JP4651111B2 - Single molecule magnet - Google Patents

Single molecule magnet Download PDF

Info

Publication number
JP4651111B2
JP4651111B2 JP2006064098A JP2006064098A JP4651111B2 JP 4651111 B2 JP4651111 B2 JP 4651111B2 JP 2006064098 A JP2006064098 A JP 2006064098A JP 2006064098 A JP2006064098 A JP 2006064098A JP 4651111 B2 JP4651111 B2 JP 4651111B2
Authority
JP
Japan
Prior art keywords
group
formula
normal
butoxy
atom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006064098A
Other languages
Japanese (ja)
Other versions
JP2007242934A (en
Inventor
登 古賀
悟 唐澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu University NUC
Nissan Chemical Corp
Original Assignee
Kyushu University NUC
Nissan Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu University NUC, Nissan Chemical Corp filed Critical Kyushu University NUC
Priority to JP2006064098A priority Critical patent/JP4651111B2/en
Publication of JP2007242934A publication Critical patent/JP2007242934A/en
Application granted granted Critical
Publication of JP4651111B2 publication Critical patent/JP4651111B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、単分子磁石に関し、更に詳しくは、光照射によって生成する有機ラジカル(カルベン)に由来する不対電子を強磁性相互作用によって配列させて得られる光応答型単分子磁石に関する。   The present invention relates to a single molecule magnet, and more particularly to a photoresponsive single molecule magnet obtained by arranging unpaired electrons derived from an organic radical (carbene) generated by light irradiation by ferromagnetic interaction.

有機ラジカルに強磁性的相互作用を持たせることによって、電子スピンを平行にそろえ、分子強磁性体を構築する試みが活発に行われている。分子磁性体は、無機磁性体に比較して成形が極めて容易であること、目的によって容易に物性の修飾ができることなどから、様々な分野で新しい材料としての期待が集まっている。これまでの研究から、有機物で磁石を創るためには、(1)出来る限り多くのスピンを、(2)強い相互作用で平行に揃えて、(3)多次元的にメソスコピックな広がりを持って集積化する、ことが必要であると考えられてきた。   Attempts have been actively made to construct molecular ferromagnets by aligning electron spins in parallel by imparting ferromagnetic interactions to organic radicals. Molecular magnetic materials are much easier to mold than inorganic magnetic materials, and can be easily modified in physical properties depending on the purpose. Therefore, expectations for new materials in various fields are increasing. From the research so far, in order to create magnets with organic matter, (1) as many spins as possible, (2) align in parallel with strong interactions, and (3) have a multidimensional mesoscopic spread. It has been considered necessary to integrate.

本発明者らは、有機スピン源として、磁気的相互作用が強い三重項カルベンを用い、金属との配位結合を介して一次元にスピンを集積することに既に成功している(非特許文献1参照。)。
これらのカルベンは、230Kまで安定であり(通常のカルベンは100K程度で化学反応し消滅する。)、室温においても安定な分子強磁性体の可能性を示唆するものである。
しかしながら、得られたカルベンを含む金属錯体は、超高スピン常磁性体であり、残留磁化を有していない。
また、本発明者らは、金属イオンの3dスピンと配位子カルベンの2pスピンとを三次元に高度集積し、残留磁化を有する分子磁性体の合成にも成功している(非特許文献2、非特許文献3、非特許文献4、特許文献1及び特許文献2参照。)。
しかし、これらはスピングラス様磁性材料であり、ナノマテリアルとしての応用が難しいという課題がある。
The present inventors have already succeeded in integrating spins in one dimension through a coordinate bond with a metal using a triplet carbene having a strong magnetic interaction as an organic spin source (Non-Patent Document). 1).
These carbenes are stable up to 230K (ordinary carbenes chemically react and disappear at about 100K), suggesting the possibility of stable molecular ferromagnets even at room temperature.
However, the obtained metal complex containing carbene is an ultra-high spin paramagnetic substance and has no remanent magnetization.
In addition, the present inventors have succeeded in synthesizing a molecular magnetic material having remanent magnetization by highly accumulating 3d spin of a metal ion and 2p spin of a ligand carbene in three dimensions (Non-patent Document 2). Non-patent document 3, Non-patent document 4, Patent document 1 and Patent document 2).
However, these are spin glass-like magnetic materials, and there is a problem that application as a nanomaterial is difficult.

単分子磁性体構築のためには、ある程度大きなスピン量子数と負のゼロ磁場***パラメータ(D)が必要である。従来の単分子磁性体は、マンガン原子を代表とする金属原子同士をオキソ架橋でつないだオリゴ及びポリ閉環金属錯体であり、スピン源は全て金属原子から供給されている(非特許文献5参照。)。
本発明者らは、金属とジアゾ−ピリジン化合物とに光照射して発生させるカルベンをスピン源として用いたヘテロスピン系で構築した、金属原子を一つしか用いない残留磁化を有する単分子磁石の合成に成功している(特許文献3参照。)。
しかし、これらは用いるジアゾ−ピリジン化合物の金属錯体又は金属塩に対するモル比が多く、得られる金属錯体のコンフォーメーションが安定ではないといった課題がある。
In order to construct a unimolecular magnet, a somewhat large spin quantum number and a negative zero-field splitting parameter (D) are required. A conventional monomolecular magnetic material is an oligo- and poly-ring-closing metal complex in which metal atoms typified by manganese atoms are connected by an oxo bridge, and all spin sources are supplied from metal atoms (see Non-Patent Document 5). ).
The inventors of the present invention have developed a single-molecule magnet having a remanent magnetization using only one metal atom, which is constructed in a heterospin system using a carbene generated by light irradiation of a metal and a diazo-pyridine compound as a spin source. It has been successfully synthesized (see Patent Document 3).
However, these have a problem that the molar ratio of the diazo-pyridine compound to be used to the metal complex or metal salt is large, and the resulting metal complex does not have a stable conformation.

「ジャーナル・オブ・ザ・アメリカン・ケミカル・ソサエテイ(J. Am. Chem. Soc.)」、(米国)、1997年、第119巻、p.8246−8252"Journal of the American Chemical Society (J. Am. Chem. Soc.)" (USA), 1997, Vol. 119, p. 8246-8252 「アプライド・マグネテイク・レゾナンス(Appl. Magn. Reson.)」、(オーストリア)、2003年、第23巻、p.507“Appl. Magn. Reson.” (Austria), 2003, Vol. 23, p. 507 「ポリヘドロン(Polyhedron)」、(オランダ)、2001年、第20巻、p.1387−1389“Polyhedron” (Netherlands), 2001, Vol. 20, p. 1387-1389 「ジャーナル・オブ・ザ・アメリカン・ケミカル・ソサエテイ(J. Am. Chem. Soc.)」、(米国)、2001年、第123巻、p.9685−9686"Journal of the American Chemical Society (J. Am. Chem. Soc.)" (USA), 2001, Vol. 123, p. 9685-9686 「ネイチャー(Nature)」、(英国)、1993年、第365巻、p.141−143“Nature” (UK), 1993, 365, p. 141-143 特開2002−093606号公報(特許請求の範囲)JP 2002-093606 A (Claims) 特開2002−260907号公報(特許請求の範囲)JP 2002-260907 A (Claims) 特開2005−012147号公報(特許請求の範囲)JP 2005-012147 A (Claims)

本発明は、このような事情に鑑みてなされたものであり、金属錯体のコンフォーメーションが安定であり、ナノマテリアルとして応用可能な、残留磁化を有する単分子磁石を提供することを目的とする。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide a single-molecule magnet having residual magnetization that is stable in the conformation of a metal complex and can be applied as a nanomaterial.

本発明者らは、上記目的を達成するために鋭意検討を重ねた結果、ジアゾ−ピリジン化合物と安定な三座配位子を有する有機金属錯体を含む溶液に光照射することにより、金属錯体のコンフォーメーションが安定であり、残留磁化を有する単分子磁石が得られることを見出し、本発明を完成した。   As a result of intensive studies to achieve the above object, the inventors of the present invention irradiated light to a solution containing a diazo-pyridine compound and an organometallic complex having a stable tridentate ligand, thereby The inventors have found that a single molecule magnet having stable conformation and having remanent magnetization can be obtained, and the present invention has been completed.

すなわち、本発明は、
1. 式(1)、(2)、(3)、(4)又は(5)

Figure 0004651111
(式中、R1、R2、R3、R4、R5、R6、R7及びR8は、それぞれ独立に、水素原子、ハロゲン原子、ニトロ基、シアノ基、メチル基、エチル基、ノルマルプロピル基、イソプロピル基、ノルマルブチル基、イソブチル基、セカンダリーブチル基、ターシャリーブチル基、メトキシ基、エトキシ基、ノルマルプロポキシ基、イソプロポキシ基、ノルマルブトキシ基、イソブトキシ基、セカンダリーブトキシ基又はターシャーリーブトキシ基を示す。)
で表される化合物と、式(6)
Figure 0004651111
(式中、R10は、それぞれ独立に、メチル基、エチル基、ノルマルプロピル基、イソプロピル基、ノルマルブチル基、イソブチル基、又はセカンダリーブチル基を示し、R11及びR12は、それぞれ独立に、水素原子、ハロゲン原子、ニトロ基、シアノ基、メチル基、エチル基、ノルマルプロピル基、イソプロピル基、ノルマルブチル基、イソブチル基、セカンダリーブチル基、ターシャリーブチル基、メトキシ基、エトキシ基、ノルマルプロポキシ基、イソプロポキシ基、ノルマルブトキシ基、イソブトキシ基、セカンダリーブトキシ基又はターシャーリーブトキシ基を示し、Mは、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Ru、Rh、Pd、Ag、Cd、Hf、Ta、W、Re、Os、Ir、Pt、Au又はHgを示し、Xは、ハロゲン原子、イソシアネート基、チオシアネート基、パークロレート基、シアネート基又はナイトレート基を示し、nは1〜3を示す。)
で表される有機金属錯体と、溶媒とを混合してなる溶液に、光照射することで得られることを特徴とする単分子磁石、
2. 前記式(1)、(2)、(3)、(4)又は(5)において、前記R1、R2、R3、R5、R6及びR7が、全て水素原子であり、R4及びR8が、それぞれ独立に水素原子、塩素原子、又は臭素原子である1の単分子磁石、
3. 前記式(6)において、前記R10がメチル基、前記R11及びR12が全て水素原子、前記MがNi、Co、Cu、Mn、Fe、Cr又はZnであり、前記Xが塩素原子、イソシアネート基、チオシアネート基、又はパークロレート基である1又は2の単分子磁石、
4. 前記式(6)において、前記MがCoであり、前記Xがイソシアネート基であり、前記nが2である1、2又は3の単分子磁石、
5. 前記式(1)、(2)、(3)、(4)又は(5)で表される化合物と、前記式(6)で表される有機金属錯体とのモル比が、2:1〜1:2の範囲である1の単分子磁石、
6. 前記溶媒が、塩化メチレンと2−メチルテトラヒドロフランとの混合溶媒である1又は5の単分子磁石、
7. 光照射するときの温度が、20K以下である1、5又は6の単分子磁石、
8. 式(1)、(2)、(3)、(4)又は(5)
Figure 0004651111
(式中、R1、R2、R3、R4、R5、R6、R7及びR8は、それぞれ独立に、水素原子、ハロゲン原子、ニトロ基、シアノ基、メチル基、エチル基、ノルマルプロピル基、イソプロピル基、ノルマルブチル基、イソブチル基、セカンダリーブチル基、ターシャリーブチル基、メトキシ基、エトキシ基、ノルマルプロポキシ基、イソプロポキシ基、ノルマルブトキシ基、イソブトキシ基、セカンダリーブトキシ基又はターシャーリーブトキシ基を示す。)
で表される化合物と、式(6)
Figure 0004651111
(式中、R10は、それぞれ独立にメチル基、エチル基、ノルマルプロピル基、イソプロピル基、ノルマルブチル基、イソブチル基、又はセカンダリーブチル基を示し、R11及びR12は、それぞれ独立に水素原子、ハロゲン原子、ニトロ基、シアノ基、メチル基、エチル基、ノルマルプロピル基、イソプロピル基、ノルマルブチル基、イソブチル基、セカンダリーブチル基、ターシャリーブチル基、メトキシ基、エトキシ基、ノルマルプロポキシ基、イソプロポキシ基、ノルマルブトキシ基、イソブトキシ基、セカンダリーブトキシ基又はターシャーリーブトキシ基を示し、Mは、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Ru、Rh、Pd、Ag、Cd、Hf、Ta、W、Re、Os、Ir、Pt、Au又はHgを示し、Xは、ハロゲン原子、イソシアネート基、チオシアネート基、パークロレート基、シアネート基又はナイトレート基を示し、nは1〜3を示す。)
で表される有機金属錯体と、溶媒とを混合して溶液を調製し、この溶液に光照射する工程を含むことを特徴とする単分子磁石の製造方法、
9. 前記式(1)、(2)、(3)、(4)又は(5)において、前記R1、R2、R3、R5、R6及びR7が全て水素原子であり、前記R4及びR8がそれぞれ独立に水素原子、塩素原子、又は臭素原子である8の単分子磁石の製造方法、
10. 前記式(6)において、前記R10がメチル基、前記R11及びR12が全て水素原子、前記MがNi、Co、Cu、Mn、Fe、Cr又はZnであり、前記Xが塩素原子、イソシアネート基、チオシアネート基、又はパークロレート基である8又は9の単分子磁石の製造方法、
11. 前記式(6)において、前記MがCoであり、前記Xがイソシアネート基であり、前記nが2である8、9又は10の単分子磁石の製造方法、
12. 前記式(1)、(2)、(3)、(4)又は(5)で表される化合物と、前記式(6)で表される有機金属錯体とのモル比が、2:1〜1:2の範囲である8の単分子磁石の製造方法、
13. 前記溶媒が、塩化メチレンと2−メチルテトラヒドロフランとの混合溶媒である8又は12の単分子磁石の製造方法、
14. 前記光照射するときの温度が20K以下である8、12又は13の単分子磁石の製造方法
を提供する。 That is, the present invention
1. Formula (1), (2), (3), (4) or (5)
Figure 0004651111
(In the formula, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are each independently a hydrogen atom, a halogen atom, a nitro group, a cyano group, a methyl group, or an ethyl group. , Normal propyl group, isopropyl group, normal butyl group, isobutyl group, secondary butyl group, tertiary butyl group, methoxy group, ethoxy group, normal propoxy group, isopropoxy group, normal butoxy group, isobutoxy group, secondary butoxy group or ter (Shows Shirley butoxy group.)
A compound represented by formula (6):
Figure 0004651111
(Wherein R 10 independently represents a methyl group, an ethyl group, a normal propyl group, an isopropyl group, a normal butyl group, an isobutyl group, or a secondary butyl group, and R 11 and R 12 are each independently Hydrogen atom, halogen atom, nitro group, cyano group, methyl group, ethyl group, normal propyl group, isopropyl group, normal butyl group, isobutyl group, secondary butyl group, tertiary butyl group, methoxy group, ethoxy group, normal propoxy group , Isopropoxy group, normal butoxy group, isobutoxy group, secondary butoxy group or tertiary butoxy group, M is Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Cd, Hf, Ta, W, Re, Os, Ir Pt, shows the Au or Hg, X is a halogen atom, an isocyanate group, a thiocyanate group, a perchlorate group, cyanate group or nitrate radical, n represents 1-3.)
A monomolecular magnet obtained by irradiating a solution obtained by mixing an organometallic complex represented by a solvent with a solvent,
2. In the formula (1), (2), (3), (4) or (5), R 1 , R 2 , R 3 , R 5 , R 6 and R 7 are all hydrogen atoms; 1 single-molecule magnet in which 4 and R 8 are each independently a hydrogen atom, a chlorine atom, or a bromine atom,
3. In the formula (6), R 10 is a methyl group, R 11 and R 12 are all hydrogen atoms, M is Ni, Co, Cu, Mn, Fe, Cr, or Zn, and X is a chlorine atom, 1 or 2 monomolecular magnets which are isocyanate groups, thiocyanate groups or perchlorate groups,
4). In the formula (6), the M is Co, the X is an isocyanate group, the n is 2, 1, 2 or 3 monomolecular magnets,
5. The molar ratio of the compound represented by the formula (1), (2), (3), (4) or (5) to the organometallic complex represented by the formula (6) is 2: 1 to 1 single molecule magnet in the range of 1: 2,
6). 1 or 5 monomolecular magnet, wherein the solvent is a mixed solvent of methylene chloride and 2-methyltetrahydrofuran,
7). 1, 5 or 6 monomolecular magnet having a temperature of 20K or less when irradiated with light,
8). Formula (1), (2), (3), (4) or (5)
Figure 0004651111
(In the formula, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are each independently a hydrogen atom, a halogen atom, a nitro group, a cyano group, a methyl group, or an ethyl group. , Normal propyl group, isopropyl group, normal butyl group, isobutyl group, secondary butyl group, tertiary butyl group, methoxy group, ethoxy group, normal propoxy group, isopropoxy group, normal butoxy group, isobutoxy group, secondary butoxy group or ter (Shows Shirley butoxy group.)
A compound represented by formula (6):
Figure 0004651111
(Wherein, R 10 each independently represent a methyl group, an ethyl group, normal propyl group, an isopropyl group, normal butyl group, an isobutyl group, or a sec-butyl group, R 11 and R 12 each independently represent a hydrogen atom , Halogen atom, nitro group, cyano group, methyl group, ethyl group, normal propyl group, isopropyl group, normal butyl group, isobutyl group, secondary butyl group, tertiary butyl group, methoxy group, ethoxy group, normal propoxy group, iso A propoxy group, a normal butoxy group, an isobutoxy group, a secondary butoxy group or a tertiary butoxy group, wherein M is Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Cd, Hf, Ta, W, Re, Os, Ir, P It represents Au or Hg, X is a halogen atom, an isocyanate group, a thiocyanate group, a perchlorate group, cyanate group or nitrate radical, n represents 1-3.)
A method for producing a single-molecule magnet comprising a step of preparing a solution by mixing an organometallic complex represented by formula (1) and a solvent, and irradiating the solution with light.
9. In the formula (1), (2), (3), (4) or (5), the R 1 , R 2 , R 3 , R 5 , R 6 and R 7 are all hydrogen atoms, and the R A method for producing a single molecular magnet of 8 wherein 4 and R 8 are each independently a hydrogen atom, a chlorine atom, or a bromine atom;
10. In the formula (6), R 10 is a methyl group, R 11 and R 12 are all hydrogen atoms, M is Ni, Co, Cu, Mn, Fe, Cr, or Zn, and X is a chlorine atom, A method for producing an 8 or 9 monomolecular magnet which is an isocyanate group, a thiocyanate group or a perchlorate group,
11. In the formula (6), the M is Co, the X is an isocyanate group, and the n is 2, the method for producing a single molecular magnet of 8, 9 or 10;
12 The molar ratio of the compound represented by the formula (1), (2), (3), (4) or (5) and the organometallic complex represented by the formula (6) is 2: 1 to 1. A method for producing 8 single-molecule magnets in a range of 1: 2;
13. The method for producing a monomolecular magnet according to 8 or 12, wherein the solvent is a mixed solvent of methylene chloride and 2-methyltetrahydrofuran,
14 The manufacturing method of the 8, 12 or 13 single-molecule magnet whose temperature at the time of the said light irradiation is 20K or less is provided.

本発明によれば、安定な三座配位子を有するためコンフォーメーションが安定しており、磁化率の再現性が高い、光応答型単分子磁石を得ることができる。
この単分子磁石の製造時に、金属錯体とジアゾ−ピリジン化合物の比率を1:1に調整することも可能であり、これにより、これまでで最も小さい磁気量子数(3/2)を有する単分子磁石を作製することができる。この分子磁石は量子効果が現れやすく、磁性保持時間が短いという特徴を有している。
さらに、三座配位子に置換基を導入することで、膜やナノ粒子中に単分子磁石を埋め込むことが可能となる。熱的安定性を克服できれば、単分子磁石は透明な磁性体であるため、広範囲な応用が可能となる。例えば、磁性インクとして利用すると、情報の記録が可能な印刷物を容易に製造でき、磁性トナーとして利用すると、定着性の向上、解像度の向上、色彩の向上、印刷スピードの向上等が期待される。また、有機溶媒に溶かして、薄膜を形成できるため、リソグラフィーにより、光照射した部分に磁気回路を書き込むことができる。
According to the present invention, since it has a stable tridentate ligand, a conformation is stable, and a photoresponsive monomolecular magnet with high reproducibility of magnetic susceptibility can be obtained.
It is also possible to adjust the ratio of the metal complex to the diazo-pyridine compound to 1: 1 at the time of manufacturing this single molecule magnet, and thereby the single molecule having the smallest magnetic quantum number (3/2) so far. A magnet can be made. This molecular magnet is characterized in that quantum effects are likely to appear and the magnetic retention time is short.
Furthermore, by introducing a substituent into the tridentate ligand, it becomes possible to embed a monomolecular magnet in the film or nanoparticle. If the thermal stability can be overcome, the single-molecule magnet is a transparent magnetic material, and thus can be used in a wide range of applications. For example, when it is used as a magnetic ink, a printed matter on which information can be recorded can be easily manufactured, and when it is used as a magnetic toner, improvement in fixing property, improvement in resolution, improvement in color, improvement in printing speed, and the like are expected. In addition, since a thin film can be formed by dissolving in an organic solvent, a magnetic circuit can be written in a portion irradiated with light by lithography.

以下、本発明についてさらに詳しく説明する。
まず、式(1)、(2)、(3)、(4)又は(5)の各置換基を具体的に説明する。
式(1)、(2)、(3)、(4)又は(5)で表される化合物の置換基R1、R2、R3、R4、R5、R6、R7及びR8としては、それぞれ独立に、水素原子、ハロゲン原子、ニトロ基、シアノ基、メチル基、エチル基、ノルマルプロピル基、イソプロピル基、ノルマルブチル基、イソブチル基、セカンダリーブチル基、ターシャリーブチル基、メトキシ基、エトキシ基、ノルマルプロポキシ基、イソプロポキシ基、ノルマルブトキシ基、イソブトキシ基、セカンダリーブトキシ基又はターシャーリーブトキシ基等が挙げられる。ここで、ハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。
好ましいR1、R2、R3、R5、R6及びR7としては、水素原子が挙げられ、好ましいR4及びR8としては、水素原子、塩素原子、又は臭素原子が挙げられる。
Hereinafter, the present invention will be described in more detail.
First, each substituent of formula (1), (2), (3), (4) or (5) will be specifically described.
Substituents R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R of the compound represented by formula (1), (2), (3), (4) or (5) As 8 each independently, a hydrogen atom, halogen atom, nitro group, cyano group, methyl group, ethyl group, normal propyl group, isopropyl group, normal butyl group, isobutyl group, secondary butyl group, tertiary butyl group, methoxy Group, ethoxy group, normal propoxy group, isopropoxy group, normal butoxy group, isobutoxy group, secondary butoxy group or tertiary butoxy group. Here, as a halogen atom, a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom are mentioned.
Preferable R 1 , R 2 , R 3 , R 5 , R 6 and R 7 include a hydrogen atom, and preferable R 4 and R 8 include a hydrogen atom, a chlorine atom or a bromine atom.

次に、式(6)の各置換基を具体的に説明する。
10としては、それぞれ独立に、メチル基、エチル基、ノルマルプロピル基、イソプロピル基、ノルマルブチル基、イソブチル基、又はセカンダリーブチル基が挙げられ、好ましくはメチル基である。
11及びR12としては、それぞれ独立に、水素原子、ハロゲン原子(フッ素原子、塩素原子、臭素原子及びヨウ素原子)、ニトロ基、シアノ基、メチル基、エチル基、ノルマルプロピル基、イソプロピル基、ノルマルブチル基、イソブチル基、セカンダリーブチル基、ターシャリーブチル基、メトキシ基、エトキシ基、ノルマルプロポキシ基、イソプロポキシ基、ノルマルブトキシ基、イソブトキシ基、セカンダリーブトキシ基又はターシャーリーブトキシ基が挙げられ、好ましくは水素原子である。
Next, each substituent of Formula (6) is demonstrated concretely.
Examples of R 10 are each independently a methyl group, an ethyl group, a normal propyl group, an isopropyl group, a normal butyl group, an isobutyl group, or a secondary butyl group, preferably a methyl group.
R 11 and R 12 are each independently a hydrogen atom, a halogen atom (fluorine atom, chlorine atom, bromine atom and iodine atom), nitro group, cyano group, methyl group, ethyl group, normal propyl group, isopropyl group, Normal butyl group, isobutyl group, secondary butyl group, tertiary butyl group, methoxy group, ethoxy group, normal propoxy group, isopropoxy group, normal butoxy group, isobutoxy group, secondary butoxy group or tertiary butoxy group are preferable. Is a hydrogen atom.

Mとしては、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Ru、Rh、Pd、Ag、Cd、Hf、Ta、W、Re、Os、Ir、Pt、Au又はHgが挙げられ、好ましくは、Ni、Co、Cu、Mn、Fe、Cr又はZnであり、さらに好ましくは、Coである。
Xとしては、ハロゲン原子(フッ素原子、塩素原子、臭素原子及びヨウ素原子)、イソシアネート基、チオシアネート基、パークロレート基、シアネート基又はナイトレート基が挙げられ、好ましくは塩素原子、イソシアネート基、チオシアネート基、又はパークロレート基であり、さらに好ましくはイソシアネート基である。
nは1〜3を示し、Mに用いる金属イオンの価数とnの数が対応する。
As M, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Cd, Hf, Ta, W, Re, Os, Ir, Pt, Au, or Hg can be mentioned, preferably Ni, Co, Cu, Mn, Fe, Cr, or Zn, and more preferably Co.
X includes a halogen atom (fluorine atom, chlorine atom, bromine atom and iodine atom), an isocyanate group, a thiocyanate group, a perchlorate group, a cyanate group or a nitrate group, preferably a chlorine atom, an isocyanate group or a thiocyanate group. Or a perchlorate group, more preferably an isocyanate group.
n represents 1 to 3, and the valence of the metal ion used for M corresponds to the number of n.

次に、単分子磁石の製造法について説明する。
式(1)、(2)、(3)、(4)又は(5)で表される化合物と、式(6)で表される金属錯体又は金属塩と、溶媒とを混合してなる溶液に、光照射することにより、単分子磁石を製造することができる。
この場合、式(1)、(2)、(3)、(4)又は(5)で表される化合物と式(6)で表される金属錯体とのモル比([式(1)、(2)、(3)、(4)又は(5)で表される化合物]:[金属錯体]モル比)は、通常4:1〜1:4の範囲を使用することができ、好ましくは、2:1〜1:2の範囲である。
式(1)、(2)、(3)、(4)又は(5)で表される化合物と、式(6)で表される金属錯体との混合は、固体状態(溶剤を加えない状態)、それぞれ適当な溶媒に溶解した溶液状態、又は高分子などにドーピングした状態で行うことができるが、適当な溶媒にそれぞれ溶解した溶液状態で混合することが好ましい。
Next, the manufacturing method of a single molecule magnet is demonstrated.
A solution obtained by mixing a compound represented by formula (1), (2), (3), (4) or (5), a metal complex or metal salt represented by formula (6), and a solvent. Moreover, a single molecule magnet can be manufactured by light irradiation.
In this case, the molar ratio of the compound represented by the formula (1), (2), (3), (4) or (5) and the metal complex represented by the formula (6) ([formula (1), The compound represented by (2), (3), (4) or (5)]: [metal complex] molar ratio) can usually be in the range of 4: 1 to 1: 4, preferably 2: 1 to 1: 2.
The mixing of the compound represented by the formula (1), (2), (3), (4) or (5) with the metal complex represented by the formula (6) is in a solid state (a state in which no solvent is added). ), Respectively, in a solution state dissolved in a suitable solvent, or in a state doped with a polymer, etc., but it is preferable to mix in a solution state each dissolved in a suitable solvent.

使用可能な溶媒は、式(1)、(2)、(3)、(4)又は(5)で表される化合物、及び式(6)で表される金属錯体を必要濃度以上の濃度で溶解し得、かつ磁性が得られる溶媒であれば特に限定されるものではなく、具体的には、エタノール、プロパノール等のアルコール系溶媒;塩化メチレン、クロロホルム等のハロゲン化炭化水素系溶媒;テトラヒドロフラン、2−メチルテトラヒドロフラン、テトラヒドロピラン等の環状エーテル系溶媒;アセトニトリル、ブチロニトリル等のニトリル系溶媒;並びにこれらの溶媒の混合溶媒などが挙げられる。
これらの中でも、好ましくは、ハロゲン化炭化水素系溶媒、ニトリル系溶媒、環状エーテル系溶媒、及びハロゲン化炭化水素系溶媒と環状エーテル系溶媒との混合溶媒が挙げられ、より好ましくは、塩化メチレン、ブチロニトリル、2−メチルテトラヒドロフラン、及び塩化メチレンと2−メチルテトラヒドロフランとの混合溶媒が挙げられ、更に好ましくは、塩化メチレンと2−メチルテトラヒドロフランとの混合溶媒が挙げられる。
なお、ハロゲン化炭化水素系溶媒と環状エーテル系溶媒との混合比率(v/v)は任意であるが、5:95〜25:75程度が好適である。
Usable solvents are compounds represented by formula (1), (2), (3), (4) or (5), and metal complex represented by formula (6) at a concentration higher than the required concentration. The solvent is not particularly limited as long as it is a solvent that can be dissolved and magnetism can be obtained. Specifically, alcohol solvents such as ethanol and propanol; halogenated hydrocarbon solvents such as methylene chloride and chloroform; tetrahydrofuran, Examples thereof include cyclic ether solvents such as 2-methyltetrahydrofuran and tetrahydropyran; nitrile solvents such as acetonitrile and butyronitrile; and mixed solvents of these solvents.
Among these, preferably, halogenated hydrocarbon solvents, nitrile solvents, cyclic ether solvents, and mixed solvents of halogenated hydrocarbon solvents and cyclic ether solvents, more preferably methylene chloride, Examples thereof include butyronitrile, 2-methyltetrahydrofuran, and a mixed solvent of methylene chloride and 2-methyltetrahydrofuran, and more preferably a mixed solvent of methylene chloride and 2-methyltetrahydrofuran.
The mixing ratio (v / v) of the halogenated hydrocarbon solvent and the cyclic ether solvent is arbitrary, but is preferably about 5:95 to 25:75.

式(1)、(2)、(3)、(4)又は(5)で表される化合物、及び式(6)で表される金属錯体を混合する温度は、通常−30〜30℃の範囲を使用することができ、好ましくは、0〜20℃の範囲である。
式(1)、(2)、(3)、(4)又は(5)で表される化合物、及び式(6)で表される金属錯体を混合する時間は、混合する温度により変化するため、一概に決定できないが、例えば、20℃の場合、0.1〜10分間の範囲である。
式(1)、(2)、(3)、(4)又は(5)で表される化合物、及び式(6)で表される金属錯体を混合することにより、式(1)、(2)、(3)、(4)又は(5)で表される化合物を配位子とする有機金属錯体が生成する。
光照射は、上記各成分を混合して得られる有機金属錯体を含む溶液に対して行うことが好適であるが、この有機金属錯体を一度単離した後に光照射することもできる(固体状態、適当な溶剤に溶解した溶液状態又は高分子などにドーピングした状態等)。
The temperature at which the compound represented by the formula (1), (2), (3), (4) or (5) and the metal complex represented by the formula (6) are mixed is usually −30 to 30 ° C. A range can be used, preferably in the range of 0-20 ° C.
The time for mixing the compound represented by the formula (1), (2), (3), (4) or (5) and the metal complex represented by the formula (6) varies depending on the mixing temperature. For example, in the case of 20 ° C., the range is 0.1 to 10 minutes.
By mixing the compound represented by the formula (1), (2), (3), (4) or (5) and the metal complex represented by the formula (6), the formula (1), (2 ), (3), (4) or an organometallic complex having the compound represented by (5) as a ligand is formed.
The light irradiation is preferably performed on a solution containing an organometallic complex obtained by mixing each of the above components. However, the organometallic complex can be isolated after being isolated once (solid state, Solution state dissolved in a suitable solvent or polymer doped state).

光照射の光源としては、ジアゾ基の吸収波長である500nm付近を含む光源であれば特に限定されないが、アルゴンイオンレーザ(514nm)、ヘリウムカドミウム(He−Cd)レーザ(442nm)、キセノンランプ、高圧水銀ランプ及びYAGレーザの2倍波(532nm)等が挙げられ、好ましくは、アルゴンイオンレーザ(514nm)が挙げられる。
光照射の波長としては、ジアゾ基の吸収波長である500nm付近を含む光源であれば特に限定されないが、通常400nm以上の波長を使用することができ、好ましくは、400〜550nmの範囲である。
光照射時の温度は、生成したカルベンが安定であれば特に限定されないが、通常20K以下の温度を用いることができ、好ましくは15K以下である。なお、その下限は通常0.04K程度である。
光照射の時間は、光照射時の温度、用いる波長、出力、サンプル濃度などにより変化するため、一概に決定できないが、例えば、15Kの場合、アルゴンイオンレーザ(150mW)で5時間以上照射すれば充分である。
The light source for light irradiation is not particularly limited as long as it is a light source including about 500 nm which is the absorption wavelength of the diazo group, but an argon ion laser (514 nm), a helium cadmium (He—Cd) laser (442 nm), a xenon lamp, a high pressure Examples include a mercury lamp and a second harmonic wave (532 nm) of a YAG laser, and an argon ion laser (514 nm) is preferable.
The wavelength of the light irradiation is not particularly limited as long as it is a light source including about 500 nm which is the absorption wavelength of the diazo group, but a wavelength of 400 nm or more can usually be used, and is preferably in the range of 400 to 550 nm.
The temperature at the time of light irradiation is not particularly limited as long as the generated carbene is stable, but a temperature of 20K or lower can be usually used, and preferably 15K or lower. The lower limit is usually about 0.04K.
The light irradiation time varies depending on the temperature at the time of light irradiation, the wavelength to be used, the output, the sample concentration, etc., and therefore cannot be determined in general. For example, in the case of 15K, if irradiation is performed with an argon ion laser (150 mW) for 5 hours or more. It is enough.

次に、式(1)、(2)、(3)、(4)又は(5)で表される化合物の製造法について説明する。
式(1)、(2)、(3)、(4)又は(5)で表される化合物は、それぞれ反応式1〜5に示す方法により製造することができる。
すなわち、反応式1〜5において、化合物(7)〜(10)を、それぞれDMSO(ジメチルスルホキシド)中、N24(ヒドラジン)及びN24・HCl(塩酸ヒドラジン)でヒドラゾン化し、更にCH2Cl2(塩化メチレン)中、MnO2(二酸化マンガン)で酸化することにより、対応する式(1)〜(5)で表される化合物を製造することができる。

Figure 0004651111
(式中、R1〜R7は、上記と同じ意味を表す。) Next, the manufacturing method of the compound represented by Formula (1), (2), (3), (4) or (5) is demonstrated.
The compounds represented by formula (1), (2), (3), (4) or (5) can be produced by the methods shown in reaction formulas 1 to 5, respectively.
That is, in the reaction formulas 1 to 5, the compounds (7) to (10) are hydrazoned with N 2 H 4 (hydrazine) and N 2 H 4 .HCl (hydrazine hydrochloride) in DMSO (dimethyl sulfoxide), respectively. The compounds represented by the corresponding formulas (1) to (5) can be produced by oxidation with MnO 2 (manganese dioxide) in CH 2 Cl 2 (methylene chloride).
Figure 0004651111
(Wherein R 1 to R 7 represent the same meaning as described above.)

Figure 0004651111
(式中、R1〜R5は、上記と同じ意味を表す。)
Figure 0004651111
(Wherein R 1 to R 5 represent the same meaning as described above.)

Figure 0004651111
(式中、R1〜R5は、上記と同じ意味を表す。)
Figure 0004651111
(Wherein R 1 to R 5 represent the same meaning as described above.)

Figure 0004651111
(式中、R1〜R5は、上記と同じ意味を表す。)
Figure 0004651111
(Wherein R 1 to R 5 represent the same meaning as described above.)

Figure 0004651111
(式中、R1、R2及びR6〜R8は、上記と同じ意味を表す。)
Figure 0004651111
(In the formula, R 1 , R 2 and R 6 to R 8 represent the same meaning as described above.)

また、式(6)で表される化合物は、下記式に示す方法により製造することができる。
すなわち、化合物(12)をCH2Cl2(塩化メチレン)に溶解させ、金属イオン(M)と対アニオン(X)とのエタノール水溶液中で混合することで、対応する式(6)で表される化合物を製造することができる。
Moreover, the compound represented by Formula (6) can be manufactured by the method shown to a following formula.
That is, the compound (12) is dissolved in CH 2 Cl 2 (methylene chloride) and mixed in an aqueous ethanol solution of a metal ion (M) and a counter anion (X). Can be produced.

Figure 0004651111
(式中、R10〜R12は、上記と同じ意味を表す。)
Figure 0004651111
(Wherein R 10 to R 12 represent the same meaning as described above.)

以下、合成例および実施例を挙げて、本発明をより具体的に説明するが、本発明は下記の実施例に限定されるものではない。
[合成例1]化合物(13)(R1=R2=R3=R4=R5=H)の合成

Figure 0004651111
EXAMPLES Hereinafter, although a synthesis example and an Example are given and this invention is demonstrated more concretely, this invention is not limited to the following Example.
[Synthesis Example 1] Synthesis of Compound (13) (R 1 = R 2 = R 3 = R 4 = R 5 = H)
Figure 0004651111

アルゴン雰囲気下、ジケトン体(化合物(8)のR1=R2=R3=R4=R5=H)1.5g(5.2mmol)を5mlのDMSOに溶かし、塩酸ヒドラジン3.6g(52mmol)、無水ヒドラジン1.5mlの順で加えて90℃で撹拌した。5時間撹拌後、反応溶液を氷水に注いで30分間撹拌した。析出した乳白色固体を吸引濾過し、充分の水及びジエチルエーテルで洗浄し、化合物(13)1.4g(4.4mmol)を得た。難溶解固体のため未精製のまま次の反応を行った。 Under an argon atmosphere, 1.5 g (5.2 mmol) of a diketone body (R 1 = R 2 = R 3 = R 4 = R 5 = H of compound (8)) was dissolved in 5 ml of DMSO, and 3.6 g of hydrazine hydrochloride ( 52 mmol) and 1.5 ml of anhydrous hydrazine were added in this order, and the mixture was stirred at 90 ° C. After stirring for 5 hours, the reaction solution was poured into ice water and stirred for 30 minutes. The milky white solid precipitated was filtered by suction and washed with sufficient water and diethyl ether to obtain 1.4 g (4.4 mmol) of Compound (13). The following reaction was carried out without purification because it was a hardly soluble solid.

[合成例2]化合物(14)(R1=R2=R3=R4=R5=H)の合成

Figure 0004651111
Synthesis Example 2 Synthesis of Compound (14) (R 1 = R 2 = R 3 = R 4 = R 5 = H)
Figure 0004651111

アルゴン雰囲気下、化合物(13)1.1g(3.5mmol)の10ml塩化メチレン溶液中に活性二酸化マンガン2g(23.0mmol)を加え、室温で遮光しながら撹拌した。2時間後、反応溶液を吸引濾過して無機物を除き、溶媒を減圧留去し、オイル状固体を得た。短いアルミナカラムクロマトグラフィーにより、濾過で除去できなかった無機物を除き、溶媒を減圧留去し、赤色固体1.0g(3.2mmol)得た。この固体を塩化メチレン−ジエチルエーテル混合溶媒に溶かし、−15℃で静置して化合物(14)の赤色結晶を得た。
1H-NMR(270MHz,CDCl3)δ: 8.43 (dd, J = 4.6 and 1.7 Hz, 2H), 7.51-7.10 (m, 9 H), 7.06 (dd, J = 4.6 and 1.7 Hz, 2H).
IR(KBr): 2038 cm-1
m.p. (℃) (decomp.): 108-110 ℃
Anal. Cacld for C19H13N5: C, 73.30; H, 4.21; N, 22.49. Found: C, 73.16; H, 4.19; N, 22.44
Under an argon atmosphere, 2 g (23.0 mmol) of active manganese dioxide was added to a solution of 1.1 g (3.5 mmol) of compound (13) in 10 ml of methylene chloride, and the mixture was stirred at room temperature while being protected from light. After 2 hours, the reaction solution was suction filtered to remove inorganic substances, and the solvent was distilled off under reduced pressure to obtain an oily solid. The inorganic substances that could not be removed by filtration were removed by short alumina column chromatography, and the solvent was distilled off under reduced pressure to obtain 1.0 g (3.2 mmol) of a red solid. This solid was dissolved in a methylene chloride-diethyl ether mixed solvent and allowed to stand at −15 ° C. to obtain red crystals of compound (14).
1 H-NMR (270 MHz, CDCl 3 ) δ: 8.43 (dd, J = 4.6 and 1.7 Hz, 2H), 7.51-7.10 (m, 9 H), 7.06 (dd, J = 4.6 and 1.7 Hz, 2H).
IR (KBr): 2038 cm -1
mp (℃) (decomp.): 108-110 ℃
Anal. Cacld for C 19 H 13 N 5 : C, 73.30; H, 4.21; N, 22.49. Found: C, 73.16; H, 4.19; N, 22.44

[合成例3]化合物(15)(R1=R2=R3=R4=R5=H)の合成

Figure 0004651111
Synthesis Example 3 Synthesis of Compound (15) (R 1 = R 2 = R 3 = R 4 = R 5 = H)
Figure 0004651111

アルゴン雰囲気下、トリケトン体(化合物(9)のR1=R2=R3=R4=R5=H)2.2g(5.6mmol)を3mlのDMSOに溶かし、塩酸ヒドラジン5.4g(80mmol)、無水ヒドラジン3mlの順で加えて90℃で撹拌した。3時間撹拌後、反応溶液を氷水に注いで30分間撹拌した。析出した乳白色固体を吸引濾過し、充分の水及びジエチルエーテルで洗浄し、化合物(15)2.1g(4.8mmol)を得た。難溶解固体のため未精製のまま次の反応を行った。 Under an argon atmosphere, dissolved triketone body (R 1 = R 2 = R 3 = R 4 = R 5 = H in Compound (9)) 2.2g (5.6mmol) of DMSO 3 ml, hydrazine hydrochloride 5.4 g ( 80 mmol) and 3 ml of anhydrous hydrazine were added in this order, and the mixture was stirred at 90 ° C. After stirring for 3 hours, the reaction solution was poured into ice water and stirred for 30 minutes. The precipitated milky white solid was subjected to suction filtration and washed with sufficient water and diethyl ether to obtain 2.1 g (4.8 mmol) of Compound (15). The following reaction was carried out without purification because it was a hardly soluble solid.

[合成例4]化合物(16)(R1=R2=R3=R4=R5=H)の合成

Figure 0004651111
Synthesis Example 4 Synthesis of Compound (16) (R 1 = R 2 = R 3 = R 4 = R 5 = H)
Figure 0004651111

アルゴン雰囲気下、化合物(15)500mg(1.2mmol)の15ml塩化メチレン溶液中に活性二酸化マンガン3.1g(36.0mmol)を加え、室温で遮光しながら撹拌した。3時間後、反応溶液を吸引濾過して無機物を除き、溶媒を減圧留去し、オイル状固体を得た。短いアルミナカラムクロマトグラフィーにより、濾過で除去できなかった無機物を除き、溶媒を減圧留去し、赤色固体を400mg(0.94mmol)得た。この固体を塩化メチレン−ジエチルエーテル混合溶媒に溶かし、−15℃で静置して化合物(16)の赤色結晶を得た。
1H-NMR(270MHz,CDCl3)δ:8.48 (d, J = 4.9 Hz, 2H), 7.50-7.10 (m, 13 H), 7.07 (dd, J = 4.6 and 1.7 Hz, 2H).
IR(KBr): 2039 cm-1
m.p. (℃) (decomp.) : 74-75 ℃
Anal. Cacld for C26H17N7: C, 73.05; H, 4.01; N, 22.94. Found: C, 73.09; H, 4.01; N, 22.78
Under an argon atmosphere, 3.1 g (36.0 mmol) of active manganese dioxide was added to a 15 ml methylene chloride solution of 500 mg (1.2 mmol) of the compound (15), and the mixture was stirred at room temperature while being protected from light. After 3 hours, the reaction solution was suction filtered to remove inorganic substances, and the solvent was distilled off under reduced pressure to obtain an oily solid. The inorganic substance that could not be removed by filtration was removed by short alumina column chromatography, and the solvent was distilled off under reduced pressure to obtain 400 mg (0.94 mmol) of a red solid. This solid was dissolved in a mixed solvent of methylene chloride-diethyl ether and allowed to stand at −15 ° C. to obtain red crystals of compound (16).
1 H-NMR (270 MHz, CDCl 3 ) δ: 8.48 (d, J = 4.9 Hz, 2H), 7.50-7.10 (m, 13 H), 7.07 (dd, J = 4.6 and 1.7 Hz, 2H).
IR (KBr): 2039 cm -1
mp (℃) (decomp.): 74-75 ℃
Anal. Cacld for C 26 H 17 N 7 : C, 73.05; H, 4.01; N, 22.94. Found: C, 73.09; H, 4.01; N, 22.78

[合成例5]化合物(17)(R1=R2=R3=R4=R5=H)の合成

Figure 0004651111
Synthesis Example 5 Synthesis of Compound (17) (R 1 = R 2 = R 3 = R 4 = R 5 = H)
Figure 0004651111

アルゴン雰囲気下、テトラケトン体(化合物(10)のR1=R2=R3=R4=R5=H)0.794g(1.60mmol)をDMSO20mlに溶かし、60℃に加熱して攪拌した後、ヒドラジン塩酸塩4.38g(64mmol)、無水ヒドラジン2.0ml(64mmol)を加え、1.5時間攪拌した。この溶液を室温に戻し、氷水に注いで吸引濾過後、減圧下で乾燥し白色固体として化合物(17)を825mg(1.50mmol)得た。 Under an argon atmosphere, dissolved Tetoraketon body (R 1 = R 2 = R 3 = R 4 = R 5 = H in Compound (10)) 0.794g (1.60mmol) in 20 ml of DMSO, and stirred and heated to 60 ° C. Thereafter, 4.38 g (64 mmol) of hydrazine hydrochloride and 2.0 ml (64 mmol) of anhydrous hydrazine were added and stirred for 1.5 hours. This solution was returned to room temperature, poured into ice water, suction filtered, and dried under reduced pressure to obtain 825 mg (1.50 mmol) of Compound (17) as a white solid.

[合成例6]化合物(18)(R1=R2=R3=R4=R5=H)の合成

Figure 0004651111
Synthesis Example 6 Synthesis of Compound (18) (R 1 = R 2 = R 3 = R 4 = R 5 = H)
Figure 0004651111

アルゴン雰囲気下、化合物(17)825mg(1.50mmol)を塩化メチレン15mlに溶かし、遮光して氷浴上で攪拌した。二酸化マンガン5.22g(60mmol)を加え、1時間攪拌した。吸引濾過により、二酸化マンガンを取り除き、ろ液の塩化メチレンを減圧留去し、得られた赤色溶液をアルミナカラムクロマトグラフィーで精製した。これにより赤色粉末として化合物(18)を770mg(1.42mmol)得た。この固体を塩化メチレン/ジエチルエーテル中で再沈殿を行い、化合物(18)0.794g(1.60mmol)の赤色固体を得た。
1H-NMR(270MHz,CDCl3)δ:8.47(dd,2H), 7.48-7.04(m,19H).
IR(KBr): 2037 cm-1
Anal.Calcd for C33H21N9: C, 72.92; H, 3.89; N, 23.19
Found: C, 72.85; H, 3.90; N, 23.02
Under an argon atmosphere, 825 mg (1.50 mmol) of the compound (17) was dissolved in 15 ml of methylene chloride, and the mixture was stirred on an ice bath protected from light. Manganese dioxide 5.22 g (60 mmol) was added and stirred for 1 hour. Manganese dioxide was removed by suction filtration, methylene chloride in the filtrate was distilled off under reduced pressure, and the resulting red solution was purified by alumina column chromatography. This obtained 770 mg (1.42 mmol) of compound (18) as red powder. This solid was reprecipitated in methylene chloride / diethyl ether to obtain 0.794 g (1.60 mmol) of a red solid of compound (18).
1 H-NMR (270 MHz, CDCl 3 ) δ: 8.47 (dd, 2H), 7.48-7.04 (m, 19H).
IR (KBr): 2037 cm -1
Anal.Calcd for C 33 H 21 N 9 : C, 72.92; H, 3.89; N, 23.19
Found: C, 72.85; H, 3.90; N, 23.02

[合成例7]化合物(19)(R1=R2=R6=R7=H、R8=Br)の合成

Figure 0004651111
Synthesis Example 7 Synthesis of Compound (19) (R 1 = R 2 = R 6 = R 7 = H, R 8 = Br)
Figure 0004651111

アルゴン雰囲気下、ペンタケトン体(化合物(11)のR1=R2=R3=R4=R5=H)102mg(0.14mmol)を1mlのDMSOに溶かし、塩酸ヒドラジン550mg(8.1mmol)、無水ヒドラジン0.3mlの順で加えて90℃で撹拌した。4.5時間撹拌後、反応溶液を氷水に注ぎ、析出した乳白色固体を吸引濾過し、充分の水及びジエチルエーテルで洗浄し、化合物(19)110mg(0.13mmol)を得た。難溶解固体のため未精製のまま次の反応を行った。
IR(KBr): 3398, 3290, 3209 cm-1
Under an argon atmosphere, 102 mg (0.14 mmol) of a pentaketone compound (R 1 = R 2 = R 3 = R 4 = R 5 = H of compound (11)) was dissolved in 1 ml of DMSO, and 550 mg (8.1 mmol) of hydrazine hydrochloride. Then, 0.3 ml of anhydrous hydrazine was added in this order, and the mixture was stirred at 90 ° C. After stirring for 4.5 hours, the reaction solution was poured into ice water, and the precipitated milky white solid was subjected to suction filtration and washed with sufficient water and diethyl ether to obtain 110 mg (0.13 mmol) of Compound (19). The following reaction was carried out without purification because it was a hardly soluble solid.
IR (KBr): 3398, 3290, 3209 cm -1

[合成例8]化合物(20)(R1=R2=R6=R7=H、R8=Br)の合成

Figure 0004651111
Synthesis Example 8 Synthesis of Compound (20) (R 1 = R 2 = R 6 = R 7 = H, R 8 = Br)
Figure 0004651111

アルゴン雰囲気下、化合物(19)110mg(0.13mmol)の15ml塩化メチレン溶液中に活性二酸化マンガン2.0g(23.2mmol)を加え、室温で遮光しながら撹拌した。1時間後、反応溶液を吸引濾過し無機物を除き、溶媒を減圧留去し、オイル状固体を得た。短いアルミナカラムクロマトグラフィーにより、濾過で除去できなかった無機物を除き、溶媒を減圧留去し、赤色固体109mg(0.13mmol)得た。この固体を塩化メチレン−ジエチルエーテル混合溶媒に溶かし、−15℃で静置して化合物(20)の赤色結晶を得た。
1H-NMR(270MHz,CDCl3)δ: 8.51 (m, 2H), 7.13 (d, 6 H), 7.07 (m, 2H), 6.99 (d, 3H), 6.95 (s, 2H).
IR(KBr): 2043 cm-1
m.p. (℃) (decomp.): 114-117 ℃
Under an argon atmosphere, 2.0 g (23.2 mmol) of active manganese dioxide was added to a 15 ml methylene chloride solution of 110 mg (0.13 mmol) of the compound (19), and the mixture was stirred at room temperature while being protected from light. After 1 hour, the reaction solution was filtered with suction to remove inorganic substances, and the solvent was distilled off under reduced pressure to obtain an oily solid. The inorganic substances that could not be removed by filtration were removed by short alumina column chromatography, and the solvent was distilled off under reduced pressure to obtain 109 mg (0.13 mmol) of a red solid. This solid was dissolved in a methylene chloride-diethyl ether mixed solvent and allowed to stand at −15 ° C. to obtain red crystals of compound (20).
1 H-NMR (270 MHz, CDCl 3 ) δ: 8.51 (m, 2H), 7.13 (d, 6 H), 7.07 (m, 2H), 6.99 (d, 3H), 6.95 (s, 2H).
IR (KBr): 2043 cm -1
mp (℃) (decomp.): 114-117 ℃

[合成例9]化合物(21)(R1=R2=R6=R7=R8=H)の合成

Figure 0004651111
Synthesis Example 9 Synthesis of Compound (21) (R 1 = R 2 = R 6 = R 7 = R 8 = H)
Figure 0004651111

ビス(N−ジメチルメチル)ピリジン555mg(0.13mmol)の15ml塩化メチレン溶液中に硝酸コバルト2水和物(0.13mmol)とイソシアン酸カリウム(0.33mmol)のエタノール水溶液20mlとを加えた。析出した固体をひだ折り濾過し、ろ液を減圧留去により10mlとした後、室温で静置した。2日後、化合物(21)の紫針状結晶を得た。   Cobalt nitrate dihydrate (0.13 mmol) and 20 ml of an aqueous ethanol solution of potassium isocyanate (0.33 mmol) were added to a 15 ml methylene chloride solution of 555 mg (0.13 mmol) of bis (N-dimethylmethyl) pyridine. The precipitated solid was filtered with folds, and the filtrate was distilled off under reduced pressure to 10 ml, and then allowed to stand at room temperature. Two days later, a purple needle crystal of compound (21) was obtained.

[実施例1]コバルト錯体を用いる単分子磁石の製造
化合物(1)の20mmol/Lとなる2−メチルテトラヒドロフラン溶液を調製した。化合物(21)の20mmol/Lとなる2−メチルテトラヒドロフランと塩化メチレン2:1(v/v)混合溶液を調製した。これら2種類の溶液を1:1(v/v)で混合した。この溶液50μLをマイクロシリンジにとり、磁化測定装置〔superconducting quantum interference device (SQUID) MPMS-7S,Quantum Design社製〕用の透明なカプセルに移した。試料が入ったカプセルをSQUIDのプローブに挿入し、プローブの中を5−10K以下に保ちながら、アルゴンイオンレーザ(514nm)で試料を照射した。直流磁化率の温度依存性の測定から、3個のスピンが平行に揃っていることが認められた。また交流磁化率の測定において、4K以下で遅い磁気緩和現象が認められた。これらの結果を図1〜3に示す。
[Example 1] Production of a monomolecular magnet using a cobalt complex A 2-methyltetrahydrofuran solution of 20 mmol / L of the compound (1) was prepared. A mixed solution of 2-methyltetrahydrofuran and methylene chloride 2: 1 (v / v) to 20 mmol / L of the compound (21) was prepared. These two types of solutions were mixed at 1: 1 (v / v). 50 μL of this solution was taken in a microsyringe and transferred to a transparent capsule for a magnetization measuring device (superconducting quantum interference device (SQUID) MPMS-7S, manufactured by Quantum Design). The capsule containing the sample was inserted into a SQUID probe, and the sample was irradiated with an argon ion laser (514 nm) while keeping the probe at 5-10K or lower. From the measurement of the temperature dependence of the DC magnetic susceptibility, it was confirmed that three spins were aligned in parallel. In the measurement of AC magnetic susceptibility, a slow magnetic relaxation phenomenon was observed at 4K or less. These results are shown in FIGS.

[比較例1]銅錯体を用いる分子磁性体の製造
化合物(1)の濃度が8mmol/Lとなるエタノールの溶液を調製した。Cu(NO32(硝酸銅)の濃度が4mmol/Lとなるエタノール溶液を調製し、2種類の溶液を1:1(v/v)で混合した。この溶液50μLをマイクロシリンジにとり、磁化測定装置(SQUID)用の透明なカプセルに移した。試料が入ったカプセルをSQUIDのプローブに挿入し、プローブの中を5−10K以下に保ちながら、アルゴンイオンレーザ(514nm)で試料を照射した。実施例1と同様の操作により、9個のスピンが平行に揃った常磁性体が観測されたが、交流磁化率において遅い磁気緩和は認められなかった。
[Comparative Example 1] Production of molecular magnetic material using copper complex An ethanol solution having a concentration of compound (1) of 8 mmol / L was prepared. An ethanol solution in which the concentration of Cu (NO 3 ) 2 (copper nitrate) was 4 mmol / L was prepared, and the two kinds of solutions were mixed at 1: 1 (v / v). 50 μL of this solution was taken in a microsyringe and transferred to a transparent capsule for a magnetization measuring device (SQUID). The capsule containing the sample was inserted into a SQUID probe, and the sample was irradiated with an argon ion laser (514 nm) while keeping the probe at 5-10K or lower. By the same operation as in Example 1, a paramagnetic material having nine spins aligned in parallel was observed, but no slow magnetic relaxation was observed in the AC susceptibility.

実施例1の化合物(1)及びコバルト錯体の混合物における、光照射前(黒塗り)と光照射後(白抜き)の、5000 Oeでの磁化の温度依存性を示す。図中、縦軸は磁化率{χmolT (emu K mol-1)}を表し、横軸は温度{T (K)}を表す。The temperature dependence of the magnetization in 5000 Oe before light irradiation (black painting) and after light irradiation (white) in the mixture of the compound (1) of Example 1 and a cobalt complex is shown. In the figure, the vertical axis represents magnetic susceptibility {χmolT (emu K mol −1 )} and the horizontal axis represents temperature {T (K)}. 実施例1における、光照射(アルゴンイオンレーザ(514nm))の照射時間(分)経過における、化合物(1)及びコバルト錯体の混合物の5000 Oeでの磁化の変化を示す。図中、縦軸は磁化{Magnetization (emu Oe)}を表し、横軸は光照射(アルゴンイオンレーザ(514nm))の照射時間(分){Irradiation Time (min.)}を表す。The change of the magnetization in 5000 Oe of the mixture of a compound (1) and a cobalt complex in the irradiation time (minute) progress of light irradiation (argon ion laser (514 nm)) in Example 1 is shown. In the figure, the vertical axis represents magnetization {Magnetization (emu Oe)}, and the horizontal axis represents irradiation time (min) {Irradiation Time (min.)} Of light irradiation (argon ion laser (514 nm)). 光照射後の、化合物(1)及びコバルト錯体の混合物における交流磁化率の温度依存性(1Hz、10Hz、100Hz、500Hz、1000Hzでそれぞれ測定)を示す。図中、縦軸は交流磁化率{χ”(emu/mol)}を表し、横軸は温度{T (K)}を表す。ここで○:1Hz、□:10Hz、△:100Hz、▽:500Hz、◆:1000Hzでのそれぞれ測定曲線を表す。The temperature dependence (measured at 1 Hz, 10 Hz, 100 Hz, 500 Hz, and 1000 Hz, respectively) of the AC magnetic susceptibility in the mixture of the compound (1) and the cobalt complex after light irradiation is shown. In the figure, the vertical axis represents the AC magnetic susceptibility {χ ″ (emu / mol)}, and the horizontal axis represents the temperature {T (K)}. Here, ○: 1 Hz, □: 10 Hz, Δ: 100 Hz, ▽: Respective measurement curves at 500 Hz and ♦: 1000 Hz are shown.

Claims (14)

式(1)、(2)、(3)、(4)又は(5)
Figure 0004651111
(式中、R1、R2、R3、R4、R5、R6、R7及びR8は、それぞれ独立に、水素原子、ハロゲン原子、ニトロ基、シアノ基、メチル基、エチル基、ノルマルプロピル基、イソプロピル基、ノルマルブチル基、イソブチル基、セカンダリーブチル基、ターシャリーブチル基、メトキシ基、エトキシ基、ノルマルプロポキシ基、イソプロポキシ基、ノルマルブトキシ基、イソブトキシ基、セカンダリーブトキシ基又はターシャーリーブトキシ基を示す。)
で表される化合物と、式(6)
Figure 0004651111
(式中、R10は、それぞれ独立に、メチル基、エチル基、ノルマルプロピル基、イソプロピル基、ノルマルブチル基、イソブチル基、又はセカンダリーブチル基を示し、
11及びR12は、それぞれ独立に、水素原子、ハロゲン原子、ニトロ基、シアノ基、メチル基、エチル基、ノルマルプロピル基、イソプロピル基、ノルマルブチル基、イソブチル基、セカンダリーブチル基、ターシャリーブチル基、メトキシ基、エトキシ基、ノルマルプロポキシ基、イソプロポキシ基、ノルマルブトキシ基、イソブトキシ基、セカンダリーブトキシ基又はターシャーリーブトキシ基を示し、
Mは、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Ru、Rh、Pd、Ag、Cd、Hf、Ta、W、Re、Os、Ir、Pt、Au又はHgを示し、
Xは、ハロゲン原子、イソシアネート基、チオシアネート基、パークロレート基、シアネート基又はナイトレート基を示し、nは1〜3を示す。)
で表される有機金属錯体と、溶媒とを混合してなる溶液に、光照射することで得られることを特徴とする単分子磁石。
Formula (1), (2), (3), (4) or (5)
Figure 0004651111
(In the formula, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are each independently a hydrogen atom, a halogen atom, a nitro group, a cyano group, a methyl group, or an ethyl group. , Normal propyl group, isopropyl group, normal butyl group, isobutyl group, secondary butyl group, tertiary butyl group, methoxy group, ethoxy group, normal propoxy group, isopropoxy group, normal butoxy group, isobutoxy group, secondary butoxy group or ter (Shows Shirley butoxy group.)
A compound represented by formula (6):
Figure 0004651111
(In the formula, each R 10 independently represents a methyl group, an ethyl group, a normal propyl group, an isopropyl group, a normal butyl group, an isobutyl group, or a secondary butyl group;
R 11 and R 12 are each independently a hydrogen atom, halogen atom, nitro group, cyano group, methyl group, ethyl group, normal propyl group, isopropyl group, normal butyl group, isobutyl group, secondary butyl group, tertiary butyl. Group, methoxy group, ethoxy group, normal propoxy group, isopropoxy group, normal butoxy group, isobutoxy group, secondary butoxy group or tertiary butoxy group;
M is Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Cd, Hf, Ta, W, Re, Os , Ir, Pt, Au or Hg
X represents a halogen atom, an isocyanate group, a thiocyanate group, a perchlorate group, a cyanate group or a nitrate group, and n represents 1 to 3. )
A monomolecular magnet obtained by irradiating a solution obtained by mixing an organometallic complex represented by formula (II) with a solvent.
前記式(1)、(2)、(3)、(4)又は(5)において、前記R1、R2、R3、R5、R6及びR7が全て水素原子であり、R4及びR8がそれぞれ独立に水素原子、塩素原子、又は臭素原子である請求項1記載の単分子磁石。 In the formula (1), (2), (3), (4) or (5), R 1 , R 2 , R 3 , R 5 , R 6 and R 7 are all hydrogen atoms, and R 4 And R 8 each independently represents a hydrogen atom, a chlorine atom, or a bromine atom. 前記式(6)において、前記R10がメチル基、前記R11及びR12が全て水素原子、前記MがNi、Co、Cu、Mn、Fe、Cr又はZnであり、前記Xが塩素原子、イソシアネート基、チオシアネート基、又はパークロレート基である請求項1又は2記載の単分子磁石。 In the formula (6), R 10 is a methyl group, R 11 and R 12 are all hydrogen atoms, M is Ni, Co, Cu, Mn, Fe, Cr, or Zn, and X is a chlorine atom, The monomolecular magnet according to claim 1 or 2, which is an isocyanate group, a thiocyanate group, or a perchlorate group. 前記式(6)において、前記MがCoであり、前記Xがイソシアネート基であり、前記nが2である請求項1、2又は3記載の単分子磁石。   The monomolecular magnet according to claim 1, 2 or 3, wherein in the formula (6), the M is Co, the X is an isocyanate group, and the n is 2. 前記式(1)、(2)、(3)、(4)又は(5)で表される化合物と、前記式(6)で表される有機金属錯体とのモル比が、2:1〜1:2の範囲である請求項1記載の単分子磁石。   The molar ratio of the compound represented by the formula (1), (2), (3), (4) or (5) to the organometallic complex represented by the formula (6) is 2: 1 to The monomolecular magnet according to claim 1, which is in a range of 1: 2. 前記溶媒が、塩化メチレンと2−メチルテトラヒドロフランとの混合溶媒である請求項1又は5記載の単分子磁石。   The monomolecular magnet according to claim 1 or 5, wherein the solvent is a mixed solvent of methylene chloride and 2-methyltetrahydrofuran. 光照射するときの温度が、20K以下である請求項1、5又は6記載の単分子磁石。   The monomolecular magnet according to claim 1, 5 or 6, wherein the temperature when irradiated with light is 20 K or less. 式(1)、(2)、(3)、(4)又は(5)
Figure 0004651111
(式中、R1、R2、R3、R4、R5、R6、R7及びR8は、それぞれ独立に、水素原子、ハロゲン原子、ニトロ基、シアノ基、メチル基、エチル基、ノルマルプロピル基、イソプロピル基、ノルマルブチル基、イソブチル基、セカンダリーブチル基、ターシャリーブチル基、メトキシ基、エトキシ基、ノルマルプロポキシ基、イソプロポキシ基、ノルマルブトキシ基、イソブトキシ基、セカンダリーブトキシ基又はターシャーリーブトキシ基を示す。)
で表される化合物と、式(6)
Figure 0004651111
(式中、R10は、それぞれ独立に、メチル基、エチル基、ノルマルプロピル基、イソプロピル基、ノルマルブチル基、イソブチル基、又はセカンダリーブチル基を示し、
11及びR12は、それぞれ独立に、水素原子、ハロゲン原子、ニトロ基、シアノ基、メチル基、エチル基、ノルマルプロピル基、イソプロピル基、ノルマルブチル基、イソブチル基、セカンダリーブチル基、ターシャリーブチル基、メトキシ基、エトキシ基、ノルマルプロポキシ基、イソプロポキシ基、ノルマルブトキシ基、イソブトキシ基、セカンダリーブトキシ基又はターシャーリーブトキシ基を示し、
Mは、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Ru、Rh、Pd、Ag、Cd、Hf、Ta、W、Re、Os、Ir、Pt、Au又はHgを示し、
Xは、ハロゲン原子、イソシアネート基、チオシアネート基、パークロレート基、シアネート基又はナイトレート基を示し、nは1〜3を示す。)
で表される有機金属錯体と、溶媒とを混合して溶液を調製し、この溶液に光照射する工程を含むことを特徴とする単分子磁石の製造方法。
Formula (1), (2), (3), (4) or (5)
Figure 0004651111
(In the formula, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are each independently a hydrogen atom, a halogen atom, a nitro group, a cyano group, a methyl group, or an ethyl group. , Normal propyl group, isopropyl group, normal butyl group, isobutyl group, secondary butyl group, tertiary butyl group, methoxy group, ethoxy group, normal propoxy group, isopropoxy group, normal butoxy group, isobutoxy group, secondary butoxy group or ter (Shows Shirley butoxy group.)
A compound represented by formula (6):
Figure 0004651111
(In the formula, each R 10 independently represents a methyl group, an ethyl group, a normal propyl group, an isopropyl group, a normal butyl group, an isobutyl group, or a secondary butyl group;
R 11 and R 12 are each independently a hydrogen atom, halogen atom, nitro group, cyano group, methyl group, ethyl group, normal propyl group, isopropyl group, normal butyl group, isobutyl group, secondary butyl group, tertiary butyl. Group, methoxy group, ethoxy group, normal propoxy group, isopropoxy group, normal butoxy group, isobutoxy group, secondary butoxy group or tertiary butoxy group;
M is Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Cd, Hf, Ta, W, Re, Os , Ir, Pt, Au or Hg
X represents a halogen atom, an isocyanate group, a thiocyanate group, a perchlorate group, a cyanate group or a nitrate group, and n represents 1 to 3. )
A method for producing a single-molecule magnet, comprising the steps of: preparing a solution by mixing an organometallic complex represented by formula (1) and a solvent, and irradiating the solution with light.
前記式(1)、(2)、(3)、(4)又は(5)において、前記R1、R2、R3、R5、R6及びR7が全て水素原子であり、前記R4及びR8がそれぞれ独立に水素原子、塩素原子、又は臭素原子である請求項8記載の単分子磁石の製造方法。 In the formula (1), (2), (3), (4) or (5), the R 1 , R 2 , R 3 , R 5 , R 6 and R 7 are all hydrogen atoms, and the R The method for producing a monomolecular magnet according to claim 8, wherein 4 and R 8 are each independently a hydrogen atom, a chlorine atom, or a bromine atom. 前記式(6)において、前記R10がメチル基、前記R11及びR12が全て水素原子、前記MがNi、Co、Cu、Mn、Fe、Cr又はZnであり、前記Xが塩素原子、イソシアネート基、チオシアネート基、又はパークロレート基である請求項8又は9記載の単分子磁石の製造方法。 In the formula (6), R 10 is a methyl group, R 11 and R 12 are all hydrogen atoms, M is Ni, Co, Cu, Mn, Fe, Cr, or Zn, and X is a chlorine atom, The method for producing a monomolecular magnet according to claim 8 or 9, which is an isocyanate group, a thiocyanate group, or a perchlorate group. 前記式(6)において、前記MがCoであり、前記Xがイソシアネート基であり、前記nが2である請求項8、9又は10記載の単分子磁石の製造方法。   The method for producing a single-molecule magnet according to claim 8, 9 or 10, wherein in the formula (6), the M is Co, the X is an isocyanate group, and the n is 2. 前記式(1)、(2)、(3)、(4)又は(5)で表される化合物と、前記式(6)で表される有機金属錯体とのモル比が、2:1〜1:2の範囲である請求項8記載の単分子磁石の製造方法。   The molar ratio of the compound represented by the formula (1), (2), (3), (4) or (5) to the organometallic complex represented by the formula (6) is 2: 1 to The method for producing a monomolecular magnet according to claim 8, wherein the range is 1: 2. 前記溶媒が、塩化メチレンと2−メチルテトラヒドロフランとの混合溶媒である請求項8又は12記載の単分子磁石の製造方法。   The method for producing a monomolecular magnet according to claim 8 or 12, wherein the solvent is a mixed solvent of methylene chloride and 2-methyltetrahydrofuran. 前記光照射するときの温度が20K以下である請求項8、12又は13記載の単分子磁石の製造方法。
The method for producing a monomolecular magnet according to claim 8, 12 or 13, wherein the temperature at which the light is irradiated is 20K or less.
JP2006064098A 2006-03-09 2006-03-09 Single molecule magnet Expired - Fee Related JP4651111B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006064098A JP4651111B2 (en) 2006-03-09 2006-03-09 Single molecule magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006064098A JP4651111B2 (en) 2006-03-09 2006-03-09 Single molecule magnet

Publications (2)

Publication Number Publication Date
JP2007242934A JP2007242934A (en) 2007-09-20
JP4651111B2 true JP4651111B2 (en) 2011-03-16

Family

ID=38588174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006064098A Expired - Fee Related JP4651111B2 (en) 2006-03-09 2006-03-09 Single molecule magnet

Country Status (1)

Country Link
JP (1) JP4651111B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103714932A (en) * 2013-12-30 2014-04-09 北京工业大学 Co zero-dimension single-molecular magnet material, preparation method and application of Co zero dimension single-molecular magnet material
WO2018225087A1 (en) * 2017-06-06 2018-12-13 Council Of Scientific And Industrial Research Cobalt complexes, process for preparation and use thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4748670B2 (en) * 2006-03-09 2011-08-17 国立大学法人九州大学 Magnetic recording element
CN110931199B (en) * 2019-12-10 2020-11-27 黑龙江大学 Magnetic easy axis series type binuclear dysprosium molecular magnetic material constructed by 2, 6-dimethoxyphenol and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002093606A (en) * 2000-09-12 2002-03-29 Nissan Chem Ind Ltd Molecular magnetic substance and its manufacturing method
JP2002260907A (en) * 2001-03-05 2002-09-13 Nissan Chem Ind Ltd Molecular magnetic material and its manufacturing method
JP2002302510A (en) * 1996-12-17 2002-10-18 E I Du Pont De Nemours & Co Catalyst for polymerizing ethylene and method for polymerizing ethylene
JP2005012147A (en) * 2003-06-23 2005-01-13 Nissan Chem Ind Ltd Monomolecular magnet and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002302510A (en) * 1996-12-17 2002-10-18 E I Du Pont De Nemours & Co Catalyst for polymerizing ethylene and method for polymerizing ethylene
JP2002093606A (en) * 2000-09-12 2002-03-29 Nissan Chem Ind Ltd Molecular magnetic substance and its manufacturing method
JP2002260907A (en) * 2001-03-05 2002-09-13 Nissan Chem Ind Ltd Molecular magnetic material and its manufacturing method
JP2005012147A (en) * 2003-06-23 2005-01-13 Nissan Chem Ind Ltd Monomolecular magnet and its manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103714932A (en) * 2013-12-30 2014-04-09 北京工业大学 Co zero-dimension single-molecular magnet material, preparation method and application of Co zero dimension single-molecular magnet material
CN103714932B (en) * 2013-12-30 2016-04-20 北京工业大学 A kind of Co zero dimension single molecular magnets material and preparation method and application thereof
WO2018225087A1 (en) * 2017-06-06 2018-12-13 Council Of Scientific And Industrial Research Cobalt complexes, process for preparation and use thereof
US11040994B2 (en) 2017-06-06 2021-06-22 Council Of Scientific And Industrial Research Cobalt complexes, process for preparation and use thereof

Also Published As

Publication number Publication date
JP2007242934A (en) 2007-09-20

Similar Documents

Publication Publication Date Title
Gibney et al. Copper (II) 12-metallacrown-4: Synthesis, structure, ligand variability, and solution dynamics in the 12-MC-4 structural motif
Wang et al. Multifunctional luminescent Eu (III)-based metal–organic framework for sensing methanol and detection and adsorption of Fe (III) ions in aqueous solution
Kumar et al. Metal organic frameworks for sensing applications
Zhang et al. Syntheses, structures, near-infrared and visible luminescence, and magnetic properties of lanthanide-organic frameworks with an imidazole-containing flexible ligand
Mukherjee et al. Influence of tuned linker functionality on modulation of magnetic properties and relaxation dynamics in a family of six isotypic Ln2 (Ln= Dy and Gd) complexes
Manriquez et al. Structural and Physical Properties of Delocalized Mixed-Valent [Cp* M (pentalene) M'Cp*] n+ and [Cp* M (indacene) M'Cp*] n+ (M, M'= Fe, Co, Ni; n= 0, 1, 2) Complexes
Kumar et al. Synthesis of lanthanide (III) complexes of chloro-and bromo substituted 18-membered tetraaza macrocycles
Barefield et al. Complexes of silver (II) and silver (III) with macrocyclic tetraaza ligands
Dose et al. Synthesis and spin-state studies in solution of. gamma.-substituted tris (. beta.-diketonato) iron (III) complexes and their spin-equilibrium. beta.-ketoimine analogues derived from triethylenetetramine
JP4651111B2 (en) Single molecule magnet
Beedle et al. Photoluminescent Mn4 single-molecule magnet
Latos-Grazynski et al. Palladium complexes of 21-thiaporphyrin: syntheses and characterization
Wei et al. An “on–off–on” selective fluorescent probe based on nitrogen and sulfur co-doped carbon dots for detecting Cu 2+ and GSH in living cells
Kopf et al. Oxo-and Hydroxo-Bridged Heme-Copper Assemblies Formed from Acid− Base or Metal− Dioxygen Chemistry
Balch et al. Nickel (II) complexes of the octaethyloxophlorin dianion and octaethyloxophlorin radical dianion
Chen et al. Fine-tuning benzazole-based probe for the ultrasensitive detection of Hg2+ in water samples and seaweed samples
MeeáJung A robust bis-rhodium (I) complex of π-extended planar, anti-aromatic hexaphyrin [1.0. 1.0. 1.0]
JP4379575B2 (en) Single molecule magnet and method for producing the same
Gao et al. An electron-deficient naphthalene diimide-based metal–organic framework for detecting electron-rich molecules through photo-/chemo-induced chromism
Stamou et al. Indium (III) in the “Periodic Table” of Di (2-pyridyl) Ketone: An Unprecedented Transformation of the Ligand and Solid-State 115In NMR Spectroscopy as a Valuable Structural Tool
Tian et al. Ag-Induced metallogel based on cyclooctatetrathiophene: structural characterization and stimuli-responsive properties
Kobayashi et al. Spin State Modulation in Cobalt (II) Terpyridine Complexes by Co-Crystallization with 1, 3, 5-Triiodo-2, 4, 6-trifluorobenzene
JP4433118B2 (en) Molecular magnetic material and method for producing the same
Yu et al. Self-assembly induced hydrogelation approach as novel means of selective and visual sensing toward picric acid
Roy et al. Selective colorimetric detection of Cu 2+ by lanthanide based hybrid complexes associated with a single crystal growth mediated transformation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101213

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees