JP4649790B2 - Pure water production equipment - Google Patents

Pure water production equipment Download PDF

Info

Publication number
JP4649790B2
JP4649790B2 JP2001219637A JP2001219637A JP4649790B2 JP 4649790 B2 JP4649790 B2 JP 4649790B2 JP 2001219637 A JP2001219637 A JP 2001219637A JP 2001219637 A JP2001219637 A JP 2001219637A JP 4649790 B2 JP4649790 B2 JP 4649790B2
Authority
JP
Japan
Prior art keywords
water
tower
turbidity
filter medium
string
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001219637A
Other languages
Japanese (ja)
Other versions
JP2003024714A (en
Inventor
富士夫 小出
浩泰 越智
Original Assignee
日本錬水株式会社
株式会社トーケミ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本錬水株式会社, 株式会社トーケミ filed Critical 日本錬水株式会社
Priority to JP2001219637A priority Critical patent/JP4649790B2/en
Publication of JP2003024714A publication Critical patent/JP2003024714A/en
Application granted granted Critical
Publication of JP4649790B2 publication Critical patent/JP4649790B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Filtration Of Liquid (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、純水製造装置に関し、詳しくは、各種の脱塩装置の前段に繊維状の濾材を使用した特定構造の濁質除去装置を設置した純水製造装置に関する。
【0002】
【従来の技術】
特許第2940648号公報には、イオン交換樹脂塔から成る脱塩装置の前段に、逆浸透膜モジュール、限外濾過膜装置またはマイクロフィルターから成る膜分離装置を設置した純水製造装置が提案されている。斯かる提案によれば、原水中の濁質のために従来必要であったイオン交換樹脂塔の逆洗工程を無くして樹脂の再生時間を短縮し、また、イオン交換樹脂塔の上方に設けられる空間部(フリーボード)を無くしてイオン交換樹脂塔を小さく且つシンプルにすることが出来る。
【0003】
しかしながら、上記の提案に係る純水製造装置の場合は、特に高濁度原水を通水した際に短時間で膜分離装置の閉塞が起こり、長時間に亘り安定運転を行なうことが出来ない。
【0004】
【発明が解決しようとする課題】
本発明は、上記実情に鑑みなされたものであり、その目的は、イオン交換樹脂塔から成る脱塩装置を備えた純水製造装置であって、イオン交換樹脂塔の逆洗工程をなくして樹脂の再生時間を短縮し、また、イオン交換樹脂塔の上方に設けられる空間部(フリーボード)をなくしてイオン交換樹脂塔を小さく且つシンプルにすることが出来、しかも、高濁度原水を通水しても長時間に亘り安定運転を行なうことが出来る様に改良された純水製造装置を提供することにある。また、本発明の目的は、イオン交換樹脂塔以外の脱塩装置を備えた純水製造装置であって、上記と同様に長時間に亘り安定運転を行なうことが出来る様に改良された純水製造装置を提供することにある。
【0005】
【課題を解決するための手段】
すなわち、本発明の要旨は、脱塩装置の前段に濁質除去装置を設置して成る純水製造装置であって、上記の濁質除去装置は、下向流形式で原水が供給され且つ上向流形式で洗浄水が供給される濁質除去装置であって、塔(1)の頂部にはバルブ付の原水供給配管と洗浄廃水排出配管とが設けられ、塔(1)の底部にはバルブ付の処理水排出配管と洗浄水供給配管と空気供給配管とが設けられ、塔内部には上部支持体(2)と下部支持体(3)とが配置され、上部支持体(2)と下部支持体(3)との間には芯紐および当該芯紐の周側に突設された濁質捕捉材から成る複数の濾材(4)が当該濾材の端部の上部吊り紐(7)と下部吊り紐(8)とによって懸垂状態で固定され、濾材(4)の芯紐ならびに上部吊り紐(7)及び下部吊り紐(8)は流水方向に沿って屈曲変形可能に構成され、上部支持体(2)と下部支持体(3)との間の距離(LA)、濾材(4)の長さ(LB)、上部吊り紐(7)の長さ(Lb1)、下部吊り紐(8)の長さ(Lb2)の関係が以下に規定する式(1)〜(3)を満足する濁質除去装置であることを特徴とする純水製造装置に存する。
【0006】
【数2】
LA<(Lb1+LB+Lb2) (1)
LB<LA (2)
(LB+Lb2)<LA<(LB+Lb1) (3)
【0007】
【発明の実施の形態】
以下、本発明を添付図面に基づいて詳細に説明する。図1は、本発明の純水製造装置に使用される濁質除去装置(A)の好ましい一例の模式的説明図であり、図1(a)は原水処理運転の説明図であり、図1(b)は洗浄運転の説明図である。図2は、本発明の純水製造装置に使用されるイオン交換樹脂塔から成る脱塩装置の一例の概念的説明図である。図3は、本発明の純水製造装置に使用される電気透析装置の一例の概念的説明図である。図4は、本発明の純水製造装置に使用される逆浸透膜モジュールの一例の概念的説明図である。
【0008】
先ず、図1に示す濁質除去装置(A)について説明する。この濁質除去装置は、下向流形式で原水が供給され且つ上向流形式で洗浄水が供給される濁質除去装置である。従って、塔(1)の頂部にはバルブ付の原水供給配管と洗浄廃水排出配管とが設けられ、塔(1)の底部にはバルブ付の処理水排出配管と洗浄水供給配管と空気供給配管とが設けられている。図1に示す装置においては、原水処理運転および洗浄運転で使用される配管は共通しており、バルブ操作によって通水方向が変更される。
【0009】
すなわち、原水処理運転の場合、バルブ(61)及び(62)のみが開状態とされ、濁質を含む原水は、バルブ(61)から配管(51)を経由して塔(1)内に供給される。この際、濾材(4)は後述する様に圧密状態を呈し、原水に同伴された濁質は濾材(4)によって捕捉される。濁質を含まない処理水は、配管(52)を経由してバルブ(62)から排出され、そして、後述の図2に示す処理水槽(9)に貯留される。
【0010】
一方、洗浄運転の場合、原水処理運転時に開状態であったバルブ(61)及び(62)が閉止され、洗浄水は、バルブ(64)から配管(52)を経由して塔(1)内に供給される。一方、空気は、バルブ(63)から配管(53)を経由して塔(1)内に供給される。濾材(4)は後述する様に圧密状態を解除し、濾材(4)から濁質が除去される。空気のバブリング作用により、濾材(4)が振動させられ、濾材(4)に付着した濁質の剥離が促進される。濁質を含む洗浄水は、配管(51)を経由してバルブ(65)から排出される。
【0011】
塔内部には上部支持体(2)と下部支持体(3)とが配置され、上部支持体(2)と下部支持体(3)との間には複数の濾材(4)が当該濾材の端部の上部吊り紐(7)と下部吊り紐(8)とによって懸垂状態で固定されている。
【0012】
上部支持体(2)及び下部支持体(3)の構造は、通水を妨げず且つ吊り紐(7)及び(8)によって濾材(4)を固定し得る構造である限り、特に制限されず、例えば、格子構造、目皿構造、編目構造などを適宜採用し得る。
【0013】
濾材(4)は、芯紐および当該芯紐の周側に突設された濁質捕捉材から成る。
濾材(4)の芯紐ならびに上部吊り紐(7)及び下部吊り紐(8)は流水方向に沿って屈曲変形可能に構成される。斯かる構成は、素材の種類、形態、太さ等の選択によって達成される。
【0014】
上記の各要素は、通常、ポリエステル、ナイロン、ポリ塩化ビニリデン等の合成樹脂素材にて構成される。また、上記の各紐は、組み、撚り、編み、織り、束ね、くけ又は裁断の各加工で得られた各種の紐の他、十分な強度を有する限り、単糸(モノフィラメント)も使用することが出来る。また、濾材(4)の濁質捕捉材の形状は、通常フィルム小片または糸状とされる。濾材(4)の一例としては、撚り加工された芯紐の周側に無数の糸状濁質捕捉材を放射状に突設した濾材が挙げられる。斯かる濾材は、特開平8−299707号に記載されて公知である。なお、濾材(4)の芯紐が長く濁質捕捉材の突設範囲の両端から突出している場合は、両端突出部の芯紐を上部吊り紐(7)及び下部吊り紐(8)として使用することが出来る。
【0015】
濁質除去装置(A)において、上部支持体(2)と下部支持体(3)との間の距離(LA)、濾材(4)の長さ(LB)、上部吊り紐(7)の長さ(Lb1)、下部吊り紐(8)の長さ(Lb2)が以下に規定する式(1)〜(3)を満足する必要がある。
【0016】
【数3】
LA<(Lb1+LB+Lb2) (1)
LB<LA (2)
(LB+Lb2)<LA<(LB+Lb1) (3)
【0017】
すなわち、濁質除去装置(A)において、式(1)に示す様に、濾材(4)と上部支持体(2)と下部支持体(3)の合計長さ(Lb1+LB+Lb2)は、上部支持体(2)と下部支持体(3)との間の距離(LA)より長い。従って、上記の各要素の何れかは塔(1)内に弛んだ状態で存在する。
【0018】
また、式(2)に示す様に、上部支持体(2)と下部支持体(3)との間の距離(LA)は、濾材(4)の長さ(LB)より長い。従って、上部支持体(2)と下部支持体(3)との間には流水方向に沿って濾材(4)が存在しない領域が形成されている。換言れば、流水方向に沿って濾材(4)の可動範囲が形成されている。なお、図1の模式的説明図では濾材(4)同士の間に隙間が存在しているが、実際は濾材(4)同士の間に隙間はなく、複数の濾材(4)は密状態となる様に懸垂され、従って、複数の濾材(4)の全体は、流水方向(上下方向)に沿ってのみ移動する。
【0019】
更に、式(3)に示す様に、濾材(4)と上部吊り紐(7)との合計長さ(LB+Lb1)は、濾材(4)と下部吊り紐(8)との合計長さ(LB+Lb2)より長い。従って、下向流形式で原水が供給される原水処理運転時においては、図1(a)に示す様に、濾材(4)は下部支持体(3)に当接して下部吊り紐(8)と共に塔底部近傍で圧密され、上向流形式で洗浄水が供給される洗浄運転時においては、図1(b)に示す様に、濾材(4)は上部支持体(2)に当接せずに下部吊り紐(8)と共に塔内の上方に伸長した状態となる。
【0020】
以上の結果、濁質除去装置(A)においては、原水処理運転時における濾材の圧密状態と洗浄運転時における濾材の圧密状態の解除とにより、濾材による濁質の捕捉と排出とが効率的に行われる。
【0021】
濁質除去装置(A)において、前記の各要素は以下に規定する式(1’)〜(3’)を満足するのが好ましい。式(1’)〜(3’)中の各要素の大小関係の数値は、装置の経済性を考慮して決定された値である。
【0022】
【数4】
1.01×LA<(Lb1+LB+Lb2)<2.00×LA (1’)
1.01×LB<LA<1.50×LB (2’)
1.01×(LB+Lb2)<LA<1.01×(LB+Lb1) (3’)
【0023】
濁質除去装置(A)の前記した各要素の寸法は次の通りである。すなわち、上部支持体(2)と下部支持体(3)との間の距離(LA)は100〜400cm、濾材(4)の長さ(LB)は70〜300cm、上部吊り紐(7)の長さ(Lb1)は10〜250cm、下部吊り紐(8)の長さ(Lb2)は5〜20cm、塔(1)の直径は20〜360cmである。
【0024】
次に、図2に示すイオン交換樹脂塔から成る脱塩装置について説明する。この脱塩装置は、カチオン交換塔(B)及びアニオン交換塔(D)の間に好ましい態様として脱炭酸塔(C)を配置して構成されている。
【0025】
カチオン交換塔(B)には、例えば、三菱化学社製「ダイヤイオンSK1B」(Na型)等の公知の陽イオン交換樹脂が充填され、アニオン交換塔(D)には、例えば、三菱化学社製「ダイヤイオンSA10A」(Cl型)等の公知の陰イオン交換樹脂が充填される。脱炭酸塔(C)は、下部から空気を吹き込み、陽イオン交換された酸性水中に含まれるHCO3 -をCO2として除去することにより、アニオン交換塔(D)における陰イオン交換樹脂のイオン負荷を減らす。
【0026】
前述の濁質除去装置(A)で処理された濁質を含まない処理水は、配管(52)を経由してバルブ(62)から排出され、処理水槽(9)に貯留された後、ポンプ(10)により配管(54)を経由してカチオン交換塔(B)に供給され、配管(55)を経由して脱炭酸塔(C)に供給され、ポンプ(11)により配管(56)を経由してアニオン交換塔(D)に供給され、配管(57)を経由して処理水槽(12)に貯留される。
【0027】
本発明の純水製造装置の脱塩装置は電気透析装置であってもよい。電気透析装置は、電気再生式純水製造装置とも呼ばれる。斯かる電気再生式純水製造装置はとして、本出願人により提案された、特開平3−224688号公報、同4−250882号公報、同5−64786号公報、同7−236889号公報、同9−24374号公報などがある。
【0028】
上記の電気再生式純水製造装置(電気透析装置)は、基本的には、陽極と陰極との間に複数の陰イオン交換膜と陽イオン交換膜とを交互に配列することにより脱塩部と濃縮部とを交互に構成した構造を有する。好適には、イオン交換樹脂やイオン交換繊維などのイオン交換充填物を脱塩部に収容した構造を有する。そして、被処理水を通水しつつ電流を印可して電気透析を行う。
【0029】
市販の電気透析装置としては、フィルタープレス型のフレーム式、渦巻き型のスパイラル式などがあり、具体的には、クリスト社製「セプトロンSM2」等が挙げられる。「セプトロンSM2」は、再生型の強酸性陽イオン交換樹脂および強塩基性陰イオン交換樹脂の混合床を脱塩部に収容して成る構造のスパイラル式の電気透析装置である。
【0030】
図3に示す電気透析装置(E)は、便宜上、簡略化されており、電極室(13)及び(14)との間に1組の脱塩室(15)及び濃縮室(16)のみが示されている。前述の濁質除去装置(A)で処理された濁質を含まない処理水は、配管(52)を経由してバルブ(62)から排出され、処理水槽(9)に貯留された後、ポンプ(10)により配管(54)を経由し、分岐された配管(58)から各部に供給される。そして、電気透析により高度に脱塩された脱塩室(15)の脱塩水(処理水)は配管(59)から、濃縮室(16)の濃縮水は配管(60)から、それぞれ取り出される。また、各電極室(13)及び(14)の排水は配管(61)から取り出される。
【0031】
また、本発明の純水製造装置の脱塩装置は逆浸透膜モジュールであってもよい。逆浸透膜モジュールは、純水製造分野において広く使用されており、本発明においては、何れの種類の逆浸透膜モジュールをも使用し得る。例えば、膜の素材としては、酢酸セルロース系、ポリアミド系、架橋ポリアミン系、架橋ポリエーテル系、スルホン化ポリスルホン等がある。また、膜のエレメント構造としては、スパイラル型、中空糸型、チューブラー型などがある。本発明においては、市販の逆浸透膜モジュールを適宜選択して使用することが出来る。
【0032】
図4に示す逆浸透膜モジュール(F)は、基本的には、逆浸透膜(17)によって区分された供給水部(18)と透過水部(19)から成る。前述の濁質除去装置(A)で処理された濁質を含まない処理水は、配管(52)を経由してバルブ(62)から排出され、処理水槽(9)に貯留された後、ポンプ(10)により配管(54)を経由し、逆浸透膜モジュール(F)に供給される。そして、脱塩された透過水(被処理水)は配管(62)から、濃縮水は配管(63)から、それぞれ取り出される。
【0033】
本発明の純水製造装置の特徴は、脱塩装置の前段に繊維状濾材の圧密状態によって濁質の捕捉が行われる特定構造の濁質除去装置を設置して成る点にある。斯かる濁質除去装置によれば、濁度300度程度の高濁度原水から脱塩装置に要求される濁度2度以下の供給水を得ることが出来、しかも、膜分離装置の場合の様に短時間で閉塞が起こることもなく、長時間に亘り安定運転を行なうことが出来る。
【0034】
【発明の効果】
以上説明した本発明によれば、イオン交換樹脂塔から成る脱塩装置を備えた純水製造装置であって、イオン交換樹脂塔の逆洗工程をなくして樹脂の再生時間を短縮し、また、イオン交換樹脂塔の上方に設けられる空間部(フリーボード)をなくしてイオン交換樹脂塔を小さく且つシンプルにすることが出来、しかも、高濁度原水を通水しても長時間に亘り安定運転を行なうことが出来る様に改良された純水製造装置が提供される。また、本発明によれば、イオン交換樹脂塔以外の脱塩装置を備えた純水製造装置であって、上記と同様に長時間に亘り安定運転を行なうことが出来る様に改良された純水製造装置が提供される。よって、本発明の工業的価値は顕著である。
【図面の簡単な説明】
【図1】濁質除去装置の好ましい一例の模式的説明図
【図2】イオン交換樹脂塔から成る脱塩装置の一例の概念的説明図
【図3】電気透析装置の一例の概念的説明図
【図4】逆浸透膜モジュールの一例の概念的説明図
【符号の説明】
A:濁質除去装置
B:カチオン交換塔
C:脱炭酸塔
D:アニオン交換塔
E:電気透析装置
F:逆浸透膜モジュール
1:塔
2:上部支持体
3:下部支持体
4:濾材
51〜63:配管
61〜65:バルブ
7:上部吊り紐
8:下部吊り紐
9:処理水槽
10:ポンプ
11:ポンプ
12:処理水槽
13:電極室
14:電極室
15:脱塩室
16:濃縮室
17:逆浸透膜
18:供給水部
19:透過水部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a deionized water production apparatus, and more particularly to a deionized water production apparatus in which a turbidity removal apparatus having a specific structure using a fibrous filter medium is installed in front of various desalting apparatuses.
[0002]
[Prior art]
Japanese Patent No. 2940648 proposes a pure water production apparatus in which a membrane separation device consisting of a reverse osmosis membrane module, an ultrafiltration membrane device or a microfilter is installed in front of a desalination device consisting of an ion exchange resin tower. Yes. According to such a proposal, the back-washing step of the ion exchange resin tower, which has been conventionally required due to the turbidity in the raw water, is eliminated, and the resin regeneration time is shortened, and the ion exchange resin tower is provided above the ion exchange resin tower. By eliminating the space (free board), the ion exchange resin tower can be made small and simple.
[0003]
However, in the case of the pure water production apparatus according to the above proposal, the membrane separation apparatus is blocked in a short time, particularly when high turbidity raw water is passed, and stable operation cannot be performed for a long time.
[0004]
[Problems to be solved by the invention]
The present invention has been made in view of the above circumstances, and an object of the present invention is a pure water production apparatus equipped with a demineralizer comprising an ion exchange resin tower, which eliminates the back washing process of the ion exchange resin tower and is a resin. The ion exchange resin tower can be made smaller and simpler by eliminating the space (free board) provided above the ion exchange resin tower, and high turbidity raw water can be passed. Even so, an object of the present invention is to provide an improved apparatus for producing pure water so that stable operation can be performed for a long time. Another object of the present invention is a pure water production apparatus equipped with a desalination apparatus other than an ion exchange resin tower, which is improved so that stable operation can be performed for a long time as described above. It is to provide a manufacturing apparatus.
[0005]
[Means for Solving the Problems]
That is, the gist of the present invention is a pure water production apparatus in which a turbidity removal apparatus is installed in the preceding stage of a desalination apparatus, wherein the turbidity removal apparatus is supplied with raw water in a downward flow type and is It is a turbidity removing device to which wash water is supplied in a countercurrent form, and a raw water supply pipe with a valve and a wash waste water discharge pipe are provided at the top of the tower (1), and at the bottom of the tower (1). A treated water discharge pipe with a valve, a washing water supply pipe and an air supply pipe are provided, and an upper support (2) and a lower support (3) are arranged inside the tower, and the upper support (2) and Between the lower support (3), a plurality of filter media (4) made of a core string and a turbidity trapping material protruding on the peripheral side of the core string are upper suspension strings (7) at the end of the filter medium. And the lower suspension strap (8) are fixed in a suspended state, the core strap of the filter medium (4), the upper suspension strap (7) and the lower suspension strap (8) It is configured to be able to bend and deform along the flowing water direction, and the distance (LA) between the upper support (2) and the lower support (3), the length (LB) of the filter medium (4), the upper suspension string (7 The turbidity removal device satisfies the following formulas (1) to (3) in which the relationship between the length (Lb1) and the length (Lb2) of the lower suspension strap (8) is satisfied. Located in water production equipment.
[0006]
[Expression 2]
LA <(Lb1 + LB + Lb2) (1)
LB <LA (2)
(LB + Lb2) <LA <(LB + Lb1) (3)
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a schematic explanatory view of a preferred example of the turbidity removal apparatus (A) used in the pure water production apparatus of the present invention, and FIG. 1 (a) is an explanatory view of the raw water treatment operation. (B) is explanatory drawing of washing | cleaning driving | operation. FIG. 2 is a conceptual explanatory diagram of an example of a desalting apparatus comprising an ion exchange resin tower used in the pure water production apparatus of the present invention. FIG. 3 is a conceptual explanatory diagram of an example of an electrodialysis apparatus used in the pure water production apparatus of the present invention. FIG. 4 is a conceptual explanatory diagram of an example of a reverse osmosis membrane module used in the pure water production apparatus of the present invention.
[0008]
First, the turbidity removal apparatus (A) shown in FIG. 1 will be described. This turbidity removal device is a turbidity removal device in which raw water is supplied in a downward flow format and cleaning water is supplied in an upward flow format. Therefore, a raw water supply pipe with a valve and a washing waste water discharge pipe are provided at the top of the tower (1), and a treated water discharge pipe, a washing water supply pipe and an air supply pipe with a valve are provided at the bottom of the tower (1). And are provided. In the apparatus shown in FIG. 1, the pipes used in the raw water treatment operation and the washing operation are common, and the water flow direction is changed by the valve operation.
[0009]
That is, in the case of raw water treatment operation, only the valves (61) and (62) are opened, and raw water containing turbidity is supplied from the valve (61) through the pipe (51) into the tower (1). Is done. At this time, the filter medium (4) exhibits a compacted state as will be described later, and the suspended matter entrained in the raw water is captured by the filter medium (4). The treated water containing no turbidity is discharged from the valve (62) via the pipe (52), and is stored in the treated water tank (9) shown in FIG.
[0010]
On the other hand, in the case of the washing operation, the valves (61) and (62) that were open during the raw water treatment operation are closed, and the washing water passes through the pipe (52) from the valve (64) into the tower (1). To be supplied. On the other hand, air is supplied into the tower (1) from the valve (63) via the pipe (53). As will be described later, the filter medium (4) is released from the compacted state, and turbidity is removed from the filter medium (4). The bubbling action of the air causes the filter medium (4) to vibrate, and the separation of turbidity adhering to the filter medium (4) is promoted. Wash water containing turbidity is discharged from the valve (65) via the pipe (51).
[0011]
An upper support (2) and a lower support (3) are arranged inside the tower, and a plurality of filter media (4) are placed between the upper support (2) and the lower support (3). The upper suspension string (7) and the lower suspension string (8) at the end are fixed in a suspended state.
[0012]
The structure of the upper support (2) and the lower support (3) is not particularly limited as long as it is a structure that does not prevent water flow and can fix the filter medium (4) by the hanging strings (7) and (8). For example, a lattice structure, an eye plate structure, a stitch structure, or the like can be appropriately employed.
[0013]
The filter medium (4) includes a core string and a turbidity trapping material protruding on the peripheral side of the core string.
The core string of the filter medium (4), the upper suspension string (7), and the lower suspension string (8) are configured to be bent and deformed along the flowing water direction. Such a configuration is achieved by selecting the type, form, thickness, etc. of the material.
[0014]
Each of the above elements is usually made of a synthetic resin material such as polyester, nylon, or polyvinylidene chloride. In addition to the various cords obtained by each process of assembling, twisting, knitting, weaving, bundling, rake, or cutting, each of the above-mentioned cords should use a single yarn (monofilament) as long as it has sufficient strength. I can do it. The shape of the turbidity trapping material of the filter medium (4) is usually a film piece or a string. As an example of the filter medium (4), a filter medium in which an innumerable thread-like turbidity trapping material is radially projected on the peripheral side of the twisted core string. Such a filter medium is known as described in JP-A-8-299707. In addition, when the core string of the filter medium (4) is long and protrudes from both ends of the projecting range of the turbidity trapping material, the core strings of the protruding parts at both ends are used as the upper suspension string (7) and the lower suspension string (8). I can do it.
[0015]
In the turbidity removal device (A), the distance (LA) between the upper support (2) and the lower support (3), the length (LB) of the filter medium (4), the length of the upper suspension string (7) (Lb1), the length (Lb2) of the lower suspension string (8) needs to satisfy the expressions (1) to (3) defined below.
[0016]
[Equation 3]
LA <(Lb1 + LB + Lb2) (1)
LB <LA (2)
(LB + Lb2) <LA <(LB + Lb1) (3)
[0017]
That is, in the turbidity removal apparatus (A), as shown in the formula (1), the total length (Lb1 + LB + Lb2) of the filter medium (4), the upper support (2), and the lower support (3) is the upper support. It is longer than the distance (LA) between (2) and the lower support (3). Accordingly, any of the above elements exists in a relaxed state in the tower (1).
[0018]
Moreover, as shown in Formula (2), the distance (LA) between the upper support (2) and the lower support (3) is longer than the length (LB) of the filter medium (4). Therefore, a region where the filter medium (4) does not exist is formed along the flowing water direction between the upper support (2) and the lower support (3). In other words, the movable range of the filter medium (4) is formed along the flowing water direction. In addition, although the clearance gap exists between filter media (4) in the schematic explanatory drawing of FIG. 1, there is actually no clearance gap between filter media (4), and several filter media (4) will be in a dense state. Therefore, the whole of the plurality of filter media (4) moves only along the flowing water direction (vertical direction).
[0019]
Furthermore, as shown in Formula (3), the total length (LB + Lb1) of the filter medium (4) and the upper suspension string (7) is the total length (LB + Lb2) of the filter medium (4) and the lower suspension string (8). ) Longer. Accordingly, during raw water treatment operation in which raw water is supplied in a downward flow format, as shown in FIG. 1 (a), the filter medium (4) abuts on the lower support (3) and lower suspension string (8). At the same time, the filter medium (4) is brought into contact with the upper support (2) as shown in FIG. 1 (b) at the time of the cleaning operation in which the water is compacted near the bottom of the tower and the cleaning water is supplied in the upward flow manner. Without being extended with the lower suspension string (8) in the tower.
[0020]
As a result, in the turbidity removal apparatus (A), trapping and discharging of turbidity by the filter medium are efficiently performed by releasing the compaction state of the filter medium during the raw water treatment operation and releasing the compaction state of the filter medium during the cleaning operation. Done.
[0021]
In the turbidity removal apparatus (A), it is preferable that each of the above elements satisfies the following formulas (1 ′) to (3 ′). The numerical value of the magnitude relationship of each element in the formulas (1 ′) to (3 ′) is a value determined in consideration of the economics of the apparatus.
[0022]
[Expression 4]
1.01 × LA <(Lb1 + LB + Lb2) <2.00 × LA (1 ′)
1.01 × LB <LA <1.50 × LB (2 ′)
1.01 × (LB + Lb2) <LA <1.01 × (LB + Lb1) (3 ′)
[0023]
The dimensions of the above-described elements of the turbidity removal apparatus (A) are as follows. That is, the distance (LA) between the upper support (2) and the lower support (3) is 100 to 400 cm, the length (LB) of the filter medium (4) is 70 to 300 cm, and the upper suspension string (7) The length (Lb1) is 10 to 250 cm, the length (Lb2) of the lower suspension string (8) is 5 to 20 cm, and the diameter of the tower (1) is 20 to 360 cm.
[0024]
Next, a desalting apparatus comprising the ion exchange resin tower shown in FIG. 2 will be described. This desalting apparatus is configured by disposing a decarboxylation tower (C) as a preferred embodiment between the cation exchange tower (B) and the anion exchange tower (D).
[0025]
The cation exchange column (B) is filled with a known cation exchange resin such as “Diaion SK1B” (Na type) manufactured by Mitsubishi Chemical Corporation, and the anion exchange column (D) is, for example, Mitsubishi Chemical Corporation. A well-known anion exchange resin such as “Diaion SA10A” (Cl type) is filled. The decarbonation tower (C) blows air from the lower part and removes HCO 3 contained in the cation-exchanged acidic water as CO 2 , so that the ion load of the anion exchange resin in the anion exchange tower (D) Reduce.
[0026]
The treated water not containing turbidity treated by the turbidity removing device (A) is discharged from the valve (62) through the pipe (52) and stored in the treated water tank (9), and then pumped. (10) to the cation exchange tower (B) via the pipe (54), to the decarboxylation tower (C) via the pipe (55), and to the pipe (56) by the pump (11). Then, it is supplied to the anion exchange tower (D) and stored in the treated water tank (12) via the pipe (57).
[0027]
The demineralizer of the pure water production apparatus of the present invention may be an electrodialysis apparatus. The electrodialysis apparatus is also called an electric regenerative pure water production apparatus. As such an electric regeneration type pure water production apparatus, Japanese Patent Application Laid-Open Nos. 3-224688, 4-250882, 5-64786, 7-236889, and the like proposed by the present applicant. No. 9-24374.
[0028]
The electric regeneration type pure water production apparatus (electrodialysis apparatus) basically has a desalination unit by alternately arranging a plurality of anion exchange membranes and cation exchange membranes between an anode and a cathode. And a concentrating portion are alternately configured. Preferably, it has a structure in which an ion exchange filler such as an ion exchange resin or an ion exchange fiber is accommodated in the desalting portion. Then, electrodialysis is performed by applying an electric current while passing the water to be treated.
[0029]
Commercially available electrodialysis apparatuses include a filter press type frame type and a spiral type spiral type. Specific examples include “Septron SM2” manufactured by Christo. “Septron SM2” is a spiral electrodialysis apparatus having a structure in which a mixed bed of a regenerative type strongly acidic cation exchange resin and a strongly basic anion exchange resin is accommodated in a desalting unit.
[0030]
The electrodialysis apparatus (E) shown in FIG. 3 is simplified for the sake of convenience, and only one set of a desalting chamber (15) and a concentration chamber (16) is provided between the electrode chambers (13) and (14). It is shown. The treated water not containing turbidity treated by the turbidity removing device (A) is discharged from the valve (62) through the pipe (52) and stored in the treated water tank (9), and then pumped. It is supplied to each part from the branched pipe (58) via the pipe (54) by (10). The desalted water (treated water) in the desalting chamber (15) highly desalted by electrodialysis is taken out from the pipe (59), and the concentrated water in the concentrating chamber (16) is taken out from the pipe (60). Moreover, the waste water of each electrode chamber (13) and (14) is taken out from piping (61).
[0031]
Moreover, the reverse osmosis membrane module may be sufficient as the desalination apparatus of the pure water manufacturing apparatus of this invention. Reverse osmosis membrane modules are widely used in the field of pure water production, and any type of reverse osmosis membrane module can be used in the present invention. For example, the membrane material includes cellulose acetate, polyamide, crosslinked polyamine, crosslinked polyether, and sulfonated polysulfone. The membrane element structure includes a spiral type, a hollow fiber type, and a tubular type. In the present invention, commercially available reverse osmosis membrane modules can be appropriately selected and used.
[0032]
The reverse osmosis membrane module (F) shown in FIG. 4 basically comprises a supply water section (18) and a permeate water section (19) separated by a reverse osmosis membrane (17). The treated water not containing turbidity treated by the turbidity removing device (A) is discharged from the valve (62) through the pipe (52) and stored in the treated water tank (9), and then pumped. It is supplied to the reverse osmosis membrane module (F) via the pipe (54) by (10). The desalted permeated water (treated water) is taken out from the pipe (62), and the concentrated water is taken out from the pipe (63).
[0033]
The feature of the pure water production apparatus of the present invention is that a turbidity removal apparatus having a specific structure in which turbidity is trapped by the compacted state of the fibrous filter medium is installed in the preceding stage of the desalination apparatus. According to such a turbidity removal apparatus, it is possible to obtain feed water having a turbidity of 2 degrees or less required for a desalination apparatus from high turbidity raw water having a turbidity of about 300 degrees, and in the case of a membrane separation apparatus. As described above, the stable operation can be performed for a long time without the blockage occurring in a short time.
[0034]
【The invention's effect】
According to the present invention described above, it is a pure water production apparatus equipped with a desalination apparatus composed of an ion exchange resin tower, which eliminates the back washing step of the ion exchange resin tower, shortens the regeneration time of the resin, The space (free board) provided above the ion exchange resin tower can be eliminated to make the ion exchange resin tower small and simple, and stable operation is possible for a long time even when high turbidity raw water is passed. There is provided an apparatus for producing pure water which is improved so that it can be carried out. According to the present invention, there is also provided a pure water production apparatus equipped with a desalination apparatus other than an ion exchange resin tower, wherein the purified water is improved so that stable operation can be performed for a long time as described above. A manufacturing apparatus is provided. Therefore, the industrial value of the present invention is remarkable.
[Brief description of the drawings]
FIG. 1 is a schematic explanatory view of a preferred example of a turbidity removal apparatus. FIG. 2 is a conceptual explanatory view of an example of a desalting apparatus comprising an ion exchange resin tower. FIG. 3 is a conceptual explanatory view of an example of an electrodialysis apparatus. FIG. 4 is a conceptual explanatory diagram of an example of a reverse osmosis membrane module.
A: Turbid removal device B: Cation exchange tower C: Decarboxylation tower D: Anion exchange tower E: Electrodialysis equipment F: Reverse osmosis membrane module 1: Tower 2: Upper support 3: Lower support 4: Filter media 51- 63: Piping 61-65: Valve 7: Upper suspension string 8: Lower suspension string 9: Treatment water tank 10: Pump 11: Pump 12: Treatment water tank 13: Electrode chamber 14: Electrode chamber 15: Desalination chamber 16: Concentration chamber 17 : Reverse osmosis membrane 18: Supply water part 19: Permeate water part

Claims (4)

脱塩装置の前段に濁質除去装置を設置して成る純水製造装置であって、上記の濁質除去装置は、下向流形式で原水が供給され且つ上向流形式で洗浄水が供給される濁質除去装置であって、塔(1)の頂部にはバルブ付の原水供給配管と洗浄廃水排出配管とが設けられ、塔(1)の底部にはバルブ付の処理水排出配管と洗浄水供給配管と空気供給配管とが設けられ、塔内部には上部支持体(2)と下部支持体(3)とが配置され、上部支持体(2)と下部支持体(3)との間には芯紐および当該芯紐の周側に突設された濁質捕捉材から成る複数の濾材(4)が当該濾材の端部の上部吊り紐(7)と下部吊り紐(8)とによって懸垂状態で固定され、濾材(4)の芯紐ならびに上部吊り紐(7)及び下部吊り紐(8)は流水方向に沿って屈曲変形可能に構成され、上部支持体(2)と下部支持体(3)との間の距離(LA)、濾材(4)の長さ(LB)、上部吊り紐(7)の長さ(Lb1)、下部吊り紐(8)の長さ(Lb2)の関係が以下に規定する式(1)〜(3)を満足する濁質除去装置であることを特徴とする純水製造装置。
【数1】
LA<(Lb1+LB+Lb2) (1)
LB<LA (2)
(LB+Lb2)<LA<(LB+Lb1) (3)
A deionized water production system in which a turbidity removal device is installed in front of a desalination device. The turbidity removal device is supplied with raw water in a downward flow format and supplied with wash water in an upward flow format. The turbidity removal apparatus is provided with a raw water supply pipe with a valve and a washing waste water discharge pipe at the top of the tower (1), and a treated water discharge pipe with a valve at the bottom of the tower (1). A washing water supply pipe and an air supply pipe are provided, and an upper support (2) and a lower support (3) are arranged inside the tower, and the upper support (2) and the lower support (3) A plurality of filter media (4) made of a core string and a turbidity trapping material projecting on the peripheral side of the core string are interposed between an upper suspension string (7) and a lower suspension string (8) at the end of the filter medium. The core string of the filter medium (4), the upper suspension string (7) and the lower suspension string (8) are bent and deformed along the flowing water direction. The distance (LA) between the upper support (2) and the lower support (3), the length of the filter medium (4) (LB), the length of the upper suspension string (7) (Lb1) A turbidity removal apparatus in which the relationship of the length (Lb2) of the lower suspension string (8) satisfies the formulas (1) to (3) defined below.
[Expression 1]
LA <(Lb1 + LB + Lb2) (1)
LB <LA (2)
(LB + Lb2) <LA <(LB + Lb1) (3)
脱塩装置がイオン交換樹脂塔である請求項1に記載の純水製造装置。The apparatus for producing pure water according to claim 1, wherein the desalting apparatus is an ion exchange resin tower. 脱塩装置が電気透析装置である請求項1に記載の純水製造装置。The pure water production apparatus according to claim 1, wherein the desalting apparatus is an electrodialysis apparatus. 脱塩装置が逆浸透膜モジュールである請求項1に記載の純水製造装置。The pure water manufacturing apparatus according to claim 1, wherein the desalting apparatus is a reverse osmosis membrane module.
JP2001219637A 2001-07-19 2001-07-19 Pure water production equipment Expired - Lifetime JP4649790B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001219637A JP4649790B2 (en) 2001-07-19 2001-07-19 Pure water production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001219637A JP4649790B2 (en) 2001-07-19 2001-07-19 Pure water production equipment

Publications (2)

Publication Number Publication Date
JP2003024714A JP2003024714A (en) 2003-01-28
JP4649790B2 true JP4649790B2 (en) 2011-03-16

Family

ID=19053604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001219637A Expired - Lifetime JP4649790B2 (en) 2001-07-19 2001-07-19 Pure water production equipment

Country Status (1)

Country Link
JP (1) JP4649790B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101289898B1 (en) 2011-11-29 2013-07-24 주식회사 포스코 Ion exchange column of deionized water producting equipment

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001170630A (en) * 1999-12-15 2001-06-26 Japan Organo Co Ltd Pure water production device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0747364A (en) * 1993-06-22 1995-02-21 Japan Organo Co Ltd Extrapure water producing device
JPH10323508A (en) * 1997-05-27 1998-12-08 Japan Organo Co Ltd Filter tower using long fiber bundle
JPH11347310A (en) * 1998-06-12 1999-12-21 Japan Organo Co Ltd Filtration column employing filament bundle

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001170630A (en) * 1999-12-15 2001-06-26 Japan Organo Co Ltd Pure water production device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101289898B1 (en) 2011-11-29 2013-07-24 주식회사 포스코 Ion exchange column of deionized water producting equipment

Also Published As

Publication number Publication date
JP2003024714A (en) 2003-01-28

Similar Documents

Publication Publication Date Title
DE69829952T2 (en) PORTABLE REVERSE OSMOSIZE UNIT FOR DRINKING WATER TREATMENT
JP4778664B2 (en) Apparatus and method for electrodialysis
US7294267B2 (en) Hollow fiber membrane module, hollow fiber membrane module unit, membrane filtration device using the same and method of operating the same
JP2000271460A (en) Treating system and treatment method using spiral type membrane module
WO2005037414A1 (en) Novel device for submerged ultrafiltration
WO2001066238A1 (en) Method of producing purified water
JP2003001017A (en) Variable pore micro filter
JP3091015B2 (en) Membrane separation device
JPH10230145A (en) Spiral membrane element
JP4649790B2 (en) Pure water production equipment
JP2001029756A (en) Treatment system using spiral membrane module and operation method thereof
JP4649791B2 (en) Filtration device
US20210039026A1 (en) Treatment module and operating method therefor
JP2000271457A (en) Operation of spiral type membrane element and spiral type membrane module and spiral type membrane module
JPH0957261A (en) Two-stage type reverse osmosis membrane treatment
JPH10230140A (en) Spiral membrane element
JP2008183513A (en) Water purifying apparatus
JP2000271454A (en) Spiral type membrane element and method for operating and washing spiral type membrane module
JPH06304559A (en) Method for treating water and device therefor
JP3856376B2 (en) Water treatment device and its operation method
WO2015163429A1 (en) Method for operating clarifying-film module
JP2004130307A (en) Method for filtration of hollow fiber membrane
JPH11188245A (en) Spiral membrane element
JP2001239136A (en) Treating system and operating method therefor
JP2001224931A (en) Spiral type membrane module and method for loading spiral type membrane element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080718

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100916

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101116

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101129

R150 Certificate of patent or registration of utility model

Ref document number: 4649790

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term