JP4650747B2 - Pipe manufacturing method and constant diameter rolling apparatus - Google Patents

Pipe manufacturing method and constant diameter rolling apparatus Download PDF

Info

Publication number
JP4650747B2
JP4650747B2 JP2006511469A JP2006511469A JP4650747B2 JP 4650747 B2 JP4650747 B2 JP 4650747B2 JP 2006511469 A JP2006511469 A JP 2006511469A JP 2006511469 A JP2006511469 A JP 2006511469A JP 4650747 B2 JP4650747 B2 JP 4650747B2
Authority
JP
Japan
Prior art keywords
pipe
rolling
outer diameter
constant
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006511469A
Other languages
Japanese (ja)
Other versions
JPWO2005092531A1 (en
Inventor
孝光 稲毛
達也 奥井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Industries Ltd
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Publication of JPWO2005092531A1 publication Critical patent/JPWO2005092531A1/en
Application granted granted Critical
Publication of JP4650747B2 publication Critical patent/JP4650747B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B17/00Tube-rolling by rollers of which the axes are arranged essentially perpendicular to the axis of the work, e.g. "axial" tube-rolling
    • B21B17/14Tube-rolling by rollers of which the axes are arranged essentially perpendicular to the axis of the work, e.g. "axial" tube-rolling without mandrel, e.g. stretch-reducing mills
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B27/00Rolls, roll alloys or roll fabrication; Lubricating, cooling or heating rolls while in use
    • B21B27/02Shape or construction of rolls
    • B21B27/024Rolls for bars, rods, rounds, tubes, wire or the like

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)

Description

本発明は、各スタンドに2ロール以上の複数の孔型圧延ロールを備えた定径圧延装置によって管の定径圧延を行うに際し、管の内面に発生し得るしわの発生乃至進展を効果的に抑制することのできる管の製造方法及び定径圧延装置に関する。   The present invention effectively reduces the occurrence or development of wrinkles that can occur on the inner surface of a pipe when performing constant diameter rolling of the pipe by a constant diameter rolling apparatus provided with a plurality of perforated rolling rolls in each stand. The present invention relates to a method of manufacturing a pipe and a constant diameter rolling apparatus that can be suppressed.

一般に、管の外径を所定値に仕上げる工程において、サイザ、ストレッチレデューサ等の定径圧延装置を用いる。斯かる定径圧延装置は、各スタンドに圧下方向のなす角が120°である3つの孔型圧延ロール(以下、適宜、「圧延ロール」という)を備えた3ロール式の定径圧延装置が知られている。また、各スタンドに圧下方向のなす角が90°である4つの孔型圧延ロールを備えた4ロール式の定径圧延装置も知られている。さらに、各スタンドに対向する2つの孔型圧延ロールを備えた2ロール式の定径圧延装置も知られている。   In general, in the process of finishing the outer diameter of the tube to a predetermined value, a constant diameter rolling device such as a sizer or a stretch reducer is used. Such a constant diameter rolling apparatus is a three-roll type constant diameter rolling apparatus provided with three perforated rolling rolls (hereinafter, appropriately referred to as “rolling rolls”) having an angle of 120 ° in each stand. Are known. Also known is a 4-roll type constant diameter rolling apparatus provided with four perforated rolling rolls each having an angle of 90 ° in the rolling direction. Furthermore, a two-roll type constant diameter rolling device provided with two perforated rolling rolls facing each stand is also known.

ところで、最近では、地球環境を保護する必要性が高まる中、自動車の車体についても、省エネルギー効果をより一層達成することが要請されている。この目的のため、車体軽量化のニーズが高まり、自動車部品の中のドライブシャフトを中実部材から中空部材(管)に変更する試みがなされている。   By the way, recently, as the necessity of protecting the global environment increases, it has been demanded to further achieve an energy saving effect for automobile bodies. For this purpose, the need for weight reduction of the vehicle body has increased, and an attempt has been made to change the drive shaft in automobile parts from a solid member to a hollow member (pipe).

自動車用ドライブシャフトは、エンジンの回転軸のトルクをタイヤに伝達する重要保安部品であるため、十分な耐疲労強度を確保しておく必要がある。したがって、自動車用ドライブシャフトとして管を用いる場合には、管の耐疲労強度を著しく低下させる管内面のしわ状の凹凸(以下、「しわ」という)を極力抑制する必要がある。   Since the drive shaft for automobiles is an important safety part that transmits the torque of the rotating shaft of the engine to the tire, it is necessary to ensure sufficient fatigue resistance. Therefore, when a pipe is used as an automobile drive shaft, it is necessary to suppress as much as possible wrinkle-like irregularities (hereinafter referred to as “wrinkles”) on the pipe inner surface that significantly reduce the fatigue resistance of the pipe.

そして、このしわは、管の製造工程中の管外径を所定値に仕上げる工程において多発する。この理由は、定径圧延装置は管内面を拘束する工具を用いないで管を定径圧延するため、管内面にしわが発生し易くなるためと考えられる。   And this wrinkle occurs frequently in the process of finishing the pipe outer diameter to a predetermined value during the pipe manufacturing process. The reason for this is considered to be that wrinkles are likely to occur on the inner surface of the pipe because the constant diameter rolling apparatus rolls the pipe at a constant diameter without using a tool for restraining the inner surface of the pipe.

本発明は、斯かる従来技術の問題を解決するべくなされたものであり、発明者らが新たに見出した知見に基づくものである。つまり、定径圧延工程における管のしわの発生乃至進展には、複数のスタンドを備える定径圧延装置の入側から出側に至るまでの全体としての管に対する圧下率(外径加工度)が大きく影響することを見出した。   The present invention has been made to solve such problems of the prior art, and is based on knowledge newly found by the inventors. That is, in the generation or progress of the wrinkle of the pipe in the constant diameter rolling process, the reduction ratio (outer diameter processing degree) with respect to the pipe as a whole from the entry side to the exit side of the constant diameter rolling apparatus provided with a plurality of stands. I found that it has a big influence.

具体的には、図5に示すように、定径圧延装置による管の外径加工度が大きくなるに従って、管内面にしわが発生して進展(しわの深さが深くなる)する。特に外径加工度が50%となる点を境にして急速に進展することを見出した。なお、外径加工度とは、定径圧延装置入側の管外径をDi、定径圧延装置出側の管外径(仕上径)をDとすれば、以下の式(2)で定義される値である。
外径加工度=(Di−D)/Di×100(%) ・・・(2)
Specifically, as shown in FIG. 5, as the outer diameter processing degree of the tube by the constant diameter rolling device increases, wrinkles are generated on the inner surface of the tube and the wrinkle is deepened (the depth of the wrinkle is increased). In particular, it has been found that rapid progress is made at the point where the outer diameter processing degree becomes 50%. The outer diameter processing degree is defined by the following formula (2), where Di is the tube outer diameter on the inlet side of the constant diameter rolling device and D is the pipe outer diameter (finished diameter) on the outlet side of the constant diameter rolling device. Is the value to be
Degree of outer diameter processing = (Di−D) / Di × 100 (%) (2)

さらに、図5から、外径加工度がおよそ50%以上となる場合において、「●」でプロットした管のエッジ部相当位置(何れかのスタンドにおいて圧延ロールのエッジ部で圧延された管の部位であり、3ロール式の定径圧延装置で圧延する場合には管の周方向に計6箇所)において、しわが集中的に発生乃至進展していることも分かる。   Further, from FIG. 5, when the outer diameter processing degree is about 50% or more, the position corresponding to the edge portion of the tube plotted by “●” (the portion of the tube rolled at the edge portion of the rolling roll in any stand) In the case of rolling with a three-roll type constant-diameter rolling device, it is also understood that wrinkles are intensively generated or developed at a total of six locations in the circumferential direction of the pipe.

この管のエッジ部相当位置においてしわが集中的に発生乃至進展している理由は、圧延ロールの孔型プロフィールが楕円であるため、圧延ロールのエッジ部から管に付加される圧縮力が、他の部分に比べて顕著に大きいためであると考えられる。   The reason why wrinkles are intensively generated or developed at the position corresponding to the edge portion of the tube is that the hole profile of the rolling roll is elliptical, so that the compressive force applied to the tube from the edge portion of the rolling roll is This is considered to be because it is significantly larger than this part.

以上の知見によれば、しわの発生乃至進展を効果的に抑制する方法として、外径加工度の上限を規制する(たとえば、外径加工度を50%未満とする)ことが考えられる。   According to the above knowledge, as a method for effectively suppressing the generation or progress of wrinkles, it is conceivable to limit the upper limit of the outer diameter workability (for example, the outer diameter workability is less than 50%).

しかしながら、外径加工度の上限を規制する方法は、一つの定径圧延装置で多種の管を製造する場合に、それに応じて多種の外径の素管を用意する必要がある。つまり、生産効率が悪くなるという問題が生じる。   However, the method for restricting the upper limit of the outer diameter workability needs to prepare raw pipes with various outer diameters when manufacturing various kinds of pipes with one constant diameter rolling mill. That is, the problem that production efficiency deteriorates arises.

従って、外径加工度の上限を規制することなく、すなわち外径加工度が50%以上であっても、しわの発生乃至進展を効果的に抑制する方法が求められる。   Therefore, there is a need for a method that effectively suppresses the generation or development of wrinkles without restricting the upper limit of the outer diameter workability, that is, even when the outer diameter workability is 50% or more.

そこで、本発明の発明者らは、さらに鋭意検討した結果、管のエッジ部相当位置の内面の曲率半径、管の平均内半径(短径と長径との平均値)及びしわの深さの間には一定の関係を有することを見出した。   Therefore, the inventors of the present invention have made further investigations, and as a result, the radius of curvature of the inner surface at the position corresponding to the edge portion of the tube, the average inner radius of the tube (average value of the minor axis and the major axis), and the wrinkle depth. Has a certain relationship.

より具体的に説明すれば、各スタンドに複数の孔型圧延ロールを備えた複数のスタンドからなる定径圧延装置を用いて管を定径圧延する場合において、管のエッジ部相当位置の内面の曲率半径と平均内半径との比の全スタンドでの平均値が0.55以上となる条件で圧延すれば、外径加工度が50%以上であっても管の内面に発生し得るしわの発生乃至進展を効果的に抑制できることを見出した。なお、「管のエッジ部相当位置の内面の曲率半径と平均内半径との比の全スタンドでの平均値」とは、各スタンド出側における管のエッジ部相当位置の内面の曲率半径と平均内半径との比を、全スタンドに亘って平均化した値を示す。   More specifically, in the case of performing constant diameter rolling of a pipe using a constant diameter rolling apparatus comprising a plurality of stands each having a plurality of perforated rolling rolls in each stand, the inner surface of the position corresponding to the edge portion of the pipe If rolling is performed under the condition that the average value of the ratio of the curvature radius and the average inner radius in all stands is 0.55 or more, wrinkles that can occur on the inner surface of the tube even if the outer diameter processing degree is 50% or more. It has been found that generation or progress can be effectively suppressed. “The average value of the ratio of the radius of curvature of the inner surface at the position corresponding to the edge of the tube and the average inner radius at all stands” means the radius of curvature of the inner surface at the position corresponding to the edge of the tube on the outlet side of each stand and the average A value obtained by averaging the ratio with the inner radius over all the stands is shown.

本発明の発明者らは、管のエッジ部相当位置でしわが集中的に発生乃至進展しているのは孔型圧延ロールの孔型プロフィールが楕円形状であることに起因しているという前述の知見を踏まえて、より真円に近い孔型プロフィールを有し、且つ、前述したように管のエッジ部相当位置の内面の曲率半径と平均内半径との比の全スタンドでの平均値が0.55以上となる孔型圧延ロールの条件を鋭意検討した。その結果、本発明の発明者らは、各スタンドにおいて互いに隣接する孔型圧延ロールの対向するエッジ部にそれぞれ接線を引き、当該接線の成す角度の全スタンドでの最小値を、定径圧延装置出側での管の肉厚と外径との比に応じて規定すれば良いことを見出し、本発明を完成させた。   The inventors of the present invention stated that the fact that wrinkles are intensively generated or developed at the position corresponding to the edge portion of the pipe is due to the fact that the hole profile of the hole roll is elliptical. Based on the knowledge, it has a hole-shaped profile closer to a perfect circle, and as described above, the average value of the ratio of the radius of curvature of the inner surface at the position corresponding to the edge of the tube and the average inner radius is 0 for all stands. The inventors studied diligently on the conditions of the perforated rolling rolls of .55 or more. As a result, the inventors of the present invention draw tangent lines to the opposing edge portions of the adjacent roll-type rolling rolls in each stand, and set the minimum value of all the stands formed by the tangent lines to the constant diameter rolling apparatus. The present invention has been completed by finding out that it should be specified according to the ratio of the wall thickness and the outer diameter of the tube on the outlet side.

すなわち、本発明は、各スタンドに複数の孔型圧延ロールを備えた複数のスタンドからなる定径圧延装置を用いて管を定径圧延する工程を含む管の製造方法であって、前記各スタンドにおいて互いに隣接する孔型圧延ロールの対向するエッジ部にそれぞれ接線を引き、当該接線の成す角度の全スタンドでの最小値をβ(deg)、前記定径圧延装置出側での管の外径をD(mm)、前記定径圧延装置出側での管の肉厚をt(mm)とした場合に、10(%)<t/D<40(%)において、前記角度βが以下の式(1)を満足するような孔型圧延ロールを用いて、50%以上の外径加工度で定径圧延する工程を含むことを特徴とする管の製造方法を提供するものである。
β≧1.13×10×Ln(t/D×100)+1.37×10 ・・・(1)
ただし、外径加工度は、前記定径圧延装置入側での管の外径をDi(mm)とした場合に、以下の式(2)で定義される値である。
外径加工度=(Di−D)/Di×100(%) ・・・(2)
That is, the present invention is a method of manufacturing a pipe including a step of constant-diameter rolling of a pipe using a constant-diameter rolling apparatus comprising a plurality of stands each having a plurality of perforated rolling rolls on each stand, Tangent lines are drawn to the opposing edge portions of the adjacent perforated rolling rolls in FIG. 5, the minimum value of all the stands of the angle formed by the tangent is β (deg), the outer diameter of the pipe on the outlet side of the constant diameter rolling apparatus Is D (mm), and the thickness of the tube on the outlet side of the constant diameter rolling apparatus is t (mm). When 10 (%) <t / D <40 (%), the angle β is The present invention provides a method for producing a pipe characterized by including a step of performing constant diameter rolling at an outer diameter processing degree of 50% or more using a perforated rolling roll satisfying the formula (1).
β ≧ 1.13 × 10 × Ln (t / D × 100) + 1.37 × 10 2 (1)
However, the outer diameter processing degree is a value defined by the following equation (2), where Di (mm) is the outer diameter of the tube on the entrance side of the constant diameter rolling device.
Degree of outer diameter processing = (Di−D) / Di × 100 (%) (2)

斯かる発明によれば、角度βが上記式(1)を満足する孔型圧延ロールを用いることにより、管の外径加工度が50%以上であっても、管のエッジ部相当位置に付加される圧縮力が緩和(分散)される。その結果、管のエッジ部相当位置の内面の曲率半径と平均内半径との比の全スタンドでの平均値を0.55以上とすることができ、管の内面に発生し得るしわの発生乃至進展を効果的に抑制することが可能である。
なお、前記管は、例えば炭素鋼管とされる。
According to such an invention, by using a perforated rolling roll whose angle β satisfies the above formula (1), even if the outer diameter processing degree of the pipe is 50% or more, it is added to the position corresponding to the edge portion of the pipe. Compressed force is relaxed (dispersed). As a result, the average value of the ratio of the radius of curvature of the inner surface at the position corresponding to the edge portion of the tube and the average inner radius at all stands can be 0.55 or more, and the generation of wrinkles that can occur on the inner surface of the tube. Progress can be effectively suppressed.
The pipe is, for example, a carbon steel pipe.

また、本発明は、各スタンドに複数の孔型圧延ロールを備えた複数のスタンドからなり、50%以上の外径加工度で管を定径圧延する定径圧延装置であって、前記各スタンドにおいて互いに隣接する孔型圧延ロールの対向するエッジ部にそれぞれ接線を引き、当該接線の成す角度の全スタンドでの最小値をβ(deg)、前記定径圧延装置出側での管の外径をD(mm)、前記定径圧延装置出側での管の肉厚をt(mm)とした場合に、10(%)<t/D<40(%)において、前記角度βが以下の式(1)を満足することを特徴とする定径圧延装置としても提供される。
β≧1.13×10×Ln(t/D×100)+1.37×10 ・・・(1)
ただし、外径加工度は、前記定径圧延装置入側での管の外径をDi(mm)とした場合に、以下の式(2)で定義される値である。
外径加工度=(Di−D)/Di×100(%) ・・・(2)
なお、前記管は、例えば炭素鋼管とされる。
The present invention also Ri plurality of stands Tona having a plurality of grooved rolls in each stand, a constant径圧rolling apparatus for the constant-radius rolling the tube with more than 50% of the outer diameter working ratio, each Draw tangent lines to the opposing edge portions of the hole rolls adjacent to each other in the stand, and set the minimum value of all the stands of the angle formed by the tangent line to β (deg). When the diameter is D (mm) and the wall thickness of the tube on the outlet side of the constant diameter rolling apparatus is t (mm ), the angle β is 10% or less when t ( D) <t / D <40 (%) It is also provided as a constant diameter rolling apparatus characterized by satisfying the formula (1).
β ≧ 1.13 × 10 × Ln (t / D × 100) + 1.37 × 10 2 (1)
However, the outer diameter processing degree is a value defined by the following formula (2), where Di (mm) is the outer diameter of the pipe on the inlet side of the constant diameter rolling apparatus.
Degree of outer diameter processing = (Di−D) / Di × 100 (%) (2)
The pipe is, for example, a carbon steel pipe.

本発明に係る管の製造方法及び定径圧延装置によれば、定径圧延装置によって管の定径圧延を行うに際し、管の内面に発生し得るしわの発生乃至進展を効果的に抑制することが可能である。   According to the pipe manufacturing method and the constant diameter rolling apparatus according to the present invention, when the constant diameter rolling of the pipe is performed by the constant diameter rolling apparatus, the generation or development of wrinkles that may occur on the inner surface of the pipe is effectively suppressed. Is possible.

図1は、本発明の一実施形態に係る管の製造方法が適用される3ロール式の定径圧延装置を概略的に示す図である。FIG. 1 is a diagram schematically showing a three-roll type constant diameter rolling apparatus to which a pipe manufacturing method according to an embodiment of the present invention is applied. 図2は、管の外径加工度が50%以上である場合において、管のエッジ部相当位置の内面の曲率半径と平均内半径との比の全スタンドでの平均値と、管の内面に生じたしわの深さとの関係を示すグラフである。FIG. 2 shows the average value of the ratio of the curvature radius of the inner surface at the position corresponding to the edge portion of the tube and the average inner radius in all stands, and the inner surface of the tube when the outer diameter processing degree of the tube is 50% or more. It is a graph which shows the relationship with the depth of the wrinkle which arose. 図3は、孔型圧延ロールのエッジ部に引いた接線の成す角度を説明するための説明図である。FIG. 3 is an explanatory diagram for explaining an angle formed by a tangent line drawn on the edge portion of the perforated rolling roll. 図4は、図3に示す角度βoの全スタンドでの最小値β、定径圧延装置出側での管の肉厚tと外径Dとの比、及び、管のエッジ部相当位置の内面の曲率半径と平均内半径との比の全スタンドでの平均値の関係を示すグラフである。4 shows the minimum value β of all the stands at the angle βo shown in FIG. 3, the ratio of the wall thickness t to the outer diameter D on the outlet side of the constant diameter rolling apparatus, and the inner surface at the position corresponding to the edge portion of the pipe. It is a graph which shows the relationship of the average value in all the stands of ratio of the curvature radius of this, and an average inner radius. 図5は、定径圧延装置の外径加工度と、圧延された管内面に生じたしわの最大深さとの関係を示すグラフである。FIG. 5 is a graph showing the relationship between the outer diameter processing degree of the constant diameter rolling apparatus and the maximum wrinkle depth generated on the inner surface of the rolled tube. 図6は、本実施形態に係る孔型圧延ロールの孔型プロフィールを概略的に示す図である。FIG. 6 is a diagram schematically showing a hole profile of the hole rolling roll according to the present embodiment. 図7は、本発明の他の実施形態に係る孔型圧延ロールの孔型プロフィールを部分的に示す図である。FIG. 7 is a view partially showing a perforation profile of a perforated rolling roll according to another embodiment of the present invention.

以下、添付図面を適宜参照しつつ、本発明の一実施形態について説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings as appropriate.

図1は、本発明の一実施形態に係る管の製造方法が適用される3ロール式の定径圧延装置を概略的に示す図である。図1に示すように、本実施形態に係る定径圧延装置(本実施形態では、熱間定径圧延を行うストレッチレデューサ)1には、複数(N個、本実施形態では、N=17)のスタンド#1〜#Nのそれぞれに圧下方向のなす角が120°である3つの孔型圧延ロール10が備えられており、隣接するスタンド間で圧延ロール10の圧下方向が60°ずらして交互に配置されている。各スタンドの各圧延ロールで形成される孔型には、圧延対象である管Pが挿通され、最終スタンド#Nの出側において外径が予め定めた所定値になるように定径圧延される。なお、各スタンドの圧延ロール10は、定径圧延装置1入側の管Pの外径をDi、出側の外径をDとすれば、以下の式(2)で定義される外径加工度となるように、その寸法や設置位置が設定されている。
外径加工度=(Di−D)/Di×100(%) ・・・(2)
FIG. 1 is a diagram schematically showing a three-roll type constant diameter rolling apparatus to which a pipe manufacturing method according to an embodiment of the present invention is applied. As shown in FIG. 1, a constant diameter rolling apparatus (in this embodiment, a stretch reducer that performs hot constant diameter rolling) 1 according to the present embodiment includes a plurality (N, N = 17 in the present embodiment). Each of the stands # 1 to #N is provided with three perforated rolling rolls 10 having an angle of 120 [deg.] In the rolling direction, and the rolling direction of the rolling rolls 10 is shifted by 60 [deg.] Between adjacent stands. Is arranged. The hole P formed by each rolling roll of each stand is inserted with a pipe P to be rolled, and is subjected to constant diameter rolling so that the outer diameter becomes a predetermined value on the exit side of the final stand #N. . Note that the rolling roll 10 of each stand has an outer diameter processing defined by the following formula (2), where Di is the outer diameter of the pipe P on the inlet side of the constant diameter rolling apparatus 1 and D is the outer diameter on the outlet side. The dimensions and the installation position are set so that the degree can be obtained.
Degree of outer diameter processing = (Di−D) / Di × 100 (%) (2)

図2は、外径加工度が50%以上である場合において、管Pのエッジ部相当位置の内面の曲率半径と平均内半径との比の全スタンド#1〜#Nでの平均値αと、管Pの内面に生じたしわの深さとの関係を、本発明の発明者らが調査した結果を示すグラフである。より具体的に説明すれば、図2に示すグラフは、各スタンドに備えられた孔型圧延ロール10の孔型プロフィールの条件を種々変更しながら、外径100mmで肉厚11mmの炭素鋼管を外径40mmで肉厚9.6mmに定径圧延した場合における、管Pのエッジ部相当位置の内面の曲率半径と平均内半径との比の全スタンド#1〜#Nでの平均値αと、管Pの内面に生じたしわの深さとの関係を示す。   FIG. 2 shows the average value α of all the stands # 1 to #N of the ratio of the radius of curvature of the inner surface at the position corresponding to the edge portion of the pipe P and the average inner radius when the outer diameter processing degree is 50% or more. 4 is a graph showing the results of investigation by the inventors of the present invention on the relationship between the depth of wrinkles generated on the inner surface of a pipe P. FIG. More specifically, the graph shown in FIG. 2 shows a carbon steel tube having an outer diameter of 100 mm and a wall thickness of 11 mm while changing various conditions of the hole profile of the hole rolling roll 10 provided in each stand. The average value α of all the stands # 1 to #N of the ratio of the radius of curvature of the inner surface at the position corresponding to the edge portion of the pipe P and the average inner radius in the case of constant diameter rolling to a thickness of 9.6 mm with a diameter of 40 mm, The relationship with the depth of wrinkles generated on the inner surface of the tube P is shown.

ここで、平均値αは、各スタンド出側において管Pのエッジ部相当位置の内面の曲率半径及び平均内半径を三次元形状測定器(東京精密社製)を用いて測定し、当該測定値に基づき各スタンド出側毎に算出した両者の比を、全スタンド数で平均化した値である。平均値αは以下の手順(a)〜(c)で得られる値である。
(a)管Pのエッジ部相当位置の内面の曲率半径及び平均内半径を測定する対象の各スタンド出側において、管Pの圧延を中止(管Pを定径圧延装置1から取り外す、或いは、当該スタンドより後段のスタンドでは圧延せずに搬送する)し、当該管Pの一部をサンプルとして切り出す。
(b)切り出したサンプルについて、三次元形状測定器を用いてエッジ部相当位置の内面の曲率半径及び平均内半径を測定し、両者の比を算出する。
より具体的には、先ず最初に、三次元形状測定器を用いて測定した管Pの一断面についての内面形状データ(内面を構成する各部位の座標データ)に基づいて、管P内面の重心位置を算出する。そして、孔型圧延ロールのフランジ部に相当する位置にある管Pの内面部位(すなわち、隣接する孔型圧延ロールの対向するエッジ部の間隙の中間位置に相当する位置にある管Pの内面部位)の座標と、前記部位から前記算出した重心周りに約±5°の位置にある管Pの各内面部位の座標とを用いて、これら3つの部位を通る円の半径を算出し、当該算出した半径をエッジ部相当位置の内面の曲率半径とする。次に、前記重心と管Pの内面を構成する各部位との距離を内半径とし、管Pの周方向に沿った内半径の平均値を平均内半径とする。以上のようにしてエッジ部相当位置の内面の曲率半径及び平均内半径をそれぞれ算出し、両者の比を計算する。
(c)上記(a)及び(b)の手順を全スタンドの出側において繰り返し、全スタンド分の測定値(エッジ部相当位置の内面の曲率半径と平均内半径との比)を平均化してαを算出する。
Here, the average value α is obtained by measuring the curvature radius and the average inner radius of the inner surface of the position corresponding to the edge of the pipe P on each stand exit side using a three-dimensional shape measuring instrument (manufactured by Tokyo Seimitsu Co., Ltd.). This is the value obtained by averaging the ratio of the two calculated for each stand exit side based on the total number of stands. The average value α is a value obtained by the following procedures (a) to (c).
(A) On the exit side of each stand to be measured for the radius of curvature and average inner radius of the inner surface at the position corresponding to the edge portion of the tube P, the rolling of the tube P is stopped (the tube P is removed from the constant diameter rolling device 1 or (The sheet is conveyed without rolling at the stand subsequent to the stand), and a part of the tube P is cut out as a sample.
(B) About the cut-out sample, the curvature radius and average inner radius of the inner surface of the position corresponding to the edge portion are measured using a three-dimensional shape measuring instrument, and the ratio between the two is calculated.
More specifically, first, based on the inner surface shape data (coordinate data of each part constituting the inner surface) of one cross section of the tube P measured using a three-dimensional shape measuring instrument, the center of gravity of the inner surface of the tube P Calculate the position. And, the inner surface portion of the pipe P at a position corresponding to the flange portion of the perforated rolling roll (that is, the inner surface portion of the pipe P at a position corresponding to the intermediate position of the gap between the opposing edge portions of the adjacent perforated rolling rolls) ) And the coordinates of each inner surface portion of the pipe P located at about ± 5 ° around the calculated center of gravity from the portion, and calculate the radius of the circle passing through these three portions. This radius is taken as the radius of curvature of the inner surface corresponding to the edge portion. Next, the distance between the center of gravity and each part constituting the inner surface of the tube P is defined as an inner radius, and the average value of the inner radii along the circumferential direction of the tube P is defined as an average inner radius. As described above, the curvature radius and the average inner radius of the inner surface corresponding to the edge portion are calculated, and the ratio between them is calculated.
(C) Repeat the above steps (a) and (b) on the exit side of all the stands, and average the measured values for all the stands (ratio of the radius of curvature of the inner surface corresponding to the edge portion and the average inner radius). α is calculated.

以上に説明した手順を、具体例を挙げて説明すれば、例えば、図2に示すデータ点a(α=0.42、しわ深さ=0.135mm)、点b(α=0.57、しわ深さ=0.05)及び点c(α=0.92、しわ深さ=0.04mm)のαは、それぞれ以下の表1に示すように、各スタンド出側毎に算出したエッジ部相当位置の内面の曲率半径r/平均内半径dを全スタンド数で平均化して得られた値である。

Figure 0004650747
The procedure described above will be described with a specific example. For example, a data point a (α = 0.42, wrinkle depth = 0.135 mm), a point b (α = 0.57, The wrinkle depth = 0.05) and the α at the point c (α = 0.92, wrinkle depth = 0.04 mm) are calculated as shown in Table 1 below for each edge of the stand exit side. This is a value obtained by averaging the radius of curvature r / average inner radius d of the inner surface at the corresponding position with the total number of stands.
Figure 0004650747

また、図2に示すしわ深さとは、定径圧延装置1出側で測定した管Pのしわ深さの最大値を意味し、圧延後の管Pの一部をサンプルとして切り出し、断面をミクロ観察することにより測定した値である。   Moreover, the wrinkle depth shown in FIG. 2 means the maximum value of the wrinkle depth of the pipe P measured on the outlet side of the constant diameter rolling apparatus 1, and a part of the pipe P after rolling is cut out as a sample, and the cross section is micronized. It is the value measured by observing.

図2に示すように、αが0.55前後を境にして、これより小さくなれば、しわの深さは急速に大きくなることが分かる。従って、逆にαを0.55以上とすれば、管Pの内面に発生し得るしわの発生乃至進展を効果的に抑制することが可能である。   As shown in FIG. 2, it can be seen that the depth of wrinkles increases rapidly when α becomes smaller than about 0.55. Therefore, conversely, if α is 0.55 or more, the generation or development of wrinkles that may occur on the inner surface of the pipe P can be effectively suppressed.

そこで、本実施形態に係る定径圧延装置1においては、定径圧延装置1によって圧延される管Pのαが0.55以上となるような条件の圧延ロール10を配置している。以下、斯かる圧延ロール10の条件を設定した理由及び設定条件について、具体的に説明する。   Therefore, in the constant diameter rolling apparatus 1 according to the present embodiment, the rolling roll 10 having a condition such that α of the pipe P rolled by the constant diameter rolling apparatus 1 is 0.55 or more is disposed. Hereinafter, the reason for setting the conditions of the rolling roll 10 and the setting conditions will be specifically described.

まず、図3に示すように、各スタンドに備えられた一の圧延ロール10aのエッジ部Eaに接線(エッジ部Ea近傍の孔型プロフィールの接線)Laを引き、圧延ロール10aに隣接する圧延ロール10bのエッジ部の内、エッジ部Eaに対向するエッジ部Ebに接線(エッジ部Eb近傍の孔型プロフィールの接線)Lbを引いて、両接線La、Lbの成す角度βoを算出した。なお、本実施形態に係る各圧延ロール10の孔型プロフィールは、図6に示すように、孔型中心(圧延パスライン中心)Oより外方に(圧延ロール10の溝底Cから遠ざかる方向に)オフセット(オフセット量S)した中心O’を有する半径Rの円弧を有し、当該円弧が圧延ロール10のフランジ側壁面Fと直接交差する形状である。そして、圧延ロール10のエッジ部E(すなわち、孔型プロフィールPRの端部)は、前記半径Rの円弧の端部に相当する。前記角度βoは、当該孔型プロフィールに基づいて幾何学的に算出したものである(各スタンド毎に算出される3箇所の角度βoは全て同一の値)。   First, as shown in FIG. 3, a rolling roll adjacent to the rolling roll 10a is drawn by drawing a tangent line (tangential line of the hole profile near the edge portion Ea) La to the edge Ea of one rolling roll 10a provided in each stand. A tangent line (tangent line of the hole profile in the vicinity of the edge part Eb) Lb is drawn to the edge part Eb facing the edge part Ea out of the edge part 10b, and the angle βo formed by both tangent lines La and Lb is calculated. In addition, as shown in FIG. 6, the hole type profile of each rolling roll 10 according to the present embodiment is outward from the hole type center (rolling pass line center) O (in a direction away from the groove bottom C of the rolling roll 10). ) An arc having a radius R having an offset (offset amount S) center O ′, and the arc directly intersects the flange side wall surface F of the rolling roll 10. The edge E (that is, the end of the hole profile PR) of the rolling roll 10 corresponds to the end of the arc having the radius R. The angle βo is geometrically calculated based on the hole profile (the three angles βo calculated for each stand are all the same value).

次に、角度βoの全スタンド#1〜#Nでの最小値をβ(deg)とし、定径圧延装置1出側での管Pの外径(狙い外径)をD(mm)、定径圧延装置1出側での管Pの肉厚(狙い肉厚)をt(mm)とした場合、本発明の発明者らの調査により、β、t/D及びαは図4に示すような関係になることが分かった。ここで、図4の横軸はt/D(%)、縦軸はβ(deg)を示しており、「○」でプロットしたデータは、圧延された管Pのαが0.55であったものを、「●」でプロットしたデータは、圧延された管Pのαが0.55より大きかったものを、「×」でプロットしたデータは、αが0.55未満であったものを示す。   Next, the minimum value of all the stands # 1 to #N of the angle βo is β (deg), and the outer diameter (target outer diameter) of the pipe P on the outlet side of the constant diameter rolling apparatus 1 is D (mm). Assuming that the thickness (target thickness) of the pipe P on the outlet side of the diameter rolling apparatus 1 is t (mm), β, t / D and α are as shown in FIG. It turned out to be a good relationship. Here, the horizontal axis in FIG. 4 indicates t / D (%), the vertical axis indicates β (deg), and the data plotted with “◯” indicates that α of the rolled pipe P is 0.55. The data plotted with “●” indicates that the α of the rolled pipe P was greater than 0.55, and the data plotted with “×” indicates that α was less than 0.55. Show.

より具体的に説明すれば、例えば、図4に示すデータ点A(t/D=24.0%、β=173deg)は、以下の表2に示す条件により、外径100mmで肉厚11mmの炭素鋼管を外径40mmで肉厚9.6mmに定径圧延した場合に得られたデータである。すなわち、表2に示す条件では、角度βoの全スタンド#1〜#17での最小値βは173degであり、定径圧延装置1出側(つまり、#17スタンド出側)でのt/D=24.0%であるため、図4に示す座標にプロットされることになる。

Figure 0004650747
More specifically, for example, a data point A (t / D = 24.0%, β = 173 deg) shown in FIG. 4 has an outer diameter of 100 mm and a wall thickness of 11 mm under the conditions shown in Table 2 below. It is the data obtained when the carbon steel pipe was rolled at a constant diameter to an outer diameter of 40 mm and a thickness of 9.6 mm. That is, under the conditions shown in Table 2, the minimum value β of all the stands # 1 to # 17 at the angle βo is 173 deg, and t / D on the outlet side of the constant diameter rolling apparatus 1 (that is, the outlet side of the # 17 stand). Since it is 24.0%, it is plotted at the coordinates shown in FIG.
Figure 0004650747

図4から分かるように、αを0.55以上にするには、各t/Dに対してβを所定の値以上に設定すれば良い。そこで、本実施形態では、各t/Dについてαが0.55となったβの値をt/Dを変数とする関数(自然対数関数)で近似した後、βが当該近似関数以上の値となるように圧延ロール10の孔型プロフィールを設定している。より具体的には、角度βが以下の式(1)を満足するように圧延ロール10の孔型プロフィールを設定している。
β≧1.13×10×Ln(t/D×100)+1.37×10 ・・・(1)
As can be seen from FIG. 4, in order to set α to 0.55 or more, β should be set to a predetermined value or more for each t / D. Therefore, in this embodiment, after approximating the value of β at which α is 0.55 for each t / D with a function (natural logarithm function) having t / D as a variable, β is a value equal to or greater than the approximate function. The hole profile of the rolling roll 10 is set so that More specifically, the hole profile of the rolling roll 10 is set so that the angle β satisfies the following formula (1).
β ≧ 1.13 × 10 × Ln (t / D × 100) + 1.37 × 10 2 (1)

以上のような設定がなされた圧延ロール10を用いて圧延すれば、前述のように、管Pのαを0.55以上とすることができるため、管Pの内面に発生し得るしわの発生乃至進展を効果的に抑制することが可能である。   If rolling is performed using the rolling roll 10 set as described above, the α of the pipe P can be set to 0.55 or more as described above, so that wrinkles that may occur on the inner surface of the pipe P are generated. Thorough progress can be effectively suppressed.

なお、本実施形態に係る各圧延ロール10の孔型プロフィールPRは、図6を参照して前述したように、半径Rの単一の円弧を有し、圧延ロール10のエッジ部E(すなわち、孔型プロフィールPRの端部)は、前記半径Rの円弧の端部に相当する。ただし、本発明に係る各圧延ロール10の孔型プロフィールは、これに限るものではなく、図7に示すような各種の孔型プロフィールを有する圧延ロールを採用することも可能である。図7は、本発明の他の実施形態に係る孔型圧延ロールの孔型プロフィールについて、図6の点線で囲んだ領域に対応する箇所を示す図である。図7(a)に示すように、本発明に係る各圧延ロール10の孔型プロフィールPRとしては、半径の異なる複数の円弧からなり、フランジ側壁面Fと直接交差する形状を採用することも可能であり、この場合における圧延ロール10のエッジ部Eは、最もフランジ側に位置する円弧(半径Rn)の端部に相当する。また、単一の円弧或いは複数の円弧からなる孔型プロフィールPRと圧延ロール10のフランジ側壁面Fとの間に、内方に向けて(孔型中心に向けて)凸状の円弧(半径r)からなる所謂「逃がし」を設けた形状(図7(b))や、直線からなる「逃がし」を設けた形状(図7(c))を採用することも可能である。これらの場合における圧延ロール10のエッジ部Eは、孔型プロフィールPRを構成する円弧の端部(最もフランジ側に位置する円弧の端部)に相当する。   Note that the hole profile PR of each rolling roll 10 according to the present embodiment has a single arc with a radius R as described above with reference to FIG. The end portion of the hole profile PR) corresponds to the end portion of the arc having the radius R. However, the hole profile of each rolling roll 10 according to the present invention is not limited to this, and it is also possible to employ a rolling roll having various hole profiles as shown in FIG. FIG. 7 is a view showing a portion corresponding to a region surrounded by a dotted line in FIG. 6 for a hole profile of a hole rolling roll according to another embodiment of the present invention. As shown in FIG. 7 (a), as the hole profile PR of each rolling roll 10 according to the present invention, it is possible to adopt a shape that is composed of a plurality of arcs having different radii and intersects the flange side wall surface F directly. In this case, the edge E of the rolling roll 10 corresponds to the end of the arc (radius Rn) located closest to the flange. Further, a convex arc (radius r) inward (toward the center of the hole mold) between the hole profile PR formed of a single arc or a plurality of arcs and the flange side wall surface F of the rolling roll 10. It is also possible to adopt a shape (FIG. 7B) provided with a so-called “relief” made up of ()) or a shape provided with a “relief” made up of a straight line (FIG. 7C). The edge E of the rolling roll 10 in these cases corresponds to the end of the arc that forms the hole profile PR (the end of the arc that is closest to the flange).

また、本実施形態では、3ロール式の定径圧延装置を例に挙げて説明したが、本発明は、これに限るものではなく、4ロール式や2ロール式など、各スタンドに複数の孔型圧延ロールを備えた定径圧延装置に対して同様に適用可能である。   In the present embodiment, a three-roll type constant diameter rolling device has been described as an example. However, the present invention is not limited to this, and a plurality of holes are provided in each stand such as a four-roll type or a two-roll type. The present invention can be similarly applied to a constant diameter rolling apparatus provided with a die rolling roll.

Claims (4)

各スタンドに複数の孔型圧延ロールを備えた複数のスタンドからなる定径圧延装置を用いて管を定径圧延する工程を含む管の製造方法であって、
前記各スタンドにおいて互いに隣接する孔型圧延ロールの対向するエッジ部にそれぞれ接線を引き、当該接線の成す角度の全スタンドでの最小値をβ(deg)、前記定径圧延装置出側での管の外径をD(mm)、前記定径圧延装置出側での管の肉厚をt(mm)とした場合に、10(%)<t/D<40(%)において、前記角度βが以下の式(1)を満足するような孔型圧延ロールを用いて、50%以上の外径加工度で定径圧延する工程を含むことを特徴とする管の製造方法。
β≧1.13×10×Ln(t/D×100)+1.37×10 ・・・(1)
ただし、外径加工度は、前記定径圧延装置入側での管の外径をDi(mm)とした場合に、以下の式(2)で定義される値である。
外径加工度=(Di−D)/Di×100(%) ・・・(2)
A method of manufacturing a pipe, comprising a step of constant-diameter rolling of a pipe using a constant-diameter rolling apparatus comprising a plurality of stands each provided with a plurality of perforated rolling rolls,
In each of the stands, a tangent line is drawn to each of the opposing edge portions of the hole rolls adjacent to each other, and the minimum value of all the stands formed by the tangent line is β (deg). When the outer diameter of the tube is D (mm) and the wall thickness of the tube on the outlet side of the constant diameter rolling apparatus is t (mm ), the angle β is 10 (%) <t / D <40 (%). Using a perforated rolling roll satisfying the following formula (1), the method includes a step of constant-diameter rolling at an outer diameter working degree of 50% or more .
β ≧ 1.13 × 10 × Ln (t / D × 100) + 1.37 × 10 2 (1)
However, the outer diameter processing degree is a value defined by the following formula (2), where Di (mm) is the outer diameter of the pipe on the inlet side of the constant diameter rolling apparatus.
Degree of outer diameter processing = (Di−D) / Di × 100 (%) (2)
前記管が炭素鋼管であることを特徴とする請求項1に記載の管の製造方法。The method of manufacturing a pipe according to claim 1, wherein the pipe is a carbon steel pipe. 各スタンドに複数の孔型圧延ロールを備えた複数のスタンドからなり、50%以上の外径加工度で管を定径圧延する定径圧延装置であって、
前記各スタンドにおいて互いに隣接する孔型圧延ロールの対向するエッジ部にそれぞれ接線を引き、当該接線の成す角度の全スタンドでの最小値をβ(deg)、前記定径圧延装置出側での管の外径をD(mm)、前記定径圧延装置出側での管の肉厚をt(mm)とした場合に、10(%)<t/D<40(%)において、前記角度βが以下の式(1)を満足することを特徴とする定径圧延装置。
β≧1.13×10×Ln(t/D×100)+1.37×10 ・・・(1)
ただし、外径加工度は、前記定径圧延装置入側での管の外径をDi(mm)とした場合に、以下の式(2)で定義される値である。
外径加工度=(Di−D)/Di×100(%) ・・・(2)
Ri plurality of stands Tona having a plurality of grooved rolls in each stand, a constant径圧rolling apparatus for the constant-radius rolling the tube with more than 50% of the outer diameter working ratio,
In each of the stands, a tangent line is drawn to each of the opposing edge portions of the hole rolls adjacent to each other, and the minimum value of all the stands formed by the tangent line is β (deg). When the outer diameter of the tube is D (mm) and the wall thickness of the tube on the outlet side of the constant diameter rolling apparatus is t (mm ), the angle β is 10 (%) <t / D <40 (%). Satisfies the following formula (1).
β ≧ 1.13 × 10 × Ln (t / D × 100) + 1.37 × 10 2 (1)
However, the outer diameter processing degree is a value defined by the following formula (2), where Di (mm) is the outer diameter of the pipe on the inlet side of the constant diameter rolling apparatus.
Degree of outer diameter processing = (Di−D) / Di × 100 (%) (2)
前記管が炭素鋼管であることを特徴とする請求項3に記載の定径圧延装置。The constant diameter rolling apparatus according to claim 3, wherein the pipe is a carbon steel pipe.
JP2006511469A 2004-03-29 2005-03-23 Pipe manufacturing method and constant diameter rolling apparatus Active JP4650747B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004096821 2004-03-29
JP2004096821 2004-03-29
PCT/JP2005/005198 WO2005092531A1 (en) 2004-03-29 2005-03-23 Tube manufacturing method and apparatus for fixed diameter rolling

Publications (2)

Publication Number Publication Date
JPWO2005092531A1 JPWO2005092531A1 (en) 2008-02-07
JP4650747B2 true JP4650747B2 (en) 2011-03-16

Family

ID=35056038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006511469A Active JP4650747B2 (en) 2004-03-29 2005-03-23 Pipe manufacturing method and constant diameter rolling apparatus

Country Status (4)

Country Link
EP (1) EP1731234B1 (en)
JP (1) JP4650747B2 (en)
CN (1) CN100409953C (en)
WO (1) WO2005092531A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101410194B (en) * 2006-03-29 2012-07-04 住友金属工业株式会社 Cold finish seamless steel pipe for drive shaft and method for producing the same
JP5273036B2 (en) * 2007-03-30 2013-08-28 新日鐵住金株式会社 Cold-finished seamless steel pipe for integrally formed drive shaft, drive shaft using the same, and method for manufacturing the cold-finished seamless steel pipe
CN101823075B (en) * 2010-05-25 2013-04-24 攀钢集团有限公司 Rolling method for sharpening head and tail wall thickness of seamless steel tube
JP5003833B1 (en) 2011-03-31 2012-08-15 住友金属工業株式会社 Method for producing drawing roll and drawing roll
WO2020189140A1 (en) * 2019-03-15 2020-09-24 Jfeスチール株式会社 Method for manufacturing seamless square steel tube

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61216805A (en) * 1985-03-22 1986-09-26 Nippon Kokan Kk <Nkk> Multi-stand continuous drawing and rolling method for metallic pipe
JPH10156412A (en) * 1996-11-26 1998-06-16 Sumitomo Metal Ind Ltd Rolling roll for tubing and rolling method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5728604A (en) * 1980-07-25 1982-02-16 Sumitomo Metal Ind Ltd Caliber roll
US5713234A (en) * 1995-01-10 1998-02-03 Sumitomo Metal Industries, Ltd. Piercing-rolling method and piercing-rolling apparatus for seamless tubes
DE19506858C1 (en) * 1995-02-14 1996-01-18 Mannesmann Ag Roll pass design for 3-roll passes of mandrel-less tube reducing mills
CN1141191C (en) * 1995-05-10 2004-03-10 住友金属工业株式会社 Method for boring/rolling seamless steel pipe and apparatus thereof
DE19539408C2 (en) * 1995-10-11 2003-03-20 Sms Demag Ag Caliber contour of the roll of a tube rolling mill
DE10201717C1 (en) * 2002-01-18 2003-04-10 Sms Meer Gmbh Pipe rolling stand in which at least two rollers work together, takes the measured pipe wall thickness at different peripheral positions to control the roller rotary speeds independently

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61216805A (en) * 1985-03-22 1986-09-26 Nippon Kokan Kk <Nkk> Multi-stand continuous drawing and rolling method for metallic pipe
JPH10156412A (en) * 1996-11-26 1998-06-16 Sumitomo Metal Ind Ltd Rolling roll for tubing and rolling method

Also Published As

Publication number Publication date
JPWO2005092531A1 (en) 2008-02-07
WO2005092531A1 (en) 2005-10-06
EP1731234A1 (en) 2006-12-13
EP1731234B1 (en) 2011-08-03
CN100409953C (en) 2008-08-13
CN1905958A (en) 2007-01-31
EP1731234A4 (en) 2007-10-24

Similar Documents

Publication Publication Date Title
JP4650747B2 (en) Pipe manufacturing method and constant diameter rolling apparatus
JP2015512341A (en) Method for hot rolling Z-section sheet pile
EP1707281B1 (en) Tube reducing apparatus
JP3531810B2 (en) Laura Leveler
JP5003833B1 (en) Method for producing drawing roll and drawing roll
JP7180586B2 (en) Method for manufacturing seamless steel pipe
JP5055848B2 (en) Manufacturing method of electric resistance welded tube with good weld characteristics
JP5849895B2 (en) Drawing rolling device and roll for drawing rolling device
JP4470300B2 (en) Pipe drawing method
JP2973851B2 (en) Tube continuous rolling method and three-roll mandrel mill
JP2008194744A (en) Method of straightening electric resistance welded steel pipe
JP4418617B2 (en) Metal tube rolling method
JP2014166649A (en) Method for manufacturing seamless steel pipe
JP4474744B2 (en) Drawing method of metal tube
US20240017314A1 (en) Method for pre-shaping sheet metal, and computer program and device for carrying out the method
JPH10156412A (en) Rolling roll for tubing and rolling method
JP2994202B2 (en) Manufacturing method of ERW steel pipe with excellent roundness
JP6436181B2 (en) Bending correction method and bending correction apparatus for steel sheet pile
JP4360148B2 (en) Pipe drawing method
JPH11104711A (en) Production method for seamless square shaped steel pipe
JP2822890B2 (en) Mandrel Mill Rolling Equipment Row
JP4284657B2 (en) Perforated rolling roll group, mandrel mill rolling method using the perforated rolling roll group, and mandrel mill
JPH01228613A (en) Manufacture of pipe with external fin
JP4682779B2 (en) ERW pipe manufacturing method with good weld characteristics
JP5124937B2 (en) Manufacturing method of electric resistance welded tube with good weld characteristics

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100813

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101119

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101202

R150 Certificate of patent or registration of utility model

Ref document number: 4650747

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350