JP4651151B2 - Method for producing electrode for powder transportation in electrostatic powder transportation apparatus - Google Patents

Method for producing electrode for powder transportation in electrostatic powder transportation apparatus Download PDF

Info

Publication number
JP4651151B2
JP4651151B2 JP2000067491A JP2000067491A JP4651151B2 JP 4651151 B2 JP4651151 B2 JP 4651151B2 JP 2000067491 A JP2000067491 A JP 2000067491A JP 2000067491 A JP2000067491 A JP 2000067491A JP 4651151 B2 JP4651151 B2 JP 4651151B2
Authority
JP
Japan
Prior art keywords
passage
passages
powder
electrode
transportation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000067491A
Other languages
Japanese (ja)
Other versions
JP2001253540A (en
Inventor
稔 森山
良和 谷井
昭子 宮本
Original Assignee
株式会社高純度物質研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社高純度物質研究所 filed Critical 株式会社高純度物質研究所
Priority to JP2000067491A priority Critical patent/JP4651151B2/en
Publication of JP2001253540A publication Critical patent/JP2001253540A/en
Application granted granted Critical
Publication of JP4651151B2 publication Critical patent/JP4651151B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Non-Mechanical Conveyors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、静電式粉体輸送装置における粉体輸送用電極の製造方法に関する。
【0002】
【従来の技術】
従来の静電式粉体輸送装置における粉体輸送用電極として、パネル状のものが特開平7−267363号公報に、パイプ状のものが特開平8−149859号公報に、またドット状のものが特開平8−201702号公報に、それぞれ記載されている。
また、本願出願人によって出願された特開平10−236649号公報には、パネル状とパイプ状のものが、特開平11−165872号には、ドット状のものが記載されている。
【0003】
上記した粉体輸送用電極の構造は、粉体輸送制御と関連づけられている。
即ち、輸送される粉体は、微小な粒子であり、粉体輸送用電極は、この微細な粒子を、粒径に対応したピッチをもって輸送方向に絶縁配列した多数の電極上に置き、各電極間に、送り方向へ電界ポテンシャルの進行波が形成されるように、各電極に、多値多相交番電圧(信号)を時系列に印加するべく制御されるようになっている。
【0004】
特に、本願発明が対象とする1方向パネル型の輸送用電極は、予め定められた輸送方向に、単位時間当たり多く粉体を送ることを目的とするため、送り方向と直交する方向(以下幅方向とする)の寸法をできるだけ大とすることが望ましく、かつ、送り方向へ進行波電圧が印加されるようにするため、多数の電極を、送り方向と直交する方向に直線上に延ばして、各相毎に櫛状に配置するととも、各相が順に入子状になるようにしてある。
【0005】
【発明が解決しようとする課題】
上記のような輸送用電極を製作するには、絶縁された導線を並べ、樹脂などで固めた後に配線を行ったり、プリント基板を利用したりしている(特開平8−201702号参照)。
【0006】
しかし、上記した従来のいずれの方法においても、輸送距離が長くなると、電極数が多くなるため、均一のピッチで電極を配置するのが困難となり、また、各電極には、進行波電圧が多値値多相交番電圧よって印加されるため、多値多相交番電圧を印加するための配線も複雑になり、また電極間のピッチの小さなものを要する場合に、製造の困難性は指数的に大となり、直線通路以外の多様な形状をなすものは作りにくくなる。
【0007】
本発明は、従来の技術が有する上記のような問題点に鑑みてなされたもので、簡素な手法で、精度の高い電極間ピッチを得ることができるとともに、3値多相信号の印加配線が容易であり、かつ、容易に所望の電極構造に対応させうるようにすることを目的とする。
【0008】
【課題を解決するための手段】
本発明によると、上記課題は、次のようにして解決される。
(1) 粉体粒子を帯電させて、それを進行波電界雰囲気内において輸送するようにした静電式粉体輸送装置における粉体輸送用電極の製造方法であって、絶縁被覆電線を複数本並列に並べて巻芯に巻回する工程と、軸線方向に延びる少なくとも2箇所以上の輸送路とするべき通路の部分における上記電線の互いに隣接するもの同士を、通路の幅と同じか、それよりも広い範囲に亘って固定する工程と、前記巻芯をとり除く工程と、前記複数の通路の面を変形させたり、複数の通路を接近させたり、複数の通路を軸線方向に前後にずらしたりする各通路の位置合わせにより、複数の通路の相対位置関係を調整して、各通路の部分を残し、その周辺部分を、合成樹脂材で固定して、複数の通路の位置関係を保持させる工程とを含む。
【0009】
(2) 上記(1)項において、輸送路とするすべき少なくとも2箇所の通路の部分における電線の、互いに隣接するもの同士を固定する工程が、輸送路とするべき通路の部分に粉体粒子を帯電させる絶縁シートを形成する工程を兼ねている。
【0010】
(3) 上記(1)項において、輸送路とするべき通路の部分に、絶縁シートを貼着する工程を含む。
【0011】
(4) 上記(1)〜(3)項のいずれかにおいて、巻芯を円柱とする。
【0012】
(5) 上記(1)〜(3)項のいずれかにおいて、巻芯を角柱とする。
【0013】
(6) 上記(1)〜(5)項のいずれかにおいて、複数の通路の位置関係を調整して、その位置関係を保形する工程が、一方の通路の輸送用電界を他方の通路上の帯電粒子に影響を与える距離の調整を含む。
【0014】
(7) 上記(1)〜(6)項のいずれかにおいて、複数の通路の位置関係を調整してその位置関係を保持させる工程が、一方の通路の巻き線の相順と、他方の通路の巻き線の相順とを整合させる調整を含む。
【0015】
【発明の実施の形態】
以下、本発明の方法の実施要領を、添付図面を参照しながら説明する。
【0016】
本発明は、粉体粒子を帯電させて、それを、進行波電界雰囲気内において輸送するようにした、静電式粉体輸送装置における粉体輸送用電極の製造方法に関するものであり、図1〜図4は、本発明方法の一実施要領を示す。
【0017】
まず、図1に示すように、複数本の絶縁被覆電線(1)を並列に並べて、巻芯(2)に巻回する。
【0018】
絶縁被覆電線(1)には、線間電圧、例えば500ボルト以上の高電圧が印加されるので、この電線(1)は、高耐圧の絶縁層を被覆した、単線の絶縁被覆電線が適している。絶縁被覆層の厚さは、上記高電圧と線間ピッチを考慮して定められる。
【0019】
絶縁被覆電線(1)の線径は、輸送しようとする粉体の粒径に応じる。
巻芯(2)は、外形が円柱状であると、巻き易く、かつ若干のテーパを付けて、外し易くするとよい。
【0020】
絶縁被覆電線(1)は、帯電粒子を輸送するための、進行波電界雰囲気を形成するのに要する多値多相交番電圧の相数に応じて、巻芯(2)の外周に、複数本を並列に並べて密着巻きされる。
【0021】
なお、電極間ピッチを線径より大とする場合には、電極を形成しない別の線材を、各絶縁被覆電線(1)の間に挟んで密着巻きすることもある。
【0022】
進行波電界雰囲気を形成するのに要する多値多相交番電圧としては、通常最も簡単な、3値3相、3値6相の矩形波の交番電圧が用いられるが、その他に、多値多相の、三角波、鋸歯状波、正弦波、等の交番電圧が使用され、実施例においては、3値6相矩形波に対応するものを示している。
【0023】
絶縁被覆電線(1)は、6相用に6本を並列に並べて巻回されている。図1において、各絶縁被覆電線(1)に付された文字a〜fは、交番電圧の各相を示している。
【0024】
図1のように、6本の絶縁被覆電線(1)を円柱状の巻芯(2)に密着巻きすると、絶縁被覆電線(1)は、多条螺旋を形成する。この多条螺旋構造は、各条線(各相)が半周回ったところで、半ピッチ進むという特徴を有するものとなっている。
【0025】
上記巻線工程が終わると、巻線の形状を保持するために、絶縁被覆電線(1)における輸送路となすべき軸線方向に延びる少なくとも2個所の通路(3)の部分ににおいて、隣接する絶縁被覆電線(1)同士を固定する。
【0026】
例えば、図2に示すように、軸線方向に見た巻芯(2)(図2では省略)の180度上下に対向する周面上の絶縁被覆電線(1)を、通路(3)の幅(W)と同じか、それよりもやや広い範囲に亘って固定する。
【0027】
もし、巻芯(2)に巻回された絶縁被覆電線(1)の全体を固定すると、円筒状になり、後工程における作業性が悪くなるので、通路(3)として使用する部分、及びその付近のみを固定するのである。
【0028】
この通路(3)部分を固定する材料としては、隣接する絶縁被覆電線(1)同士の接着性は高いが、巻芯(2)の径方向への変形が比較的容易な、熱可塑性の合成樹脂材が好ましい。
【0029】
この通路(3)を固定する工程において、通路(3)の上面に、粉体粒子(4)を帯電させる絶縁シート(5)を止着してもよいし、絶縁シート(5)を熱可塑性の材料として、絶縁被覆電線(1)を接着してもよい。
【0030】
なお、絶縁被覆電線(1)を接着する材料としては、絶縁シート(5)と同様に、粉体粒子に接触帯電させるものであり、かつ粉体粒子(4)が移動するに際して、摩擦抵抗や比較的大きな凹凸による抵抗を生じないように、滑らかなものが選ばれる。
また、絶縁シート(5)、及び絶縁被覆電線(1)と固着する材料は、搬送用の粉体粒子の材質を考慮して、帯電性、摩擦性、磨耗性等の特性が良好なものを、選択する。
【0031】
次に、巻芯をとり除く。すなわち、通路(3)となる電線(1)が固定すると、巻芯(2)を取り除いて、円筒状に多条螺旋巻回されて円筒状となっている絶縁被覆電線(1)を得る。
【0032】
次に、複数の通路(3)の位置関係を調整して、その位置関係を保持する工程に進む。
例えば、図2に2点鎖線、及び図3に示すように、円筒状の絶縁被覆電線(1)の上方の通路(3a)を、大きく下向きに凹曲させて、下方の通路(3b)に、並行となるように接近させる。
【0033】
この作業は、成形型や治具等を用いて、精密に行うことが必要である。
【0034】
なお、通路(3)とするところ以外の絶縁被覆電線(1)は、固定しないでバラ線の状態にあるため、この作業工程において、上下の通路(3a)(3b)を接近させることも、軸線方向の前後に相対位置をずらすことも容易である。
【0035】
このようにして、上下の通路(3a)(3b)を位置合わせした後、その関係位置を保持させるために、例えば、通路(3a)(3b)の部分を残して、その周辺部分を、合成樹脂材(6)で固定する(図3参照)。
【0036】
上述の各工程を経て、図3に示すような粉体輸送用電極(7)が完成される。
【0037】
図4は、図3に示す粉体輸送用電極(7)の上下の通路(3a)(3b)における絶縁被覆電線(1)の相対関係を示す模式図である。
【0038】
上下の通路(3a)(3b)をそのまま接近させると、巻芯(2)を取り除いた状態の多条螺旋をなす絶縁被覆電線(1)の上下の相関係は、(abcdef)で示すように半ピッチずれる。
【0039】
3値6相の交番電圧を各絶縁被覆電線(1)に印加すると、上下の通路(3a)(3b)における電界雰囲気は、abcとdefがそれぞれ逆相関係にあるため、下の通路(3b)では、進行波のポテンシャルが弱まるように作用する。
【0040】
そこで、上下の通路(3a)(3b)における絶縁被覆電線(1)の相関係が同相関係となるように、通路の位置関係を調整する工程において、前後いずれかに半ピッチずらしておく。
【0041】
これにより、下の通路(3b)に上の通路(3a)を接近させると、下の通路(3b)の中には、上下に接近して同相の進行波電界ポテンシャルが発生し、その中の帯電した粉体粒子(4)には、進行方向に強い力が作用する。
【0042】
このように、本発明の方法によれば、電気回路としては、全く分岐回路を使用することなく、複数の通路(3)を構成することができ、かつ一方の通路(3)に他方の通路(3)を接近させたことにより、一方の通路(3)に、大なる進行波電界ポテンシャルを発生させることができる。
【0043】
図5は、角型の巻芯(2A)の例を示すもので、通路(3)が幅広で、図6に示すような平らな粉体輸送用電極(7)を作るときに、精密な平面性が得られる。
【0044】
また、図6に示す粉体輸送用電極(7)を扁平として、図7に示すように、上下に多段に積み重ねて、搬送量を増すこともできる。
【0045】
【発明の効果】
本発明によれば、次のような効果を奏することができる。
【0046】
(a) 請求項1記載の発明によると、粉体輸送用電極の回路としては、全く分岐回路を使用することなく、複数の通路を構成することができ、かつ一方の通路に他方の通路を接近させることにより、一方の通路に大なる進行波電界ポテンシャルを発生させた、静電式粉体輸送装置における粉体輸送用電極を提供することができる。
【0047】
(b) 請求項2記載の発明によると、粉体粒子を帯電させる絶縁シートを、別途に貼着する必要がなくなる。
【0048】
(c) 請求項3記載の発明によると、輸送用粉粒体の材質に応じた材質の絶縁シートを貼着できる。
【0049】
(d) 請求項4記載の発明によると、多条螺旋巻を精密に密着巻きできるので、電極のピッチを、通路全体に亘り精密に安定化させることができる。
【0050】
(e) 請求項5記載の発明によると、多条螺旋巻を平面的に精密に密着巻きできるので、複数段式の平面通路を容易に製造することができる。
【0051】
(f) 請求項6記載の発明によると、複数通路の相対位置を調整して、少なくとも一方の通路が、他方通路の電界の影響を受けて、一方の通路が、より強い電界ポテンシャルを帯電粒子に与えるようにすることができる。
【0052】
(g) 請求項7記載の発明によると、互いに接近する通路の多相交番電圧の位相を、帯電粒子に対して、共に同相となるようにすることができる。
【図面の簡単な説明】
【図1】 本発明方法の一実施の形態における作業工程の一例を示すもので、円型の巻芯に、複数の電線を多条巻する状態を示す斜視図である。
【図2】 複数の通路の位置関係を調整する要領を示すために、巻芯を除いた円筒状の電線を、軸線方向から見た正面図である。
【図3】 本発明方法によって製造された粉体輸送用電極の一例を示す要部の縦断面図である。
【図4】 図3に示す粉体輸送用電極の上下の通路を、図3におけるIV−IV線で縦断して、電線各相の相対関係を示す模式図である。
【図5】 角形の巻芯を用いて行われる、図1と同様の工程の斜視図である。
【図6】 角形の巻芯を用いて作られた、複数平面通路を有する粉体輸送用電極の一例を示す縦断面図である。
【図7】 図6の粉体輸送用電極を複数個積み重ねた例を示す縦断面図である。
【符号の説明】
(1)絶縁被覆電線
(2)(2A)巻芯
(3)(3a)(3b)通路
(4)粉体粒子
(5)絶縁シート
(6)合成樹脂材
(7)粉体輸送用電極
(W)通路幅
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing an electrode for powder transportation in an electrostatic powder transportation apparatus.
[0002]
[Prior art]
As a powder transport electrode in a conventional electrostatic powder transport apparatus, a panel-shaped electrode is disclosed in JP-A-7-267363, a pipe-shaped electrode is disclosed in JP-A-8-149859, and a dot-shaped electrode. Are described in JP-A-8-201702.
Japanese Patent Application Laid-Open No. 10-236649, filed by the applicant of the present application, describes a panel shape and a pipe shape, and Japanese Patent Application Laid-Open No. 11-165872 describes a dot shape.
[0003]
The above-mentioned structure of the electrode for powder transport is related to the powder transport control.
That is, the transported powder is fine particles, and the powder transport electrode is placed on a number of electrodes that are insulated and arranged in the transport direction with a pitch corresponding to the particle size. In the meantime, it is controlled to apply a multi-value multi-phase alternating voltage (signal) to each electrode in time series so that a traveling wave of an electric field potential is formed in the feeding direction.
[0004]
In particular, the unidirectional panel-type transport electrode targeted by the present invention is intended to send a large amount of powder per unit time in a predetermined transport direction, and therefore a direction orthogonal to the feed direction (hereinafter referred to as width). In order to apply a traveling wave voltage in the feed direction, it is desirable to extend a large number of electrodes on a straight line in a direction perpendicular to the feed direction, Each phase is arranged in a comb shape, and each phase is arranged in a nested manner.
[0005]
[Problems to be solved by the invention]
In order to manufacture the above-mentioned transport electrode, insulated conductors are arranged and hardened with resin or the like, and then wiring is performed or a printed circuit board is used (see Japanese Patent Laid-Open No. 8-201702).
[0006]
However, in any of the conventional methods described above, if the transport distance is increased, the number of electrodes increases, making it difficult to arrange the electrodes at a uniform pitch, and each electrode has a large traveling wave voltage. Since it is applied by the value-valued multiphase alternating voltage, the wiring for applying the multivalued multiphase alternating voltage becomes complicated, and when a small pitch between the electrodes is required, the manufacturing difficulty is exponentially It becomes large and it becomes difficult to make things having various shapes other than the straight passage.
[0007]
The present invention has been made in view of the above-described problems of the prior art, and can provide a highly accurate inter-electrode pitch with a simple technique, and the application wiring of a ternary multiphase signal can be obtained. It is easy and can be easily adapted to a desired electrode structure.
[0008]
[Means for Solving the Problems]
According to the present invention, the above problem is solved as follows.
(1) A method for manufacturing a powder transport electrode in an electrostatic powder transport apparatus in which powder particles are charged and transported in a traveling wave electric field atmosphere, wherein a plurality of insulated coated wires are provided. The steps of winding in parallel and winding around the core, and the adjacent ones of the wires in the portion of the passage that should be at least two or more transport routes extending in the axial direction are the same as the width of the passage, or more than that and fixing over a range not wider, a step of removing the core, or deform the surface of the plurality of passages, or to close a plurality of passages, or shifting back and forth a plurality of passages in the axial direction The step of adjusting the relative positional relationship between the plurality of passages by aligning the passages, leaving the portions of the passages, and fixing the peripheral portions thereof with a synthetic resin material, thereby maintaining the positional relationship between the plurality of passages. Including.
[0009]
(2) In the above item (1), the step of fixing the wires adjacent to each other in at least two passage portions to be used as a transportation route is a method of forming powder particles in the passage portion to be used as a transportation route. It also serves as a step of forming an insulating sheet for charging the film.
[0010]
(3) In said (1) term, the process of sticking an insulating sheet in the part of the channel which should be used as a transportation path is included.
[0011]
(4) In any one of the above items (1) to (3), the winding core is a cylinder.
[0012]
(5) In any one of the above items (1) to (3), the winding core is a prism.
[0013]
(6) In any one of the above items (1) to (5), the step of adjusting the positional relationship of the plurality of passages and retaining the positional relationship causes the transport electric field of one passage to be applied to the other passage. Adjustment of the distance affecting the charged particles.
[0014]
(7) In any one of the above items (1) to (6), the step of adjusting the positional relationship of the plurality of passages to maintain the positional relationship includes the phase sequence of the windings of one passage and the other passage Adjustment to match the phase sequence of the windings.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereafter, the implementation point of the method of this invention is demonstrated, referring an accompanying drawing.
[0016]
The present invention relates to a method for producing a powder transport electrode in an electrostatic powder transport apparatus in which powder particles are charged and transported in a traveling wave electric field atmosphere. FIG. 4 shows one implementation point of the method of the present invention.
[0017]
First, as shown in FIG. 1, a plurality of insulated wires (1) are arranged in parallel and wound around a core (2).
[0018]
Since a voltage between lines, for example, a high voltage of 500 volts or more is applied to the insulation-coated electric wire (1), a single-wire insulation-coated electric wire coated with a high-voltage insulation layer is suitable for the electric wire (1). Yes. The thickness of the insulating coating layer is determined in consideration of the high voltage and the line pitch.
[0019]
The wire diameter of the insulated wire (1) depends on the particle size of the powder to be transported.
When the outer shape of the winding core (2) is cylindrical, it is preferable that the winding core (2) is easy to wind and has a slight taper to be easily removed.
[0020]
Depending on the number of phases of the multi-value multi-phase alternating voltage required to form the traveling wave electric field atmosphere for transporting the charged particles, the insulation-coated electric wire (1) has a plurality of wires on the outer periphery of the core (2). Are placed in parallel and tightly wound.
[0021]
In addition, when making the pitch between electrodes larger than a wire diameter, another wire which does not form an electrode may be pinched | interposed and pinched | interposed between each insulation coating electric wire (1).
[0022]
As the multi-value multi-phase alternating voltage required for forming the traveling wave electric field atmosphere, the simplest ternary three-phase, three-value six-phase rectangular wave alternating voltage is usually used. Phase alternating voltages such as triangular wave, sawtooth wave, sine wave, etc. are used, and in the embodiment, one corresponding to a ternary 6 phase rectangular wave is shown.
[0023]
The insulation-coated electric wire (1) is wound with six wires arranged in parallel for six phases. In FIG. 1, letters a to f attached to the respective insulation-coated wires (1) indicate the phases of the alternating voltage.
[0024]
As shown in FIG. 1, when six insulated wires (1) are tightly wound around a cylindrical core (2), the insulated wires (1) form a multi-helix. This multi-strand spiral structure has a feature that it advances half a pitch when each line (each phase) makes a half turn.
[0025]
When the winding process is completed, in order to maintain the shape of the winding, the insulation is adjacent to at least two passages (3) extending in the axial direction to serve as a transport path in the insulated wire (1). The covered electric wires (1) are fixed together.
[0026]
For example, as shown in FIG. 2, the insulated coated electric wire (1) on the circumferential surface facing up and down 180 degrees of the core (2) (not shown in FIG. 2) viewed in the axial direction is connected to the width of the passage (3). Fix over the same range as (W) or slightly wider.
[0027]
If the entire insulated wire (1) wound around the core (2) is fixed, it becomes cylindrical and the workability in the subsequent process deteriorates, so the part used as the passage (3) and its Only the vicinity is fixed.
[0028]
As a material for fixing the passage (3) portion, a thermoplastic synthetic material in which adjacent insulation-coated electric wires (1) have high adhesiveness, but the core (2) is relatively easily deformed in the radial direction. A resin material is preferred.
[0029]
In the step of fixing the passage (3), an insulating sheet (5) for charging the powder particles (4) may be fixed to the upper surface of the passage (3), or the insulating sheet (5) may be thermoplastic. As the material, the insulation-coated electric wire (1) may be bonded.
[0030]
In addition, as the material for bonding the insulation-coated electric wire (1), like the insulating sheet (5), the powder particles are contact-charged, and when the powder particles (4) move, frictional resistance or A smooth material is selected so as not to cause resistance due to relatively large unevenness.
In addition, the material to be fixed to the insulating sheet (5) and the insulated coated electric wire (1) should have good characteristics such as charging property, friction property and wear property in consideration of the material of the powder particles for transportation. ,select.
[0031]
Next, the core is removed. That is, when the electric wire (1) serving as the passage (3) is fixed, the winding core (2) is removed, and the cylindrical insulated insulation electric wire (1) is obtained by being spirally wound in a cylindrical shape.
[0032]
Next, the process proceeds to a step of adjusting the positional relationship between the plurality of passages (3) and maintaining the positional relationship.
For example, as shown in FIG. 2 by the two-dot chain line and FIG. 3, the upper passage (3a) of the cylindrical insulated wire (1) is greatly bent downward to form the lower passage (3b). , Make them approach in parallel.
[0033]
This work needs to be performed precisely using a mold or a jig.
[0034]
Since the insulated wire (1) other than the passage (3) is in the state of loose wires without being fixed, the upper and lower passages (3a) (3b) can be brought close in this work process. It is also easy to shift the relative position back and forth in the axial direction.
[0035]
After the upper and lower passages (3a) and (3b) are aligned in this way, for example, the passages (3a) and (3b) are left and the peripheral portions thereof are synthesized in order to maintain the relative positions. Fix with resin material (6) (see FIG. 3).
[0036]
Through the above-described steps, the powder transport electrode (7) as shown in FIG. 3 is completed.
[0037]
FIG. 4 is a schematic diagram showing the relative relationship of the insulated wire (1) in the upper and lower passages (3a) and (3b) of the powder transport electrode (7) shown in FIG.
[0038]
When the upper and lower passages (3a) and (3b) are brought close to each other as they are, the upper and lower phase relation of the insulated sheathed electric wire (1) with the winding core (2) removed is as shown by (abcdef) Deviation by half pitch.
[0039]
When an alternating voltage of three values and six phases is applied to each insulated wire (1), the electric field atmosphere in the upper and lower passages (3a) and (3b) is in the opposite phase relationship between abc and def. ) Acts to weaken the traveling wave potential.
[0040]
Therefore, in the step of adjusting the positional relationship of the passages, the pitch is shifted by a half pitch either before or after the phase relationship of the insulated wires (1) in the upper and lower passages (3a, 3b).
[0041]
As a result, when the upper passage (3a) is approached to the lower passage (3b), a traveling wave electric field potential in the same phase is generated in the lower passage (3b) in the vertical direction, A strong force acts in the traveling direction on the charged powder particles (4).
[0042]
As described above, according to the method of the present invention, as the electric circuit, a plurality of passages (3) can be formed without using any branch circuit, and one passage (3) is connected to the other passage. By approaching (3), a large traveling wave electric field potential can be generated in one of the passages (3).
[0043]
FIG. 5 shows an example of a rectangular core (2A). When the passage (3) is wide and a flat powder transport electrode (7) as shown in FIG. Flatness is obtained.
[0044]
Further, the powder transport electrode (7) shown in FIG. 6 can be flattened and stacked in multiple stages in the vertical direction as shown in FIG.
[0045]
【The invention's effect】
According to the present invention, the following effects can be achieved.
[0046]
(a) According to the invention described in claim 1, a plurality of passages can be formed without using any branch circuit as the circuit for the electrode for powder transportation, and the other passage is provided in one passage. By bringing them closer, it is possible to provide an electrode for transporting powder in an electrostatic powder transport apparatus in which a large traveling wave electric field potential is generated in one passage.
[0047]
(b) According to the invention described in claim 2, it is not necessary to separately attach an insulating sheet for charging the powder particles.
[0048]
(c) According to invention of Claim 3, the insulating sheet of the material according to the material of the granular material for transport can be stuck.
[0049]
(d) According to the invention described in claim 4, since the multi-strand spiral winding can be precisely tightly wound, the pitch of the electrodes can be accurately stabilized over the entire passage.
[0050]
(e) According to the invention described in claim 5, since the multi-helix spiral winding can be closely tightly wound in a plane, a multistage planar passage can be easily manufactured.
[0051]
(f) According to the invention of claim 6, by adjusting the relative positions of the plurality of passages, at least one passage is affected by the electric field of the other passage, and one passage has a stronger electric field potential. Can be given to.
[0052]
(g) According to the seventh aspect of the present invention, the phases of the multiphase alternating voltage in the paths approaching each other can be in phase with the charged particles.
[Brief description of the drawings]
FIG. 1 is a perspective view showing an example of a work process in an embodiment of the method of the present invention and showing a state in which a plurality of electric wires are wound around a circular core.
FIG. 2 is a front view of a cylindrical electric wire excluding a winding core as viewed from the axial direction in order to show the point of adjusting the positional relationship between a plurality of passages.
FIG. 3 is a longitudinal sectional view of an essential part showing an example of a powder transport electrode manufactured by the method of the present invention.
4 is a schematic view showing the relative relationship of each phase of the wire by vertically cutting the upper and lower passages of the powder transport electrode shown in FIG. 3 along the line IV-IV in FIG. 3;
FIG. 5 is a perspective view of the same process as that of FIG. 1 performed using a rectangular core.
FIG. 6 is a longitudinal sectional view showing an example of a powder transport electrode having a plurality of planar passages, which is made using a square core.
7 is a longitudinal sectional view showing an example in which a plurality of powder transport electrodes of FIG. 6 are stacked. FIG.
[Explanation of symbols]
(1) Insulated coated wire
(2) (2A) Winding core
(3) (3a) (3b) Passage
(4) Powder particles
(5) Insulation sheet
(6) Synthetic resin material
(7) Powder transport electrode
(W) Passage width

Claims (7)

粉体粒子を帯電させて、それを進行波電界雰囲気内において輸送するようにした静電式粉体輸送装置における粉体輸送用電極の製造方法であって、
絶縁被覆電線を複数本並列に並べて巻芯に巻回する工程と、
軸線方向に延びる少なくとも2箇所以上の輸送路とするべき通路の部分における上記電線の互いに隣接するもの同士を、通路の幅と同じか、それよりも広い範囲に亘って固定する工程と、
前記巻芯をとり除く工程と、
前記複数の通路の面を変形させたり、複数の通路を接近させたり、複数の通路を軸線方向に前後にずらしたりする各通路の位置合わせにより、複数の通路の相対位置関係を調整して、各通路の部分を残し、その周辺部分を、合成樹脂材で固定して、複数の通路の位置関係を保持させる工程
とを含むことを特徴とする静電式粉体輸送装置における粉体輸送用電極の製造方法。
A method for producing a powder transport electrode in an electrostatic powder transport device in which powder particles are charged and transported in a traveling wave electric field atmosphere,
Arranging a plurality of insulated wires in parallel and winding them around a core;
To each other that at least two places or more transport path and part of the passage to be extending in the axial direction adjacent to each other above the wire, or the same as the width of the passage, and fixing over it by Rimohiro have range,
Removing the core;
Or deform the surface of the plurality of passages, or to close a plurality of passages, or shifting back and forth a plurality of passages in the axial direction, the positioning of the passages, by adjusting the relative positional relationship of the plurality of passages And a step of leaving each passage portion and fixing a peripheral portion thereof with a synthetic resin material to maintain the positional relationship of the plurality of passages. For manufacturing an electrode.
輸送路とするすべき少なくとも2箇所の通路の部分における電線の、互いに隣接するもの同士を固定する工程が、輸送路とするべき通路の部分に粉体粒子を帯電させる絶縁シートを形成する工程を兼ねている、請求項1記載の静電式粉体輸送装置における粉体輸送用電極の製造方法。  The step of fixing the wires adjacent to each other in at least two passage portions to be used as the transportation path is a step of forming an insulating sheet that charges the powder particles in the passage portion to be the transportation route. The method for producing an electrode for powder transportation in an electrostatic powder transportation apparatus according to claim 1, which is also used. 輸送路とするべき通路の部分に、絶縁シートを貼着する工程を含むことを特徴とする、請求項1記載の静電式粉体輸送装置における粉体輸送用電極の製造方法。  2. The method for producing an electrode for powder transportation in an electrostatic powder transportation apparatus according to claim 1, further comprising a step of adhering an insulating sheet to a portion of the passage to be a transportation path. 巻芯が、円柱である請求項1〜3のいずれかに記載の静電式粉体輸送装置における粉体輸送用電極の製造方法。  The method for producing an electrode for powder transportation in an electrostatic powder transportation apparatus according to any one of claims 1 to 3, wherein the winding core is a cylinder. 巻芯が、角柱である請求項1〜3のいずれかに記載の静電式粉体輸送装置における粉体輸送用電極の製造方法。  The method for producing an electrode for powder transportation in an electrostatic powder transportation apparatus according to any one of claims 1 to 3, wherein the winding core is a prism. 複数の通路の位置関係を調整して、その位置関係を保持させる工程が、一方の通路の輸送用電界を他方の通路上の帯電粒子に影響を与える距離の調整を含む、請求項1〜5のいずれかに記載の静電式粉体輸送装置における粉体輸送用電極の製造方法。  The step of adjusting the positional relationship of the plurality of passages and maintaining the positional relationship includes adjusting a distance that affects the electric field for transport in one passage to the charged particles on the other passage. The manufacturing method of the electrode for powder transport in the electrostatic powder transport apparatus in any one of these. 複数の通路の位置関係を調整してその位置関係を保持させる工程が、一方の通路の巻き線の相順と、他方の通路の巻き線の相順とを整合させる調整を含む請求項1〜6のいずれかに記載の静電式粉体輸送装置における粉体輸送用電極の製造方法。  The step of adjusting the positional relationship of the plurality of passages and maintaining the positional relationship includes an adjustment of matching the phase sequence of the windings of one passage with the phase sequence of the windings of the other passage. A method for producing an electrode for powder transportation in the electrostatic powder transportation apparatus according to any one of claims 6 to 10.
JP2000067491A 2000-03-10 2000-03-10 Method for producing electrode for powder transportation in electrostatic powder transportation apparatus Expired - Lifetime JP4651151B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000067491A JP4651151B2 (en) 2000-03-10 2000-03-10 Method for producing electrode for powder transportation in electrostatic powder transportation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000067491A JP4651151B2 (en) 2000-03-10 2000-03-10 Method for producing electrode for powder transportation in electrostatic powder transportation apparatus

Publications (2)

Publication Number Publication Date
JP2001253540A JP2001253540A (en) 2001-09-18
JP4651151B2 true JP4651151B2 (en) 2011-03-16

Family

ID=18586674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000067491A Expired - Lifetime JP4651151B2 (en) 2000-03-10 2000-03-10 Method for producing electrode for powder transportation in electrostatic powder transportation apparatus

Country Status (1)

Country Link
JP (1) JP4651151B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5646269B2 (en) * 2010-10-05 2014-12-24 株式会社東芝 X-ray imaging device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06337618A (en) * 1993-05-27 1994-12-06 Ricoh Co Ltd Toner carrying device and image forming device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06337618A (en) * 1993-05-27 1994-12-06 Ricoh Co Ltd Toner carrying device and image forming device

Also Published As

Publication number Publication date
JP2001253540A (en) 2001-09-18

Similar Documents

Publication Publication Date Title
CN109643940B (en) Laminated core, method for manufacturing laminated core, and armature using laminated core
US8779643B2 (en) Stator for electric rotating machine and method of manufacturing same
EP0694227B1 (en) Method for making an electric motor winding
EP0644645B1 (en) Slotless electric motor or transducer and method for making same
US9806577B2 (en) Stator with neutral line secured to stator yoke
US20050110357A1 (en) Cable for winding coil and armature
EP0925803A3 (en) Guide wire
US8575814B2 (en) Conductor insulation arrangement for electric machine winding
CN103460561A (en) Stator of rotating electrical machine, method of manufacturing same, and apparatus for manufacturing same
JP2019511893A5 (en)
US9130430B2 (en) Electric machine with fully enclosed in-slot conductors
JPH06187863A (en) Electric insulating material and insulated electric conductor
CN1006592B (en) Insulated armature coil for dynamoelectric machine
US4682410A (en) Process of making a dynamo electric machine
JP4651151B2 (en) Method for producing electrode for powder transportation in electrostatic powder transportation apparatus
JP2011259566A (en) Method of manufacturing stator
US6675463B2 (en) Methods for forming torodial windings for current sensors
US8122588B2 (en) Method of manufacturing coil assembly of stator of electric rotating machine
WO2012158236A1 (en) Conductor insulation arrangement for electric machine winding
US7923643B2 (en) Separator for separating windings
EP1544985A2 (en) Coils for electrical machines
JP2004351457A (en) Electromagnetic forming coil, and electromagnetic forming method
US4888071A (en) Method for manufacturing ribbon cable and transposed cable
CN107210657A (en) Plate cut linear electric machine coil for elevator device
US5043612A (en) Epoxy coated motor with shading band having tapered edges

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101214

R150 Certificate of patent or registration of utility model

Ref document number: 4651151

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term