JP2002093606A - Molecular magnetic substance and its manufacturing method - Google Patents

Molecular magnetic substance and its manufacturing method

Info

Publication number
JP2002093606A
JP2002093606A JP2000275970A JP2000275970A JP2002093606A JP 2002093606 A JP2002093606 A JP 2002093606A JP 2000275970 A JP2000275970 A JP 2000275970A JP 2000275970 A JP2000275970 A JP 2000275970A JP 2002093606 A JP2002093606 A JP 2002093606A
Authority
JP
Japan
Prior art keywords
group
hfac
molecular magnetic
metal
magnetic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000275970A
Other languages
Japanese (ja)
Other versions
JP4433118B2 (en
Inventor
Noboru Koga
登 古賀
Satoru Karasawa
悟 唐澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Chemical Corp
Original Assignee
Nissan Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Corp filed Critical Nissan Chemical Corp
Priority to JP2000275970A priority Critical patent/JP4433118B2/en
Publication of JP2002093606A publication Critical patent/JP2002093606A/en
Application granted granted Critical
Publication of JP4433118B2 publication Critical patent/JP4433118B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/42Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of organic or organo-metallic materials, e.g. graphene

Abstract

PROBLEM TO BE SOLVED: To provide a molecular magnetic substance which is obtained by arranging unpaired electrons that are originated from organic radicals (carbene), generated by having it irradiated with light rays, and to provide a method of manufacturing the same, where the unpaired electrons are arranged by ferromagnetic interaction. SOLUTION: A chemical compound represented by general formula (1) (wherein, R1 to R8 are independently hydrogen atom, methyl group, ethyl group, normal propyl group, isopropyl group, normal butyl group, isobutyl group, secondary butyl group or tertiary butyl) and a metal complex or a metal salt (metals of metal complex and metal salt are Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, Hf, Ta, W, Re, Os, Ir, Pt, Au or Hg) are mixed in a solution, and the solution is irradiated with light rays for the manufacture of a molecular magnetic substance. Thus, a method of manufacturing the molecular magnetic substance can be provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光応答型分子磁性
体及びその製造法に関する。更に詳しくは、光照射によ
って生成する有機ラジカル(カルベン)に由来する不対
電子を強磁性相互作用によって配列させて得られる分子
磁性体及びその製造法に関する。
The present invention relates to a photoresponsive molecular magnetic material and a method for producing the same. More specifically, the present invention relates to a molecular magnetic material obtained by arranging unpaired electrons derived from an organic radical (carbene) generated by light irradiation by ferromagnetic interaction, and a method for producing the same.

【0002】[0002]

【従来の技術】有機ラジカルに強磁性的相互作用を持た
せることによって、電子スピンを平行にそろえ、分子強
磁性体を構築する試みが活発に行われている(K. Itoh
ら、”Proceedings of the Fifth International Confe
rence on Molecule-Based Magnet” : Mol. Cryst. Li
q. Cryst., 305-306 (1997))。分子磁性体は、無機磁性
体に比較して成形が極めて容易であること、目的によっ
て容易に物性の修飾ができること等から、様々な分野で
新しい材料としての期待が集まっている。これまでの研
究から、有機物で磁石を創るためには、(1)出来る限
り多くのスピンを、(2)強い相互作用で平行に揃え
て、(3)多次元的にメソスコピックな広がりを持って
集積化する、ことが必要であることが明らかにされてい
る。これまで、1分子中に多くのスピンを有する化合物
としては、デンドリマータイプの化合物(S=10)(A. Ra
jcaら、Angew. Chem. Int. Ed. Engl., 37, 1229 (199
8))やポリマータイプの化合物(S>=40)(A. Rajcaら、
J. Am. Chem. Soc., 121, 6308 (1999))が報告されてい
るが、これらの化合物のスピンを多次元的に集積するこ
とは未だ成功していない。スピンを集積する際には、強
磁性的相互作用により分子間のスピンを同じ方向に揃え
る必要がある。しかし、通常の結晶状態では、分子間の
反強磁性的相互作用が働き、スピンが相殺されて磁性を
失うことが知られている(R. Akabaneら、J. Org. Che
m., 62, 8854 (1998); J. Fujitaら、Chem. Commun,, 6
2, 8854 (1998))。又、一般に、分子間の強磁性的相互
作用は非常に弱く、従ってこれまでに報告されている分
子磁性体の磁気相転移温度は1.5K以下である(P. M
Allemandaら、J. Am. Chem. Soc., 112, 9391 (1990);
M. Kinoshitaら、Chem.Lett., 1225 (1991); T. Nogam
iら、Chem.Lett., 29 (1994); T. Sugawaraら、Chem.L
ett., 1723 (1994))。有機ラジカルと磁性金属錯体か
らなるヘテロスピン系で磁気相転移温度43Kが報告さ
れている(H. Iwamuraら)が、これは有機ラジカルが直
接配位しているため、広範囲の応用・発展が期待できな
い。
2. Description of the Related Art Active attempts have been made to construct a molecular ferromagnet by aligning electron spins by providing ferromagnetic interactions with organic radicals (K. Itoh).
"Proceedings of the Fifth International Confe
rence on Molecule-Based Magnet ”: Mol. Cryst. Li
q. Cryst., 305-306 (1997)). A molecular magnetic material is expected to be a new material in various fields because it is extremely easy to mold as compared with an inorganic magnetic material, and its physical properties can be easily modified depending on the purpose. From previous studies, to create a magnet with organic matter, (1) align as many spins as possible, (2) align them in parallel with strong interaction, and (3) have a multidimensional mesoscopic spread It has been shown that integration is necessary. Until now, as a compound having many spins in one molecule, a dendrimer type compound (S = 10) (A. Ra
jca et al., Angew. Chem. Int. Ed. Engl., 37, 1229 (199
8)) and polymer-type compounds (S> = 40) (A. Rajca et al.
J. Am. Chem. Soc., 121, 6308 (1999)), but multidimensional integration of spins of these compounds has not been successful yet. When accumulating spins, it is necessary to align spins between molecules in the same direction by ferromagnetic interaction. However, it is known that in a normal crystalline state, antiferromagnetic interaction between molecules acts to cancel out spins and lose magnetism (R. Akabane et al., J. Org. Che.
m., 62, 8854 (1998); J. Fujita et al., Chem. Commun ,, 6
2, 8854 (1998)). In general, the ferromagnetic interaction between molecules is very weak, and therefore, the magnetic phase transition temperature of molecular magnets reported so far is 1.5 K or less (P. M.
Allemanda et al., J. Am. Chem. Soc., 112, 9391 (1990);
M. Kinoshita et al., Chem. Lett., 1225 (1991); T. Nogam
i et al., Chem. Lett., 29 (1994); T. Sugawara et al., Chem. L.
ett., 1723 (1994)). A hetero spin system consisting of an organic radical and a magnetic metal complex has been reported to have a magnetic phase transition temperature of 43K (H. Iwamura et al.), But this is expected to be widely applied and developed because the organic radical is directly coordinated. Can not.

【0003】[0003]

【発明が解決しようとする課題】本発明者らは、有機ス
ピン源として、磁気的相互作用が強い三重項カルベンを
用い、金属との配位結合を介して一次元にスピンを集積
することに成功している(古賀ら、J. Am. Chem. Soc.,
119, 8246 (1997))。これらのカルベンは、230Kまで
安定であり(通常のカルベンは100K程度で化学反応
し消滅する。)、室温においても安定な分子強磁性体の
可能性を示唆するものである。しかしながら、得られた
カルベンを含む金属錯体は、超高スピン常磁性体であ
り、残留磁化を有していない。本発明は、残留磁化を有
する分子磁性体とその製造方法に関する。
SUMMARY OF THE INVENTION The present inventors have used triplet carbene, which has strong magnetic interaction, as an organic spin source, and integrated spins one-dimensionally through coordination bonds with metals. (Koga et al., J. Am. Chem. Soc.,
119, 8246 (1997)). These carbene are stable up to 230 K (normal carbene undergoes a chemical reaction at about 100 K and disappears), which suggests the possibility of a molecular ferromagnet that is stable even at room temperature. However, the obtained carbene-containing metal complex is an ultra-high spin paramagnetic material and has no remanent magnetization. The present invention relates to a molecular magnetic material having remanent magnetization and a method for manufacturing the same.

【0004】[0004]

【課題を解決するための手段】本発明者らは、鋭意検討
した結果、残留磁化を有する分子磁性体を見出すことに
成功し、本発明を完成した。
Means for Solving the Problems As a result of intensive studies, the present inventors have succeeded in finding a molecular magnetic material having remanent magnetization and completed the present invention.

【0005】即ち、本発明は一般式(1)That is, the present invention provides a compound represented by the general formula (1):

【0006】[0006]

【化3】 Embedded image

【0007】(式中、R1〜R8は、それぞれ独立に、水素
原子、メチル基、エチル基、ノルマルプロピル基、イソ
プロピル基、ノルマルブチル基、イソブチル基、セカン
ダリーブチル基又はターシャリーブチル基を意味す
る。)で表される化合物及び、金属錯体又は金属塩(該
金属錯体及び金属塩の金属はSc, Ti, V, Cr, Mn, Fe, C
o, Ni, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag,
Cd, Hf, Ta, W, Re, Os, Ir,Pt, Au又はHgを意味す
る。)を混合させた溶液に、光照射することにより製造
される分子磁性体及びその製造法に関する。
(Wherein, R 1 to R 8 each independently represent a hydrogen atom, a methyl group, an ethyl group, a normal propyl group, an isopropyl group, a normal butyl group, an isobutyl group, a secondary butyl group or a tertiary butyl group. A metal complex or a metal salt (the metal of the metal complex and the metal salt is Sc, Ti, V, Cr, Mn, Fe, C
o, Ni, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag,
Cd, Hf, Ta, W, Re, Os, Ir, Pt, Au or Hg. The present invention relates to a molecular magnetic material produced by irradiating light to a solution mixed with the above) and a method for producing the same.

【0008】[0008]

【発明の実施の形態】以下、本発明について詳細に説明
する。はじめに各置換基を具体的に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail. First, each substituent will be specifically described.

【0009】一般式(1)で表される化合物の置換基R1
〜R8は、それぞれ独立に、水素原子、メチル基、エチル
基、ノルマルプロピル基、イソプロピル基、ノルマルブ
チル基、イソブチル基、セカンダリーブチル基及びター
シャリーブチル基等が挙げられ、製造上の容易さから、
好ましいR1〜R8としては、水素原子及びメチル基が挙げ
られる。
The substituent R 1 of the compound represented by the general formula (1)
To R 8 each independently include a hydrogen atom, a methyl group, an ethyl group, a normal propyl group, an isopropyl group, a normal butyl group, an isobutyl group, a secondary butyl group, a tertiary butyl group, and the like; From
Preferred R 1 to R 8 include a hydrogen atom and a methyl group.

【0010】一般式(1)で表される化合物における好
ましい置換基の組み合わせを以下に示した。 1)R3〜R8が全て水素原子である、一般式(1)で表さ
れる化合物。 2)R1及びR2が水素原子又はメチル基であり、R3〜R8
全て水素原子である、一般式(1)で表される化合物。 3)R1〜R8が全て水素原子である、一般式(1)で表さ
れる化合物。
Preferred combinations of substituents in the compound represented by formula (1) are shown below. 1) A compound represented by the general formula (1), wherein R 3 to R 8 are all hydrogen atoms. 2) The compound represented by the general formula (1), wherein R 1 and R 2 are a hydrogen atom or a methyl group, and R 3 to R 8 are all hydrogen atoms. 3) The compound represented by the general formula (1), wherein all of R 1 to R 8 are hydrogen atoms.

【0011】次に、分子磁性体の製造法について説明す
る。
Next, a method for producing a molecular magnetic material will be described.

【0012】一般式(1)で表される化合物及び、金属
錯体又は金属塩を混合させた溶液に、光照射することに
より、分子磁性体を製造する事ができる。
A molecular magnetic material can be produced by irradiating light to a solution in which the compound represented by the general formula (1) and a metal complex or a metal salt are mixed.

【0013】金属錯体又は金属塩における具体的な金属
としては、Sc, Ti, V, Cr, Mn, Fe,Co, Ni, Cu, Zn, Y,
Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, Hf, Ta, W, R
e, Os, Ir, Pt, Au,及びHgを挙げることができ、好まし
くは、Ni、Co、Cu、Mn、Fe、Cr及びZnを挙げることがで
き、より好ましくは、Co, Ni及びCuを挙げることができ
る。
Specific metals in the metal complex or metal salt include Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y,
Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, Hf, Ta, W, R
e, Os, Ir, Pt, Au, and Hg, preferably, Ni, Co, Cu, Mn, Fe, Cr and Zn, more preferably, Co, Ni and Cu Can be mentioned.

【0014】具体的な金属錯体又は金属塩を以下に示
す。
Specific metal complexes or metal salts are shown below.

【0015】具体的な金属錯体としては、Ni(hfac)2、C
o(hfac)2、Cu(hfac)2、Mn(hfac)2、Fe(hfac)2、Cr(hfa
c)2及びZn(hfac)2が挙げられる。
Specific metal complexes include Ni (hfac) 2 , C
o (hfac) 2 , Cu (hfac) 2 , Mn (hfac) 2 , Fe (hfac) 2 , Cr (hfa
c) 2 and Zn (hfac) 2 .

【0016】具体的な金属塩としては、CuCl2、CuBr2
びCu(NO3)2が挙げられる。
Specific metal salts include CuCl 2 , CuBr 2 and Cu (NO 3 ) 2 .

【0017】好ましい、金属錯体又は金属塩としては、
Ni(hfac)2、Co(hfac)2及びCu(hfac) 2が挙げられる。
Preferred metal complexes or metal salts include:
Ni (hfac)Two, Co (hfac)TwoAnd Cu (hfac) TwoIs mentioned.

【0018】一般式(1)で表される化合物と金属錯体
又は金属塩のモル比は、通常1:1〜1:3の範囲を使
用することができ、好ましくは、1:1.5〜1:2.
5の範囲であり、より好ましくは、1:1.8〜1:
2.2の範囲である。
The molar ratio of the compound represented by the general formula (1) to the metal complex or the metal salt can be usually in the range of 1: 1 to 1: 3, preferably in the range of 1: 1.5 to 1: 3. 1: 2.
5, more preferably 1: 1.8 to 1: 1.
2.2.

【0019】一般式(1)で表される化合物及び、金属
錯体の混合は、固体状態(溶剤を加えない状態)のま
ま、適当な溶剤に溶解した溶液状態又は高分子などにド
ーピングした状態で行うことが出来るが、通常、適当な
溶剤に溶解した溶液状態で行うのが好ましい。
The compound represented by the general formula (1) and the metal complex are mixed in a solid state (without adding a solvent) in a solution state dissolved in an appropriate solvent or in a state doped with a polymer. Although it can be carried out, it is usually preferable to carry out in a solution state dissolved in an appropriate solvent.

【0020】使用される溶媒は、塩化メチレン、クロロ
ホルム等のハロゲン化炭化水素、テトラヒドロフラン、
2−メチルテトラヒドロフラン、テトラヒドロピラン等
の環状エーテル及びアセトニトリル等のニトリル系溶媒
等並びにこれらの溶媒の混合溶液が挙げられ、好ましく
は、ハロゲン化炭化水素、環状エーテル及びハロゲン化
炭化水素と環状エーテルの混合溶液が挙げられ、更に好
ましくは、塩化メチレン、2-メチルテトラヒドロフラン
及び塩化メチレンと2-メチルテトラヒドロフランの混合
溶液等が挙げられる。
The solvent used is a halogenated hydrocarbon such as methylene chloride or chloroform, tetrahydrofuran,
Examples thereof include cyclic ethers such as 2-methyltetrahydrofuran and tetrahydropyran and nitrile solvents such as acetonitrile and mixed solutions of these solvents.Preferably, halogenated hydrocarbons, cyclic ethers and mixtures of halogenated hydrocarbons and cyclic ethers are used. And methylene chloride, 2-methyltetrahydrofuran, and a mixed solution of methylene chloride and 2-methyltetrahydrofuran.

【0021】一般式(1)で表される化合物及び、金属
錯体又は金属塩を混合する温度は、通常−30〜30℃
の範囲を使用することができ、好ましくは、0〜20℃
の範囲である。
The temperature at which the compound represented by the general formula (1) and the metal complex or metal salt are mixed is usually -30 to 30 ° C.
Can be used, preferably from 0 to 20 ° C
Range.

【0022】一般式(1)で表される化合物及び、金属
錯体又は金属塩を混合する時間は、混合する温度により
変化するため、一概に決定できないが、例えば、20℃
の場合、10分以上混合させれば充分である。
The mixing time of the compound represented by the general formula (1) and the metal complex or metal salt varies depending on the mixing temperature and cannot be determined unconditionally.
In this case, mixing for 10 minutes or more is sufficient.

【0023】一般式(1)で表される化合物及び、金属
錯体又は金属塩を混合させることにより、一般式(1)
で表される化合物を配位子とする有機金属錯体が生成す
るが、該有機金属錯体は、混合した溶液そのまま、又は
一度単離した後に光照射する事もできる。(固体状態の
まま、適当な溶剤に溶解した溶液状態又は高分子などに
ドーピングした状態等) 光照射の光源としては、ジアゾ基の吸収波長である500n
m付近を含む光源であれば特に限定されないが、アルゴ
ンイオンレーザー(514nm)、ヘリウムカドミウム(H
e−Cd)レーザー、キセノンランプ(442nm)、高圧
水銀ランプ及びYAGレーザーの2倍波(532nm)等が
挙げられ、好ましくは、アルゴンイオンレーザー(514n
m)を挙げることができる。
By mixing the compound represented by the general formula (1) and a metal complex or a metal salt, the compound represented by the general formula (1)
An organometallic complex having a compound represented by the following formula as a ligand is produced, and the organometallic complex can be irradiated with light as it is as a mixed solution or once isolated. (In a solid state, a solution state dissolved in an appropriate solvent or a state doped with a polymer, etc.) The light source for light irradiation is 500 n, which is the absorption wavelength of the diazo group.
m is not particularly limited as long as it includes a light source including an argon ion laser (514 nm), helium cadmium (H
e-Cd) laser, a xenon lamp (442 nm), a high-pressure mercury lamp, a second harmonic (532 nm) of a YAG laser, and the like, and preferably an argon ion laser (514n).
m).

【0024】光照射の波長としては、ジアゾ基の吸収波
長である500nm付近を含む光源であれば特に限定されな
いが、通常400nm以上の波長を使用することができ、
好ましくは、400〜550nmの範囲である。
The wavelength of the light irradiation is not particularly limited as long as it is a light source including around 500 nm, which is the absorption wavelength of the diazo group, but a wavelength of 400 nm or more can be usually used.
Preferably, it is in the range of 400 to 550 nm.

【0025】光照射時の温度は、生成したカルベンが安
定であれば特に限定されないが、通常20K以下の温度
を用いることができ、好ましくは15K以下である。
The temperature at the time of light irradiation is not particularly limited as long as the generated carbene is stable, but a temperature of usually 20 K or lower can be used, preferably 15 K or lower.

【0026】光照射の時間は、光照射時の温度と用いる
波長、出力により変化するため、一概に決定できない
が、例えば、15Kの場合、アルゴンイオンレーザー
(150mW)で2時間以上照射すれば充分である。
The time of light irradiation varies depending on the temperature at the time of light irradiation, the wavelength used, and the output, and thus cannot be unconditionally determined. For example, in the case of 15K, irradiation with an argon ion laser (150 mW) for 2 hours or more is sufficient. It is.

【0027】次に、一般式(1)で表される化合物の製
造法について説明する。
Next, a method for producing the compound represented by the general formula (1) will be described.

【0028】一般式(1)で表される化合物は、反応式
1及び反応式2に示す方法により製造することができ
る。 反応式1
The compound represented by the general formula (1) can be produced by the methods shown in Reaction Schemes 1 and 2. Reaction formula 1

【0029】[0029]

【化4】 Embedded image

【0030】反応式2Reaction formula 2

【0031】[0031]

【化5】 Embedded image

【0032】(式中、R1〜R8は、前記と同じ意味を表
す。) 即ち、化合物(2)をDMF(N,N-ジメチルホルムアミ
ド)中、イミダゾールの存在下、TBDMS−Cl(タ
ーシャリーブチルジメチルシリルクロリド)と反応さ
せ、化合物(3)とした後、THF(テトラヒドロフラ
ン)中、n−BuLi(ノルマルブチルリチウム)を加
え、アニオンを発生させた後、4−ピリジンアルデヒド
(4)を反応させることによりテトラアルコール体
(5)を製造することができる。化合物(5)をCHC
3(クロロホルム)中、MnO2(二酸化マンガン)で
酸化することにより、テトラケトン体(6)とした後、
THF中、(n−Bu) 4NF(テトラノルマルブチル
アンモニウムフルオリド)を反応させ、TBDMS基を
脱離した後、CHCl3中、MnO2で酸化することによ
り、ペンタケトン体(7)とし、DMSO(ジメチルス
ルホキシド)中、N24(ヒドラジン)及びN24・H
Cl(塩酸ヒドラジン)でヒドラゾン化した後、CHC
3(クロロホルム)中、MnO2(二酸化マンガン)で
酸化することにより、一般式(1)で表される化合物を
製造することができる。
(Where R1~ R8Represents the same meaning as above.
You. That is, compound (2) was converted to DMF (N, N-dimethylformamide).
) In the presence of imidazole in the presence of TBDMS-Cl (
-Butyl dimethylsilyl chloride)
To obtain compound (3), and then to THF (tetrahydrofuran).
N), n-BuLi (normal butyl lithium) is added.
After generating anions, 4-pyridinealdehyde
By reacting (4), the tetraalcohol compound
(5) can be manufactured. Compound (5) is converted to CHC
lThree(Chloroform) in MnOTwo(Manganese dioxide)
After oxidizing to form a tetraketone body (6),
(N-Bu) in THF FourNF (tetra normal butyl
Ammonium fluoride) to form a TBDMS group.
After desorption, CHClThreeMedium, MnOTwoBy oxidizing with
Pentaketone compound (7) and DMSO (dimethyls
Rufoxide), NTwoHFour(Hydrazine) and NTwoHFour・ H
After hydration with Cl (hydrazine hydrochloride), CHC
lThree(Chloroform) in MnOTwo(Manganese dioxide)
By oxidizing, the compound represented by the general formula (1)
Can be manufactured.

【0033】又、化合物(2)は、反応式3で示す方法
により製造することができる。(ジャーナル オブ オ
ーガニック ケミストリー(J.Org.Chem.)59巻、7
701頁、1994年記載の製造法を参考にすることに
より合成することができる。) 反応式3
Compound (2) can be produced by the method shown in Reaction Scheme 3. (Journal of Organic Chemistry (J.Org.Chem.) 59, 7
The compound can be synthesized by referring to the production method described on page 701, 1994. ) Reaction formula 3

【0034】[0034]

【化6】 Embedded image

【0035】(式中、R9,R10及びR11は、それぞれ独立
に、水素原子、メチル基、エチル基、ノルマルプロピル
基、イソプロピル基、ノルマルブチル基、イソブチル
基、セカンダリーブチル基又はターシャリーブチル基を
意味する。) 即ち、トリブロモベンゼン(8)にEt2O(ジエチル
エーテル)中、n−BuLi(ノルマルブチルリチウ
ム)を加え、アニオンを発生させた後、蟻酸メチル(H
CO2Me)を反応させることにより製造することがで
きる。この際、トリブロモベンゼン(8)の置換基であ
るR9,R10及びR11を変化させることにより、多種の置換
基の異なった化合物(2)を製造することができる。
(Wherein R 9 , R 10 and R 11 are each independently a hydrogen atom, a methyl group, an ethyl group, a normal propyl group, an isopropyl group, a normal butyl group, an isobutyl group, a secondary butyl group, or a tertiary group) That is, n-BuLi (normal butyl lithium) in Et 2 O (diethyl ether) was added to tribromobenzene (8) to generate an anion, and then methyl formate (H) was added.
CO 2 Me). At this time, by changing the substituents R 9 , R 10 and R 11 of the tribromobenzene (8), various kinds of compounds (2) having different substituents can be produced.

【0036】一般式(1)で表される化合物の特徴は、
金属と配位可能なピリジン環を4個内包しており、金属
と配位可能な場所が4箇所ある事である。これにより、
分子磁性体を製造するための必要十分条件の一つである
メゾスコピックな構造を構築する事が可能となり、スピ
ン同士の強磁性的相互作用を保ちながらスピンを集積す
る事が出来る。
The characteristics of the compound represented by the general formula (1) are as follows:
It contains four pyridine rings that can coordinate with the metal, and there are four places that can coordinate with the metal. This allows
It is possible to construct a mesoscopic structure, which is one of the necessary and sufficient conditions for producing a molecular magnetic material, and it is possible to accumulate spins while maintaining ferromagnetic interaction between spins.

【0037】[0037]

【実施例】以下、本発明について実施例を挙げて詳述す
るが、本発明はこれらの実施例に何ら限定されるもので
はない。
EXAMPLES Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to these examples.

【0038】参考例1(化合物(8)の合成)Reference Example 1 (Synthesis of Compound (8))

【0039】[0039]

【化7】 Embedded image

【0040】室温中、3,3’,5,5’-テトラブロモベンズ
ヒドロール(ジャーナル オブ オーガニック ケミス
トリー(J.Org.Chem.)59巻、7701頁、1994
年記載の製造法により合成した。)5 gを DMF10 mlに溶
解して、イミダゾール2.8 gとt-ブチルジメチルシリル
クロリド5 g(5 mmol)を加えた。反応溶液を60℃まで昇
温させ、5時間反応させ、水を加え反応を止めた。ヘキ
サンで3回抽出した有機層を集め、水で洗浄した。これ
を無水硫酸マグネシウムで乾燥させて溶媒を減圧留去し
茶色固体を得た。この固体をシリカゲルカラムクロマト
グラフィー(ヘキサン)で精製し、分取した溶液を減圧
留去しヘキサンで再結晶し化合物(8)を白色固体とし
て得た。
At room temperature, 3,3 ′, 5,5′-tetrabromobenzhydrol (Journal of Organic Chemistry (J. Org. Chem.) 59, 7701, 1994)
It was synthesized by the production method described in the year. 5) was dissolved in 10 ml of DMF, and 2.8 g of imidazole and 5 g (5 mmol) of t-butyldimethylsilyl chloride were added. The reaction solution was heated to 60 ° C., reacted for 5 hours, and stopped by adding water. The organic layer extracted three times with hexane was collected and washed with water. This was dried over anhydrous magnesium sulfate, and the solvent was distilled off under reduced pressure to obtain a brown solid. The solid was purified by silica gel column chromatography (hexane), the fractionated solution was distilled off under reduced pressure, and recrystallized from hexane to obtain Compound (8) as a white solid.

【0041】1H-NMR(270MHz,CDCl3)δ:7.55(d,J=2 Hz,
2H) 7.39(d,J=2 Hz, 4H) 5.54(s, 1H) 0.91(s, 9H)
0.00(s, 6H) IR(KBr) 3075, 2970, 2927, 2854, 1578, 1561, 1115,
1088, 862 cm-1 MS m/z(FAB) 610, 612, 614 (M+) 元素分析 C19H22Br4Si 実測値C, 37.16; H, 3.61 理論値 C, 37.37; H, 3.68
1 H-NMR (270 MHz, CDCl 3 ) δ: 7.55 (d, J = 2 Hz,
2H) 7.39 (d, J = 2 Hz, 4H) 5.54 (s, 1H) 0.91 (s, 9H)
0.00 (s, 6H) IR (KBr) 3075, 2970, 2927, 2854, 1578, 1561, 1115,
1088, 862 cm -1 MS m / z (FAB) 610, 612, 614 (M + ) Elemental analysis C 19 H 22 Br 4 Si Found C, 37.16; H, 3.61 Theoretical C, 37.37; H, 3.68

【0042】参考例2(化合物(9)の合成)Reference Example 2 (Synthesis of Compound (9))

【0043】[0043]

【化8】 Embedded image

【0044】アルゴン雰囲気下、ドライアイス-アセト
ン浴で-78℃に冷却した無水THF溶液120 mlに、化合物
(8)3.0 g(4.8 mmol)を加えた。n -ブチルリチウムの
ヘキサン溶液(1.6 M)24 ml(38 mmol)を温度が上昇しな
いように滴下した。4時間撹拌後、反応溶液を-30℃まで
昇温してテトラリチオ体の生成を確認し、再び-78℃に
して4-ピリジンアルデヒド4.1 g(38 mmol)をそのまま滴
下して、1 時間-78℃で撹拌した。反応溶液を-20℃にし
て1時間撹拌後、0℃にして30分撹拌して、氷水溶液を加
え30 分撹拌して反応を止めた。析出した固体は減圧下
吸引濾過してさらに溶液を減圧留去して、THF溶液を留
去して固体を析出させて、先の固体と合わせた。合わせ
た固体をクロロホルムと水で十分に洗浄してクルードの
黄色固体を得た。一部の固体をシリカゲルカラムクロマ
トグラフィー(クロロホルム:メタノール=3:2)で精
製し、分取した溶液を減圧留去し化合物(9)1.7 gを
白色固体として得た。
Under an argon atmosphere, 3.0 g (4.8 mmol) of the compound (8) was added to 120 ml of an anhydrous THF solution cooled to −78 ° C. in a dry ice-acetone bath. 24 ml (38 mmol) of a hexane solution of n-butyllithium (1.6 M) was added dropwise so that the temperature did not rise. After stirring for 4 hours, the temperature of the reaction solution was raised to -30 ° C to confirm the formation of a tetralithio compound, and the mixture was again heated to -78 ° C and 4.1 g (38 mmol) of 4-pyridinealdehyde was added dropwise as it was. Stirred at ° C. The reaction solution was stirred at -20 ° C for 1 hour, then at 0 ° C and stirred for 30 minutes, an aqueous ice solution was added and stirred for 30 minutes to stop the reaction. The precipitated solid was subjected to suction filtration under reduced pressure, the solution was further distilled off under reduced pressure, and the THF solution was distilled off to precipitate a solid, which was combined with the previous solid. The combined solid was thoroughly washed with chloroform and water to give a crude yellow solid. A part of the solid was purified by silica gel column chromatography (chloroform: methanol = 3: 2), and the fractionated solution was distilled off under reduced pressure to obtain 1.7 g of compound (9) as a white solid.

【0045】1H-NMR(270MHz,DMSO-d6)δ:8.40(d,J= 5
Hz, 8H) 7.36(d,J= 5 Hz, 8H) 7.32(m, 2H) 7.23(d,J=
6 Hz 4H)5.71(s, 4H) 3.34(s, 1H) 3.30(s, 4H) 0.72
(dd,J=3, 2 Hz, 9H) -0.25(dd,J=3,6Hz, 6H) IR(KBr) 3025, 2957, 1595, 1420, 1356, 1265, 1070,
770, 658 cm-1 すぐに酸化されてケトン体になりやすいため元素分析一
致せず。
1 H-NMR (270 MHz, DMSO-d 6 ) δ: 8.40 (d, J = 5
Hz, 8H) 7.36 (d, J = 5 Hz, 8H) 7.32 (m, 2H) 7.23 (d, J =
6 Hz 4H) 5.71 (s, 4H) 3.34 (s, 1H) 3.30 (s, 4H) 0.72
(dd, J = 3,2 Hz, 9H) -0.25 (dd, J = 3,6Hz, 6H) IR (KBr) 3025, 2957, 1595, 1420, 1356, 1265, 1070,
770, 658 cm -1 Elemental analysis did not match because it is easily oxidized to ketone bodies.

【0046】参考例3(化合物(10)の合成)Reference Example 3 (Synthesis of Compound (10))

【0047】[0047]

【化9】 Embedded image

【0048】化合物(9)710mg(1 mmol)をクロロホル
ム溶液中に加え、二酸化マンガンを1.6 g(20 mmol)を加
えて、懸濁溶液を加熱還流する。反応の進行と共に懸濁
溶液は溶解していき、4時間撹拌後さらに二酸化マンガ
ン3.2 g(40 mmol)を加えて加熱還流した。反応溶液を室
温にして吸引濾過で無機マンガンを取り除き、クロロホ
ルム溶液を減圧留去し、黄色油状物を得た。これを、シ
リカゲルカラムクロマトグラフィー(クロロホルム:メ
タノール=97:3)で精製、減圧留去し、塩化メチレ
ン、ヘキサン混合溶液で再結晶して、化合物(10)63
5 mg(0.88 mmol)を透明結晶として得た。
710 mg (1 mmol) of the compound (9) is added to a chloroform solution, 1.6 g (20 mmol) of manganese dioxide is added, and the suspension is heated to reflux. With the progress of the reaction, the suspension solution was dissolved. After stirring for 4 hours, manganese dioxide (3.2 g, 40 mmol) was further added, and the mixture was heated to reflux. The reaction solution was brought to room temperature, the inorganic manganese was removed by suction filtration, and the chloroform solution was distilled off under reduced pressure to obtain a yellow oil. This was purified by silica gel column chromatography (chloroform: methanol = 97: 3), distilled off under reduced pressure, and recrystallized from a mixed solution of methylene chloride and hexane to obtain Compound (10) 63.
5 mg (0.88 mmol) were obtained as transparent crystals.

【0049】1H-NMR(270MHz,CDCl3)δ: 8.85(br, 4H) 8.10(m, 6H) 7.57(br, 8H) 6.03(s, 1
H) 0.87(s, 9H) 0.39(s, 6H) IR(KBr) 2954, 2928, 2859, 1671, 1407, 1255, 837,
648 cm-1 MS m/z(FAB) 719(M+1)+ mp(℃)69-71 元素分析 C43H38N4O5Si 実測値C, 71.14; H, 5.39; N, 7.68 理論値C, 71.84;
H, 5.33; N, 7.79
1 H-NMR (270 MHz, CDCl 3 ) δ: 8.85 (br, 4H) 8.10 (m, 6H) 7.57 (br, 8H) 6.03 (s, 1
H) 0.87 (s, 9H) 0.39 (s, 6H) IR (KBr) 2954, 2928, 2859, 1671, 1407, 1255, 837,
648 cm -1 MS m / z (FAB) 719 (M + 1) + mp (° C) 69-71 Elemental analysis C 43 H 38 N 4 O 5 Si Found C, 71.14; H, 5.39; N, 7.68 Theory Value C, 71.84;
H, 5.33; N, 7.79

【0050】参考例4(化合物(11)の合成)Reference Example 4 (Synthesis of Compound (11))

【0051】[0051]

【化10】 Embedded image

【0052】化合物(10)450 mg(0.63 mmol)の白色
固体をTHF300 mlに溶解させ、室温中テトラブチルアン
モニウムフルオライドTHF(1.0 M)溶液を6.3 ml(6.3 m
mol)加えた。2時間の撹拌後、飽和塩化アンモニウム水
溶液を加えて反応溶液を中和した。混合液をクロロホル
ムで5回抽出、水で洗浄し硫酸マグネシウムで乾燥させ
た後、溶媒留去して黄色油状物を得た。この油状物をシ
リカゲルカラムクロマトグラフィー(クロロホルム:メ
タノール=19:1)で精製し、そのまま次の反応にかけ
た。
A white solid of 450 mg (0.63 mmol) of the compound (10) was dissolved in 300 ml of THF, and a solution of tetrabutylammonium fluoride (1.0 M) in 6.3 ml (6.3 m) was added at room temperature.
mol). After stirring for 2 hours, a saturated aqueous ammonium chloride solution was added to neutralize the reaction solution. The mixture was extracted five times with chloroform, washed with water, dried over magnesium sulfate, and evaporated to give a yellow oil. This oily product was purified by silica gel column chromatography (chloroform: methanol = 19: 1), and directly subjected to the next reaction.

【0053】参考例5(化合物(12)の合成)Reference Example 5 (Synthesis of compound (12))

【0054】[0054]

【化11】 Embedded image

【0055】化合物(11)325 mg(0.54 mmol)をクロ
ロホルム溶液15 ml中に加え、二酸化マンガン3.2 gを加
えて、溶解していない懸濁溶液を加熱環流する。反応の
進行と共に固体は溶解していき、3時間で加熱を止め
た。反応溶液を室温にして吸引濾過で無機マンガンを取
り除き、クロロホルムを減圧留去し、黄色油状物を得
た。これを、シリカゲルカラムクロマトグラフィー(ク
ロロホルム:メタノール=24:1)で精製減圧留去し塩
化メチレン、エーテル混合溶媒で-15℃下再結晶し、化
合物(12)255 mg(0.42 mmol)を黄白色結晶として得
た。
325 mg (0.54 mmol) of compound (11) is added to 15 ml of a chloroform solution, 3.2 g of manganese dioxide is added, and the undissolved suspension is heated to reflux. The solid dissolved as the reaction proceeded, and the heating was stopped in 3 hours. The reaction solution was brought to room temperature, the inorganic manganese was removed by suction filtration, and chloroform was distilled off under reduced pressure to obtain a yellow oil. This was purified by silica gel column chromatography (chloroform: methanol = 24: 1) and evaporated under reduced pressure. The residue was recrystallized from a mixed solvent of methylene chloride and ether at -15 ° C to give 255 mg (0.42 mmol) of compound (12) as a pale yellow color. Obtained as crystals.

【0056】1H-NMR(270MHz,CDCl3)δ:8.88(d,J=4 Hz,
8H) 8.51(m, 6H) 7.65(d,J= 4 Hz, 8H) IR(KBr) 3061, 1671, 1590, 1407, 1252, 714, 648 cm
-1 mp(℃)99-101 MS m/z(FAB) 604(M+1)+ 元素分析 C38H24N4O5Cl2(塩化メチレン含有) 実測値C, 66.23; H,3.73; N, 8.20 理論値C, 66.38;
H, 3.52; N, 8.15
1 H-NMR (270 MHz, CDCl 3 ) δ: 8.88 (d, J = 4 Hz,
8H) 8.51 (m, 6H) 7.65 (d, J = 4 Hz, 8H) IR (KBr) 3061, 1671, 1590, 1407, 1252, 714, 648 cm
-1 mp (° C) 99-101 MS m / z (FAB) 604 (M + 1) + elemental analysis C 38 H 24 N 4 O 5 Cl 2 (containing methylene chloride) found C, 66.23; H, 3.73; N, 8.20 theory C, 66.38;
H, 3.52; N, 8.15

【0057】参考例6(化合物(13)の合成)Reference Example 6 (Synthesis of Compound (13))

【0058】[0058]

【化12】 Embedded image

【0059】化合物(12)350mg(0.58mmol)の白色固
体をジメチルスルホキシド(DMSO)6mlに溶解させ、ヒド
ラジン3 ml及び塩酸ヒドラジン1.2 g(17.5 mmol)と共に
60℃で撹拌した。2時間の加熱撹拌後、室温にして氷水
中に反応溶液を加え化合物(13)を白色状固体として
得た。吸引濾過でこの固体を分取し、十分の水とジエチ
ルエーテルで洗浄したのち、次の反応に使用した。
Compound (12) 350 mg (0.58 mmol) of a white solid was dissolved in 6 ml of dimethyl sulfoxide (DMSO), and was dissolved together with 3 ml of hydrazine and 1.2 g (17.5 mmol) of hydrazine hydrochloride.
Stirred at 60 ° C. After heating and stirring for 2 hours, the temperature was adjusted to room temperature, and the reaction solution was added to ice water to obtain compound (13) as a white solid. This solid was separated by suction filtration, washed with a sufficient amount of water and diethyl ether, and used for the next reaction.

【0060】IR(KBr) 3389, 3205, 1590, 1407, 1252,
714, 648, cm-11
IR (KBr) 3389, 3205, 1590, 1407, 1252,
714, 648, cm -1 1

【0061】参考例7(化合物(14)の合成)Reference Example 7 (Synthesis of Compound (14))

【0062】[0062]

【化13】 Embedded image

【0063】化合物(13)300 mg(0.45mmol)を遮光し
たナス型フラスコ中でクロロホルム70 mlに溶解し、二
酸化マンガン2.5 g(2.9mmol)加え室温で撹拌した。2時
間後撹拌を止め吸引濾過し、無機マンガンを取り除い
た。濾液を遮光しながら減圧留去し、暗赤色油状物を15
2 mg(0.23 mmol)得た。これをアルミナカラムクロマト
グラフィーで精製し、塩化メチレンとジエチルエーテル
の混合溶液で再結晶することで目的とする化合物(1
4)を赤色固体として得た。
Compound (13) (300 mg, 0.45 mmol) was dissolved in chloroform (70 ml) in a shaded eggplant-shaped flask, and manganese dioxide (2.5 g, 2.9 mmol) was added, followed by stirring at room temperature. After 2 hours, stirring was stopped and suction filtration was performed to remove inorganic manganese. The filtrate was evaporated under reduced pressure while shielding the light, and a dark red oil was removed in 15 minutes.
2 mg (0.23 mmol) were obtained. This is purified by alumina column chromatography, and recrystallized from a mixed solution of methylene chloride and diethyl ether to obtain the desired compound (1).
4) was obtained as a red solid.

【0064】1H-NMR(270MHz,CDCl3)δ:8.50(d,J=6 Hz,
8H) 7.14(br, 6H) 7.07(d,J=6 Hz, 8H) IR (KBr)2048, 1581, 1492, 1222, 988, 814, 659, 492
cm-1 UV-vis (CH2Cl2 λmax) 491 nm mp(℃)105(decomp.) 元素分析 C36H22N14 実測値 C, 64.29; H, 3.41; N, 27.59 理論値 C,
66.29; H, 4.45; N, 27.06
1 H-NMR (270 MHz, CDCl 3 ) δ: 8.50 (d, J = 6 Hz,
8H) 7.14 (br, 6H) 7.07 (d, J = 6 Hz, 8H) IR (KBr) 2048, 1581, 1492, 1222, 988, 814, 659, 492
cm -1 UV-vis (CH 2 Cl 2 λmax) 491 nm mp (° C) 105 (decomp.) Elemental analysis C 36 H 22 N 14 Found C, 64.29; H, 3.41; N, 27.59 Theoretical C,
66.29; H, 4.45; N, 27.06

【0065】実施例1(ニッケル錯体を用いる分子磁性
体の製造) 化合物(14)を塩化メチレン、MTHF(2-メチルテトラ
ヒドロフラン)の混合溶液に溶解させた。Ni(hfac)
2(ニッケルビスヘキサフルオロアセチルアセトナー
ト)のMTHF溶液を調製し、2種類の溶液を1.25mMでモル
比が1対2になるように混合した。この溶液100μLをマイ
クロシリンジにとり、磁化測定装置(SQUID)用の透明
なカプセルに移す。試料が入ったカプセルをSQUIDのプ
ローブに挿入し、温度2Kおよび5Kにおいて磁場0〜5Tの
範囲で磁化の測定を行った。結果を図1中の白抜きのプ
ロットとして示した。この結果は、ニッケルのスピン(S
=1)と溶媒分子の反磁性の和を反映している。次に、プ
ローブの中を15K以下に保ちながら、アルゴンイオン
レーザー(514nm)で試料を照射し、4000Oeで磁化の変
化をモニターした結果を図2に示す。照射時間ととも
に、磁化が増加して行くのが観測できる。これは、試料
の光分解により生じたカルベンのスピンとニッケルのス
ピンが強磁性的に相互作用していることを示している。
磁化の増加が飽和したら光照射を終了し、再び温度2K及
び5Kにおいて、磁場0〜5Tの範囲で磁化の測定を行っ
た。結果を図1中の黒塗りのプロットとして示した。更
に、光照射前後の磁化の差を計算することにより、図3
を得た。又、5Kでの低磁場のみのデータ(0〜50Oe)
を用いて理論計算をすると、スピン集積度が約8000
(S≒8000)という非常に大きな値を見積もることがで
きた(図3中のインセット)。ここで得られたカルベン
−ニッケル錯体の2Kにおける磁化のヒステリシス特性
を図4に示した。図4で明らかなように外部磁場0に於い
て、明確な残留磁化(約1emu・Oe)が認められ、分子磁
性体が生成していることがわかる。生成した分子磁性体
の温度を90Kまで上昇させカルベンを消失させた後、再
び3.5K以下で磁化を測定すると残留磁化は認められなく
なることから、当該ニッケル錯体の光照射によるカルベ
ンの発生に伴って分子磁性体が生成した事が証明され
た。
Example 1 (Production of molecular magnetic material using nickel complex) Compound (14) was dissolved in a mixed solution of methylene chloride and MTHF (2-methyltetrahydrofuran). Ni (hfac)
An MTHF solution of 2 (nickel bishexafluoroacetylacetonate) was prepared, and the two solutions were mixed at 1.25 mM at a molar ratio of 1: 2. Take 100 μL of this solution into a microsyringe and transfer to a transparent capsule for magnetization measurement device (SQUID). The capsule containing the sample was inserted into the SQUID probe, and the magnetization was measured at a temperature of 2K and 5K in a magnetic field of 0 to 5T. The results are shown as a white plot in FIG. This result indicates that the nickel spin (S
= 1) and the sum of the diamagnetism of the solvent molecules. Next, the result of irradiating the sample with an argon ion laser (514 nm) while keeping the inside of the probe at 15 K or less and monitoring the change in magnetization at 4000 Oe is shown in FIG. It can be observed that the magnetization increases with the irradiation time. This indicates that the spins of carbene and nickel generated by photolysis of the sample interact ferromagnetically.
When the increase in the magnetization was saturated, the light irradiation was terminated, and the magnetization was measured again at a temperature of 2K and 5K in a magnetic field of 0 to 5T. The results are shown as black plots in FIG. Further, by calculating the difference in magnetization before and after light irradiation, FIG.
I got In addition, data of low magnetic field only at 5K (0-50Oe)
When the theoretical calculation is performed using
A very large value (S ≒ 8000) could be estimated (inset in FIG. 3). FIG. 4 shows the hysteresis characteristics of the magnetization at 2K of the carbene-nickel complex obtained here. As is clear from FIG. 4, in the external magnetic field 0, a clear remanent magnetization (about 1 emu · Oe) is recognized, and it can be seen that a molecular magnetic material is generated. After raising the temperature of the generated molecular magnetic substance to 90 K to eliminate the carbene, when the magnetization is measured again at 3.5 K or less, the residual magnetization is no longer recognized, so with the generation of the carbene by light irradiation of the nickel complex, It was proved that a molecular magnetic material was formed.

【0066】実施例2(コバルト錯体を用いる分子磁性
体の製造) 実施例1においてNi(hfac)2の替わりにCo(hfac)2を使
い、同様な方法でモル比が1対2となる溶液を調製し、こ
れに光照射してカルベン−コバルト錯体を製造した。得
られたカルベン−コバルト錯体の2Kにおけるヒステリ
ス特性を図5に示した。図5から明らかなようにカルベン
−コバルト錯体でも残留磁化が観測され、分子磁性体が
得られていることがわかる。
Example 2 (Production of Molecular Magnetic Material Using Cobalt Complex) In Example 1, Co (hfac) 2 was used instead of Ni (hfac) 2 , and a solution having a molar ratio of 1: 2 was obtained in the same manner. Was prepared and irradiated with light to produce a carbene-cobalt complex. The hysteresis characteristics of the obtained carbene-cobalt complex at 2K are shown in FIG. As is clear from FIG. 5, remanent magnetization was observed even for the carbene-cobalt complex, indicating that a molecular magnetic material was obtained.

【0067】実施例3(銅錯体を用いる分子磁性体の製
造) 実施例1においてNi(hfac)2の替わりにCu(hfac)2を使
い、同様な方法でモル比が1対2となる溶液を調製し、こ
れに光照射してカルベン−銅錯体を製造した。得られた
カルベン−コバルト錯体の2Kにおけるヒステリス特性
を図6に示した。図6から明らかなように有機ラジカル銅
錯体でも残留磁化が観測され、分子磁性体が得られてい
ることがわかる。
Example 3 (Production of Molecular Magnetic Material Using Copper Complex) A solution in which Cu (hfac) 2 was used in Example 1 instead of Ni (hfac) 2 and the molar ratio was 1: 2 in the same manner. Was prepared and irradiated with light to produce a carbene-copper complex. FIG. 6 shows the hysteresis characteristics of the obtained carbene-cobalt complex at 2K. As is clear from FIG. 6, residual magnetization was observed even in the case of the organic radical copper complex, indicating that a molecular magnetic material was obtained.

【0068】以上説明したとおり、本実施例によれば、
残留磁化を示す光応答型分子磁性体を得ることができ
る。熱的安定性を克服できれば、分子磁性体は透明な磁
性体であるため、広範囲な応用が可能となる。例えば、
磁性インクとして利用すると、情報の記録が可能な印刷
物を容易に製造でき、あるいは、磁性トナーとして利用
すると、定着性の向上、解像度の向上、色彩の向上、印
刷スピードの向上等が期待される。また、有機溶媒に溶
かして、薄膜を形成できるため、リソグラフィーによ
り、光照射した部分に磁気回路を書き込むことができ
る。
As described above, according to the present embodiment,
It is possible to obtain a photoresponsive molecular magnetic material exhibiting residual magnetization. If the thermal stability can be overcome, the molecular magnetic material is a transparent magnetic material, so that it can be applied to a wide range of applications. For example,
When used as a magnetic ink, printed matter on which information can be recorded can be easily manufactured, or when used as a magnetic toner, improvement in fixability, resolution, color, and printing speed are expected. Further, since a thin film can be formed by dissolving in an organic solvent, a magnetic circuit can be written in a portion irradiated with light by lithography.

【0069】[0069]

【発明の効果】本発明により、残留磁化を示す光応答型
分子磁性金属錯体を製造することができる。
According to the present invention, a photoresponsive molecular magnetic metal complex exhibiting residual magnetization can be produced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】化合物(14)及びニッケル錯体の混合物にお
ける光照射前(白抜き)後(黒塗り)の磁化の測定結果
(温度2Kおよび5Kにおいて磁場0〜5Tの範囲で磁化を測
定した。)
FIG. 1 shows a measurement result of magnetization of a mixture of a compound (14) and a nickel complex before (open) and after (black) irradiation with light (magnetization was measured at a temperature of 2 K and 5 K in a magnetic field of 0 to 5 T).

【図2】光照射(アルゴンイオンレーザー(514nm))
の照射時間経過における、化合物(14)及びニッケル
錯体の混合物の4000Oeでの磁化の変化
Fig. 2 Light irradiation (argon ion laser (514nm))
In magnetization of the mixture of compound (14) and nickel complex at 4000 Oe with irradiation time

【図3】化合物(14)及びニッケル錯体の混合物にお
ける光照射前後の磁化の差及び5Kでの低磁場のみのデ
ータ(0〜50Oe)を用いたスピン集積度の算出結果(図
3中のインセット)
FIG. 3 shows the difference between the magnetization of the mixture of the compound (14) and the nickel complex before and after light irradiation, and the calculation result of the spin integration degree using data (0 to 50 Oe) of only a low magnetic field at 5 K (in FIG. set)

【図4】光照射後の、化合物(14)及びニッケル錯体
の混合物における2Kにおけるヒステリシス特性
FIG. 4: Hysteresis characteristics at 2K in a mixture of compound (14) and a nickel complex after light irradiation

【図5】光照射後の、化合物(14)及びコバルト錯体
の混合物における2Kにおけるヒステリシス特性
FIG. 5: Hysteresis characteristics at 2K in a mixture of compound (14) and a cobalt complex after light irradiation

【図6】光照射後の、化合物(14)及び銅錯体の混合
物における2Kにおけるヒステリシス特性
FIG. 6 shows a hysteresis characteristic of a mixture of compound (14) and a copper complex at 2K after light irradiation.

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 一般式(1) 【化1】 (式中、R1〜R8は、それぞれ独立に、水素原子、メチル
基、エチル基、ノルマルプロピル基、イソプロピル基、
ノルマルブチル基、イソブチル基、セカンダリーブチル
基又はターシャリーブチル基を意味する。)で表される
化合物及び、金属錯体又は金属塩(該金属錯体及び金属
塩の金属はSc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn,
Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, Hf, Ta, W,
Re, Os, Ir,Pt, Au又はHgを意味する。)を混合させた
溶液に、光照射することにより製造される分子磁性体。
1. A compound of the general formula (1) (Wherein, R 1 to R 8 each independently represent a hydrogen atom, a methyl group, an ethyl group, a normal propyl group, an isopropyl group,
It means a normal butyl group, an isobutyl group, a secondary butyl group or a tertiary butyl group. ) And a metal complex or metal salt (the metal of the metal complex and metal salt is Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn,
Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, Hf, Ta, W,
Re, Os, Ir, Pt, Au or Hg. ) Is a molecular magnetic substance produced by irradiating light to a solution mixed with the above.
【請求項2】 R1〜R8が全て水素原子である請求項1に
記載の分子磁性体。
2. The molecular magnetic material according to claim 1, wherein all of R 1 to R 8 are hydrogen atoms.
【請求項3】 金属錯体又は金属塩の金属がNi、Co、C
u、Mn、Fe、Cr又はZnである請求項1に記載の分子磁性
体。
3. The metal of the metal complex or metal salt is Ni, Co, C
The molecular magnetic material according to claim 1, which is u, Mn, Fe, Cr, or Zn.
【請求項4】 金属錯体又は金属塩がNi(hfac)2、Co(hf
ac)2、Cu(hfac)2、Mn(hfac)2、Fe(hfac)2、Cr(hfac)2
Zn(hfac)2、CuCl2、CuBr2又はCu(NO3)2である請求項2
に記載の分子磁性体。
4. The method according to claim 1, wherein the metal complex or the metal salt is Ni (hfac) 2 , Co (hf
ac) 2 , Cu (hfac) 2 , Mn (hfac) 2 , Fe (hfac) 2 , Cr (hfac) 2 ,
Zn (hfac) 2, CuCl 2 , CuBr 2 or Cu claim 2 (NO 3) is 2
3. The molecular magnetic material according to item 1.
【請求項5】 一般式(1)で表される化合物と金属錯
体又は金属塩のモル比が1:1〜1:3の範囲である請
求項4に記載の分子磁性体。
5. The molecular magnetic material according to claim 4, wherein the molar ratio of the compound represented by the general formula (1) to the metal complex or the metal salt is in the range of 1: 1 to 1: 3.
【請求項6】 光照射するときの温度が20K以下であ
る請求項5に記載の分子磁性体。
6. The molecular magnetic material according to claim 5, wherein the temperature at the time of light irradiation is 20 K or less.
【請求項7】 一般式(1) 【化2】 (式中、R1〜R8は、それぞれ独立に、水素原子、メチル
基、エチル基、ノルマルプロピル基、イソプロピル基、
ノルマルブチル基、イソブチル基、セカンダリーブチル
基又はターシャリーブチル基を意味する。)で表される
化合物及び、金属錯体又は金属塩(該金属錯体及び金属
塩の金属はSc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn,
Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, Hf, Ta, W,
Re, Os, Ir,Pt, Au又はHgを意味する。)を混合させた
溶液に、光照射することを特徴とする分子磁性体の製造
法。
7. A compound of the general formula (1) (Wherein, R 1 to R 8 each independently represent a hydrogen atom, a methyl group, an ethyl group, a normal propyl group, an isopropyl group,
It means a normal butyl group, an isobutyl group, a secondary butyl group or a tertiary butyl group. ) And a metal complex or metal salt (the metal of the metal complex and metal salt is Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn,
Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, Hf, Ta, W,
Re, Os, Ir, Pt, Au or Hg. A method for producing a molecular magnetic material, which comprises irradiating light to a solution obtained by mixing the above.
【請求項8】 R1〜R8が全て水素原子である請求項7に
記載の分子磁性体の製造法。
8. The method according to claim 7, wherein all of R 1 to R 8 are hydrogen atoms.
【請求項9】 金属錯体又は金属塩の金属がNi、Co、C
u、Mn、Fe、Cr又はZnである請求項7に記載の分子磁性
体の製造法。
9. The metal of the metal complex or metal salt is Ni, Co, C
The method for producing a molecular magnetic material according to claim 7, wherein the molecular magnetic material is u, Mn, Fe, Cr, or Zn.
【請求項10】 金属錯体又は金属塩がNi(hfac)2、Co
(hfac)2、Cu(hfac)2、Mn(hfac)2、Fe(hfac)2、Cr(hfac)
2、Zn(hfac)2、CuCl2、CuBr2又はCu(NO3)2である請求項
8に記載の分子磁性体の製造法。
10. The metal complex or metal salt is Ni (hfac) 2 , Co
(hfac) 2 , Cu (hfac) 2 , Mn (hfac) 2 , Fe (hfac) 2 , Cr (hfac)
2, Zn (hfac) 2, CuCl 2, CuBr 2 or Cu (NO 3) preparation of molecular magnetic body according to claim 8 which is 2.
【請求項11】 一般式(1)で表される化合物と金属
錯体又は金属塩のモル比が1:1〜1:3の範囲である
請求項10に記載の分子磁性体の製造法。
11. The method for producing a molecular magnetic material according to claim 10, wherein the molar ratio of the compound represented by the general formula (1) to the metal complex or the metal salt is in the range of 1: 1 to 1: 3.
【請求項12】 光照射するときの温度が20K以下で
ある請求項11に記載の分子磁性体の製造法。
12. The method for producing a molecular magnetic material according to claim 11, wherein the temperature at the time of light irradiation is 20 K or less.
JP2000275970A 2000-09-12 2000-09-12 Molecular magnetic material and method for producing the same Expired - Fee Related JP4433118B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000275970A JP4433118B2 (en) 2000-09-12 2000-09-12 Molecular magnetic material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000275970A JP4433118B2 (en) 2000-09-12 2000-09-12 Molecular magnetic material and method for producing the same

Publications (2)

Publication Number Publication Date
JP2002093606A true JP2002093606A (en) 2002-03-29
JP4433118B2 JP4433118B2 (en) 2010-03-17

Family

ID=18761511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000275970A Expired - Fee Related JP4433118B2 (en) 2000-09-12 2000-09-12 Molecular magnetic material and method for producing the same

Country Status (1)

Country Link
JP (1) JP4433118B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002260907A (en) * 2001-03-05 2002-09-13 Nissan Chem Ind Ltd Molecular magnetic material and its manufacturing method
JP2007242934A (en) * 2006-03-09 2007-09-20 Kyushu Univ Single molecular magnet
JP2008117969A (en) * 2006-11-06 2008-05-22 Ihi Corp Magnetic material, magnetic material guidance system, and magnetic material designing method
EP2307520A1 (en) * 2008-07-18 2011-04-13 Merck Patent GmbH Materials for organic electroluminescence devices
US8691261B2 (en) 2005-08-31 2014-04-08 Ihi Corporation Drug, drug guidance system, magnetic detection system, and drug design method
US9505732B2 (en) 2008-11-20 2016-11-29 Ihi Corporation Auto magnetic metal salen complex compound
US10034941B2 (en) 2007-12-28 2018-07-31 Ihi Corporation Iron-salen complex

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002260907A (en) * 2001-03-05 2002-09-13 Nissan Chem Ind Ltd Molecular magnetic material and its manufacturing method
JP4715982B2 (en) * 2001-03-05 2011-07-06 日産化学工業株式会社 Molecular magnetic material and method for producing the same
US8691261B2 (en) 2005-08-31 2014-04-08 Ihi Corporation Drug, drug guidance system, magnetic detection system, and drug design method
JP2007242934A (en) * 2006-03-09 2007-09-20 Kyushu Univ Single molecular magnet
JP4651111B2 (en) * 2006-03-09 2011-03-16 国立大学法人九州大学 Single molecule magnet
JP2008117969A (en) * 2006-11-06 2008-05-22 Ihi Corp Magnetic material, magnetic material guidance system, and magnetic material designing method
US10034941B2 (en) 2007-12-28 2018-07-31 Ihi Corporation Iron-salen complex
EP2307520A1 (en) * 2008-07-18 2011-04-13 Merck Patent GmbH Materials for organic electroluminescence devices
JP2011528324A (en) * 2008-07-18 2011-11-17 メルク パテント ゲーエムベーハー Materials for organic electroluminescence devices
EP2307520B1 (en) * 2008-07-18 2015-11-11 Merck Patent GmbH Materials for organic electroluminescence devices
US9505732B2 (en) 2008-11-20 2016-11-29 Ihi Corporation Auto magnetic metal salen complex compound

Also Published As

Publication number Publication date
JP4433118B2 (en) 2010-03-17

Similar Documents

Publication Publication Date Title
An et al. Synthesis, structure and luminescence properties of samarium (III) and dysprosium (III) complexes with a new tridentate organic ligand
Zhu et al. Syntheses, structures, near-infrared, and visible luminescence of lanthanide-organic frameworks with flexible macrocyclic polyamine ligands
Sengar et al. Luminescence sensitization of Eu (III) complexes with aromatic Schiff base and N, N’-donor heterocyclic ligands: synthesis, luminescent properties and energy transfer
Tamboura et al. Structural studies of bis-(2, 6-diacetylpyridine-bis-(phenylhydrazone)) and X-ray structure of its Y (III), Pr (III), Sm (III) and Er (III) complex
Keshavan et al. Synthesis, characterization, and spectral studies of lanthanide (III) nitrate complexes of promethazine
JP4433118B2 (en) Molecular magnetic material and method for producing the same
Panayiotidou et al. Synthesis, crystal structure and luminescence of novel Eu3+, Sm3+ and Gd3+ complexes of 1, 3, 5-and 1, 2, 4-triazines
Taydakov et al. Synthesis, phosphorescence and luminescence properties of novel europium and gadolinium tris-acylpyrazolonate complexes
JP4625947B2 (en) Optoelectronic device
Baumann et al. Structure and reactivity of paramagnetic cyclopentadienyl cobalt complexes with bulky alkyl substituents
Srinivasan et al. Synthesis, spectroscopic, thermal and X-ray structure characterization of 1, 3-propanediammonium tetrathiomolybdate and N, N, N′, N′-tetramethylethylenediammonium tetrathiomolybdate
He et al. Structures and properties of 6-aryl substituted tris (2-pyridylmethyl) amine transition metal complexes
JP4651111B2 (en) Single molecule magnet
JP4715982B2 (en) Molecular magnetic material and method for producing the same
Taher et al. Bis (N, N′-substituted oxamate) Zincate (II) complexes: Synthesis, spectroscopy, solid state structure and DFT calculations
Hu et al. A series of Zn/Cd coordination polymers constructed from 1, 4-naphthalenedicarboxylate and N-donor ligands: Syntheses, structures and luminescence sensing of Cr3+ in aqueous solutions
JP5317084B2 (en) π-conjugated cyclic compound and process for producing the same
JP4379575B2 (en) Single molecule magnet and method for producing the same
Zhu et al. Synthesis, crystal structures and properties of two supramolecular polymers constructed by lanthanide with pyridine-2, 4, 6-tricarboxylic acid
Gayathri et al. Convenient synthesis of symmetrical azines from alcohols and hydrazine catalyzed by ruthenium (II) hydrazone complex in air
Arion et al. Anion recognition by nickel (II) and cobalt (III) complexes with quadridentate ligands based on isothiosemicarbazide
JP5800222B2 (en) Novel compounds and their use
Aiello et al. Monomeric and polymeric oxovanadium (IV) complexes containing 5-(4′-alkyl-phenylazo)-8-hydroxy-quinoline ligands
Ovcharenko et al. Synthesis and structure of mono-and binuclear copper (II) complexes with polyfunctional nitroxide 4-(1′ carboxy-2′-oxopropylidene)-2, 2, 5, 5-tetramethyl-3-imidazolidine-1-oxyl,[Cu (LH) 2 (H2O) 2] and [Cu2L2 (H2O) 5]. Caterpillar-like reaction
Yan et al. A novel quaternary dinuclear luminescent terbium complex Tb2 (phth) 2 (Hphth) 2 (phen) 2 (H2O) 4: hydrothermal synthesis, crystal structure and photophysics

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091215

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees