JP4650207B2 - Vehicle drive control device - Google Patents

Vehicle drive control device Download PDF

Info

Publication number
JP4650207B2
JP4650207B2 JP2005309715A JP2005309715A JP4650207B2 JP 4650207 B2 JP4650207 B2 JP 4650207B2 JP 2005309715 A JP2005309715 A JP 2005309715A JP 2005309715 A JP2005309715 A JP 2005309715A JP 4650207 B2 JP4650207 B2 JP 4650207B2
Authority
JP
Japan
Prior art keywords
drive
dead zone
vehicle
torque
command
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005309715A
Other languages
Japanese (ja)
Other versions
JP2007124735A (en
Inventor
武志 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2005309715A priority Critical patent/JP4650207B2/en
Publication of JP2007124735A publication Critical patent/JP2007124735A/en
Application granted granted Critical
Publication of JP4650207B2 publication Critical patent/JP4650207B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本発明は、車両用駆動制御装置に関するものである。   The present invention relates to a vehicle drive control device.

従来、各輪を個別に駆動可能な複数の電動モータを備え、例えば何れかのモータ異常を検知したときに、各輪への駆動力の配分を制御して左右輪の駆動力差を調整することにより、車両挙動の安定を図るものがあった(特許文献1参照)。
特開平5−328542号公報
Conventionally, a plurality of electric motors capable of individually driving each wheel has been provided. For example, when any motor abnormality is detected, the distribution of the driving force to each wheel is controlled to adjust the driving force difference between the left and right wheels. As a result, there is one that stabilizes the vehicle behavior (see Patent Document 1).
JP-A-5-328542

ところで、車両駆動用の一般的な電動モータでは、主に電流センサの分解能に起因した振動(駆動力の変動)を抑制するために、電流値やトルクが0となる付近に不感帯が設けられている。しかしながら、上記特許文献1に記載された従来例にあっては、この不感帯による駆動力の誤差を考慮していないので、各輪の駆動力の配分を制御する際に、車両挙動が不安定になったり、駆動力の変動に伴う振動が発生したりする可能性がある。
そこで、本発明は上記の問題に着目してなされたものであり、電動モータの不感帯による駆動力の誤差を排除し、車両挙動を安定させ且つ車両振動を抑制することのできる車両用駆動制御装置の提供を課題としている。
By the way, in a general electric motor for driving a vehicle, a dead zone is provided in the vicinity where the current value and the torque are zero in order to suppress vibration (variation in driving force) mainly due to the resolution of the current sensor. Yes. However, in the conventional example described in Patent Document 1, since the driving force error due to this dead zone is not taken into consideration, the vehicle behavior becomes unstable when controlling the distribution of the driving force of each wheel. Or vibration associated with fluctuations in driving force may occur.
Therefore, the present invention has been made paying attention to the above-mentioned problem, and eliminates an error in the driving force due to the dead zone of the electric motor, stabilizes the vehicle behavior, and suppresses vehicle vibration. Is a challenge.

上記の課題を解決するために、本発明に係る車両用駆動制御装置は、各輪を個別に駆動可能な複数の電動機を備え、複数の電動機に対する夫々の駆動指令を算出し、算出した各駆動指令に応じて複数の電動機を駆動制御するものであって、算出した何れかの駆動指令が不感帯の領域と重なるか否かを判定し、算出した何れかの駆動指令が不感帯の領域と重なるときに、その駆動指令を不感帯の領域外に補正することを特徴とする。
ここで、不感帯の領域とは、電動機が有効に作動しない駆動指令の範囲である。
In order to solve the above-described problem, a vehicle drive control device according to the present invention includes a plurality of electric motors that can individually drive each wheel, calculates respective drive commands for the plurality of electric motors, and calculates each calculated drive. When driving a plurality of electric motors in response to a command, and determining whether any of the calculated drive commands overlaps with the dead zone region, and when any of the calculated drive commands overlaps with the dead zone region Further, the drive command is corrected outside the dead zone region.
Here, the dead zone region is a range of a drive command in which the electric motor does not operate effectively.

本発明に係る車両用駆動制御装置によれば、夫々の駆動指令を不感帯の領域と重ならないように算出する、或いは算出した何れかの駆動指令が不感帯の領域と重なるときに、その駆動指令を不感帯の領域外に補正することで、電動機の不感帯の領域による駆動力の誤差を排除し、車両挙動を安定させ且つ車両振動を抑制することができる。   According to the vehicle drive control device of the present invention, each drive command is calculated so as not to overlap the dead zone region, or when any of the calculated drive commands overlaps the dead zone region, the drive command is issued. By correcting outside the dead zone region, it is possible to eliminate an error in the driving force due to the dead zone region of the electric motor, stabilize the vehicle behavior, and suppress the vehicle vibration.

以下、本発明を実施するための最良の形態を図面に基づいて説明する。
図1は、本発明の概略構成図であり、各車輪1i(i=FL〜RR)を、夫々、電動モータ2iによって個別に駆動可能な電動駆動車両である。各電動モータ2iへの電力は、バッテリ3から供給され、例えばパルス幅変調(PWM)方式のインバータ4iによって直流を交流に変換してから供給される。
Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings.
FIG. 1 is a schematic configuration diagram of the present invention, which is an electrically driven vehicle in which each wheel 1i (i = FL to RR) can be individually driven by an electric motor 2i. The electric power to each electric motor 2i is supplied from the battery 3, and is supplied after converting direct current to alternating current by, for example, a pulse width modulation (PWM) inverter 4i.

各電動モータ2iを駆動制御するはコントローラ5で、このコントローラ5は、後述する駆動制御処理を実行し、インバータ4iに内蔵されたスイッチング素子のデューティ比を調整すると共に、電動モータ2iの界磁電流を調整することにより、各電動モータ2iのトルクを制御する。
なお、コントローラ5には、モニタ回路6で検出する電流値及び電圧値と、車速センサ7で検出する車速と、舵角センサ8で検出する操舵角と、ヨーレイトセンサ9で検出するヨーレイトと、加速度センサ10で検出する横加速度と、アクセルセンサ11で検出するアクセル操作量と、ブレーキセンサ12で検出するブレーキ操作量と、が入力される。
The controller 5 controls the drive of each electric motor 2i. The controller 5 executes a drive control process to be described later, adjusts the duty ratio of the switching element built in the inverter 4i, and controls the field current of the electric motor 2i. Is adjusted to control the torque of each electric motor 2i.
The controller 5 includes a current value and a voltage value detected by the monitor circuit 6, a vehicle speed detected by the vehicle speed sensor 7, a steering angle detected by the steering angle sensor 8, a yaw rate detected by the yaw rate sensor 9, and an acceleration. The lateral acceleration detected by the sensor 10, the accelerator operation amount detected by the accelerator sensor 11, and the brake operation amount detected by the brake sensor 12 are input.

次に、コントローラ5で実行される駆動制御処理を、図2のフローチャートに基づいて説明する。
先ずステップS1では、目標前後加速度Xgを達成するのに必要な総トルク指令Taを算出する。なお、目標前後加速度Xgはアクセル操作量に応じて算出する。
続くステップS2では、総トルク指令Taを均等に分割し、各電動モータ2iへのトルク指令TaFL〜TaRRとして配分する。例えば、図3に示すように、Ta=4の場合、フロント左をTaFL=1、フロント右をTaFR=1、リヤ左をTaRL=1、リヤ右をTaRR=1とする。勿論、発進時や加速時には荷重が後側に移動するので後輪への配分を増加させたり、クルーズ時には後輪への配分を減少させることで直進安定性の向上を図ったりして、車両の走行状態に応じて配分してもよい。
Next, drive control processing executed by the controller 5 will be described based on the flowchart of FIG.
First, in step S1, a total torque command Ta required to achieve the target longitudinal acceleration Xg is calculated. The target longitudinal acceleration Xg is calculated according to the accelerator operation amount.
In the subsequent step S2, the total torque command Ta is equally divided and distributed as torque commands Ta FL to Ta RR to the electric motors 2i. For example, as shown in FIG. 3, when Ta = 4, the front left is Ta FL = 1, the front right is Ta FR = 1, the rear left is Ta RL = 1, and the rear right is Ta RR = 1. Of course, when starting or accelerating, the load moves to the rear, so the distribution to the rear wheels is increased, and during cruises, the distribution to the rear wheels is decreased to improve straight-running stability. You may distribute according to a driving | running | working state.

続くステップS3では、下記(1)式に示すように、目標ヨーレイトγを達成するのに必要な総トルク指令Tyを算出する。目標ヨーレイトγは、左旋回を正値とし、右旋回を負値とする。ここで、Jは車両平面重心回りの慣性能率、Lはトレッド、Rはタイヤ動半径、Fzは横加速度から算出される輪荷重係数である。   In the subsequent step S3, a total torque command Ty necessary to achieve the target yaw rate γ is calculated as shown in the following equation (1). The target yaw rate γ is a positive value for the left turn and a negative value for the right turn. Here, J is an inertial rate around the center of gravity of the vehicle plane, L is a tread, R is a tire moving radius, and Fz is a wheel load coefficient calculated from a lateral acceleration.

Figure 0004650207
Figure 0004650207

なお、目標ヨーレイトγは下記(2)式に従って算出する。ここで、Kはステアリング特性係数(NS=0)、Vは車速、Dはホイールベース、δは操舵角である。   The target yaw rate γ is calculated according to the following equation (2). Here, K is a steering characteristic coefficient (NS = 0), V is a vehicle speed, D is a wheel base, and δ is a steering angle.

Figure 0004650207
Figure 0004650207

続くステップS4では、総トルク指令Tyを均等に分割し、且つ旋回内輪を負値、旋回外輪を正値とし、各電動モータ2iへのトルク指令TyFL〜TyRRとして配分する。例えば、図3に示すように、左旋回でTy=+0.8の場合、フロント左をTyFL=−0.2、フロント右をTyFR=+0.2、リヤ左をTyRL=−0.2、リヤ右をTyRR=+0.2とする。 In subsequent step S4, the total torque command Ty is equally divided, the turning inner wheel is set to a negative value, and the turning outer wheel is set to a positive value, and distributed as torque commands Ty FL to Ty RR to each electric motor 2i. For example, as shown in FIG. 3, when Ty = + 0.8 in a left turn, the front left is Ty FL = −0.2, the front right is Ty FR = + 0.2, and the rear left is Ty RL = −0.0. 2. Ty RR = + 0.2 on the rear right.

続くステップS5では、トルク指令Tai及びTyiの加算によって、各トルク指令TtFL〜TtRRを算出する。すなわち、図3に示すように、総トルク指令Ta=4、総トルク指令Ty=+0.8の場合、フロント左がTtFL=TaFL+TyFL=0.8、フロント右がTtFR=TaFR+TyFR=1.2、リヤ左がTtRL=TaRL+TyRL=0.8、リヤ右がTtRR=TaRR+TyRR=1.2となる。 In subsequent step S5, the torque commands Tt FL to Tt RR are calculated by adding the torque commands Tai and Tyi. That is, as shown in FIG. 3, when the total torque command Ta = 4 and the total torque command Ty = + 0.8, the front left is Tt FL = Ta FL + Ty FL = 0.8, and the front right is Tt FR = Ta FR + Ty FR = 1.2, rear left is Tt RL = Ta RL + Ty RL = 0.8, and rear right is Tt RR = Ta RR + Ty RR = 1.2.

続くステップS6では、トルク指令TtFL〜TtRRの何れかが不感帯の領域と重なっているか否かを判定する。
ここで、不感帯の領域とは、電動モータ2が有効に作動しないトルク指令Ttの範囲のことであり、主に電流センサの分解能に起因した振動(駆動力の変動)を抑制することを目的として電流値やトルクが0となる付近に設けられている。例えば、図4に示すように、トルク指令が『−1<Tt<+1』の範囲にあるときに、実際に出力されるモータトルクは『Tm=0』となり、トルク指令が『Tt≦−1』となるときに、モータトルクが『Tm≦−1』となり、トルク指令が『Tt≧1』となるときに、モータトルクが『Tm≧1』となる。
In the subsequent step S6, it is determined whether or not any of the torque commands Tt FL to Tt RR overlaps the dead zone region.
Here, the dead zone region is a range of the torque command Tt in which the electric motor 2 does not operate effectively, and mainly for the purpose of suppressing vibration (variation in driving force) due to the resolution of the current sensor. It is provided in the vicinity where the current value and torque are zero. For example, as shown in FIG. 4, when the torque command is in the range of “−1 <Tt <+1”, the actually output motor torque is “Tm = 0” and the torque command is “Tt ≦ −1”. ], The motor torque becomes “Tm ≦ −1”, and when the torque command becomes “Tt ≧ 1”, the motor torque becomes “Tm ≧ 1”.

ここで、トルク指令TtFL〜TtRRの何れかが不感帯の領域と重なっているときにはステップS7に移行する。一方、トルク指令TtFL〜TtRRの何れも不感帯の領域と重なっていなければステップS8に移行する。
ステップS7では、各トルク指令TtFL〜TtRRを、不感帯の領域と重ならないように、且つ左輪及び右輪へのトルク指令の差分(〔TtFL+TtRL〕−〔TtFR+TtRR〕)を維持するように補正する。
Here, when any of the torque commands Tt FL to Tt RR overlaps the dead zone region, the process proceeds to step S7. On the other hand, if none of the torque commands Tt FL to Tt RR overlaps the dead zone region, the process proceeds to step S8.
In step S7, the torque commands Tt FL to Tt RR are set so as not to overlap with the dead zone region, and the difference between the torque commands to the left and right wheels ([Tt FL + Tt RL ] − [Tt FR + Tt RR ]). Correct to maintain.

具体的には、先ず不感帯の領域と重なっているトルク指令Ttを、その絶対値が不感帯の領域外の最小値となるように補正する。例えば、図5に示すように、フロント左とリヤ左のトルク指令が共にTt=0.8で不感帯の領域と重なっている場合(Tt<1)、これらフロント左とリヤ左のトルク指令を共にTt=1.0に補正する。そして、左輪及び右輪へのトルク指令の差分を維持するために、フロント右とリヤ右のトルク指令を共にTt=1.2からTt=1.4へと補正する。
続くステップS8では、各トルク指令TtFL〜TtRRに応じて夫々の電動モータ2FL〜2RRを駆動制御してから所定のメインプログラムに復帰する。
Specifically, first, the torque command Tt overlapping the dead zone region is corrected so that the absolute value thereof becomes the minimum value outside the dead zone region. For example, as shown in FIG. 5, when both the front left and rear left torque commands overlap with the dead zone region at Tt = 0.8 (Tt <1), both the front left and rear left torque commands are Correction to Tt = 1.0. In order to maintain the difference in torque command between the left wheel and the right wheel, both the front right and rear right torque commands are corrected from Tt = 1.2 to Tt = 1.4.
In the subsequent step S8, the electric motors 2FL to 2RR are driven and controlled in accordance with the torque commands Tt FL to Tt RR , and then returned to a predetermined main program.

なお、トルク指令Ttの正負が不感帯の領域外で切換わるときは、このトルク指令Ttを、その絶対値が不感帯の領域外の最小値から増加するように補正するものとする。つまり、『Tt>1』の状態から『Tt<−1』の状態へと移行するときには、トルク指令をTt=−1から増加させ、逆に『Tt<−1』の状態から『Tt>1』の状態へと移行するときには、トルク指令をTt=1から増加させる。
以上より、電動モータ2FL〜2RRが「複数の電動機」に対応し、コントローラ5で実行される図2の駆動制御処理が「制御手段」に対応する。また、トルク指令Ttが「駆動指令」に対応する。
When the sign of the torque command Tt is switched outside the dead zone region, the torque command Tt is corrected so that its absolute value increases from the minimum value outside the dead zone region. That is, when shifting from the state of “Tt> 1” to the state of “Tt <−1”, the torque command is increased from Tt = −1, and conversely from the state of “Tt <−1” to “Tt> 1”. ], The torque command is increased from Tt = 1.
From the above, the electric motors 2FL to 2RR correspond to “a plurality of electric motors”, and the drive control processing of FIG. 2 executed by the controller 5 corresponds to “control means”. The torque command Tt corresponds to the “drive command”.

次に、上記実施形態の動作や作用効果について説明する。
車両駆動用の一般的な電動モータでは、前述したように、トルク指令Ttに応じたモータトルクTmを出力できない不感帯の領域が設けられている。そのため、トルク指令Ttによって電動モータ2を駆動しても、トルク指令Ttが不感帯の領域と重なるときに、電動モータ2で実際に出力されるモータトルクTmが0になってしまい誤差が生じてしまう。
Next, operations and effects of the above embodiment will be described.
In a general electric motor for driving a vehicle, as described above, a dead zone region in which the motor torque Tm corresponding to the torque command Tt cannot be output is provided. Therefore, even if the electric motor 2 is driven by the torque command Tt, when the torque command Tt overlaps the dead zone region, the motor torque Tm that is actually output by the electric motor 2 becomes 0, resulting in an error. .

例えば、図6に示すように、総トルク指令がTa=4、Ty=0のときに、各トルク指令をTti=1として略直進走行しているとする。この状態から、総トルク指令がTa=4、Ty=+0.8となり、これを各トルク指令に配分すると、前述したようにフロント左とリヤ左が共にTt=0.8となり、フロント右とリヤ右が共にTt=1.2となる。したがって、フロント左とリヤ左は不感帯の領域と重なることでモータトルクがTm=0になってしまうので、目標ヨーレイトγや目標前後加速度Xgを達成できなくなり、車両挙動が不安定になったり、モータトルクTmの変動に伴う振動が発生したりする可能性がある。   For example, as shown in FIG. 6, when the total torque command is Ta = 4 and Ty = 0, it is assumed that each torque command is set to Tti = 1 and the vehicle is traveling substantially straight. From this state, the total torque command is Ta = 4, Ty = + 0.8, and when this is distributed to each torque command, both the front left and rear left are Tt = 0.8, as described above, and the front right and rear Both right are Tt = 1.2. Accordingly, since the motor torque becomes Tm = 0 because the front left and rear left overlap with the dead zone region, the target yaw rate γ and the target longitudinal acceleration Xg cannot be achieved, the vehicle behavior becomes unstable, the motor There is a possibility that vibration accompanying the variation of the torque Tm may occur.

そこで、本実施形態では、各トルク指令Ttiを不感帯の領域と重ならないように算出する。すなわち、所定の割合で配分した各トルク指令Ttiのうち、不感帯の領域と重なるトルク指令Ttを検出したら(ステップS6の判定が“Yes”)、そのトルク指令Ttを不感帯の領域外に補正する。このとき、不感帯の領域に重なったトルク指令Ttを、不感帯の領域外に補正する際、左輪及び右輪へのトルク指令Ttの差分(〔TtFL+TtRL〕−〔TtFR+TtRR〕)を維持するように、各トルク指令TtFL〜TtRRを補正する。 Therefore, in the present embodiment, each torque command Tti is calculated so as not to overlap the dead zone region. In other words, if a torque command Tt that overlaps with the dead zone region is detected among the torque commands Tti distributed at a predetermined ratio (“Yes” in step S6), the torque command Tt is corrected outside the dead zone region. At this time, when the torque command Tt overlapping the dead zone is corrected outside the dead zone, the difference ([Tt FL + Tt RL ] − [Tt FR + Tt RR ]) between the torque commands Tt to the left and right wheels is calculated. The torque commands Tt FL to Tt RR are corrected so as to be maintained.

すなわち、図7に示すように、フロント左とリヤ左のトルク指令を共にTt=0.8からTt=1.0へと補正すると共に、フロント右とリヤ右のトルク指令を共にTt=1.2からTt=1.4へと補正する。
これにより、上記のような不感帯の領域による駆動力の誤差を排除し、車両挙動を安定させることができる。また、モータトルクTmの変動を抑制することもできるので、図8に示すように、ヨー角加速度の変動を滑らかにし、車両振動を抑制することもできる。さらに、目標前後加速度Xgや目標ヨーレイトγを確実に達成することができるので、特に車両の直進安定性や良好な旋回性能を確保しつつ、上記の効果を得ることができる。
That is, as shown in FIG. 7, both the front left and rear left torque commands are corrected from Tt = 0.8 to Tt = 1.0, and the front right and rear right torque commands are both Tt = 1. 2 is corrected to Tt = 1.4.
Thereby, the error of the driving force due to the above dead zone region can be eliminated, and the vehicle behavior can be stabilized. Moreover, since the fluctuation | variation of the motor torque Tm can also be suppressed, as shown in FIG. 8, the fluctuation | variation of a yaw angular acceleration can be made smooth and a vehicle vibration can also be suppressed. Furthermore, since the target longitudinal acceleration Xg and the target yaw rate γ can be reliably achieved, the above-described effects can be obtained while ensuring the straight running stability and good turning performance of the vehicle.

また、不感帯の領域と重なっているトルク指令Ttを、その絶対値が不感帯の領域外の最小値となるように補正する。これにより、全てのトルク指令TtFL〜TtRRの総和を最小限に留めることができるので、電力消費の増大を防止することができる。
また、トルク指令Ttの正負が不感帯の領域外で切換わるときは、このトルク指令Ttを、その絶対値が不感帯の領域外の最小値から増加するように補正する。これにより、モータトルクTmの急変を抑制することができるので、車両振動の発生を抑制することができる。
Further, the torque command Tt overlapping the dead zone region is corrected so that the absolute value thereof becomes the minimum value outside the dead zone region. Thereby, since the sum total of all the torque commands Tt FL to Tt RR can be kept to a minimum, an increase in power consumption can be prevented.
When the sign of the torque command Tt is switched outside the dead zone region, the torque command Tt is corrected so that the absolute value thereof increases from the minimum value outside the dead zone region. Thereby, since sudden change of motor torque Tm can be suppressed, generation | occurrence | production of vehicle vibration can be suppressed.

なお、上記の一実施形態では、目標ヨーレイトγを達成するのに必要な総トルク指令Tyを、全輪に均等に配分しているが、これに限定されるものではない。操舵輪のモータトルクTmが左右輪で異なると、ステアリング系に入力されるアンバランスなトルク反力によって運転者に違和感を与える可能性があるので、操舵輪に対するトルク指令Ttは、左右輪での差分を可及的に小さくすることが望ましい。そこで、操舵輪に対するトルク指令Ttの左右輪での差分が0となるように、総トルク指令Tyは後輪のみに配分するようにしてもよい。これにより、ステアリング系に入力されるアンバランスなトルク反力を軽減することが出来るので、良好な操舵フィーリングを確保することができる。   In the above-described embodiment, the total torque command Ty necessary to achieve the target yaw rate γ is evenly distributed to all the wheels. However, the present invention is not limited to this. If the motor torque Tm of the steered wheels is different between the left and right wheels, the driver may feel uncomfortable due to the unbalanced torque reaction force input to the steering system. It is desirable to make the difference as small as possible. Therefore, the total torque command Ty may be distributed only to the rear wheels so that the difference between the left and right torque commands Tt for the steered wheels becomes zero. As a result, an unbalanced torque reaction force input to the steering system can be reduced, and a good steering feeling can be ensured.

また、上記の一実施形態では、4輪全てを個別に駆動可能な構成としているが、これに限定されるものではない。要は、複数の車輪を個別に駆動可能な構成であればよいので、例えば前輪をエンジンで駆動し、リヤの左右輪を夫々個別に駆動な構成としてもよい。さらには、本発明を、2輪車両や3輪車両、或いは5輪以上の車両に適用してもよい。   In the above-described embodiment, all four wheels can be individually driven. However, the present invention is not limited to this. In short, any configuration may be used as long as the plurality of wheels can be individually driven. For example, the front wheels may be driven by the engine and the rear left and right wheels may be individually driven. Furthermore, the present invention may be applied to a two-wheel vehicle, a three-wheel vehicle, or a vehicle having five or more wheels.

本発明の概略構成図である。It is a schematic block diagram of this invention. 駆動制御処理を示すフローチャートである。It is a flowchart which shows a drive control process. トルク指令の配分を説明する図である。It is a figure explaining distribution of a torque command. 電動モータの不感帯の領域を説明する図である。It is a figure explaining the area | region of a dead zone of an electric motor. トルク指令の補正について説明した図である。It is a figure explaining correction of a torque command. トルク指令が不感帯の領域と重なるときのタイムチャートである。It is a time chart when a torque command overlaps with a dead zone region. トルク指令を補正したときのタイムチャートである。It is a time chart when a torque command is corrected. ヨー角加速度のタイムチャートである。It is a time chart of a yaw angular acceleration.

符号の説明Explanation of symbols

1 車輪
2FL〜2RR 電動モータ
3 バッテリ
4FL〜4RR インバータ
5 コントローラ
6 モニタ回路
7 車速センサ
8 舵角センサ
9 ヨーレイトセンサ
10 加速度センサ
11 アクセルセンサ
12 ブレーキセンサ
DESCRIPTION OF SYMBOLS 1 Wheel 2FL-2RR Electric motor 3 Battery 4FL-4RR Inverter 5 Controller 6 Monitor circuit 7 Vehicle speed sensor 8 Steering angle sensor 9 Yaw rate sensor 10 Acceleration sensor 11 Acceleration sensor 12 Brake sensor

Claims (5)

各輪を個別に駆動可能な複数の電動機と、該複数の電動機に対する夫々の駆動指令を算出し、算出した各駆動指令に応じて前記複数の電動機を駆動制御する制御手段と、を備えた車両用駆動制御装置において、
前記制御手段は、算出した何れかの前記駆動指令値が不感帯の領域と重なるか否かを判定し、算出した何れかの前記駆動指令が不感帯の領域と重なるときに、当該駆動指令を不感帯の領域外に補正することを特徴とする車両用駆動制御装置。
A vehicle comprising: a plurality of electric motors that can individually drive each wheel; and a control unit that calculates respective drive commands for the plurality of electric motors, and drives and controls the plurality of electric motors according to the calculated drive commands. Drive control device for
The control means determines whether any of the calculated drive command values overlaps with the dead zone region, and when any of the calculated drive commands overlaps with the dead zone region, A vehicle drive control device, wherein the correction is performed outside the region.
前記制御手段は、前記駆動指令を不感帯の領域外に補正する際、左輪及び右輪への前記駆動指令の差分を維持するように、前記夫々の駆動指令を補正することを特徴とする請求項に記載の車両用駆動制御装置。 The said control means correct | amends each said drive command so that the difference of the said drive command to a left wheel and a right wheel may be maintained, when correcting the said drive command outside the area | region of a dead zone. the vehicle drive control device according to 1. 前記制御手段は、算出した何れかの前記駆動指令が不感帯の領域と重なるときに、当該駆動指令を、その絶対値が不感帯の領域外の最小値となるように補正することを特徴とする請求項1又は2に記載の車両用駆動制御装置。 The control means, when any of the calculated drive commands overlaps a dead zone region, corrects the drive command so that its absolute value becomes a minimum value outside the dead zone region. Item 3. The vehicle drive control device according to Item 1 or 2 . 前記制御手段は、操舵輪に対する前記駆動指令を、左輪及び右輪への差分が最小となるように算出することを特徴とする請求項1〜3の何れか一項に記載の車両用駆動制御装置。 The vehicle drive control according to any one of claims 1 to 3 , wherein the control means calculates the drive command for the steered wheel so that a difference between the left wheel and the right wheel is minimized. apparatus. 前記制御手段は、前記駆動指令の正負が不感帯の領域外で切換わるとき、当該駆動指令を、その絶対値が不感帯の領域外の最小値から増加するように補正することを特徴とする請求項1〜4の何れか一項に記載の車両用駆動制御装置。 The control means corrects the drive command so that the absolute value of the drive command increases from the minimum value outside the dead zone when the sign of the drive command is switched outside the dead zone. The vehicle drive control apparatus as described in any one of 1-4 .
JP2005309715A 2005-10-25 2005-10-25 Vehicle drive control device Expired - Fee Related JP4650207B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005309715A JP4650207B2 (en) 2005-10-25 2005-10-25 Vehicle drive control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005309715A JP4650207B2 (en) 2005-10-25 2005-10-25 Vehicle drive control device

Publications (2)

Publication Number Publication Date
JP2007124735A JP2007124735A (en) 2007-05-17
JP4650207B2 true JP4650207B2 (en) 2011-03-16

Family

ID=38147966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005309715A Expired - Fee Related JP4650207B2 (en) 2005-10-25 2005-10-25 Vehicle drive control device

Country Status (1)

Country Link
JP (1) JP4650207B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5841265B2 (en) * 2012-10-04 2016-01-13 トヨタ自動車株式会社 Wheel control device, vehicle, wheel control method
JP5862636B2 (en) 2013-10-16 2016-02-16 トヨタ自動車株式会社 Braking / driving force control device for vehicle
JP5896173B2 (en) 2013-12-09 2016-03-30 トヨタ自動車株式会社 Braking / driving force control device for vehicle
US11414184B2 (en) * 2019-03-15 2022-08-16 Textron Innovations Inc. Electric distributed propulsion with different rotor rotational speeds

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01298903A (en) * 1988-05-25 1989-12-01 Nippon Steel Corp Controller for electric motor vehicle
JPH09149510A (en) * 1995-11-22 1997-06-06 Shinko Electric Co Ltd Electric transporting vehicle
JP2004098841A (en) * 2002-09-09 2004-04-02 Koyo Seiko Co Ltd Electric power steering device
JP2005204436A (en) * 2004-01-16 2005-07-28 Nissan Motor Co Ltd Drive force control device of wheel independently driven type electric vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01298903A (en) * 1988-05-25 1989-12-01 Nippon Steel Corp Controller for electric motor vehicle
JPH09149510A (en) * 1995-11-22 1997-06-06 Shinko Electric Co Ltd Electric transporting vehicle
JP2004098841A (en) * 2002-09-09 2004-04-02 Koyo Seiko Co Ltd Electric power steering device
JP2005204436A (en) * 2004-01-16 2005-07-28 Nissan Motor Co Ltd Drive force control device of wheel independently driven type electric vehicle

Also Published As

Publication number Publication date
JP2007124735A (en) 2007-05-17

Similar Documents

Publication Publication Date Title
JP5790871B2 (en) Driving force control device for electric vehicle and driving force control method for electric vehicle
JP6663333B2 (en) Vehicle control device and vehicle control method
JP5550891B2 (en) Control device and control method for electric vehicle
US20050179220A1 (en) Stabilizer control apparatus
CN107848526B (en) Vehicle turning control device
JP4956800B2 (en) Driving force control device for wheel independent electric vehicle
JP2009225537A (en) Driving force control device
EP2700564B1 (en) Electric power steering system
CN109383617B (en) Electric power steering apparatus and control method thereof
JP2005204436A (en) Drive force control device of wheel independently driven type electric vehicle
JP2013099242A (en) Method for controlling vehicle using in-wheel system
JP4650207B2 (en) Vehicle drive control device
US20100087988A1 (en) Electric power steering system and method for controlling the same
JP2010052525A (en) Vehicular electric power steering device
JP4561189B2 (en) Vehicle motion control device
JP2005184911A (en) Motor input and output factor correcting device of wheel-independent drive electric vehicle
WO2014103522A1 (en) Control device for electric vehicle and control method for electric vehicle
JP2010155561A (en) Vehicle control device and vehicle control method
JP2007055358A (en) Right and left torque distribution controller for vehicle
JP4747720B2 (en) Vehicle steering system
JP2009225538A (en) Driving force control device
JP2006069496A (en) Front-rear wheel steering control device
JP2007190941A (en) Driving force distribution device of four-wheel independent drive vehicle
JP2010058688A (en) Vehicular steering device
JP5833180B2 (en) Control device for electric vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100917

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101116

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101129

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees