JP4652623B2 - Degassing method for fuel cell separator - Google Patents

Degassing method for fuel cell separator Download PDF

Info

Publication number
JP4652623B2
JP4652623B2 JP2001206556A JP2001206556A JP4652623B2 JP 4652623 B2 JP4652623 B2 JP 4652623B2 JP 2001206556 A JP2001206556 A JP 2001206556A JP 2001206556 A JP2001206556 A JP 2001206556A JP 4652623 B2 JP4652623 B2 JP 4652623B2
Authority
JP
Japan
Prior art keywords
preform
separator
straight
molding
turn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001206556A
Other languages
Japanese (ja)
Other versions
JP2003022811A (en
Inventor
哲也 近藤
顕一 石黒
和夫 細野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2001206556A priority Critical patent/JP4652623B2/en
Publication of JP2003022811A publication Critical patent/JP2003022811A/en
Application granted granted Critical
Publication of JP4652623B2 publication Critical patent/JP4652623B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【0001】
【発明の属する技術分野】
本発明は燃料電池用セパレータ製造法、特にプリフォームに内包するガスを抜く技術に関する。
【0002】
【従来の技術】
燃料電池は、水の電気分解の逆の原理を利用し、水素と酸素とを反応させ水を得る過程で電気を得ることができるというものである。一般に、水素に燃料ガスを当て、酸素に空気や酸化剤ガスを当てるので、燃料ガス、空気、酸化剤ガスの用語も使用する。この様な燃料電池は、例えば特開2000−123848「燃料電池」に示されており、同公報の図1において、電解質膜18(符号は公報記載のものを使用する。以下同じ。)にアノード側電極20及びカソード側電極22を添わせ、これらをガスケット24,26を介して第1セパレータ14と第2セパレータ16で挟むことでセルモジュールを造る。
【0003】
第1セパレータ14の内側面14aに燃料ガス流路38が形成され、第2セパレータ16の内側面16aに酸化剤ガス流路46が形成され、各々中央の電解質膜18に燃料ガスと酸化剤ガスとを臨ませる構造になっており、図1に記載の1個のセルモジュールで得る電気出力はごく小さいので、この様なセルモジュールを多数個積層することで、所望の電気出力を得る。従って、セパレータ14,16は隣のセルに燃料ガスや酸化剤が移らぬようにする分離部材であることから「セパレータ」と呼ぶ。
【0004】
セパレータは、内側面に燃料ガス流路又は酸化剤ガス流路を有するが、ガスを効果的にアノード側電極20及びカソード側電極22に接触させる必要がある。そのために、ガス流路38,46はごく浅い溝を多数本条設することになる。上記公報にはセパレータの具体的製造方法は記載さていないが、代表的な製造方法は以下の通りである。
【0005】
実験室レベルであれば、樹脂板若しくは金属板からなる母材の面を機械切削することで溝を形成する。又、溝を開口したマスクを母材に載せ、その上からショットブラストを吹き付け、溝を形成する。しかし、製造コストが嵩み、実用的でない。そこで、量産が容易で製造コストを下げることのできる金型プレス法が期待される。
【0006】
【発明が解決しようとする課題】
金型プレス法はカーボンと熱硬化性樹脂とにバインダを加え、混練し、成形することで平板状のプリフォームを製造するプリフォーム製造工程と、このプリフォームを所定の形状に圧縮成形すると共に硬化温度に加熱することでセパレータを製造するセパレータ製造工程とを経てセパレータを製造する方法である。
ところで、バインダはカーボンと熱硬化性樹脂とを一時的に結合しておく接着剤であり、硬化温度で加熱する過程で蒸発してセパレータから消失させるべきものである。
【0007】
しかし、セパレータ製造工程を経たセパレータを、詳細に調べたところ気泡がセパレータに残留していることが判明した。この残留気泡は、特にガス流路に小さな「ふくれ」となって現われ、セパレータの品質を低下させる。
従って、本発明の目的は、セパレータに残留する気泡を効果的に減少させることのできる技術を提供することにある。
【0008】
【課題を解決するための手段】
上記目的を達成するために請求項1の燃料電池用セパレータのガス抜き方法は、カーボンと熱硬化性樹脂とにバインダを加え、混練し、成形することで平板状のプリフォームを製造するプリフォーム製造工程と、このプリフォームを所定の形状に圧縮成形すると共に硬化温度に加熱することでセパレータを製造するセパレータ製造工程とを経て製造する燃料電池用セパレータにおいて、圧縮成形に用いる成形型は、長い直線流路の端からターン流路で折返しこのターン流路の端から次の直線流路を延ばしこの直線流路の端から次のターン流路を折返すごとくにつづら折り状に流路を形成するとともに各流路は筋状の複数の単位流路を集合することで構成したガス流路を成形するために、矩形の成形面の一隅から対角の他偶までつづら折り状に直線突条部及びターン突起部を備え、プリフォームの長さを、直線突部から外れない様に短くしておき、このプリフォームを成形型で圧縮して延ばす過程で、プリフォームに内包するガスを直線突条部に沿わせて排出することを特徴とする。
【0009】
表面近傍に内包するガスは、平坦な成形面で押すとその位置に留り排出させることは困難である。この点、直線突条部を押し付ければガスはこの直線突条部の突条により外に押出され、且つ直線部により案内することにより、プリフォーム内から成形型外まで円滑に排出することができる。従って、プリフォームを成形型で圧縮して延ばす過程で、プリフォームに内包するガスを直線突条部に沿わせて排出することで、残留気泡の少ないプリフォームを得ることができる。
【0012】
【発明の実施の形態】
本発明の実施の形態を添付図に基づいて以下に説明する。
図1は本発明に係る燃料電池用セパレータの製造フロー図である。ST××はステップ番号を示す。
ST01:所定の配合割合でカーボン粉末と熱硬化性樹脂粉末をブレンドし、適量のバインダを加えて、混練する。
ST02:混練したものを次の要領で成形することで、プリフォームを造る。
【0013】
図2は本発明に係るプリフォーム成形型の原理図であり、プリフォーム成形下型11の成形面12に混練物14を所定量載せる。そして、成形面16が平坦なプリフォーム成形上型17を白抜き矢印のごとく下げて、混練物14を加圧成形する。
図3は本発明に係るプリフォーム成形型の作用図であり、プリフォーム成形下型11とプリフォーム成形上型17とにより、所望の形状のプリフォーム20を得ることができたことを示す。
【0014】
図1に戻る。
ST03:圧縮成形を実施する。この具体例を図4〜図8で説明する。
ST04:ST03に引続いて若しくは同時に、熱硬化性樹脂の硬化温度まで加熱することにより硬化処理を施す。
これで、所望のセパレータを得ることができる。
【0015】
ST03の詳細を以下説明する。
図4は本発明に係るセパレータ成形型の横断面図であり、受け面31が平坦であるとともにヒータ32を備えた下型33にプリフォーム20を載せ、直線突条部34及びヒータ35を備える上型36を白抜き矢印の様に型合せすることで、加熱しながら所望の形状にプレス成形を実施する。
【0016】
図5は本発明に係るセパレータ成形型の長手断面図であり、上型36には十分に長い直線突条部34に加えてターン突起部37・・・を備える。そして、下型33に載せるプリフォームは、長さがL1であって比較的短くて厚みのあるプリフォーム20A(図6でも説明する。)又は、これより長い長さL2であって薄いプリフォーム20B(図6でも説明する。)を載せ、想像線で示す長くて薄いセパレータ40になるように延ばす。
【0017】
図6は図5の6矢視図であり、圧縮成形に用いる上型36は、セパレータ(図5の符号40)に長い直線流路の端からターン流路で折返しこのターン流路の端から次の直線流路を延ばしこの直線流路の端から次のターン流路を折返すごとくにつづら折り状に流路を形成するとともに各流路は筋状の複数の単位流路を集合することで構成したガス流路を成形するために、矩形の成形面42の一隅43から対角の他偶44までつづら折り状に直線突条部34・・・及びターン突起部37・・・を備える。
【0018】
図7(a)は図6の7a部拡大図、(b)は(a)のb−b線断面図である。
(b)に示す通り、直線突条部34・・・は鋸歯状の突起であり、これで筋目状のガス流路をプレス成形することができる。直線突条部34,34間は谷45となる。
(a)に示す通り、直線突条部34・・・の一端にターン突起部37・・・が繋がり、これのターン突起部37・・・の端に次の直線突条部34・・・が繋がっていることを示す。
【0019】
図8は本発明に係るガス抜き方法の説明図であり、下型33に載せたプリフォーム20に向って直線突条部34・・・などを備えた上型36を移動する。すると先ず、直線突条部34,34がプリフォーム20の上面に進入する。これに伴なって、プリフォーム20に残存していたガスが矢印▲1▼・・・のごとく絞り出されて谷45,45に至る。谷45,45は長い直線突条部34に沿っているため、ガスは矢印▲2▼,▲2▼のごとく谷45,45に沿って上型36の一端から出る。
【0020】
図6に戻って、L1は図5に示したプリフォーム20Aの長さであり、この長さL1はターン突起部37,37より内側に設定した比較的短いものであり、長さがL1のプリフォーム(図5の符号20A)を、この上型36で成形面42の大きさまで延ばすが、残留ガスはプリフォームの延びと共に、直線突条部34・・・に沿って図面左右へ排出できる。なお、この延ばし工程でプリフォームの端部がターン突起部37,37に掛ったときには、プリフォームの弾力性及び流動性により、見掛け上ターン突起部37,37を潜り抜けるため、ターン突起部37,37の存在により延ばし作用が阻害される心配はない。
【0021】
又、図6においてL2は図5に示したプリフォーム20Bの長さであり、この長さL2はターン突起部37,37に一部掛るものの全体としては直線突条部34・・・から外れない長さに設定したものである。長さがL2のプリフォーム(図5の符号20B)を、この上型36で成形面42の大きさまで延ばすが、残留ガスはプリフォームの延びと共に、直線突条部34・・・に沿って図面左右へ排出できる。
【0022】
長さL1を採用すれば、プリフォームの延ばし量が大きいため、より長い時間プリフォームを上型で押圧することができ、十分なガス抜きが期待できる。
又、長さL2は延性の乏しいプリフォームに適用できる。延性が乏しいものは延ばし量を抑える必要があるからである。
【0023】
【発明の効果】
本発明は上記構成により次の効果を発揮する。
請求項1では、プリフォームに成形型の直線突条部を押し付けることで、ガスを直線突条部の突条により外に押出し、且つ直線部により案内することにより、プリフォーム内から成形型外まで円滑に排出することができる。従って、プリフォームを成形型で圧縮して延ばす過程で、プリフォームに内包するガスを直線突条部に沿わせて排出することで、残留気泡の少ないプリフォームを得ることができ、プリフォームの品質向上を図ることができる。
【図面の簡単な説明】
【図1】本発明に係る燃料電池用セパレータの製造フロー図
【図2】本発明に係るプリフォーム成形型の原理図
【図3】本発明に係るプリフォーム成形型の作用図
【図4】本発明に係るセパレータ成形型の横断面図
【図5】本発明に係るセパレータ成形型の長手断面図
【図6】図5の6矢視図
【図7】(a)は図6の7a部拡大図、(b)は(a)のb−b線断面図
【図8】本発明に係るガス抜き方法の説明図
【符号の説明】
20,20A,20B…プリフォーム、33…成形型(下型)、34…直線突条部、36…成形型(上型)、37…ターン突起部、42…成形面、43…成形面の一隅、44…成形面の他隅、L1…ターン突起部に掛らぬ長さ、L2…直線突条部から外れぬ長さ。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a separator for a fuel cell, and more particularly to a technique for removing gas contained in a preform.
[0002]
[Prior art]
A fuel cell uses the reverse principle of water electrolysis, and can obtain electricity in the process of obtaining water by reacting hydrogen and oxygen. In general, since fuel gas is applied to hydrogen and air or oxidant gas is applied to oxygen, the terms fuel gas, air, and oxidant gas are also used. Such a fuel cell is disclosed in, for example, Japanese Patent Application Laid-Open No. 2000-123848 “Fuel Cell”. In FIG. 1 of the same publication, an electrolyte membrane 18 (the reference numeral is the same as that described in the publication; the same applies hereinafter) is used as the anode. The cell module is manufactured by attaching the side electrode 20 and the cathode side electrode 22 and sandwiching them between the first separator 14 and the second separator 16 via gaskets 24 and 26.
[0003]
A fuel gas flow path 38 is formed on the inner side surface 14a of the first separator 14, an oxidant gas flow path 46 is formed on the inner side surface 16a of the second separator 16, and a fuel gas and an oxidant gas are respectively formed in the central electrolyte membrane 18. Since the electric output obtained by one cell module shown in FIG. 1 is very small, a desired electric output can be obtained by stacking a large number of such cell modules. Accordingly, the separators 14 and 16 are called “separators” because they are separation members that prevent the fuel gas and the oxidant from moving to adjacent cells.
[0004]
The separator has a fuel gas channel or an oxidant gas channel on the inner surface, but it is necessary to effectively bring the gas into contact with the anode side electrode 20 and the cathode side electrode 22. Therefore, the gas flow paths 38 and 46 are provided with a number of extremely shallow grooves. Although the specific method for manufacturing the separator is not described in the above publication, typical manufacturing methods are as follows.
[0005]
If it is a laboratory level, a groove | channel will be formed by machine-cutting the surface of the base material which consists of a resin plate or a metal plate. Further, a mask having an opening in the groove is placed on the base material, and shot blast is sprayed thereon to form the groove. However, the manufacturing cost is high and not practical. Therefore, a die pressing method that can be easily mass-produced and can reduce the manufacturing cost is expected.
[0006]
[Problems to be solved by the invention]
In the die press method, a binder is added to carbon and a thermosetting resin, kneaded, and molded to produce a flat preform, and the preform is compression-molded into a predetermined shape. It is a method of manufacturing a separator through a separator manufacturing process of manufacturing a separator by heating to a curing temperature.
By the way, the binder is an adhesive that temporarily bonds the carbon and the thermosetting resin, and should evaporate and disappear from the separator in the process of heating at the curing temperature.
[0007]
However, when the separator after the separator manufacturing process was examined in detail, it was found that bubbles remained in the separator. These residual bubbles appear as small “bulges”, particularly in the gas flow path, degrading the quality of the separator.
Accordingly, an object of the present invention is to provide a technique capable of effectively reducing bubbles remaining in a separator.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the method of degassing a separator for a fuel cell according to claim 1 is characterized in that a preform is produced by adding a binder to carbon and a thermosetting resin, kneading and molding. In a fuel cell separator manufactured through a manufacturing process and a separator manufacturing process in which the preform is compressed into a predetermined shape and heated to a curing temperature, the mold used for compression molding is long. Folded from the end of the straight flow path at the turn flow path, the next straight flow path is extended from the end of this turn flow path, and the next turn flow path is turned back from the end of this straight flow path to form a folded flow path. In addition, in order to form a gas flow path configured by collecting a plurality of streaky unit flow paths, each flow path is folded in a folded manner from one corner of the rectangular molding surface to the other diagonal. Includes a linear ridges and turn projections, the length of the preform, leave as do not depart from the linear impact ridges short, in the process of extending and compressing the preform in the mold, encapsulating the preform The gas to be discharged is discharged along the straight ridge.
[0009]
When the gas contained in the vicinity of the surface is pushed by a flat molding surface, it remains at that position and is difficult to discharge. In this respect, if the straight ridge is pressed, the gas is pushed out by the ridge of the straight ridge, and can be smoothly discharged from the preform to the outside of the mold by being guided by the straight portion. it can. Therefore, in the process of compressing and extending the preform with the molding die, the gas contained in the preform is discharged along the linear protrusions, whereby a preform with less residual bubbles can be obtained.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the accompanying drawings.
FIG. 1 is a production flow diagram of a fuel cell separator according to the present invention. STxx indicates a step number.
ST01: Carbon powder and thermosetting resin powder are blended at a predetermined blending ratio, and an appropriate amount of binder is added and kneaded.
ST02: A preform is produced by molding the kneaded product in the following manner.
[0013]
FIG. 2 is a principle diagram of the preform mold according to the present invention, and a predetermined amount of the kneaded material 14 is placed on the molding surface 12 of the preform mold 11. Then, the preform molding upper die 17 having a flat molding surface 16 is lowered as indicated by the white arrow, and the kneaded product 14 is pressure-molded.
FIG. 3 is an operation diagram of the preform molding die according to the present invention, and shows that the preform 20 having a desired shape can be obtained by the preform molding lower mold 11 and the preform molding upper mold 17.
[0014]
Returning to FIG.
ST03: Perform compression molding. A specific example will be described with reference to FIGS.
ST04: Subsequent to or simultaneously with ST03, a curing process is performed by heating to the curing temperature of the thermosetting resin.
Thus, a desired separator can be obtained.
[0015]
Details of ST03 will be described below.
FIG. 4 is a cross-sectional view of a separator mold according to the present invention. The preform 20 is placed on a lower mold 33 having a flat receiving surface 31 and a heater 32, and includes a linear protrusion 34 and a heater 35. By aligning the upper die 36 as indicated by the white arrow, press molding is performed into a desired shape while heating.
[0016]
FIG. 5 is a longitudinal sectional view of the separator mold according to the present invention, and the upper mold 36 is provided with turn protrusions 37... In addition to a sufficiently long straight protrusion 34. The preform placed on the lower mold 33 has a length L1 and a relatively short and thick preform 20A (also described in FIG. 6) or a longer length L2 and a thin preform. 20B (also described in FIG. 6) is placed and extended so as to be a long and thin separator 40 indicated by an imaginary line.
[0017]
FIG. 6 is a view taken in the direction of arrow 6 in FIG. 5. The upper die 36 used for compression molding is folded back from the end of the long straight flow path to the separator (reference numeral 40 in FIG. 5) from the end of the turn flow path. By extending the next straight flow path and turning the next turn flow path from the end of this straight flow path, the flow path is formed in a zigzag shape, and each flow path is composed of a plurality of streaky unit flow paths. In order to form the configured gas flow path, linear protrusions 34... And turn protrusions 37... Are formed in a folded manner from one corner 43 of the rectangular forming surface 42 to the other diagonal 44.
[0018]
7A is an enlarged view of a portion 7a in FIG. 6, and FIG. 7B is a cross-sectional view taken along the line bb in FIG.
As shown in (b), the straight ridges 34... Are saw-toothed projections, which can press-mold the gas-like gas flow path. A valley 45 is formed between the straight protrusions 34 and 34.
As shown in (a), a turn protrusion 37 is connected to one end of the straight protrusion 34, and the next straight protrusion 34 is connected to the end of the turn protrusion 37. Indicates that they are connected.
[0019]
FIG. 8 is an explanatory view of the degassing method according to the present invention, and the upper die 36 having the straight ridges 34... Is moved toward the preform 20 placed on the lower die 33. Then, first, the linear protrusions 34, 34 enter the upper surface of the preform 20. Along with this, the gas remaining in the preform 20 is squeezed out as indicated by the arrow (1). Since the valleys 45, 45 are along the long straight ridge 34, the gas exits from one end of the upper die 36 along the valleys 45, 45 as indicated by the arrows (2), (2).
[0020]
Returning to FIG. 6, L1 is the length of the preform 20A shown in FIG. 5, and this length L1 is a relatively short length set inside the turn protrusions 37, 37, and the length is L1. The preform (symbol 20A in FIG. 5) is extended to the size of the molding surface 42 by the upper mold 36, but the residual gas can be discharged to the left and right of the drawing along the straight protrusions 34 ... along with the extension of the preform. . When the end of the preform hits the turn projections 37 and 37 in this extending step, the turn projection 37 is apparently penetrated by the elasticity and fluidity of the preform. , 37, there is no concern that the prolongation action is hindered.
[0021]
In FIG. 6, L2 is the length of the preform 20B shown in FIG. 5, and this length L2 is partly attached to the turn protrusions 37, 37, and as a whole deviates from the linear protrusion 34. There is no set length. A preform having a length L2 (reference numeral 20B in FIG. 5) is extended to the size of the molding surface 42 by the upper die 36, but the residual gas extends along the straight ridges 34 ... along with the extension of the preform. Can be discharged to the left and right of the drawing.
[0022]
If the length L1 is adopted, the amount of the preform stretched is large, so that the preform can be pressed with the upper mold for a longer time, and sufficient degassing can be expected.
The length L2 can be applied to a preform with poor ductility. This is because it is necessary to suppress the amount of stretching for those with poor ductility.
[0023]
【The invention's effect】
The present invention exhibits the following effects by the above configuration.
In claim 1, by pressing the linear ridge of the mold against the preform, the gas is pushed out by the ridge of the linear ridge, and guided by the linear portion, so that the outside of the mold is out of the preform. Can be discharged smoothly. Accordingly, in the process of compressing and extending the preform with a mold, the gas contained in the preform is discharged along the straight protrusion, so that a preform with less residual bubbles can be obtained. Quality can be improved.
[Brief description of the drawings]
FIG. 1 is a production flow diagram of a fuel cell separator according to the present invention. FIG. 2 is a principle diagram of a preform mold according to the present invention. FIG. 3 is an operation diagram of a preform mold according to the present invention. Fig. 5 is a cross-sectional view of the separator mold according to the present invention. Fig. 5 is a longitudinal cross-sectional view of the separator mold according to the present invention. Fig. 6 is a view taken along arrow 6 in Fig. 5. Enlarged view, (b) is a cross-sectional view taken along the line bb of (a).
20, 20A, 20B ... Preform, 33 ... Molding die (lower die), 34 ... Linear ridge, 36 ... Molding die (upper die), 37 ... Turn projection, 42 ... Molding surface, 43 ... Molding surface One corner, 44 ... the other corner of the molding surface, L1 ... a length not hanging on the turn protrusion, L2 ... a length that does not come off the straight protrusion.

Claims (1)

カーボンと熱硬化性樹脂とにバインダを加え、混練し、成形することで平板状のプリフォームを製造するプリフォーム製造工程と、このプリフォームを所定の形状に圧縮成形すると共に硬化温度に加熱することでセパレータを製造するセパレータ製造工程とを経て製造する燃料電池用セパレータにおいて、
前記圧縮成形に用いる成形型は、長い直線流路の端からターン流路で折返しこのターン流路の端から次の直線流路を延ばしこの直線流路の端から次のターン流路を折返すごとくにつづら折り状に流路を形成するとともに各流路は筋状の複数の単位流路を集合することで構成したガス流路を成形するために、矩形の成形面の一隅から対角の他偶までつづら折り状に直線突条部及びターン突起部を備え、
前記プリフォームの長さを、前記直線突部から外れない様に短くしておき、このプリフォームを前記成形型で圧縮して延ばす過程で、プリフォームに内包するガスを前記直線突条部に沿わせて排出することを特徴とする燃料電池用セパレータのガス抜き方法。
A preform manufacturing process for manufacturing a flat-plate preform by adding a binder to carbon and a thermosetting resin, kneading and molding, and compression-molding the preform into a predetermined shape and heating to a curing temperature In a separator for a fuel cell manufactured through a separator manufacturing process for manufacturing a separator,
The molding die used for the compression molding is folded back from the end of the long straight channel by the turn channel, and the next straight channel is extended from the end of the turn channel, and the next turn channel is folded from the end of the straight channel. In particular, in order to form a gas flow path formed by gathering a plurality of streaky unit flow paths and forming a flow path in a zigzag manner, each of the flow paths has a diagonal shape from one corner to the other. Equipped with straight ridges and turn protrusions in a folded shape until even
Wherein the length of the preform, the leave short so as not deviate from the linear impact ridges, in the process of extending the preform is compressed in the mold, said gas contained in the preform straight ridges A method for degassing a separator for a fuel cell, wherein the gas is discharged along the line.
JP2001206556A 2001-07-06 2001-07-06 Degassing method for fuel cell separator Expired - Fee Related JP4652623B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001206556A JP4652623B2 (en) 2001-07-06 2001-07-06 Degassing method for fuel cell separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001206556A JP4652623B2 (en) 2001-07-06 2001-07-06 Degassing method for fuel cell separator

Publications (2)

Publication Number Publication Date
JP2003022811A JP2003022811A (en) 2003-01-24
JP4652623B2 true JP4652623B2 (en) 2011-03-16

Family

ID=19042670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001206556A Expired - Fee Related JP4652623B2 (en) 2001-07-06 2001-07-06 Degassing method for fuel cell separator

Country Status (1)

Country Link
JP (1) JP4652623B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100759654B1 (en) * 2004-05-31 2007-09-17 마츠시타 덴끼 산교 가부시키가이샤 Polyelectrolyte fuel cell-use separator, polyelectrolyte fuel cell, method of evaluating polyelectrolyte fuel cell-use separator, and production method of polyelectrolyte fuel cell-use separator

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH103931A (en) * 1996-06-14 1998-01-06 Toyota Motor Corp Manufacture of fuel cell separator, and the separator
JPH11354138A (en) * 1998-04-07 1999-12-24 Hitachi Chem Co Ltd Ribbed fuel-cell separator, its manufacture, and fuel cell
JP2001076746A (en) * 1999-09-03 2001-03-23 Mitsubishi Electric Corp Fuel cell
JP2001085030A (en) * 1999-09-13 2001-03-30 Hitachi Chem Co Ltd Manufacture of separator for fuel cell, separator for fuel cell obtained in this manufacture and fuel cell using separator for fuel cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH103931A (en) * 1996-06-14 1998-01-06 Toyota Motor Corp Manufacture of fuel cell separator, and the separator
JPH11354138A (en) * 1998-04-07 1999-12-24 Hitachi Chem Co Ltd Ribbed fuel-cell separator, its manufacture, and fuel cell
JP2001076746A (en) * 1999-09-03 2001-03-23 Mitsubishi Electric Corp Fuel cell
JP2001085030A (en) * 1999-09-13 2001-03-30 Hitachi Chem Co Ltd Manufacture of separator for fuel cell, separator for fuel cell obtained in this manufacture and fuel cell using separator for fuel cell

Also Published As

Publication number Publication date
JP2003022811A (en) 2003-01-24

Similar Documents

Publication Publication Date Title
JP5381647B2 (en) Fuel cell separator and method for producing the same
US9160026B2 (en) Gas flow passage forming member, method of manufacturing the gas flow passage forming member, and device for forming the gas flow passage forming member
CN1330030C (en) Membrane electrode assembly with compression control gasket
WO2001029921A1 (en) Polymer electrolyte type fuel cell and production method therefor
JP4774570B2 (en) Solid polymer electrolyte fuel cell and method for producing the same
US20030027030A1 (en) Fuel-cell separator, production of the same, and fuel cell
JP2005166463A (en) Press molding device and press molding method of metallic separator for fuel cell
JPH1074527A (en) Solid polymer electrolyte fuel cell
JP2001062858A (en) Loading device for powdery raw material, manufacture of fuel cell separator, and fuel cell separator
JP4645790B2 (en) Fuel cell separator and polymer electrolyte fuel cell
JP4652623B2 (en) Degassing method for fuel cell separator
CN112477245B (en) Mould pressing preparation method of flexible graphite bipolar plate
CN109638301A (en) A kind of fuel cell plate molding manufacturing equipment
JP2008041456A (en) Method of manufacturing separator for fuel cell, and separator for fuel cell
CN209571486U (en) A kind of fuel cell plate molding manufacturing equipment
JP3549765B2 (en) Fuel cell separator and method of manufacturing the same
JP2003059501A (en) Manufacturing method of fuel cell separator, manufacturing method of intermediate molding and intermediate molding
KR101698584B1 (en) Fuel Cell Separator
JP2002025586A (en) Separator for solid high polymer molecule fuel cell and fuel cell
CN101569037A (en) Molding die for fuel cell separator, method of manufacturing fuel cell separator, and fuel cell separator
CN212421960U (en) Compound graphite mold with ductility
JP2001143722A (en) Manufacturing apparatus of fuel cell separator and its manufacturing method
DE102007061127B4 (en) A unipolar plate and method of forming a composite unipolar plate for a fuel cell stack
JP2007137017A (en) Mold for molding fuel cell separator, manufacturing process of fuel cell separator and fuel cell separator
JP4652614B2 (en) Manufacturing method of fuel cell separator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101216

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees