法に依っては、第1開口部を直接形成することもできる。第2開口部の形成も、例えば、異方性エッチング、等方性エッチング、異方性エッチングと等方性エッチングの組合せによって行うことができる。
電界放出素子においては、電界放出素子の構造に依存するが、1つの開口部内に1つの電子放出部が存在してもよいし、1つの開口部内に複数の電子放出部が存在してもよいし、ゲート電極に複数の第1開口部を設け、係る第1開口部と連通する1つの第2開口部を絶縁層に設け、絶縁層に設けられた1つの第2開口部内に1又は複数の電子放出部が存在してもよい。
電界放出素子において、カソード電極と電子放出部との間に抵抗体層を設けてもよい。抵抗体層を設けることによって、電界放出素子の動作安定化、電子放出特性の均一化を図ることができる。抵抗体層を構成する材料として、シリコンカーバイド(SiC)やSiCNといったカーボン系材料、SiN、アモルファスシリコン等の半導体材料、酸化ルテニウム(RuO2)、酸化タンタル、窒化タンタル等の高融点金属酸化物を例示することができる。抵抗体層の形成方法として、スパッタリング法や、CVD法やスクリーン印刷法を例示することができる。1つの電子放出部当たりの電気抵抗値は、概ね1×106〜1×1011Ω、好ましくは数十ギガΩとすればよい。
カソードパネルを構成する支持体として、あるいは又、アノードパネルを構成する基板として、ガラス基板、表面に絶縁膜が形成されたガラス基板、石英基板、表面に絶縁膜が形成された石英基板、表面に絶縁膜が形成された半導体基板を挙げることができるが、製造コスト低減の観点からは、ガラス基板、あるいは、表面に絶縁膜が形成されたガラス基板を用いることが好ましい。ガラス基板として、高歪点ガラス、ソーダガラス(Na2O・CaO・SiO2)、硼珪酸ガラス(Na2O・B23・SiO2)、フォルステライト(2MgO・SiO2)、鉛ガラス(Na2O・PbO・SiO2)を例示することができる。
冷陰極電界電子放出表示装置において、アノード電極と蛍光体層の構成例として、(1)基板上に、アノード電極を形成し、アノード電極の上に蛍光体層を形成する構成、(2)上述したように、基板上に、蛍光体層を形成し、蛍光体層上にアノード電極を形成する構成、を挙げることができる。尚、(1)の構成において、蛍光体層の上に、アノード電極と導通した所謂メタルバック膜を形成してもよい。また、(2)の構成において、アノード電極の上にメタルバック膜を形成してもよい。
アノード電極は、全体として1つのアノード電極から構成されていてもよいし、複数のアノード電極ユニットから構成されていてもよい。後者の場合、アノード電極ユニットとアノード電極ユニットとは抵抗体膜によって電気的に接続されている必要がある。抵抗体膜を構成する材料として、シリコンカーバイド(SiC)やSiCNといったカーボン系材料;SiN系材料;酸化ルテニウム(RuO2)、酸化タンタル、窒化タンタル、酸化クロム、酸化チタン等の高融点金属酸化物;アモルファスシリコン等の半導体材料を挙げることができる。抵抗体膜のシート抵抗値として、1×10-1Ω/□乃至1×1010Ω/□、好ましくは1×103Ω/□乃至1×108Ω/□を例示することができる。アノード電極ユニットの数(Q)は2以上であればよく、例えば、直線状に配列された蛍光体層の列の総数をq列としたとき、Q=qとし、あるいは、q=k・Q(kは2以上の整数であり、好ましくは10≦k≦100、一層好ましくは20≦k≦50)としてもよいし、一定の間隔をもって配設されるスペーサの数に1を加えた数とすることができるし、ピクセルの数あるいはサブピクセルの数と一致した数、あるいは、ピクセルの数あるいはサブピクセルの数の整数分の一とすることもできる。また、各アノード電極ユニットの大きさは、アノード電極ユニットの位置に拘わらず同じとしてもよいし、アノード電極ユニットの位置に依存して異ならせてもよい。
アノード電極(アノード電極ユニットを包含する)は、導電材料層を用いて形成すればよい。導電材料層の形成方法として、例えば、電子ビーム蒸着法や熱フィラメント蒸着法といった蒸着法、スパッタリング法、イオンプレーティング法、レーザアブレーション法といった各種のPVD法;各種のCVD法;スクリーン印刷法;リフトオフ法;ゾル−ゲル法等を挙げることができる。即ち、導電材料から成る導電材料層を形成し、リソグラフィ技術及びエッチング技術に基づき、この導電材料層をパターニングしてアノード電極を形成することができる。あるいは又、アノード電極のパターンを有するマスクやスクリーンを介して導電材料をPVD法やスクリーン印刷法に基づき形成することによって、アノード電極を得ることもできる。尚、抵抗体膜も同様の方法で形成することができる。即ち、抵抗体材料から抵抗体膜を形成し、リソグラフィ技術及びエッチング技術に基づきこの抵抗体膜をパターニングしてもよいし、あるいは、抵抗体膜のパターンを有するマスクやスクリーンを介して抵抗体材料のPVD法やスクリーン印刷法に基づく形成により、抵抗体膜を得ることができる。基板上(あるいは基板上方)におけるアノード電極の平均厚さ(後述するように隔壁を設ける場合、隔壁の頂面上におけるアノード電極の平均厚さ)として、3×10-8m(30nm)乃至1.5×10-7m(150nm)、好ましくは5×10-8m(50nm)乃至1×10-7m(100nm)を例示することができる。
アノード電極の構成材料は、冷陰極電界電子放出表示装置の構成によって適宜選択すればよい。即ち、冷陰極電界電子放出表示装置が透過型(アノードパネルが表示面に相当する)であって、且つ、基板上にアノード電極と蛍光体層がこの順に積層されている場合には、基板は元より、アノード電極自身も透明である必要があり、ITO(インジウム錫酸化物)等の透明導電材料を用いる。一方、冷陰極電界電子放出表示装置が反射型(カソードパネルが表示面に相当する)である場合、及び、透過型であっても基板上に蛍光体層とアノード電極とがこの順に積層されている場合には、モリブデン(Mo)、アルミニウム(Al)、クロム(Cr)、タングステン(W)、ニオブ(Nb)、タンタル(Ta)、金(Au)、銀(Ag)、チタン(Ti)、コバルト(Co)、ジルコニウム(Zr)、鉄(Fe)、白金(Pt)、亜鉛(Zn)等の金属;これらの金属元素を含む合金あるいは化合物(例えばTiN等の窒化物や、WSi2、MoSi2、TiSi2、TaSi2等のシリサイド);シリコン(Si)等の半導体;ダイヤモンド等の炭素薄膜;ITO(酸化インジウム−錫)、酸化インジウム、酸化亜鉛等の導電性金属酸化物を例示することができる。尚、抵抗体膜を形成する場合、抵抗体膜の抵抗値を変化させない導電材料からアノード電極を構成することが好ましく、例えば、抵抗体膜をシリコンカーバイド(SiC)から構成した場合、アノード電極をモリブデン(Mo)から構成することが好ましい。
蛍光体層は、単色の蛍光体粒子から構成されていても、3原色の蛍光体粒子から構成されていてもよい。また、蛍光体層の配列様式は、ドット状であっても、帯状であってもよい。尚、ドット状や帯状の配列様式においては、隣り合う蛍光体層の間の隙間がコントラスト向上を目的とした光吸収層(ブラックマトリックス)で埋め込まれていてもよい。
冷陰極電界電子放出表示装置がカラー表示の場合、直線状に配列された蛍光体層の1列は、全てが赤色発光蛍光体層で占められた列、緑色発光蛍光体層で占められた列、及び、青色発光蛍光体層で占められた列から構成されていてもよいし、赤色発光蛍光体層、緑色発光蛍光体層、及び、青色発光蛍光体層が順に配置された列から構成されていてもよい。ここで、蛍光体層とは、アノードパネル上において1つの輝点を生成する蛍光体層であると定義する。また、1画素(1ピクセル)は、1つの赤色発光蛍光体層、1つの緑色発光蛍光体層、及び、1つの青色発光蛍光体層の集合から構成され、1サブピクセルは、1つの蛍光体層(1つの赤色発光蛍光体層、あるいは、1つの緑色発光蛍光体層、あるいは、1つの青色発光蛍光体層)から構成される。更には、アノード電極ユニットにおける1サブピクセルに相当する大きさとは、1つの蛍光体層を囲むアノード電極ユニットの大きさを意味する。
蛍光体層は、発光性結晶粒子(例えば、粒径5〜10nm程度の蛍光体粒子)から調製された発光性結晶粒子組成物を使用し、例えば、赤色の感光性の発光性結晶粒子組成物(赤色蛍光体スラリー)を全面に塗布し、露光、現像して、赤色発光蛍光体層を形成し、次いで、緑色の感光性の発光性結晶粒子組成物(緑色蛍光体スラリー)を全面に塗布し、露光、現像して、緑色発光蛍光体層を形成し、更に、青色の感光性の発光性結晶粒子組成物(青色蛍光体スラリー)を全面に塗布し、露光、現像して、青色発光蛍光体層を形成する方法にて形成することができる。基板上における蛍光体層の平均厚さは、限定するものではないが、3μm乃至20μm、好ましくは5μm乃至10μmであることが望ましい。
発光性結晶粒子を構成する蛍光体材料としては、従来公知の蛍光体材料の中から適宜選択して用いることができる。カラー表示の場合、色純度がNTSCで規定される3原色に近く、3原色を混合した際の白バランスがとれ、残光時間が短く、3原色の残光時間がほぼ等しくなる蛍光体材料を組み合わせることが好ましい。赤色発光蛍光体層を構成する蛍光体材料として、(Y23:Eu)、(Y22S:Eu)、(Y3Al512:Eu)、(Y2SiO5:Eu)、(Zn3(PO42:Mn)を例示することができるが、中でも、(Y23:Eu)、(Y22S:Eu)を用いることが好ましい。また、緑色発光蛍光体層を構成する蛍光体材料として、(ZnSiO2:Mn)、(Sr4Si38Cl4:Eu)、(ZnS:Cu,Al)、(ZnS:Cu,Au,Al)、[(Zn,Cd)S:Cu,Al]、(Y3Al512:Tb)、(Y2SiO5:Tb)、[Y3(Al,Ga)512:Tb]、(ZnBaO4:Mn)、(GbBO3:Tb)、(Sr6SiO3Cl3:Eu)、(BaMgAl1423:Mn)、(ScBO3:Tb)、(Zn2SiO4:Mn)、(ZnO:Zn)、(Gd22S:Tb)、(ZnGa24:Mn)を例示することができるが、中でも、(ZnS:Cu,Al)、(ZnS:Cu,Au,Al)、[(Zn,Cd)S:Cu,Al]、(Y3Al512:Tb)、[Y3(Al,Ga)512:Tb]、(Y2SiO5:Tb)を用いることが好ましい。更には、青色発光蛍光体層を構成する蛍光体材料として、(Y2SiO5:Ce)、(CaWO4:Pb)、CaWO4、YP0.850.154、(BaMgAl1423:Eu)、(Sr227:Eu)、(Sr227:Sn)、(ZnS:Ag,Al)、(ZnS:Ag)、ZnMgO、ZnGaO4を例示することができるが、中でも、(ZnS:Ag)、(ZnS:Ag,Al)を用いることが好ましい。
アノードパネルには、更に、蛍光体層から反跳した電子、あるいは、蛍光体層から放出された二次電子が他の蛍光体層に入射し、所謂光学的クロストーク(色濁り)が発生することを防止するための、あるいは又、蛍光体層から反跳した電子、あるいは、蛍光体層から放出された二次電子が隔壁を越えて他の蛍光体層に向かって侵入し、これらの電子が他の蛍光体層と衝突することを防止するための、隔壁が、複数、設けられていることが好ましい。

隔壁の平面形状としては、格子形状(井桁形状)、即ち、1サブピクセルに相当する、例えば平面形状が略矩形(ドット状)の蛍光体層の四方を取り囲む形状を挙げることができ、あるいは、略矩形あるいは帯状の蛍光体層の対向する二辺と平行に延びる帯状形状を挙げることができる。隔壁を格子形状とする場合、1つの蛍光体層の領域の四方を連続的に取り囲む形状としてもよいし、不連続に取り囲む形状としてもよい。隔壁を帯状形状とする場合、連続した形状としてもよいし、不連続な形状としてもよい。隔壁を形成した後、隔壁を研磨し、隔壁の頂面の平坦化を図ってもよい。
隔壁の形成方法として、スクリーン印刷法、ドライフィルム法、感光法、サンドブラスト形成法を例示することができる。ここで、スクリーン印刷法とは、隔壁を形成すべき部分に対応するスクリーンの部分に開口が形成されており、スクリーン上の隔壁形成用材料をスキージを用いて開口を通過させ、基板上に隔壁形成用材料層を形成した後、係る隔壁形成用材料層を焼成する方法である。ドライフィルム法とは、基板上に感光性フィルムをラミネートし、露光及び現像によって隔壁形成予定部位の感光性フィルムを除去し、除去によって生じた開口に隔壁形成用の材料を埋め込み、焼成する方法である。感光性フィルムは焼成によって燃焼、除去され、開口に埋め込まれた隔壁形成用の材料が残り、隔壁となる。感光法とは、基板上に感光性を有する隔壁形成用材料層を形成し、露光及び現像によってこの隔壁形成用材料層をパターニングした後、焼成を行う方法である。サンドブラスト形成法とは、例えば、スクリーン印刷やロールコーター、ドクターブレード、ノズル吐出式コーター等を用いて隔壁形成用材料層を基板上に形成し、乾燥させた後、隔壁を形成すべき隔壁形成用材料層の部分をマスク層で被覆し、次いで、露出した隔壁形成用材料層の部分をサンドブラスト法によって除去する方法である。
蛍光体層からの光を吸収する光吸収層が隔壁と基板との間に形成されていることが、表示画像のコントラスト向上といった観点から好ましい。ここで、光吸収層は、所謂ブラックマトリックスとして機能する。光吸収層を構成する材料として、蛍光体層からの光を99%以上吸収する材料を選択することが好ましい。このような材料として、カーボン、金属薄膜(例えば、クロム、ニッケル、アルミニウム、モリブデン等、あるいは、これらの合金)、金属酸化物(例えば、酸化クロム)、金属窒化物(例えば、窒化クロム)、耐熱性有機樹脂、ガラスペースト、黒色顔料や銀等の導電性粒子を含有するガラスペースト等の材料を挙げることができ、具体的には、感光性ポリイミド樹脂、酸化クロムや、酸化クロム/クロム積層膜を例示することができる。尚、酸化クロム/クロム積層膜においては、クロム膜が基板と接する。光吸収層は、例えば、真空蒸着法やスパッタリング法とエッチング法との組合せ、真空蒸着法やスパッタリング法、スピンコーティング法とリフトオフ法との組合せに、スクリーン印刷法、リソグラフィ技術等、使用する材料に依存して適宜選択された方法にて形成することができる。
冷陰極電界電子放出表示装置にあっては、カソード電極及びゲート電極に印加された電圧によって生じた強電界が電子放出部に加わる結果、量子トンネル効果により電子放出部から電子が放出される。そして、この電子は、アノードパネルに設けられたアノード電極によってアノードパネルへと引き付けられ、蛍光体層に衝突する。そして、蛍光体層への電子の衝突の結果、蛍光体層が発光し、画像として認識することができる。
冷陰極電界電子放出表示装置において、カソード電極はカソード電極制御回路に接続され、ゲート電極はゲート電極制御回路に接続され、アノード電極はアノード電極制御回路に接続されている。尚、これらの制御回路は周知の回路から構成することができる。実作動時、アノード電極制御回路の出力電圧vAは、通常、一定であり、例えば、5キロボルト〜12キロボルトとすることができる。あるいは又、アノードパネルとカソードパネルとの間の距離をd(但し、0.5mm≦d≦10mm)としたとき、vA/d(単位:キロボルト/mm)の値は、0.5以上20以下、好ましくは1以上10以下、一層好ましくは5以上10以下を満足することが望ましい。
冷陰極電界電子放出表示装置の実動作時、カソード電極に印加する電圧vC及びゲート電極に印加する電圧vGに関しては、階調制御方式として電圧変調方式を採用した場合、
(1)カソード電極に印加する電圧vCを一定とし、ゲート電極に印加する電圧vGを変化させる方式
(2)カソード電極に印加する電圧vCを変化させ、ゲート電極に印加する電圧vGを一定とする方式
(3)カソード電極に印加する電圧vCを変化させ、且つ、ゲート電極に印加する電圧vGも変化させる方式がある。
カソードパネルとアノードパネルとを周縁部において接合するが、接合は接着層を用いて行ってもよいし、あるいは、ガラスやセラミックス等の絶縁剛性材料から成る枠体と接着層とを併用して行ってもよい。枠体と接着層とを併用する場合には、枠体の高さを適宜選択することにより、接着層のみを使用する場合に比べ、カソードパネルとアノードパネルとの間の対向距離をより長く設定することが可能である。尚、接着層の構成材料としては、フリットガラスが一般的であるが、融点が120〜400゜C程度の所謂低融点金属材料を用いてもよい。係る低融点金属材料としては、In(インジウム:融点157゜C);インジウム−金系の低融点合金;Sn80Ag20(融点220〜370゜C)、Sn95Cu5(融点227〜370゜C)等の錫(Sn)系高温はんだ;Pb97.5Ag2.5(融点304゜C)、Pb94.5Ag5.5(融点304〜365゜C)、Pb97.5Ag1.5Sn1.0(融点309゜C)等の鉛(Pb)系高温はんだ;Zn95Al5(融点380゜C)等の亜鉛(Zn)系高温はんだ;Sn5Pb95(融点300〜314゜C)、Sn2Pb98(融点316〜322゜C)等の錫−鉛系標準はんだ;Au88Ga12(融点381゜C)等のろう材(以上の添字は全て原子%を表す)を例示することができる。
カソードパネルとアノードパネルと枠体の三者を接合する場合、三者を同時に接合してもよいし、あるいは、第1段階でカソードパネル又はアノードパネルのいずれか一方と枠体とを接合し、第2段階でカソードパネル又はアノードパネルの他方と枠体とを接合してもよい。三者同時接合や第2段階における接合を高真空雰囲気中で行えば、カソードパネルとアノードパネルと枠体と接着層とにより囲まれた空間は、接合と同時に真空となる。あるいは、三者の接合終了後、カソードパネルとアノードパネルと枠体と接着層とによって囲まれた空間を排気し、真空とすることもできる。接合後に排気を行う場合、接合時の雰囲気の圧力は常圧/減圧のいずれであってもよく、また、雰囲気を構成する気体は、大気であっても、あるいは窒素ガスや周期律表0族に属するガス(例えばArガス)を含む不活性ガスであってもよい。
排気を行う場合、排気は、カソードパネル及び/又はアノードパネルに予め接続されたチップ管を通じて行うことができる。チップ管は、典型的にはガラス管を用いて構成され、カソードパネル及び/又はアノードパネルの無効領域(冷陰極電界電子放出表示装置としての実用上の機能を果たす中央部の表示領域である有効領域を額縁状に包囲する領域)に設けられた貫通部の周囲に、フリットガラス又は上述の低融点金属材料を用いて接合され、空間が所定の真空度に達した後、熱融着によって封じ切られる。尚、封じ切りを行う前に、冷陰極電界電子放出表示装置全体を一旦加熱してから降温させると、空間に残留ガスを放出させることができ、この残留ガスを排気により空間外へ除去することができるので好適である。
本発明のスペーサ、本発明の第1の態様に係る平面型表示装置あるいは本発明の平面型表示装置の組立方法にあっては、スペーサの表面にゲッター効果を有する微粒子から成る微粒子層が形成されているので、スペーサに電子が衝突してスペーサ表面に吸着したガスが放出されても、係るガスは直ちに微粒子層によって捕捉される。それ故、簡素な構造であるにも拘わらず、電子放出部において電子放出特性が劣化することを確実に抑制することができる。また、本発明の第2の態様に係る平面型表示装置にあっては、蛍光体層が形成された基板の部分を基板に垂直な仮想平面で切断したときの蛍光体層の表面形状は略「V」字状であるが故に、蛍光体層から飛び出し、スペーサに衝突し、あるいは又、隣接する蛍光体層に侵入する後方散乱電子の量を確実に低減することができる。
以下、図面を参照して、実施例に基づき本発明を説明する。
実施例1は、本発明のスペーサ、本発明の第1の態様に係る平面型表示装置及びその組立方法に関する。実施例1における平面型表示装置は冷陰極電界電子放出表示装置(以下、表示装置と略称する)であり、この表示装置を構成する第1パネル(カソードパネルCP)及び第2パネル(アノードパネルAP)は、図2及び図3あるいは図4を参照して説明した表示装置におけるカソードパネルCP及びアノードパネルAPと同じ構成、構造を有する。尚、以下の説明においては、第1パネルをカソードパネルCPと呼び、第2パネルをアノードパネルAPと呼ぶ。即ち、実施例1の表示装置にあっては、電子を放出する電子放出源に相当するスピント型電界放出素子や扁平型電界放出素子が支持体10に複数、形成されて成る第1パネル(カソードパネルCP)と、電子放出源(スピント型電界放出素子や扁平型電界放出素子)から放出された電子が衝突する蛍光体層22及びアノード電極24が基板20に形成されて成る第2パネル(アノードパネルAP)とが、それらの周縁部において接合され、第1パネル(カソードパネルCP)と第2パネル(アノードパネルAP)とによって挟まれた空間が真空に保持されている。
スピント型電界放出素子が形成されたカソードパネルCP及びアノードパネルAPの概念的な一部端面図を図2に示し、扁平型電界放出素子が形成されたカソードパネルCP及びアノードパネルAPの概念的な一部端面図を図4に示すが、カソードパネルCPは、
(A)支持体10、
(B)支持体10上に形成され、第1の方向に延びる帯状の複数のカソード電極11、
(C)カソード電極11及び支持体10上に形成された絶縁層12、
(D)絶縁層12上に形成され、第1の方向とは異なる第2の方向に延びる帯状の複数のゲート電極13、
(E)カソード電極11とゲート電極13の重複する重複領域に位置するゲート電極13及び絶縁層12の部分に設けられ、底部にカソード電極11が露出した複数の開口部14(ゲート電極13に設けられた第1開口部14Aと、絶縁層12に設けられた第2開口部14B)、及び、
(F)カソード電極11とゲート電極13の重複する重複領域に位置し、開口部14の底部に露出したカソード電極11上に設けられた電子放出部15,15Aを有する電子放出領域EA、
を具備している。
また、冷陰極電界電子放出素子(以下、電界放出素子と略称する)は、
(a)支持体10上に形成され、第1の方向に延びる帯状のカソード電極11、
(b)カソード電極11及び支持体10上に形成された絶縁層12、
(c)絶縁層12上に形成され、第1の方向とは異なる第2の方向に延びる帯状のゲート電極13、
(d)カソード電極11とゲート電極13の重複する重複領域に位置するゲート電極13及び絶縁層12の部分に設けられ、底部にカソード電極11が露出した開口部14(ゲート電極13に設けられた第1開口部14Aと、絶縁層12に設けられた第2開口部14B)、及び、
(e)開口部14の底部に露出したカソード電極11上に設けられた電子放出部15,15A、
から成る。ここで、電子放出部15は、円錐形の電子放出部であり、電子放出部15Aは、例えば、マトリックスに一部が埋め込まれた多数のカーボン・ナノチューブから構成されている。
尚、カソードパネルCPにおいて、カソード電極11は、第1方向(図面の紙面と平行な方向)に延びる帯状であり、ゲート電極13は、第1方向とは異なる第2方向(図面の紙面に垂直な方向)に延びる帯状である(図3も参照)。一般に、カソード電極11とゲート電極13とは、これらの両電極11,13の射影像が互いに直交する方向に各々帯状に形成されている。1サブピクセルに相当する電子放出領域EAには、複数の電界放出素子が設けられている。また、収束電極16が、電界放出素子の所定の配列方向に沿って層間絶縁層17上に設けられており、複数の電界放出素子に共通の収束効果を及ぼすことができる。
実施例1の表示装置は、カソードパネルCPとアノードパネルAPとがそれらの周縁部で接合されて成り、カソードパネルCPとアノードパネルAPとによって挟まれた空間は真空状態(圧力:例えば10-3Pa以下)とされている。カソードパネルCP及びアノードパネルAPを分解したときのカソードパネルCPとアノードパネルAPの一部分の模式的な分解斜視図は、図3に示したと同様である。
アノードパネルAPは、基板20、並びに、この基板20上に形成された蛍光体層22(カラー表示の場合、赤色発光蛍光体層22R、緑色発光蛍光体層22G、青色発光蛍光体層22B)、及び、蛍光体層22を覆うアノード電極24から構成されている。即ち、アノードパネルAPは、より具体的には、基板20、基板20上に形成された隔壁21と隔壁21との間の基板20上に形成され、多数の蛍光体粒子から成る蛍光体層22(赤色発光蛍光体層22R、緑色発光蛍光体層22G、青色発光蛍光体層22B)、及び、蛍光体層22上に形成されたアノード電極24を備えている。アノード電極24は、有効領域を覆う薄い1枚のシート状であり、アノード電極制御回路33に接続されている。アノード電極24は、厚さ約70nmのアルミニウムから成り、隔壁21及び蛍光体層22を覆う状態で設けられている。蛍光体層22と蛍光体層22との間であって、隔壁21と基板20との間には、表示画像の色濁り、光学的クロストークの発生を防止するために、光吸収層(ブラックマトリックス)23が形成されている。
そして、第1パネルであるカソードパネルCPと第2パネルであるアノードパネルAPとの間には、スペーサ40が配置されている。
隔壁21とスペーサ40と蛍光体層22の配置状態の一例を模式的に図5〜図10に示す。尚、図2あるいは図4に示すアノードパネルAPの模式的な一部端面図における蛍光体層等の配列を、図6あるいは図8に示す構成としている。また、図5〜図10においてはアノード電極の図示を省略している。隔壁21の平面形状としては、格子形状(井桁形状)、即ち、1サブピクセルに相当する、例えば平面形状が略矩形の蛍光体層22の四方を取り囲む形状(図5、図6、図7、図8参照)、あるいは、略矩形の(あるいは帯状の)蛍光体層22の対向する二辺と平行に延びる帯状形状を挙げることができる(図9及び図10参照)。尚、図9に示す蛍光体層22にあっては、蛍光体層22R,22G,22Bを、図9の上下方向に延びる帯状とすることもできる。隔壁21の一部は、スペーサ40を保持するためのスペーサ保持部25としても機能する。
実施例1の表示装置において、カソード電極11はカソード電極制御回路31に接続され、ゲート電極13はゲート電極制御回路32に接続され、アノード電極24はアノード電極制御回路33に接続されている。これらの制御回路は周知の回路から構成することができる。表示装置の実動作時、アノード電極制御回路33の出力電圧vAは、通常、一定であり、例えば、5キロボルト〜12キロボルトとすることができる。一方、表示装置の実動作時、カソード電極11に印加する電圧vC及びゲート電極13に印加する電圧vGに関しては、
(1)カソード電極11に印加する電圧vCを一定とし、ゲート電極13に印加する電圧vGを変化させる方式
(2)カソード電極11に印加する電圧vCを変化させ、ゲート電極13に印加する電圧vGを一定とする方式
(3)カソード電極11に印加する電圧vCを変化させ、且つ、ゲート電極13に印加する電圧vGも変化させる方式
のいずれを採用してもよい。
表示装置の実動作時、カソード電極11には相対的に負電圧がカソード電極制御回路31から印加され、ゲート電極13には相対的に正電圧がゲート電極制御回路32から印加され、アノード電極24にはゲート電極13よりも更に高い正電圧がアノード電極制御回路33から印加される。係る表示装置において表示を行う場合、例えば、カソード電極11にカソード電極制御回路31から走査信号を入力し、ゲート電極13にゲート電極制御回路32からビデオ信号を入力する。尚、カソード電極11にカソード電極制御回路31からビデオ信号を入力し、ゲート電極13にゲート電極制御回路32から走査信号を入力してもよい。カソード電極11とゲート電極13との間に電圧を印加した際に生ずる電界により、量子トンネル効果に基づき電子放出部15,15Aから電子が放出され、この電子がアノード電極24に引き付けられ、アノード電極24を通過して蛍光体層22に衝突する。その結果、蛍光体層22が励起されて発光し、所望の画像を得ることができる。つまり、この表示装置の動作は、基本的に、ゲート電極13に印加される電圧vG、及びカソード電極11に印加される電圧vCによって制御される。
図1にスペーサ40の模式的な断面図を示すが、実施例1においては、スペーサ40は、例えば、12kVの絶縁耐圧が確保できる材料から選択されており、具体的には、アルミナ(Al23,純度99.8%)から成る。スペーサ40の長さは100mm、高さは3mm、厚さは50μmである。スペーサ40の表面には、ゲッター効果を有する微粒子42から成る微粒子層41が形成されている。具体的には、微粒子42は、ガスアトマイズ法で製造された球状粉末の微粒子であり、微粒子42の一部分の表面は、酸化膜43(図面には、被膜43と表示する)で被覆されている。微粒子42は、より具体的には、平均粒径0.5μm、純度99.98%のチタン(Ti)から成る。スペーサ40の頂面及び底面には、接触電極44,45が設けられている。接触電極44はアノード電極24と接触し、接触電極45は収束電極16と接触し、これによって、スペーサ40を所定の電位に保持することができる。
尚、図1においては、微粒子42の表面の全てが、被膜43で被覆されているように図示しているが、実際には、微粒子42の一部分の表面が被膜43で被覆されている。また、図1において、微粒子層41においては、微粒子42が、あたかも、最密充填構造にて積層されているように図示しているが、実際には、微粒子42は、或る程度、ランダムに積層されている。また、図1以外の図面においては、微粒子層41等の図示は省略している。
スペーサ40の表面における微粒子層41の形成は、図11に概念図を示すプラズマアーク装置を使用し、以下に説明するプラズマ溶射法に基づき行った。
このプラズマアーク装置は、ステンレス鋼から作製された真空チャンバー101と、ターボ分子ポンプ102(排気能力3000リットル/秒)と、ドライポンプ103とを備えており、真空チャンバー101内の到達真空度は約1×10-5Paである。そして、このプラズマアーク装置には、アーク放電を起こす部分が設置されている。具体的には、アーク電極陰極108とアーク電極陽極109との間に、アーク放電電源110から高電圧(0.8kV)を印加してアーク放電を起こさせる。アーク放電を安定して維持するために、アーク・キャリアガス(アルゴンガス)をガス供給ノズル111からアーク電極陰極108とアーク電極陽極109との間に導入する。
一方、微粒子42は、微粒子/ガス混合槽104に封入されており、アルゴンガスから成る原料キャリアガスを微粒子/ガス混合槽104に導入することで、微粒子42が微粒子/ガス混合槽104内で舞い上がり、原料キャリアガスと微粒子42とが混合された状態が作り出される。そして、この原料キャリアガスと微粒子42との混合体が、微粒子供給ノズル112から真空チャンバー101内に供給される。そして、微粒子42は、アーク・プラズマ流113によって高温に加熱され、スペーサ40に向かって輸送される。
アーク・プラズマ流を広い面積に亙り均一化し、スペーサ40付近まで微粒子42を高い励起状態で輸送することを目的として、真空チャンバー101には誘導コイル114が巻かれており、誘導コイル114には高周波電源115から高周波(13.56MHz)が印加される。
スペーサ40は試料台105の上に配置されており、試料台105を800゜Cまで加熱できるようにヒータ106が設置され、ヒータコントローラー107によって一定温度になるように制御される。試料台105には、約20個のスペーサ40を載置することができる。
以下、スペーサ40の表面に微粒子層41を形成する方法を説明するが、最初に、スペーサ40の一方の表面に微粒子層41を形成し、次いで、スペーサ40の他方の表面に微粒子層41を形成する。微粒子コーティングのプロセス条件を以下の表1に例示する。
[表1]
Figure 0004661242
[工程−A](クリーニング工程)
先ず、プラズマ溶射時に微粒子42がスペーサ40の表面に密着性良く付着できるように、スペーサ40を真空チャンバー101内に搬入し、ターボ分子ポンプ102及びドライポンプ103を作動させて真空チャンバー101を真空とした後、予め頂面及び底面に接触電極44,45が設けられたスペーサ40を洗浄し、スペーサ40の表面の自然酸化膜や有機物の汚染物質を除去する。
[工程−B](プラズマ溶射工程)
次いで、アーク電極陰極108及びアーク電極陽極109にアーク放電電源110から高電圧(0.8kV)を印加してアーク放電を起こさせ、アーク・キャリアガス(アルゴンガス)をガス供給ノズル111からアーク電極陰極108とアーク電極陽極109との間に導入し、微粒子/ガス混合槽104内からの原料キャリアガスと微粒子42との混合体を微粒子供給ノズル112から真空チャンバー101内に供給する。微粒子42は、アーク・プラズマ流113によって高温に加熱され、スペーサ40に向かって輸送され、スペーサ40の表面に堆積する。このプラズマ流の雰囲気を水素ガス雰囲気とすることで、微粒子42の表面に存在する薄い自然酸化膜が還元され、除去される。また、雰囲気ガスにより、微粒子42が僅かな酸素によって酸化されることを防止している。この状態では、微粒子42の表面に酸化膜が存在しない状態で、スペーサ40の表面に微粒子42は付着する。成膜レートを0.05nm/秒とする。このようにして、スペーサ40の一方の表面に微粒子層41を形成し、次いで、スペーサ40の他方の表面に微粒子層41を形成する。
[工程−C](真空引き)
その後、微粒子42の表面に吸着した雰囲気ガス(水素ガス)等のガスを除去する。
[工程−D](表面酸化)
次に、真空チャンバー101内にプロセスガスとして酸素ガスを導入することで微粒子42の表面に酸化膜43を形成する。このときの酸化レートを、0.1nm/秒程度とする。このように、微粒子42の表面を酸化して微粒子42の表面に酸化膜43を形成することで、微粒子42の表面を不活性化させる。これによって、微粒子42を空気に晒したときに、更なる酸化の進行を防止することができる。
[工程−E](真空引き)
その後、真空チャンバー101を真空引きすることで、微粒子42の表面に吸着した酸素ガス及び水素ガスを脱離させる。次いで、スペーサ40の温度を50゜C程度まで降温してから、スペーサ40を真空チャンバー101から搬出する。
得られたスペーサ40において、微粒子層41の膜厚は1μmであり、比抵抗率は約105Ω/□、BET法にて測定した比表面積は約500m2/グラムであった。
以下、実施例1の平面型表示装置の組立方法を説明する。
[工程−100]
電子を放出する電子放出源に相当する電界放出素子が支持体10に複数、形成されて成る第1パネル(カソードパネルCP)と、電子放出源(スピント型電界放出素子や扁平型電界放出素子)から放出された電子が衝突する蛍光体層22及びアノード電極24が基板20に形成されて成る第2パネル(アノードパネルAP)とを準備する。電界放出素子の形成方法については、後述する。また、上述したとおり、スペーサ40を作製しておく。
[工程−110]
そして、表示装置の組み立てを行う。具体的には、アノードパネルAPの有効領域に設けられたスペーサ保持部25にスペーサ40を取り付け、蛍光体層22と電子放出領域EAとが対向するようにアノードパネルAPとカソードパネルCPとを配置し、アノードパネルAPとカソードパネルCP(より具体的には、基板20と支持体10)とを、セラミックスやガラスから作製された枠体26を介して、周縁部において接合する。接合に際しては、枠体26とアノードパネルAPとの接合部位、及び、枠体26とカソードパネルCPとの接合部位にフリットガラスを塗布し、アノードパネルAPとカソードパネルCPと枠体26とを貼り合わせ、予備焼成にてフリットガラスを乾燥した後、約450゜Cで10〜30分の本焼成を行う。
[工程−120]
その後、アノードパネルAPとカソードパネルCPと枠体とフリットガラス(図示せず)とによって囲まれた空間を貫通孔(図示せず)及びチップ管(図示せず)を通じて排気し、空間の圧力が10-5Pa程度に達した時点で、アノード電極24、カソード電極11、ゲート電極13、収束電極16に、表2に例示する電圧を印加して、電界放出素子を構成する電子放出部15,15Aから電子を放出させた。このようにアノード電極24に印加する電圧を、通常の作動状態における電圧(例えば、10キロボルト〜12キロボルト)よりも低くすることによって、通常の作動時よりも、電子ビームの広がりが大きくなる結果、電子放出部15,15Aから放出された電子の一部は、スペーサ40に直接、衝突する。このようにスペーサ40に電子が、直接、衝突することで、スペーサ40の表面に形成された微粒子層41における微粒子42の表面の酸化膜43が徐々に還元されて、微粒子42の活性な表面が露出する。尚、併せて、収束電極16に印加する電圧を制御することで、電子放出源である電子放出部15,15Aから放出された電子をスペーサ40の微粒子層41に一層多量に衝突させることができる。即ち、収束電極16に正の電圧を印加して、電子ビームの広がりを一層大きくしてもよい。このように、電子放出部15,15Aから放出される電子ビームを利用して微粒子42を活性化させることで、ゲッター効果を生じさせることができる。それ故、微粒子42を活性化させるための加熱処理等の活性化処理は不要である。
[表2]
アノード電極:0.8キロボルト
カソード電極:0ボルト
ゲート電極 :25ボルト(デューティ0.3%の矩形波)
収束電極 :0ボルト(表示装置の動作時の印加電圧)
[工程−130]
その後、アノードパネルAPとカソードパネルCPと枠体とフリットガラス(図示せず)とによって囲まれた空間を貫通孔(図示せず)及びチップ管(図示せず)を通じた排気を更に行った後、チップ管を加熱溶融により封じ切る。このようにして、アノードパネルAPとカソードパネルCPと枠体とに囲まれた空間を真空にすることができる。
あるいは又、例えば、枠体とアノードパネルAPとカソードパネルCPとの貼り合わせを高真空雰囲気中で行ってもよい。あるいは又、表示装置の構造に依っては、枠体無しで、接着層のみによってアノードパネルAPとカソードパネルCPとを貼り合わせてもよい。その後、必要な外部回路との配線接続を行い、実施例1の表示装置を完成させる。尚、表示装置の無効領域に、別途、ゲッター室を配置しておき、このゲッター室内にBa蒸発型ゲッターが設置されている点は、従来の表示装置と同様である。
スペーサ40の表面に微粒子層41を形成することでゲッター効果を発揮するが、更に、以下の作用、効果を得ることができる。
即ち、スペーサ40の表面に、微粒子層41に基づくミクロな凹凸を形成することができる。このミクロな凹凸に入射する電子の入射角は、凹凸が存在しない場合と比較して、小さな値となる。それ故、このミクロな凹凸は、スペーサ40の全2次電子放出係数(TSEEY)の値を下げ、スペーサ40におけるチャージアップ(帯電)の発生を抑制する(図13の(A)参照)。図28に示したように、全2次電子放出係数(TSEEY)の最大値は、電子エネルギー450eV付近にあり、最大値は、Tiから成る微粒子層41をスペーサ40の表面に形成することで約2.5から1.5に低減されている。これにより、スペーサ40の表面に電子が衝突しても、よりチャージアップが生じ難い。また、スペーサ40の表面の全2次電子放出係数が1以上の場合、スペーサ40の表面が正にチャージアップするので、スペーサ40の表面で反射した電子は、再度、スペーサ40の表面に引き寄せられ、衝突し、2次電子を放出する。このように、スペーサ40の表面を沿うように電子が流れるのと同時に電子が増殖していく。即ち、所謂2次電子雪崩が発生し、この2次電子雪崩が顕著となった場合、沿面放電を引き起こし、スペーサ40の耐圧が著しく低下する。スペーサ40の表面のミクロな凹凸は、この2次電子雪崩の発生を抑制する働きもする。
また、微粒子42の集合体によって抵抗体を形成することができる。微粒子42を層状(膜状)とした場合の抵抗値は、微粒子42と微粒子42との接触面積で決定され、微粒子42の層としての抵抗値は、接触面積の総和で決定される。そのため、微粒子42自体の抵抗値が変化しても、接触面積が変化しなければ、抵抗値は変化しない。従って、微粒子42の集合体による層(薄膜)の抵抗値は、電子ビームの照射(衝突)に対して極めて安定している。
スペーサ40の表面に形成された微粒子層41のゲッター能力を、以下に説明する方法に基づき測定した。測定には、図12に概念図を示す測定装置を用いた。この測定装置は、真空チャンバー121と、ターボ分子ポンプ125(排気能力3000リットル/秒)と、ドライポンプ126とを備えており、ゲートバルブ124を介して、真空チャンバー121は真空に排気される。真空チャンバー121到達真空度は、B−A真空計127で測定されるが、真空チャンバー121内の到達真空度は約1×10-5Paである。真空チャンバー121内が、真空チャンバー121の壁面に吸着したガスによって影響を受けることを出来る限り抑制するために、真空チャンバー121内を150゜Cに加熱できるような構造となっている。試料台を兼用したヒータ123の上に、スペーサ40が配置される。
真空チャンバー121内の圧力をガスの種類に依らず正確に測定できるように、キャパシタンスマノメータ128(100ミリトル・ヘッド)も設置されている。また、各ガスを分析する目的で、四重極質量分析装置129が設置されている。更には、スペーサ40に電子ビームを照射するための電子ビームガン122が設置されている。真空チャンバー121内には、マスフローコントローラーを介して、O2ガス、CH4ガス、COガス、CO2ガス、H2ガスが別々に導入できるようになっている。
このような測定装置を使用して、スペーサ40の表面に形成された微粒子層41のゲッター能力を測定する。
先ず、スペーサ40を、試料台を兼用したヒータ123に載置する。そして、真空チャンバー121を真空引きする。真空チャンバー121の到達圧力を1×10-4Pa程度とする。同時に、ガス溜めタンク用バルブ134を開き、ガス溜めタンク132も真空引きする。そして、真空チャンバー121、スペーサ40、及び、ガス溜めタンク132を加熱して、水分等の吸着ガスを排気する。ここで、真空チャンバー121及びガス溜めタンク132の加熱温度、加熱時間を150゜C、5時間、スペーサ40の加熱温度、加熱時間を300゜C、5時間とした。その後、真空チャンバー121、ガス溜めタンク132及びスペーサ40の温度がほぼ室温になるまで放置する。この状態での真空チャンバー121の到達圧力は1×10-5Pa程度以下である。そして、キャパシタンスマノメーター128の零点を合わせる。また、ガス溜めタンク用バルブ134を閉にする。
CH4ガスに対する吸着性能を測定する場合、CH4ガスのガスバルブ130を開にし、マスフローコントローラー131を10sccmに設定し、CH4ガスをガス溜めタンク132に導入する。そして、ガス溜めタンク用のキャパシタンスマノメーター133の圧力表示が133Paになるまで、CH4ガスをガス溜めタンク132に導入し、ガス溜めタンク132がこの圧力に達した後、ガスバルブ130を閉じる。この状態では、ガス溜めタンク132内にCH4ガスが溜められたことになる。
次に、真空チャンバー121内の圧力を1×10-5Pa以下に保持した状態で電子ビームガン122を作動させてスペーサ40の表面に電子を照射して、スペーサ40の表面に形成された微粒子層41に電子を衝突させることによって微粒子42を活性化させることで、ゲッター効果を生じさせる。電子ビーム照射条件を、以下の表3に例示する。尚、電子ビームエネルギー及び照射時間は、予め、試験を行い、決定しておく。
[表3]
電子ビームエネルギー:10keV,0.1mA/cm2
照射時間 :100秒
その後、電子ビームガン122の作動を中止し、スペーサ40の表面への電子の照射を中止する。次いで、10分間、真空引きした後(真空度1×10-5Pa)、ゲートバルブ124を閉じ、ガス溜めタンク用バルブ134を開にすると、瞬時、真空チャンバー121内にガス溜めタンク132内のCH4ガスが導入され、真空チャンバー121は、或る平衡圧力に達する。このときの状態を、時刻t=0秒、チャンバー圧力(キャパシタンスマノメーター128の読み値)=P0[Pa]とする。真空チャンバー121内の圧力は、時間の経過と共に、ゲッター効果を有する微粒子42にガスが吸着されていくことで、低下していく。t秒が経過した後のチャンバー圧力を関数P(t)、スペーサ40への電子照射面積をA(m2)、真空チャンバー121の容積をV(m3)とすると、単位面積当たりのゲッター能力S(単位:m3・秒-1・m-2)、及び、単位面積当たりのゲッターガス量L(単位:Pa・m3・m-2)は、以下の式で表すことができる。
S={V/(A・t)}・ln(P0/P(t))
L=V{P0−P(t)}/A
尚、測定中、真空チャンバー121内が、不純物なく、正常に、測定ガス(CH4)で満たされているか、四重極質量分析装置129で監視する。
このようにして、他のガスに対するゲッター能力も測定することができる。
図13の(B)に、微粒子層41への電子ビームのドーズ量と、単位面積当たりのゲッター能力Sとの関係の一例を示す。図13の(B)から、約0.1C/cm程度の電子ビームのドーズ量で、微粒子42を十分に活性化させ、ゲッター効果を生じさせることが判る。
図14には、上述した方法に基づき、スペーサ40の表面に形成された微粒子層41のゲッター能力を測定した結果を示す。Ti微粒子42から成る微粒子層41にあっては、O2>CO>CO2>N2 の順番で吸着能力が大きく、また、吸着量が大きくなると吸着能力は低下する。H2ガスについては、他のガスと異なった傾向を示している。
また、図15には、電子放出部15をMoから構成したスピント型電界放出素子を備えた表示装置に実施例1のスペーサ40を組み込んだときの、電子放出部15の電子放出特性の変化を示す。電子放出部15の電子放出特性の変化は、先ず、[工程−100]〜[工程−130]を実行して、第1パネルと第2パネルとによって挟まれた空間を1×10-5Paまで排気した後、チップ管を封じ切らずに、チップ管からCH4ガス等のガスを第1パネルと第2パネルとによって挟まれた空間に導入し、第1パネルと第2パネルとによって挟まれた空間の圧力を1×10-3Paとする。その後、チップ管を加熱溶融により封じ切り、得られた表示装置を実際に動作させて、輝度変化を測定した。図15からも明らかなように、特に酸素ガスの影響が大きく、微量な酸素ガスの存在でも著しく電子放出特性が劣化する。劣化傾向の大きい順番は、O2>CO>CO2である。一方、CH4ガスは殆ど影響がなく、H2ガスによって、逆に、電子放出特性が活性化される。
図16の(B)に示すように、従来の表示装置におけるスペーサ(表面に厚さ10nmのCr23膜を成膜)は、表面に電子が衝突したとき、スペーサの表面に吸着していたガスを放出する。一方、図16の(A)に示すように、実施例1のスペーサ40に電子が衝突した場合には、スペーサ40から放出されるガスは、H2ガスが最も多いものの、O2ガスやCOガス等の電子放出特性を劣化させるガスの放出は減少している。尚、図16の(A)及び(B)に示した測定値は、第1パネル(カソードパネルCP)と第2パネル(アノードパネルAP)とを真空容器中でスペーサ40を組み込んで対向した状態に配置し、カソード電極11、ゲート電極13、アノード電極24に実際の動作時の電圧を印加し、真空容器に接続された四重極質量分析装置を用いてガスの分析を行って得られた値である。
従来の技術にあっては、スペーサからのガスに起因した電子放出部の電子放出特性劣化は、スペーサに近い場所ほど多く、スペーサから離れる程、小さくなる。そのため、スペーサの近くに位置する電界放出素子と、スペーサから離れた所に位置する電界放出素子とでは、電子放出特性に差が生じ、表示装置の動作時間が長くなる程、この差は拡がってゆく(図17の(B)の模式図を参照)。そして、この電子放出特性の差は、表示装置においては、スペーサ付近で輝度が暗くなるという問題を引き起こす。本発明にあっては、スペーサ40の表面にガス吸着層(ゲッター層)として機能する微粒子層41が存在するので、スペーサ40に電子が衝突したときにスペーサ40から放出されるガスを確実に低減することができ、スペーサの近くに位置する電界放出素子と、スペーサから離れた所に位置する電界放出素子とでも、電子放出特性に差が生じ難い(図17の(A)の模式図を参照)。特に、電界放出素子を劣化させる酸素(O2)ガスや一酸化炭素(CO)ガス等の放出ガスを著しく減らすことができる(図14、図16の(A)参照)。その結果、全面に均一な画像を提供することができ、しかも、画像の均一性の経時変化を抑制することができる。
実施例2は、実施例1の変形である。実施例1においては、スペーサ40の表面における微粒子層41の形成をプラズマ溶射法に基づき行った。一方、実施例2においては、市販の微細配線用の導電性インクを用いて行う。
具体的には、平均粒径100nmのチタン(Ti)から成り、ガス中蒸発法に基づき製造され、精製された微粒子42が、有機溶剤中で独立した状態で分散され、有機溶剤中で凝集していない状態の導電性インクを使用する。ここで、ガス中蒸発法とは、真空雰囲気のチャンバー内にヘリウムガスを導入し、その中で金属を蒸発させ、不活性ガスとの衝突により冷却され、凝縮された金属微粒子42が孤立状態にある段階で有機溶剤の蒸気を導入して、金属微粒子42の表面の被覆を行う方法であり、例えば、特開2000−219901に開示されている。そして、係る導電性インクを、スペーサ40上にスピンコーティング法で1.5μmの厚さに塗布する。尚、塗布方法として、その他、インクジェット法、スリットコーティング法、ディスペンサー法を挙げることができる。次に、100゜Cのホットプレート上にスペーサ40を置き、3分間、導電性インクを乾燥させた後、真空ベーク炉(到達圧力:5×10-5Pa)に搬入し、350゜Cで30分間、真空度1×10-4Paにて導電性インクを焼成する。このような操作を、スペーサの両面に対して行い、スペーサの両面に微粒子層41を形成することができる。
以上の点を除き、実施例2におけるスペーサ、平面型表示装置及びその組立方法は、実質的に実施例1におけるスペーサ、平面型表示装置及びその組立方法と同じとすることができるので詳細な説明は省略する。
実施例3も、実施例1の変形である。実施例3においては、微粒子42はケイ素(Si)から成り、微粒子42の表面の一部分は酸化膜である被膜43で被覆されている。微粒子42は、より具体的には、平均粒径0.5μm、純度99.99%のシリコン(Si)から成る。以下、このような微粒子42の製造方法の概要を説明する。尚、スペーサ40の表面における微粒子層41の形成は、図11に概念図を示したプラズマアーク装置を使用し、実施例1と同じプラズマ溶射法に基づき行った。
市販の純度99.99%のシリコン(Si)粉末(平均粒径:200メッシュ以下)を用い、表1に例示したプロセス条件により、実施例1の[工程−A]〜[工程−E]に基づき、スペーサを作製した。得られたスペーサ40において、微粒子層41の膜厚は3μmであり、微粒子の平均粒径は0.5μm、微粒子の表面を被覆した酸化膜の厚さは約20nmであった。
以上の点を除き、実施例3におけるスペーサ、平面型表示装置及びその組立方法は、実質的に実施例1におけるスペーサ、平面型表示装置及びその組立方法と同じとすることができるので詳細な説明は省略する。
実施例4も、実施例1の変形である。実施例4においては、微粒子42は炭素(C)から成り、微粒子42の表面の一部分は有機膜である被膜43で被覆されている。微粒子42は、より具体的には、平均粒径0.5μm、純度99.99%の球状化黒鉛粉末から成る。以下、このような微粒子42の製造方法の概要を説明する。尚、スペーサ40の表面における微粒子層41の形成は、図11に概念図を示したプラズマアーク装置を使用し、以下の表4に例示するプロセス条件に基づくプラズマ溶射法に基づき行った。
[表4]
Figure 0004661242
[工程−A’](クリーニング工程)
先ず、実施例1の[工程−A]と同様にして、スペーサ40の表面の自然酸化膜や有機物の汚染物質を除去する。
[工程−B’](プラズマ溶射工程)
次いで、実施例1の[工程−B]と同様にして、微粒子42をスペーサ40の表面に堆積させる。
[工程−C’](真空引き)
その後、微粒子42の表面に吸着した雰囲気ガス(水素ガス)等のガスを除去する。
[工程−D’](有機膜被覆)
次に、真空チャンバー101内にプロセスガスとしてC66ガスを導入することで微粒子42の表面に有機膜から成る被膜43を形成する。このように、微粒子42の表面を有機膜から成る皮膜43で被覆することによって、微粒子42の表面を不活性化させる。これによって、微粒子42を空気に晒したときに、酸化の進行を防止することができる。
[工程−E’](真空引き)
その後、真空チャンバー101を真空引きすることで、微粒子42の表面に吸着した酸素ガス及び水素ガスを脱離させる。次いで、スペーサ40の温度を50゜C程度まで降温してから、スペーサ40を真空チャンバー101から搬出する。
得られたスペーサ40において、微粒子層41の膜厚は3μmであり、微粒子の平均粒径は0.5μm、微粒子の表面を被覆した酸化膜の厚さは約10nmであった。
以上の点を除き、実施例4におけるスペーサ、平面型表示装置及びその組立方法は、実質的に実施例1におけるスペーサ、平面型表示装置及びその組立方法と同じとすることができるので詳細な説明は省略する。
実施例5は、本発明の第2の態様に係る平面型表示装置に関する。この実施例5の平面型表示装置にあっては、実施例1〜実施例4における平面型表示装置と同様に、電子を放出する電子放出源に相当するスピント型電界放出素子や扁平型電界放出素子が支持体10に複数、形成されて成る第1パネル(カソードパネルCP)と、電子放出源(スピント型電界放出素子や扁平型電界放出素子)から放出された電子が衝突する蛍光体層22及びアノード電極24が基板20に形成されて成る第2パネル(アノードパネルAP)とが、それらの周縁部において接合され、第1パネル(カソードパネルCP)と第2パネル(アノードパネルAP)とによって挟まれた空間が真空に保持されている。また、第2パネル(アノードパネルAP)において、蛍光体層22は基板20の表面に形成されており、アノード電極24は蛍光体層22上に形成されている。
但し、図18あるいは図19に模式的な一部端面図を示すように、実施例1〜実施例4におけるアノードパネルと異なり、蛍光体層22が形成された基板20の部分を基板20に垂直な仮想平面で切断したときの、蛍光体層22の表面形状は略「V」字状である。より具体的には、蛍光体層22が形成された基板20の部分を基板20に垂直な仮想平面で切断したときの、基板20の部分の表面形状は略「V」字状である。実施例5にあっては、略「V」字状の表面形状のアスペクト比(D0/L0)を0.87とした。即ち、蛍光体層22が形成された基板20の部分を基板20に垂直な仮想平面で切断したときの、基板20の部分の傾斜角は60度である。ここで、略「V」字状の表面形状を有する基板20の部分の平面形状は円形である。即ち、基板20の係る部分の形状は、凹んだ円錐形状である。図18に示す例にあっては、略「V」字状の表面形状を有する区画は、1つのサブピクセルを構成する蛍光体層の領域に1つ、形成されている。一方、図19に示す例にあっては、略「V」字状の表面形状を有する区画は、1つのサブピクセルを構成する蛍光体層の領域に3つ、形成されている。即ち、1つのサブピクセルを構成する蛍光体層の単位面積当たりの区画の数はサブピクセルサイズが200μm×600μmの場合、25個/mm2である。また、隔壁21にあっては、(隔壁高さH1)/(隔壁と隔壁との間の距離L1)の値である隔壁アスペクト比(H1/L1)は0.5であり、蛍光体層22の頂面22Aから隔壁21Aの頂面までの高さの差は100μmである。
蛍光体層に入射する電子ビームの入射角度を0度、30度、60度としたときの、後方散乱電子の振る舞いを図20に示す。図20からも明らかなように、入射角度)(図20では、傾斜角度で表す)が大きくなるに従い、カソードパネル側に散乱する電子は減少するが、アノードパネルの表面と平行な方向に散乱する電子は増加する。
蛍光体層22が形成された基板20の部分を基板20に垂直な仮想平面で切断したときの、蛍光体層22の表面形状を略「V」字状としたときの、後方散乱電子分布を図21に示す。一次電子は、基板20の表面に均等に垂直に入射するとした。傾斜角度が大きくなるほど後方散乱電子の放出が抑制される。傾斜角度30度で約10%、60度で約40%、後方散乱電子の放出が低減される。相対する傾斜面が互いに後方散乱電子を遮蔽するが故に、後方散乱電子の放出の低減を図ることができる。
更に、隔壁21を併用した場合の散乱電子放出比を図22に示す。従来の技術にあっては、後方散乱電子を90%遮蔽するための隔壁アスペクト比は、図31に示したように、約5であったが、図22から、実施例5にあっては、略「V」字状の表面形状のアスペクト比(D0/L0)を0.87(傾斜角60度)としたときには、曲線「C」に示すように、隔壁アスペクト比を約2まで小さくすることができる。
図18及び図19に示した例にあっては、基板20の表面に凹んだ円錐形状を設けているが、このような表面形状は、フォトリソグラフィ技術とサンドブラスト法とによるガラス基板の加工、フォトリソグラフィ技術とサンドブラスト法とウエットエッチングとによるガラス基板の加工といった方法に基づき得ることができる。
また、基板20の表面に凹んだ円錐形状を設ける代わりに、基板20の表面を平坦な状態としておき、蛍光体層22の表面に凹んだ円錐形状等を形成してもよい。蛍光体層22の表面における凹んだ円錐形状は、例えば、ガラスペーストを印刷法等に基づき塗布した後に、フォトリソグラフィ技術とサンドブラスト法との組み合わせに基づき加工することで得ることができる。
更には、アノード電極24は、蛍光体層22と直接接して形成されていてもよいし、蛍光体層22の上方に隙間を空けて形成されていてもよい。具体的には、例えば、特開2002−338959に開示された方法に基づき、アノードパネルを作製すればよい。
また、実施例1〜実施例4において説明したスペーサ40と実施例5において説明したアノードパネルAPの特徴を組み合わせてもよい。
[スピント型電界放出素子の製造方法]
以下、スピント型電界放出素子の製造方法を、カソードパネルCPを構成する支持体10等の模式的な一部端面図である図23の(A)、(B)及び図24の(A)、(B)を参照して説明する。
このスピント型電界放出素子は、基本的には、円錐形の電子放出部15を金属材料の垂直蒸着により形成する方法によって得ることができる。即ち、ゲート電極13に設けられた第1開口部14Aに対して蒸着粒子は垂直に入射するが、第1開口部14Aの開口端付近に形成されるオーバーハング状の堆積物による遮蔽効果を利用して、第2開口部14Bの底部に到達する蒸着粒子の量を漸減させ、円錐形の堆積物である電子放出部15を自己整合的に形成する。ここでは、不要なオーバーハング状の堆積物の除去を容易とするために、ゲート電極13及び絶縁層12上に剥離層18を予め形成しておく方法について説明する。尚、電界放出素子の製造方法を説明するための図面においては、1つの電子放出部のみを図示した。
[工程−A0]
先ず、例えばガラス基板から成る支持体10の上に、例えばポリシリコンから成るカソード電極用導電材料層をプラズマCVD法にて成膜した後、リソグラフィ技術及びドライエッチング技術に基づきカソード電極用導電材料層をパターニングして、帯状のカソード電極11を形成する。その後、全面にSiO2から成る絶縁層12をCVD法にて形成する。
[工程−A1]
次に、絶縁層12上に、ゲート電極用導電材料層(例えば、Al層)をスパッタリング法にて成膜し、次いで、ゲート電極用導電材料層をリソグラフィ技術及びドライエッチング技術にてパターニングすることによって、帯状のゲート電極13を得ることができる。帯状のカソード電極11は、図面の紙面左右方向に延び、帯状のゲート電極13は、図面の紙面垂直方向に延びている。
ゲート電極13を、真空蒸着法等のPVD法、CVD法、電気メッキ法や無電解メッキ法といったメッキ法、スクリーン印刷法、レーザアブレーション法、ゾル−ゲル法、リフトオフ法等の公知の薄膜形成と、必要に応じてエッチング技術との組合せによって形成してもよい。スクリーン印刷法やメッキ法によれば、直接、例えば帯状のゲート電極を形成することが可能である。
[工程−A2]
その後、再びレジスト層を形成し、エッチングによってゲート電極13に第1開口部14Aを形成し、更に、絶縁層に第2開口部14Bを形成し、第2開口部14Bの底部にカソード電極11を露出させた後、レジスト層を除去する。こうして、図23の(A)に示す構造を得ることができる。
[工程−A3]
次に、支持体10を回転させながらゲート電極13上を含む絶縁層12上にニッケル(Ni)を斜め真空蒸着することにより、剥離層18を形成する(図23の(B)参照)。このとき、支持体10の法線に対する蒸着粒子の入射角を十分に大きく選択することにより(例えば、入射角65度〜85度)、第2開口部14Bの底部にニッケルを殆ど堆積させることなく、ゲート電極13及び絶縁層12の上に剥離層18を形成することができる。剥離層18は、第1開口部14Aの開口端から庇状に張り出しており、これによって第1開口部14Aが実質的に縮径される。
[工程−A4]
次に、全面に例えば導電材料としてモリブデン(Mo)を垂直蒸着する(入射角3度〜10度)。このとき、図24の(A)に示すように、剥離層18上でオーバーハング形状を有する導電材料層19が成長するに伴い、第1開口部14Aの実質的な直径が次第に縮小されるので、第2開口部14Bの底部において堆積に寄与する蒸着粒子は、次第に第1開口部14Aの中央付近を通過するものに限られるようになる。その結果、第2開口部14Bの底部には円錐形の堆積物が形成され、この円錐形の堆積物が電子放出部15となる。
[工程−A5]
その後、図24の(B)に示すように、リフトオフ法にて剥離層18をゲート電極13及び絶縁層12の表面から剥離し、ゲート電極13及び絶縁層12の上方の導電材料層19を選択的に除去する。次いで、絶縁層12に設けられた第2開口部14Bの側壁面を等方的なエッチングによって後退させることが、ゲート電極13の開口端部を露出させるといった観点から、好ましい。尚、等方的なエッチングは、ケミカルドライエッチングのようにラジカルを主エッチング種として利用するドライエッチング、あるいはエッチング液を利用するウェットエッチングにより行うことができる。エッチング液としては、例えば49%フッ酸水溶液と純水の1:100(容積比)混合液を用いることができる。こうして、スピント型電界放出素子を得ることができる。
尚、収束電極16を設ける場合には、[工程−A1]に続き、ゲート電極13及び絶縁層12の上に更に層間絶縁層17を設け、層間絶縁層17上に収束電極16を設ければよい。具体的には、収束電極16の形成は、例えば、[工程−A1]において絶縁層12上に帯状のゲート電極13を形成した後、全面に層間絶縁層17を形成し、次いで、層間絶縁層17上にパターニングされた収束電極16を形成した後、収束電極16、層間絶縁層17に第3開口部を設け、更に、ゲート電極13に第1開口部14Aを設けるといった[工程−A2]を行えばよい。尚、収束電極のパターニングに依存して、1又は複数の電子放出部、あるいは、1又は複数の画素に対応する収束電極ユニットが集合した形式の収束電極とすることもでき、あるいは又、有効領域を1枚のシート状の導電材料で被覆した形式の収束電極とすることもできる。
以上、本発明を、好ましい実施例に基づき説明したが、本発明はこれらの実施例に限定されるものではない。実施例にて説明した平面型表示装置、カソードパネルやアノードパネル、冷陰極電界電子放出表示装置や冷陰極電界電子放出素子の構成、構造は例示であり、適宜変更することができるし、アノードパネルやカソードパネル、冷陰極電界電子放出表示装置や冷陰極電界電子放出素子の製造方法も例示であり、適宜変更することができる。更には、アノードパネルやカソードパネルの製造において使用した各種材料も例示であり、適宜変更することができる。表示装置においては、専らカラー表示を例にとり説明したが、単色表示とすることもできる。
電界放出素子においては、専ら1つの開口部に1つの電子放出部が対応する形態を説明したが、電界放出素子の構造に依っては、1つの開口部に複数の電子放出部が対応した形態、あるいは、複数の開口部に1つの電子放出部が対応する形態とすることもできる。あるいは又、ゲート電極に複数の第1開口部を設け、絶縁層に係る複数の第1開口部に連通した複数の第2開口部を設け、1又は複数の電子放出部を設ける形態とすることもできる。
表面伝導型電界放出素子と通称される電界放出素子から電子放出源を構成することもできる。この表面伝導型電界放出素子は、例えばガラスから成る支持体上に酸化錫(SnO2)、金(Au)、酸化インジウム(In23)/酸化錫(SnO2)、カーボン、酸化パラジウム(PdO)等の導電材料から成り、微小面積を有し、所定の間隔(ギャップ)を開けて配された一対の電極がマトリックス状に形成されて成る。それぞれの電極の上には炭素薄膜が形成されている。そして、一対の電極の内の一方の電極に行方向配線が接続され、一対の電極の内の他方の電極に列方向配線が接続された構成を有する。一対の電極に電圧を印加することによって、ギャップを挟んで向かい合った炭素薄膜に電界が加わり、炭素薄膜から電子が放出される。係る電子をアノードパネル上の蛍光体層に衝突させることによって、蛍光体層が励起されて発光し、所望の画像を得ることができる。あるいは又、金属/絶縁膜/金属型素子から電子放出源を構成することもできる。
図1は、実施例1のスペーサの模式的な断面図である。 図2は、スピント型冷陰極電界電子放出素子を有する冷陰極電界電子放出表示装置の概念的な一部端面図である。 図3は、冷陰極電界電子放出表示装置におけるカソードパネルとアノードパネルの一部分の模式的な分解斜視図である。 図4は、扁平型冷陰極電界電子放出素子を有する冷陰極電界電子放出表示装置の概念的な一部端面図である。 図5は、冷陰極電界電子放出表示装置を構成するアノードパネルにおける隔壁、スペーサ及び蛍光体層の配置を模式的に示す配置図である。 図6は、冷陰極電界電子放出表示装置を構成するアノードパネルにおける隔壁、スペーサ及び蛍光体層の配置を模式的に示す配置図である。 図7は、冷陰極電界電子放出表示装置を構成するアノードパネルにおける隔壁、スペーサ及び蛍光体層の配置を模式的に示す配置図である。 図8は、冷陰極電界電子放出表示装置を構成するアノードパネルにおける隔壁、スペーサ及び蛍光体層の配置を模式的に示す配置図である。 図9は、冷陰極電界電子放出表示装置を構成するアノードパネルにおける隔壁、スペーサ及び蛍光体層の配置を模式的に示す配置図である。 図10は、冷陰極電界電子放出表示装置を構成するアノードパネルにおける隔壁、スペーサ及び蛍光体層の配置を模式的に示す配置図である。 図11は、実施例1において、スペーサの表面に微粒子層を形成するためのプラズマ溶射法の実行に適したプラズマアーク装置の概念図である。 図12は、スペーサの表面に形成された微粒子層のゲッター能力を測定するのに適した測定装置の概念図である。 図13の(A)は、スペーサの表面にミクロな凹凸を形成したときの、即ち、微粒子層を形成したときの全2次電子放出係数(TSEEY)と、微粒子層を形成しないときの全2次電子放出係数(TSEEY)の値を示すグラフであり、図13の(B)は、微粒子層への電子ビームのドーズ量と単位面積当たりのゲッター能力Sとの関係の一例を示すグラフである。 図14は、実施例1において説明した方法に基づき、スペーサの表面に形成された微粒子層のゲッター能力を測定した結果を示すグラフである。 図15は、電子放出部をMoから構成したスピント型冷陰極電界電子放出素子を備えた冷陰極電界電子放出表示装置に実施例1のスペーサを組み込んだときの、電子放出部の電子放出特性の変化を示すグラフである。 図16の(A)及び(B)は、それぞれ、実施例1及び従来の技術において、スペーサの表面に電子が衝突したときのスペーサからのガス放出量を測定した結果を示すグラフである。 図17の(A)及び(B)は、それぞれ、スペーサの近くに位置する冷陰極電界電子放出素子と、スペーサから離れた所に位置する冷陰極電界電子放出素子とでの、電子放出特性に生じる差を模式的に示す図である。 図18は、実施例5の平面型表示装置を構成する第2パネル(アノードパネル)の模式的な一部端面図である。 図19は、実施例5の平面型表示装置を構成する第2パネル(アノードパネル)の変形例の模式的な一部端面図である。 図20は、蛍光体層に入射する電子ビームの入射角度を0度、30度、60度としたときの、後方散乱電子の振る舞い示す図である。 図21は、蛍光体層が形成された基板の部分を基板に垂直な仮想平面で切断したときの蛍光体層の表面形状を略「V」字状としたときの、後方散乱電子分布を示す図である。 図22は、実施例5において、隔壁を併用した場合の散乱電子放出比を示す図である。 図23の(A)及び(B)は、スピント型冷陰極電界電子放出素子の製造方法を説明するための支持体等の模式的な一部端面図である。 図24の(A)及び(B)は、図23の(B)に引き続き、スピント型冷陰極電界電子放出素子の製造方法を説明するための支持体等の模式的な一部端面図である。 図25は、スペーサの近傍における電子ビームの軌道を模式的に示す図である。 図26は、スペーサの近傍における電子ビームの軌道を模式的に示す図である。 図27は、スペーサの近傍における電子ビームの軌道を模式的に示す図である。 図28は、電子ビームのエネルギーと全2次電子放出係数(TSEEY)の関係を示すグラフである。 図29の(A)及び(B)は、スペーサに衝突する電子のエネルギー分布、及び、スペーサに衝突する電子の角度分布を示すグラフである。 図30の(A)は、後方散乱電子のエネルギー分布を示すグラフであり、図30の(B)は、後方散乱電子の散乱角度分布を示すグラフである。 図31は、電子放出部から放出され、蛍光体層に衝突する電子のエネルギーを9keVとしたときの、隔壁アスペクト比と後方散乱電子放出比との関係を示すグラフである。
符号の説明
CP・・・カソードパネル、AP・・・アノードパネル、10・・・支持体、11・・・カソード電極、12・・・絶縁層、13・・・ゲート電極、14,14A,14B・・・開口部、15,15A・・・電子放出部、16・・・収束電極、17・・・層間絶縁層、18・・・剥離層、19・・・導電材料層、20・・・基板、21・・・隔壁、22,22R,22G,22B・・・蛍光体層、23・・・ブラックマトリックス、24・・・アノード電極、25・・・スペーサ保持部、26・・・枠体、31・・・カソード電極制御回路、32・・・ゲート電極制御回路、33・・・アノード電極制御回路、40・・・スペーサ、41・・・微粒子層、42・・・微粒子、43・・・酸化膜(被膜)、44,45・・・接触電極、101・・・真空チャンバー、102・・・ターボ分子ポンプ、103・・・ドライポンプ、104・・・微粒子/ガス混合槽、105・・・試料台、106・・・ヒータ、107・・・ヒータコントローラー、108・・・アーク電極陰極、109・・・アーク電極陽極、110・・・アーク放電電源、111・・・ガス供給ノズル、112・・・微粒子供給ノズル、113・・・アーク・プラズマ流、114・・・誘導コイル、115・・・高周波電源、121・・・真空チャンバー、122・・・電子ビームガン、123・・・試料台を兼用したヒータ、124・・・ゲートバルブ、125・・・ターボ分子ポンプ、126・・・ドライポンプ、127・・・B−A真空計、128・・・キャパシタンスマノメータ、129・・・四重極質量分析装置、130・・・ガスバルブ、131・・・マスフローコントローラー、132・・・ガス溜めタンク、133・・・キャパシタンスマノメーター、134・・・ガス溜めタンク用バルブ

Claims (8)

  1. 電子を放出する電子放出源が支持体に複数、形成されて成る第1パネルと、電子放出源から放出された電子が衝突する蛍光体層及びアノード電極が基板に形成されて成る第2パネルとが、それらの周縁部において接合され、第1パネルと第2パネルとによって挟まれた空間が真空に保持される平面型表示装置において使用され、第1パネルと第2パネルとの間に配置され、表面にはゲッター効果を有する微粒子から成る微粒子層が形成されたスペーサの製造方法であって、
    真空チャンバー内の雰囲気を水素ガス雰囲気としたプラズマ溶射法に基づき、スペーサの表面に、金属、合金、又は、ケイ素(Si)から成る微粒子層を形成した後、真空チャンバー内に酸素ガスを導入して微粒子の表面に酸化膜を形成する工程を備えたスペーサの製造方法。
  2. 微粒子は、鉛(Pb)、白金(Pt)、ルテニウム(Ru)、銀(Ag)、金(Au)、チタン(Ti)、インジウム(In)、銅(Cu)、クロム(Cr)、鉄(Fe)、亜鉛(Zn)、錫(Sn)、タンタル(Ta)、タングステン(W)、アルミニウム(Al)、バナジウム(V)、マンガン(Mn)、ジルコニウム(Zr)、ニッケル(Ni)、コバルト(Co)、及び、モリブデン(Mo)から成る群から選択された少なくとも1種類の金属若しくはその合金から成る請求項1に記載のスペーサの製造方法
  3. 微粒子の平均粒径は、1×10-8m乃至1×10-5mである請求項2に記載のスペーサの製造方法
  4. 電子を放出する電子放出源が支持体に複数、形成されて成る第1パネルと、電子放出源から放出された電子が衝突する蛍光体層及びアノード電極が基板に形成されて成る第2パネルとが、それらの周縁部において接合され、第1パネルと第2パネルとによって挟まれた空間が真空に保持される平面型表示装置において使用され、第1パネルと第2パネルとの間に配置され、表面にはゲッター効果を有する微粒子から成る微粒子層が形成されたスペーサの製造方法であって、
    真空チャンバー内の雰囲気を水素ガス雰囲気としたプラズマ溶射法に基づき、スペーサの表面に、炭素(C)から成る微粒子層を形成した後、真空チャンバー内において微粒子の表面に有機膜を形成する工程を備えたスペーサの製造方法。
  5. 電子を放出する電子放出源を複数、備えた第1パネルと、電子放出源から放出された電子が衝突する蛍光体層及びアノード電極を備えた第2パネルとが、それらの周縁部において接合されて成り、ゲッター効果を有する微粒子から成る微粒子層が表面に形成されたスペーサを備えた平面型表示装置の組立方法であって、
    真空チャンバー内の雰囲気を水素ガス雰囲気としたプラズマ溶射法に基づき、スペーサの表面に、金属、合金、又は、ケイ素(Si)から成る微粒子層を形成した後、真空チャンバー内に酸素ガスを導入して微粒子の表面に酸化膜を形成することでスペーサを得た後、
    第1パネルと第2パネルとの間にスペーサを配置し、第1パネルと第2パネルとをそれらの周縁部において接合し、第1パネルと第2パネルとによって挟まれた空間を排気して真空とした後、電子放出源から電子を放出させてスペーサの微粒子層に衝突させることによって微粒子を活性化させ、且つ、酸化膜の少なくとも一部を除去することで、ゲッター効果を生じさせる平面型表示装置の組立方法。
  6. 電子を放出する電子放出源を複数、備えた第1パネルと、電子放出源から放出された電子が衝突する蛍光体層及びアノード電極を備えた第2パネルとが、それらの周縁部において接合されて成り、ゲッター効果を有する微粒子から成る微粒子層が表面に形成されたスペーサを備えた平面型表示装置の組立方法であって、
    真空チャンバー内の雰囲気を水素ガス雰囲気としたプラズマ溶射法に基づき、スペーサの表面に、炭素(C)から成る微粒子層を形成した後、真空チャンバー内において微粒子の表面に有機膜を形成することでスペーサを得た後、
    第1パネルと第2パネルとの間にスペーサを配置し、第1パネルと第2パネルとをそれらの周縁部において接合し、第1パネルと第2パネルとによって挟まれた空間を排気して真空とした後、電子放出源から電子を放出させてスペーサの微粒子層に衝突させることによって、微粒子を活性化させ、且つ、有機膜の少なくとも一部を除去することで、ゲッター効果を生じさせる平面型表示装置の組立方法。
  7. アノード電極に印加する電圧を制御することで、電子放出源から電子を放出させてスペーサの微粒子層に衝突させる請求項5又は請求項6に記載の平面型表示装置の組立方法。
  8. 電子放出源には、電子放出源から放出される電子の軌道を制御する収束電極が備えられており、
    収束電極に印加する電圧を制御することでスペーサの微粒子層に衝突させる請求項5又は請求項6に記載の平面型表示装置の組立方法。
JP2005023707A 2005-01-31 2005-01-31 スペーサの製造方法、及び平面型表示装置の組立方法 Expired - Fee Related JP4661242B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005023707A JP4661242B2 (ja) 2005-01-31 2005-01-31 スペーサの製造方法、及び平面型表示装置の組立方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005023707A JP4661242B2 (ja) 2005-01-31 2005-01-31 スペーサの製造方法、及び平面型表示装置の組立方法

Publications (2)

Publication Number Publication Date
JP2006210258A JP2006210258A (ja) 2006-08-10
JP4661242B2 true JP4661242B2 (ja) 2011-03-30

Family

ID=36966841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005023707A Expired - Fee Related JP4661242B2 (ja) 2005-01-31 2005-01-31 スペーサの製造方法、及び平面型表示装置の組立方法

Country Status (1)

Country Link
JP (1) JP4661242B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5832731B2 (ja) * 2010-08-10 2015-12-16 株式会社東芝 半導体素子

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000243281A (ja) * 1999-02-23 2000-09-08 Canon Inc 画像表示装置およびその製造方法
JP2000251787A (ja) * 1999-02-24 2000-09-14 Canon Inc 画像形成装置及びゲッター材の活性化方法
JP2001189142A (ja) * 1999-10-21 2001-07-10 Sharp Corp 画像形成装置
JP2001283721A (ja) * 2000-03-29 2001-10-12 Kyocera Corp 突起付基板および平面型ディスプレイ
JP2002075253A (ja) * 2000-08-30 2002-03-15 Kyocera Corp 平面型ディスプレイ用正面板およびそれを用いた平面型ディスプレイ
JP2002083535A (ja) * 2000-09-06 2002-03-22 Sony Corp 密封容器およびその製造方法ならびに表示装置
JP2003022744A (ja) * 2001-07-06 2003-01-24 Sony Corp 非蒸発型ゲッター、表示装置およびこれらの製造方法
JP2003242914A (ja) * 2002-01-30 2003-08-29 Samsung Sdi Co Ltd 電界放出表示装置及びその製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57136747A (en) * 1981-02-18 1982-08-23 Futaba Corp Fluorescent display tube
JP3230737B2 (ja) * 1996-12-26 2001-11-19 キヤノン株式会社 画像形成装置及びその装置とそのスペーサの製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000243281A (ja) * 1999-02-23 2000-09-08 Canon Inc 画像表示装置およびその製造方法
JP2000251787A (ja) * 1999-02-24 2000-09-14 Canon Inc 画像形成装置及びゲッター材の活性化方法
JP2001189142A (ja) * 1999-10-21 2001-07-10 Sharp Corp 画像形成装置
JP2001283721A (ja) * 2000-03-29 2001-10-12 Kyocera Corp 突起付基板および平面型ディスプレイ
JP2002075253A (ja) * 2000-08-30 2002-03-15 Kyocera Corp 平面型ディスプレイ用正面板およびそれを用いた平面型ディスプレイ
JP2002083535A (ja) * 2000-09-06 2002-03-22 Sony Corp 密封容器およびその製造方法ならびに表示装置
JP2003022744A (ja) * 2001-07-06 2003-01-24 Sony Corp 非蒸発型ゲッター、表示装置およびこれらの製造方法
JP2003242914A (ja) * 2002-01-30 2003-08-29 Samsung Sdi Co Ltd 電界放出表示装置及びその製造方法

Also Published As

Publication number Publication date
JP2006210258A (ja) 2006-08-10

Similar Documents

Publication Publication Date Title
KR100888671B1 (ko) 형광체 분말, 표시용 패널, 및 평면형 표시 장치
JP2007095649A (ja) 平面型表示装置
JP2002150922A (ja) 電子放出装置、冷陰極電界電子放出素子及びその製造方法、並びに、冷陰極電界電子放出表示装置及びその製造方法
WO2003094193A1 (fr) Dispositif d'affichage par emission electronique a champ electrique a cathode froide
WO2005117055A1 (ja) カソードパネル処理方法、並びに、冷陰極電界電子放出表示装置及びその製造方法
WO2000052727A1 (fr) Dispositif d'emission de faisceau electronique et dispositif de formation d'image
JP5318445B2 (ja) 平面型表示装置
JP4661242B2 (ja) スペーサの製造方法、及び平面型表示装置の組立方法
JP4910327B2 (ja) 冷陰極電界電子放出表示装置、及び、冷陰極電界電子放出表示装置の駆動方法
JP4678196B2 (ja) スペーサの選別方法、並びに、平面型表示装置の製造方法
JP4806968B2 (ja) 冷陰極電界電子放出表示装置
JP4844042B2 (ja) 平面型表示装置
JP4802583B2 (ja) スペーサの製造方法
JP4765397B2 (ja) 電子放出パネル及び平面型表示装置
WO2002077119A1 (fr) Particules de phosphore et procede de fabrication, panneau d'affichage et procede de fabrication, et dispositif d'affichage plat et procede de fabrication
JP4678156B2 (ja) カソードパネルのコンディショニング方法、冷陰極電界電子放出表示装置のコンディショニング方法、及び、冷陰極電界電子放出表示装置の製造方法
JP4586394B2 (ja) 冷陰極電界電子放出表示装置用のカソードパネルの検査方法、及び、冷陰極電界電子放出表示装置の製造方法
JP4622145B2 (ja) 電子放出装置の製造方法、冷陰極電界電子放出素子の製造方法、及び、冷陰極電界電子放出表示装置の製造方法
JP2005142003A (ja) 表示用パネル及び表示装置
JP2004241292A (ja) 冷陰極電界電子放出表示装置
JP4466496B2 (ja) スペーサ、並びに、平面型表示装置
US20090322207A1 (en) Light-emitting screen and image displaying apparatus
JP4736537B2 (ja) 平面型表示装置
JP2004200109A (ja) 冷陰極電界電子放出表示装置
JP4228968B2 (ja) 冷陰極電界電子放出表示装置用のカソードパネル及び冷陰極電界電子放出表示装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees