WO2001066238A1 - Method of producing purified water - Google Patents

Method of producing purified water Download PDF

Info

Publication number
WO2001066238A1
WO2001066238A1 PCT/JP2000/001318 JP0001318W WO0166238A1 WO 2001066238 A1 WO2001066238 A1 WO 2001066238A1 JP 0001318 W JP0001318 W JP 0001318W WO 0166238 A1 WO0166238 A1 WO 0166238A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
raw water
washing
filtration
hollow fiber
Prior art date
Application number
PCT/JP2000/001318
Other languages
French (fr)
Japanese (ja)
Inventor
Masahiro Kishi
Original Assignee
Aquasystems Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP10357258A priority Critical patent/JP2000079390A/en
Application filed by Aquasystems Ltd. filed Critical Aquasystems Ltd.
Priority to PCT/JP2000/001318 priority patent/WO2001066238A1/en
Priority to AU2000228292A priority patent/AU2000228292A1/en
Publication of WO2001066238A1 publication Critical patent/WO2001066238A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/025Bobbin units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/12Use of permeate

Definitions

  • the present invention relates to a method for producing purified water from river water, brackish water, seawater and wastewater using a hollow fiber type ultrafiltration membrane.
  • purified water refers to water from which insoluble solids (including colloids; the same applies hereinafter) contained in raw water (river water, brine, seawater, and wastewater before filtration) are removed.
  • Ultrafiltration membranes have high particle removal performance and can almost completely remove particles in raw water.Since their operation is simple, they are widely used industrially as turbidity-disinfection means for raw water. I have.
  • a hollow fiber also called a hollow fiber; a bundle of these bundles in a pressure vessel is generally used
  • a hollow fiber is often used because of its large throughput per unit volume.
  • filtration layer a space composed of bundles of the hollow fibers including the membrane surface of the hollow fibers (hereinafter referred to as “filtration layer”) ) Is contaminated and accumulates, and if a predetermined amount of filtered water is to be obtained, it must be operated at a high pressure. And if the contamination of this filtration layer progresses further, the filtration cannot be continued.
  • the device shows a predetermined pressure rise
  • a measure is taken to wash the contaminated filtration layer with water (chemicals may be used if the contamination is severe). Since the operation of the apparatus, that is, the filtration operation, must be interrupted, it is desirable from the viewpoint of the operation efficiency of the apparatus to reduce the frequency of this washing and minimize the time required for washing.
  • the filling rate of the hollow fiber bundle into the fillable space inside the pressure vessel is suppressed to 0.3 or less, and the insoluble solids in the raw water that has entered the inside of the filtration layer are easily discharged to the outside.
  • a part of the raw water supplied to the pressure vessel is drawn out from the pressure vessel in order to make it possible to escape and to minimize the formation of an insoluble solid deposit inside the filter layer, and the primary water (raw water supply side) is taken out.
  • Recirculation was used to increase the flow velocity on the primary side (the idea that the membrane surface should not be contaminated as much as possible).
  • washing operation was generally performed by flowing filtered water (including water containing chlorine-containing chemicals) from the direction opposite to the water filtration direction (backwashing).
  • Such a conventional apparatus naturally has a limit in the throughput per unit volume, and moreover, the more the backwashing is performed, the more the filtered water is consumed, so that the recovered rate of the filtered water is reduced. Also, recirculation of raw water naturally raises power costs.
  • chlorine-based chemicals should be used to avoid contamination of hollow fiber membranes by microorganisms (including secretions-insoluble solids-hereinafter, unless otherwise specified) that are difficult to remove by ordinary washing. Filtration is also performed by adding to raw water, but this raises a new problem of trihalomethane formation depending on the quality of raw water.
  • An object of the present invention is to provide an economical and safe water purification method that solves the above-mentioned problems of the prior art. Disclosure of the invention
  • the present inventor has completed the present invention by carefully studying and verifying the factors of the problem including the pressure loss increase of the conventional system.
  • the throughput per unit volume was addressed by increasing the filling rate of the hollow fiber bundle. That is, a hollow fiber bundle is regularly and superimposedly wound around a core tube arranged at the center of a pressure vessel so as to extend in the axial direction thereof so as to have a uniform opening, and a hollow fiber type as a filtration layer is formed. An ultrafiltration membrane was used.
  • the phrase "a hollow fiber bundle is regularly and superposedly wound around a core tube so as to form a uniform opening" is disclosed, for example, in the claims of Japanese Patent Publication No. 3-144492.
  • the aperture is a value obtained by calculation from the diameter of adjacent hollow fibers and the porosity of the space formed by the hollow fibers.
  • the insoluble solids including microorganisms and secretions thereof, which are the same hereinafter
  • the ultrafiltration membrane of such an embodiment when used, the insoluble solids (including microorganisms and secretions thereof, which are the same hereinafter) once entering the inside of the filtration layer are easily removed from the layer.
  • this is an unfavorable mode because it causes pressure loss due to the dense structure itself.
  • the former is merely an assumption (in short, as a conventional pretreatment device).
  • the latter can be dealt with by considering the method of passing water in the filtration operation and the method of cleaning the membrane surface.
  • the present invention relates to a core tube (which has a large number of holes penetrating the entire wall thereof and has an outer peripheral surface formed in a central portion of a vertical cylindrical pressure vessel so as to extend in the axial direction thereof.
  • the spacer includes a plurality of ribs arranged on the outer peripheral surface of the core tube in the axial direction thereof and a net covering the upper end surface of the rib.
  • a water purification method using a hollow fiber type ultrafiltration membrane which is used as a filtration layer by winding a bundle of hollow fibers regularly and superposedly so as to form a uniform opening,
  • the filtration operation is total filtration, and raw water is supplied from the outer peripheral space formed between the inner peripheral surface of the pressure vessel and the outer peripheral surface of the filtration layer toward the core tube, and the hollow fiber
  • the washing operation of the filtration layer including the membrane surface of the hollow fiber is performed by back-pressure washing in which filtered water flows from the inner cavity of the hollow fiber to the outside thereof, and supply from the core tube toward the outer peripheral space.
  • This is characterized in that it is carried out by a basic cleaning consisting of backwashing with raw water (may be filtered water; the same applies hereinafter).
  • FIG. 1 is a system diagram showing one embodiment of the present invention
  • FIG. 2 is a cross-sectional view showing a structure of one embodiment of a membrane module used in the present invention (cut along an axis of a core tube.
  • FIG. 3 is a substitute photograph showing the surface layer of one embodiment of the filtration layer of the membrane module used in the present invention
  • the flow direction of the raw water in the filtration operation is directed from the outer peripheral portion of the pressure vessel toward the center, and the method of extracting the filtered water from the inner cavity of the hollow fiber is adopted.
  • the pressure drop due to the flow velocity decreases toward the center. Further, the flow velocity becomes “zero” near the core tube due to the total filtration.
  • the particles do not move to the center and remain near the surface of the filtration layer.On the other hand, coarse particles having a particle size larger than the aperture of the hollow fiber bundle enter the surface of the filtration layer further. Blocked (these trapped particles (including those associated) themselves also act as additional filtration layers).
  • the vertical type pressure vessel is used for removing the insoluble solids trapped in the filtration layer in a direction against gravity as in sand filtration (downward flowing water system) because of its efficiency. It is not a good idea in terms of.
  • the filling rate of the hollow fiber bundle constituting the preferable filtration layer with respect to the fillable space inside the pressure vessel is at least 0.5.
  • the aperture of the hollow fiber bundle is usually about 100 m (the particle diameter of the insoluble solid that is prevented from flowing into the inside of the hollow fiber bundle surface is 30 m). ⁇ 50 rn). If the molecular weight cutoff of the hollow fiber is appropriately selected, even microorganisms can be trapped on the membrane surface, and if measures against contamination of the membrane surface of the hollow fiber can be taken properly, the filtration operation It is not necessary to constantly add a chlorine-based disinfectant to the raw water in the above.
  • the filtration layer washing operation as the countermeasure includes back pressure washing in which filtered water flows from the lumen of the hollow fiber toward the outside thereof, and the outer periphery of the pressure vessel from the core tube.
  • Backwashing which consists of backwashing with raw water supplied to the space (hereinafter referred to as “basic washing”), is performed as needed, and empty washing (after the basic washing, from the core pipe, is performed).
  • the water remaining in the pressure vessel containing the trapped matter of the filtration layer removed by this is excluding water in the lumen of the hollow fiber.
  • Filtration operation from the lumen of the hollow fiber (raw water flows from the outer surface of the hollow fiber, that is, the membrane surface, to the lumen of the hollow fiber, and insoluble solids are separated on the membrane surface to become filtered water. Flow through the filter at a high pressure difference in the opposite direction (the hollow fiber itself and its pores expand).
  • the main object to be cleaned is fine particles (specific cleaning effect is “excluded”) clogging the pores (approximately 7 nm) of the hollow fiber and the cake layer deposited on the membrane surface of the hollow fiber (specific cleaning effect is "Peeling").
  • Specific constituents of the fine particles and the cake layer are organic macromolecules such as metal hydroxide colloids and proteins.
  • the raw water flows in the opposite direction to the filtration operation from the inside to the outside of the filtration layer (the raw water flows from the outer space of the pressure vessel to the core tube in the direction of the core tube).
  • the main object to be cleaned is the fine particles trapped inside the filtration layer, but, of course, the fine particles and the cake layer removed and peeled off in the previous back pressure cleaning are also discharged out of the apparatus system by this operation.
  • the flow velocity is higher inside the filtration layer, which contributes to the removal of the object to be washed from the inside of the filtration layer.
  • the fine particles trapped inside the filtration layer are suddenly blown out of the core tube by rapid jet of compressed air, and are completely converted into a high-speed gas-liquid multiphase flow (water remaining in the pressure vessel and air introduced into the core tube). And remove it outside the system. Since the drainage is done by air Recovery rate is improved. However, since the rejection force is so strong that the filtration membrane may be damaged, it is better to carry out the operation appropriately in view of the results of the basic washing and, if necessary, the chemical washing described later.
  • Raw water containing hypochlorite ions is introduced into the pressure vessel through the same route as backwashing in the basic washing (first chemical passing process). Unlike the backwashing performed before this operation, the raw water containing hypochlorite ions introduced into the pressure vessel is also introduced into the secondary side of the hollow fiber through the pores of the hollow fiber.
  • the hypochlorite ion contained in the raw water cooperates with the metal hydroxide to mainly oxidatively decompose the organic substance that mainly forms a cake layer on the membrane surface and as a part of the organic substance. This is for killing microorganisms.
  • the introduced raw water containing hypochlorous acid is held in the pressure vessel for a predetermined time (first holding step).
  • the purpose of this step is to make the oxidative decomposition of the organic substances and the disinfection of microorganisms effective with less chemicals.
  • first back pressure washing step Flow the hypochlorite ion-containing raw water introduced into the secondary side of the hollow fiber through the same route as the back pressure cleaning in the basic cleaning (first back pressure washing step).
  • the purpose of this step is to eliminate the organic substances that block the pores of the hollow fiber.
  • the raw water containing hypochlorous acid and the raw water not containing hypochlorous acid are used in the same way as the backwashing of the basic cleaning. Flow through the same route (first backwashing step).
  • the chemical solution (raw water containing hypochlorite ion) flows through the filtration layer in the opposite direction to the filtration operation, so that the inner perimeter of the filtration layer (water flow during the filtration operation is from the outer perimeter of the filtration layer).
  • the contamination level is lower than that on the outer side because it is directed toward the inner side.
  • the higher the flow rate the more contact is made with a fresh chemical solution, and a cleaner filtration surface is maintained. There is almost no decrease in performance.
  • the acid may be any one that can supply a predetermined concentration of hydrogen ions to the washing water, and specifically, hydrochloric acid, sulfuric acid, nitric acid, etc. And some organic acids such as mineral acid and citric acid (preferably hydrochloric acid from the viewpoint of easy handling and availability).
  • the contaminants on the membrane surface and the filtration layer containing microorganisms can be almost completely removed, so that they can be sufficiently used as a pretreatment operation for desalination treatment by reverse osmosis using brackish water or seawater as raw water.
  • the filtered water produced in the present invention can be supplied to a reverse osmosis apparatus as it is (without requiring any further pretreatment).
  • the system of the present invention can be naturally applied to a method for removing insoluble solids in wastewater as well as river water.
  • the membrane used in the system of the present invention has been described as an ultrafiltration membrane, but the idea of the present invention is that the molecular weight cut off of the membrane used is not a requirement,
  • the applicable membrane is not limited to an ultrafiltration membrane, and for example, an MF membrane or an NF membrane may be used.
  • Fig. 1 shows the basic flow of the present invention (the flow for the original purpose of obtaining purified water in which insoluble solids are almost completely removed from the raw water, that is, the flow for the filtration operation).
  • V 0 is a raw water tank
  • VI is a pressure vessel
  • V 2 is a washing water tank
  • V 3 is an air reservoir (for compressed air)
  • V 4 is a water purification tank
  • P is a raw water pump.
  • “Chlorine” is indicated in the pressure vessel: g
  • Water purification tank The downstream of V4 is where purified water is used, for example, in the case of clean water. It is a chlorine-based chemical that is added to satisfy the required residual chlorine concentration at the tap. Also, what is indicated as “hydrochloric acid” in the figure is hydrochloric acid as a representative of the acid that is supplied only during the operation of washing the filtration layer.
  • the raw water is raised to a predetermined pressure by the raw water pump: P, and then sent to the primary side of the pressure vessel: VI (the outer surface of the hollow fiber, that is, the side where the membrane surface is exposed).
  • VI the outer surface of the hollow fiber, that is, the side where the membrane surface is exposed.
  • a layer composed of a bundle of hollow fibers: UF (hereinafter, referred to as a filtration layer) is provided at the center thereof so as to extend in the axial direction thereof. It is wound and held regularly and superimposed so as to have a uniform opening around T (Fig. 3 shows the state of the surface layer, which is in the form of a certain woven fabric).
  • the ends of the hollow fibers constituting the filtration layer are divided into water-tight sections at S 1 and S 2 from the inside of the pressure vessel.
  • Water chamber: VII, VI 2 whose inner cavity (which is the secondary side of the ultrafiltration membrane device) is open, so that the raw water introduced into the pressure vessel has the raw water inlet: I
  • W enters the filtration layer and the membrane surface of each hollow fiber in the filtration layer Flows toward the core pipe while being filtered at the same time (here, since the core pipe is blinded by a shut-off valve provided in a pipe connected to the core pipe, The raw water is not directly discharged to the outside of the pressure vessel through this pipe, and the whole amount of the raw water supplied to the pressure vessel is filtered water, that is, purified water, and the raw water is piped from the water chamber.
  • the water is discharged to the outside of the pressure vessel via a lid for forming a space as a water chamber: one end of which is connected to C 1 and C 2.
  • pressurized air is used as a means for sending the washing water in the filtration layer washing operation, so this tank is provided between the water purification tank: V4.
  • a pump may be used as the water supply means.
  • the system for separately providing the washing water tank is composed of a pressurized air for performing high-speed washing, air washing and air washing in the membrane surface washing operation as described later. Another reason for this is that the reservoir has a separate reservoir.) It is first sent via appropriate means, for example a pump and piping.
  • the filtration layer: UF becomes the surface layer of the filtration layer (the outer surface layer including the outer peripheral surface), the inside of the filtration layer, and on the membrane surface of each hollow fiber and in the pores. ) Enter a cleaning operation to remove insoluble solids trapped and adhered to the water.
  • the washing operation consists of basic washing that is performed regularly at appropriate intervals and additional washing that is added to the washing as needed (see Fig. 4 for the route through which water or air flows).
  • Rinse water tank Apply pressure to V2 (valve: CV5 “open”; CV7 is assumed to be “open” as long as an operation that requires air is performed) and stored in the rinse water tank in advance
  • Filtered water is supplied to the water chambers: C1 and C2, and a predetermined pressure is applied from the hollow fiber lumen to the outer surface of the hollow fiber (in principle, three times the filtration pressure difference, specifically 300 to 500 kPa )
  • a washing time of 10 seconds is sufficient.
  • a high-speed compressed air shocks the filtration layer and cleans the filtration layer.
  • “empty washing” and “medicine washing” are performed after performing one of the above basic washings several times. Of course, do both in series as needed ⁇ Q
  • washing refers to “first washing” (drug: a drug capable of releasing hypochlorite ions, such as sodium hypochlorite) and “second washing” (drug depending on the chemical used).
  • An acid for example, a mineral acid such as hydrochloric acid or an organic acid such as citric acid) (performed in series in numerical order)).
  • the pH in this case, pH
  • the completion of the water replacement is determined in advance by a valve: until the concentration of hypochlorous acid in the water discharged through the CV3 (in the case of the second washing, PH can be used) reaches a predetermined concentration. You just need to know the time and set that time in the timer.
  • the raw water containing hypochlorite ions is also filled in the washing water tank: V2 through the pores of the hollow fiber (valve: CV2 is temporarily opened, and after a predetermined time elapses, a timer or Attach a liquid level controller to the washing water tank. Will be closed at the traffic light).
  • Washing water tank in the first pass-through process Hypochlorite ion-containing raw water stored in V2 (filtered water because it passes through the membrane surface to be precise) is backwashed in basic washing. (Valve: ⁇ 5 and 33 "Open")
  • Raw water pressure vessel in the first pass-through process Raw water containing hypochlorite ions flows first, and raw water itself flows after a predetermined time, following the same route as the introduction to V1.
  • the presence or absence of the presence of hypochlorite may be determined by operating and stopping a chemical capable of generating hypochlorite in water, for example, a sodium hypochlorite injection pump (not shown).
  • Lake Biwa was sampled 200 m offshore at a depth of 2 m and used as it was. Its turbidity was 5 and SS was 16 ppm. Most of S S was organic.
  • First back-pressure chemical washing process (The conditions are the same as the back-pressure washing except that the washing water filled in the secondary side of the hollow fiber during the first chemical passing process is used as the washing water.)
  • ADVANTAGE OF THE INVENTION it is possible to perform filtration for a long time without requiring special pretreatment, and furthermore, it is not necessary to add a chlorine-based chemical to raw water in the filtration operation, so that economical and safe water purification is possible.
  • a manufacturing method may be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

A method of producing purified water economically and safely by using a hollow fiber type ultrafiltration membrane formed in a filtration layer by regularly and overlappingly winding, to open uniformly, hollow yarn bundles around a core disposed at the center part of a vertical cylindrical type pressure vessel so that the core extends in the axial direction of the pressure vessel, characterized in that a filtration operation is of a full amount filtration and performed by supplying raw water from an outer peripheral space formed between the inner peripheral surface of the pressure container and the outer peripheral surface of the filtration layer to the core and draining filtrated water from the inside hollow of the hollow yarns, and the cleaning operation of the filtration layer including the membrane surface of the hollow yarns is performed by a basic cleaning comprising a back pressure cleaning in which the filtrated water flows from the inner hollow of the hollow yarns to the outside thereof and a reverse flow cleaning by the raw water (filtrated water may be used; applicable hereafter) supplied from the core to the outer peripheral space.

Description

^  ^
明 細 書 Specification
浄水製造方法 技術分野 Water purification method Technical field
本発明は、 ホロ一ファイバー型の限外ろ過膜を用いた河川水、 かん水、 海水 及び廃水から浄水を製造するための方法に関する。 ここで浄水とは、 原水 (ろ過 処理前の河川水、 かん水、 海水及び廃水) からその中に含まれる不溶性の固形分 (コロイドを含む。 以下、 同様) が除去された水をいう。 背景技術  The present invention relates to a method for producing purified water from river water, brackish water, seawater and wastewater using a hollow fiber type ultrafiltration membrane. Here, purified water refers to water from which insoluble solids (including colloids; the same applies hereinafter) contained in raw water (river water, brine, seawater, and wastewater before filtration) are removed. Background art
限外ろ過膜は、 粒子除去性能が高く、 原水中の粒子をほぼ完全に除去すること ができ、 更にその運転操作が簡便故、 原水の除濁ゃ除菌手段として工業的に広く 利用されている。  Ultrafiltration membranes have high particle removal performance and can almost completely remove particles in raw water.Since their operation is simple, they are widely used industrially as turbidity-disinfection means for raw water. I have.
具体的には、 上水処理における砂ろ過の代替処理手段、 かん水や海水から逆浸 透膜法にて淡水を得る際の前処理手段、 及び廃水から不溶性の固形分を除去する 手段がその代表的なものである。  Specifically, alternatives to sand filtration in water treatment, pretreatment for obtaining fresh water from brackish water or seawater by the reverse osmosis membrane method, and means for removing insoluble solids from wastewater are typical examples. It is typical.
この限外ろ過膜としては、 その単位容積当たりの処理量が大きいことから中空 糸 (ホロ一ファイバーともいう。 これらの束を圧力容器内に充填したものが一般 的) が使用されることが多い。  As the ultrafiltration membrane, a hollow fiber (also called a hollow fiber; a bundle of these bundles in a pressure vessel is generally used) is often used because of its large throughput per unit volume. .
しかしながら、 従来のホロ一ファイバー型の限外ろ過膜を用いた装置において は、 長時間ろ過を継続すると中空糸の膜面を含む該中空糸の束からなる空間 (以 下、 「ろ過層」 という) に汚れが付着 '堆積し、 所定量のろ過水を得ようとすれ ば高い圧力で運転しなければならなくなる。 そして、 このろ過層の汚染が更に進 行した場合、 ろ過の継続が不能になる。  However, in a conventional apparatus using a hollow fiber type ultrafiltration membrane, if filtration is continued for a long time, a space composed of bundles of the hollow fibers including the membrane surface of the hollow fibers (hereinafter referred to as “filtration layer”) ) Is contaminated and accumulates, and if a predetermined amount of filtered water is to be obtained, it must be operated at a high pressure. And if the contamination of this filtration layer progresses further, the filtration cannot be continued.
そこで、 装置が所定の圧力上昇を示した時点において、 汚染されたろ過層を水 (汚染が著しい場合には薬品を用いることもある) にて洗浄する方策が採られる が、 この洗浄を行うには装置の運転、 すなわちろ過操作を中断しなければならな いので、 該装置の運転効率の面からはこの洗浄頻度を少なくすると共に、 洗浄に 要する時間をできるだけ短くすることが望ましい。 従来システムにおいては、 その方策として、 中空糸束の圧力容器内部における 充填可能空間に対する充填率を 0 . 3以下に抑えてろ過層内部に侵入した原水中 の不溶性の固形分が容易にその外部に逃げ得るようにすると共に、 該ろ過層内部 に不溶性の固形分のデポジットを極力作らないという考えから該圧力容器に供給 された原水の一部を該圧力容器から抜き出し一次側 (原水供給側) に再循環する ことによって該一次側の流速を上げることが行われていた (できるだけ膜面を汚 染させない、 との考え方) 。 Therefore, at the time when the device shows a predetermined pressure rise, a measure is taken to wash the contaminated filtration layer with water (chemicals may be used if the contamination is severe). Since the operation of the apparatus, that is, the filtration operation, must be interrupted, it is desirable from the viewpoint of the operation efficiency of the apparatus to reduce the frequency of this washing and minimize the time required for washing. In the conventional system, as a measure, the filling rate of the hollow fiber bundle into the fillable space inside the pressure vessel is suppressed to 0.3 or less, and the insoluble solids in the raw water that has entered the inside of the filtration layer are easily discharged to the outside. A part of the raw water supplied to the pressure vessel is drawn out from the pressure vessel in order to make it possible to escape and to minimize the formation of an insoluble solid deposit inside the filter layer, and the primary water (raw water supply side) is taken out. Recirculation was used to increase the flow velocity on the primary side (the idea that the membrane surface should not be contaminated as much as possible).
また、 洗浄操作は、 水のろ過方向とは逆の方向からろ過水 (それに塩素系薬剤 を含有せしめたものを含む) を流す方法 (逆洗) が一般的であった。  In addition, the washing operation was generally performed by flowing filtered water (including water containing chlorine-containing chemicals) from the direction opposite to the water filtration direction (backwashing).
このような従来の装置では、 当然のことながらその単位容積当たりの処理量に は限界があり、 しかも逆洗は行えば行うほどろ過水を消費するのでろ過水の回収 率が下がってしまう。 また、 原水の再循環は当然のことながら動力コストの上昇 を招く。  Such a conventional apparatus naturally has a limit in the throughput per unit volume, and moreover, the more the backwashing is performed, the more the filtered water is consumed, so that the recovered rate of the filtered water is reduced. Also, recirculation of raw water naturally raises power costs.
更に、 通常の洗浄では除去しがたい微生物 (その分泌物—不溶性の固形分 -を 含む。 以下、 特別の断りがない限り、 同様) による中空糸の膜面汚染を避けるベ く塩素系薬剤を原水に添加してろ過操作を行うことも行われているが、 これは原 水水質によってはトリハロメタンの生成という新たな問題を引き起こす。  In addition, chlorine-based chemicals should be used to avoid contamination of hollow fiber membranes by microorganisms (including secretions-insoluble solids-hereinafter, unless otherwise specified) that are difficult to remove by ordinary washing. Filtration is also performed by adding to raw water, but this raises a new problem of trihalomethane formation depending on the quality of raw water.
本発明は、 上記従来技術の課題を解決した経済的且つ安全な浄水製造方法を提 供することを目的としてなされたものである。 発明の開示  An object of the present invention is to provide an economical and safe water purification method that solves the above-mentioned problems of the prior art. Disclosure of the invention
本発明者は、 従来システムの圧損上昇を含む課題の要因を注意深く考察 ·検証 することにより本発明を完成するに至つた。  The present inventor has completed the present invention by carefully studying and verifying the factors of the problem including the pressure loss increase of the conventional system.
先ず、 単位容積当たりの処理量であるが、 これは中空糸束の充填率を上げるこ とで対処した。 すなわち、 圧力容器の中心部にその軸方向に延伸するように配し た芯管に中空糸束を均一な目開きとなるよう規則的且つ重畳的に巻き付けてろ過 層としてなるホロ一ファイバー型の限外ろ過膜を用いた。 尚、 『芯管に中空糸束 を均一な目開きとなるよう規則的且つ重畳的に巻き付けてなる』 とは、 例えば、 特公平 3— 1 4 4 9 2号公報の特許請求の範囲に開示された繊条束の巻回態様が 相当する。 尚、 目開きは隣接する中空糸の径とそれらのなす空間の空隙率とから 計算にて求められるそれである。 First, the throughput per unit volume was addressed by increasing the filling rate of the hollow fiber bundle. That is, a hollow fiber bundle is regularly and superimposedly wound around a core tube arranged at the center of a pressure vessel so as to extend in the axial direction thereof so as to have a uniform opening, and a hollow fiber type as a filtration layer is formed. An ultrafiltration membrane was used. The phrase "a hollow fiber bundle is regularly and superposedly wound around a core tube so as to form a uniform opening" is disclosed, for example, in the claims of Japanese Patent Publication No. 3-144492. Of the wound bundle of filaments Equivalent to. The aperture is a value obtained by calculation from the diameter of adjacent hollow fibers and the porosity of the space formed by the hollow fibers.
従来の考え方によれば、 このような態様の限外ろ過膜を用いるとろ過層の内部 に一旦入り込んだ不溶性の固形分 (微生物及びその分泌物を含む。 以下、 同様) はなかなか該層から外部に出てこないので圧損上昇因子となるし、 また密な構造 自体が圧損を発生させるということから好ましくない態様であるとされていた が、 前者については単なる思いこみ (要するに、 従来の前処理装置としての糸巻 きカートリッジフィルタ一からの連想) によるものであり、 一方、 後者について はろ過操作における通水方法及び膜面の洗浄操作の仕方に配慮することによって 対処可能であることを見いだしたからである。  According to the conventional idea, when the ultrafiltration membrane of such an embodiment is used, the insoluble solids (including microorganisms and secretions thereof, which are the same hereinafter) once entering the inside of the filtration layer are easily removed from the layer. However, it has been considered that this is an unfavorable mode because it causes pressure loss due to the dense structure itself. However, the former is merely an assumption (in short, as a conventional pretreatment device). On the other hand, it was found that the latter can be dealt with by considering the method of passing water in the filtration operation and the method of cleaning the membrane surface.
すなわち本発明は、 竪型円筒形の圧力容器の中心部にその軸方向に延伸するよ うに配した芯管 (その壁全体に該壁を貫通する多数の孔を有すると共にその外周 面がスぺーサとしてのネットにて覆われている。 また、 該スぺ一サ一としては、 該芯管の外周面にその軸方向に配設された複数のリブと該リブの上端面を覆う ネットからなるものであってもよい) に中空糸束を均一な目開きとなるよう規則 的且つ重畳的に巻き付けてろ過層としてなるホロ一ファイバー型の限外ろ過膜を 用いた浄水製造方法であって、 ろ過操作が、 全量ろ過であること、 及び原水を該 圧力容器の内周面と該ろ過層の外周面との間に形成された外周空間から該芯管に 向かって供給し、 該中空糸の内腔からろ過水を抜き出すことによって行われるこ と、 そして該中空糸の膜面を含む該ろ過層の洗浄操作が、 該中空糸の内腔からそ の外側に向かってろ過水を流す逆圧洗浄と、 該芯管より該外周空間に向かって供 給される原水 (ろ過水であってもよい。 以下同様) による逆流洗浄とからなる基 本洗浄によって行われることを特徴とする。 図面の簡単な説明  That is, the present invention relates to a core tube (which has a large number of holes penetrating the entire wall thereof and has an outer peripheral surface formed in a central portion of a vertical cylindrical pressure vessel so as to extend in the axial direction thereof. In addition, the spacer includes a plurality of ribs arranged on the outer peripheral surface of the core tube in the axial direction thereof and a net covering the upper end surface of the rib. A water purification method using a hollow fiber type ultrafiltration membrane, which is used as a filtration layer by winding a bundle of hollow fibers regularly and superposedly so as to form a uniform opening, The filtration operation is total filtration, and raw water is supplied from the outer peripheral space formed between the inner peripheral surface of the pressure vessel and the outer peripheral surface of the filtration layer toward the core tube, and the hollow fiber By extracting filtered water from the lumen of the The washing operation of the filtration layer including the membrane surface of the hollow fiber is performed by back-pressure washing in which filtered water flows from the inner cavity of the hollow fiber to the outside thereof, and supply from the core tube toward the outer peripheral space. This is characterized in that it is carried out by a basic cleaning consisting of backwashing with raw water (may be filtered water; the same applies hereinafter). BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の一実施態様を示す系統図であり、 図 2は、 本発明に使用される 膜モジュールの一実施態様の構造を示す断面図 (芯管の軸線に沿って切断。 詳細 構造は片側のみ表記) であり、 図 3は、 本発明に使用される膜モジュールのろ過 層の一実施態様の表層を示す代用写真であり、 図 4は、 本発明の一実施態様 (膜 モジュール部を拡大) を示す系統図である。 発明を実施する最良の形態 FIG. 1 is a system diagram showing one embodiment of the present invention, and FIG. 2 is a cross-sectional view showing a structure of one embodiment of a membrane module used in the present invention (cut along an axis of a core tube. FIG. 3 is a substitute photograph showing the surface layer of one embodiment of the filtration layer of the membrane module used in the present invention, and FIG. FIG. BEST MODE FOR CARRYING OUT THE INVENTION
本発明では、 ろ過操作における原水の流れ方向を該圧力容器の外周部から中心 に向けており、 しかもろ過水を該中空糸の内腔から抜き出す方法を採っているの で、 ろ過速度が外周部から中心に向かって低くなり (当然、 流速起因の圧損は中 心に向かうほど低下する。 更に全量ろ過ゆえ該芯管近傍においては流速が "零" となる) 、 該ろ過層に入り込んだ粒子は中心部に移動せず該ろ過層の表層部近傍 に留まることになるし、 一方、 該中空糸束の目開き以上の粒径を有する粗大粒子 は該ろ過層の表層部でそれ以上の侵入を阻止される(これらの捕捉された粒子 (会 合したものを含む)自体が更なるろ過層としても機能する)。 したがって、 適切な 洗浄操作 (詳細は後述) を行えば、 このような捕捉粒子による圧損上昇には簡単 に対処し得るのである。 尚、 該圧力容器を竪型にて用いるのは、 該ろ過層に捕捉 された不溶性の固形分を砂ろ過 (下向流通水方式)のように重力に逆らう方向に排 除するのはその効率の面で得策ではないとの考えによる。  In the present invention, the flow direction of the raw water in the filtration operation is directed from the outer peripheral portion of the pressure vessel toward the center, and the method of extracting the filtered water from the inner cavity of the hollow fiber is adopted. (The pressure drop due to the flow velocity decreases toward the center. Further, the flow velocity becomes “zero” near the core tube due to the total filtration.) The particles do not move to the center and remain near the surface of the filtration layer.On the other hand, coarse particles having a particle size larger than the aperture of the hollow fiber bundle enter the surface of the filtration layer further. Blocked (these trapped particles (including those associated) themselves also act as additional filtration layers). Therefore, if the washing operation is performed properly (details will be described later), it is possible to easily cope with the pressure loss increase due to such trapped particles. The vertical type pressure vessel is used for removing the insoluble solids trapped in the filtration layer in a direction against gravity as in sand filtration (downward flowing water system) because of its efficiency. It is not a good idea in terms of.
因に、 好ましい該ろ過層を構成する中空糸束の該圧力容器内部における充填可 能空間に対する充填率は少なくとも 0 . 5である。 尚、 中空糸束の目開きは、 通 常値としては約 1 0 0 m (該中空糸束表面におけるその内部への流入が阻止さ れる不溶性固形分の粒径として表わした値としては 3 0〜 5 0 rnである) 。 尚、 中空糸の分画分子量を適当に選択すれば微生物であっても膜面にて捕捉可 能故、 それによる中空糸の膜面の汚染に対する対策をきちんと行うことができれ ば、 ろ過操作における原水への定常的な塩素系殺菌剤の添加は必要ではない。 本発明においては、 前述の通り、 該対策としてのろ過層の洗浄操作を、 該中空糸 の内腔からその外側に向かってろ過水を流す逆圧洗浄と、 該芯管より該圧力容器 の外周空間に向かって供給される原水による逆流洗浄ととからなる逆洗(以下、 これを 「基本洗浄」 という)を基本とし、 必要に応じて行う空洗 (基本洗浄の 後で、 該芯管から該外周空間に向けて急激に空気を流すことによる。 尚、 これに よって排除される該ろ過層捕捉物を含む該圧力容器内に残留していた水ー該中空 糸内腔の水を除く—はろ過操作時の原水入口を介して装置外に排出する) 、 又は 薬洗 (基本洗浄の後で、 該芯管からその中に次亜塩素酸イオンを含有せしめた原 水 (ろ過水であってもよい。 以下同様) を該外周空間に向けて流す第 1の薬洗と 、 該芯管からその中に酸を含有せしめた原水 (ろ過水であってもよい。 以下同様 ) を該外周区間に向けて流す第 2の薬洗からなる) を行うので、 ろ過操作におけ る原水への塩素系殺菌剤の添加は不要である。 Incidentally, the filling rate of the hollow fiber bundle constituting the preferable filtration layer with respect to the fillable space inside the pressure vessel is at least 0.5. The aperture of the hollow fiber bundle is usually about 100 m (the particle diameter of the insoluble solid that is prevented from flowing into the inside of the hollow fiber bundle surface is 30 m). ~ 50 rn). If the molecular weight cutoff of the hollow fiber is appropriately selected, even microorganisms can be trapped on the membrane surface, and if measures against contamination of the membrane surface of the hollow fiber can be taken properly, the filtration operation It is not necessary to constantly add a chlorine-based disinfectant to the raw water in the above. In the present invention, as described above, the filtration layer washing operation as the countermeasure includes back pressure washing in which filtered water flows from the lumen of the hollow fiber toward the outside thereof, and the outer periphery of the pressure vessel from the core tube. Backwashing, which consists of backwashing with raw water supplied to the space (hereinafter referred to as “basic washing”), is performed as needed, and empty washing (after the basic washing, from the core pipe, is performed). The water remaining in the pressure vessel containing the trapped matter of the filtration layer removed by this is excluding water in the lumen of the hollow fiber. Is discharged out of the device through the raw water inlet during the filtration operation), or Chemical washing (after the basic washing, the first flow of raw water (which may be filtered water; the same applies hereinafter) from the core tube containing hypochlorite ions thereinto toward the outer peripheral space. The washing is performed by washing the raw water (which may be filtered water; the same applies hereinafter) from the core tube with the acid contained therein toward the outer peripheral section. It is not necessary to add chlorine-based disinfectants to raw water during operation.
すなわち、 本発明における具体的なろ過層の洗浄操作は、 下記のステップにて 行われる。  That is, a specific washing operation of the filtration layer in the present invention is performed in the following steps.
1 . 基本洗浄  1. Basic cleaning
① 逆圧洗浄  ① Back pressure cleaning
中空糸の内腔からろ過操作 (原水は該中空糸の外表面、 すなわち膜面から 該中空糸の内腔へと流れ、 該膜面にて不溶固形分の分離が行われてろ過水とな る) とは逆方向に高い差圧 (該中空糸自体及びその細孔の拡張がおこる) にてろ 過水を流す。 主洗浄対象物は、 該中空糸の細孔 (約 7 nm) に詰まった微粒子 (具 体的洗浄効果は 「排除」 ) と該中空糸の膜表面に堆積したケーキ層 (具体的洗浄 効果は 「剥離」 ) である。 また、 該微粒子及びケーキ層の具体的構成物質は、 金 属水酸化物コロイド及び蛋白質等の有機巨大分子である。  Filtration operation from the lumen of the hollow fiber (raw water flows from the outer surface of the hollow fiber, that is, the membrane surface, to the lumen of the hollow fiber, and insoluble solids are separated on the membrane surface to become filtered water. Flow through the filter at a high pressure difference in the opposite direction (the hollow fiber itself and its pores expand). The main object to be cleaned is fine particles (specific cleaning effect is “excluded”) clogging the pores (approximately 7 nm) of the hollow fiber and the cake layer deposited on the membrane surface of the hollow fiber (specific cleaning effect is "Peeling"). Specific constituents of the fine particles and the cake layer are organic macromolecules such as metal hydroxide colloids and proteins.
② 逆流洗浄  ② Backwashing
芯管を利用し、 ろ過層の内側から外側にろ過操作 (原水は圧力容器の外周 空間から芯管の方向にろ過層を横断するように流される) とは逆方向に原水を流 す。 主洗浄対象物は、 ろ過層内部に捕捉されている微粒子であるが、 勿論、 先の 逆圧洗浄において排除及び剥離せしめられた微粒子及びケーキ層もこの操作にて 装置系外に排出せしめられる。 尚、 この操作では中空糸内腔への水の移動を行わ せないのでろ過層の内側ほど流速が早く、 該ろ過層内部からの洗浄対象物の排除 に資する。  Using the core tube, the raw water flows in the opposite direction to the filtration operation from the inside to the outside of the filtration layer (the raw water flows from the outer space of the pressure vessel to the core tube in the direction of the core tube). The main object to be cleaned is the fine particles trapped inside the filtration layer, but, of course, the fine particles and the cake layer removed and peeled off in the previous back pressure cleaning are also discharged out of the apparatus system by this operation. In this operation, since the water is not moved into the hollow fiber lumen, the flow velocity is higher inside the filtration layer, which contributes to the removal of the object to be washed from the inside of the filtration layer.
2 .追加洗浄  2.Additional cleaning
① 空洗  ① Empty washing
芯管から圧縮空気を急激に噴出させることによってろ過層内部に捕捉され た微粒子を高速の気液混相流 (圧力容器内に残存している水と該芯管に導入され る空気) にて完全に除去し、 装置系外に排除する。 尚、 排水を空気にて行うので 回収率が向上する。 但し、 その排除力はきわめて強力でろ過膜を損傷する恐れが あるので、 その実行は、 基本洗浄及び更に必要に応じて行う後述の薬洗の結果を 見て適宜行うのがよい。 The fine particles trapped inside the filtration layer are suddenly blown out of the core tube by rapid jet of compressed air, and are completely converted into a high-speed gas-liquid multiphase flow (water remaining in the pressure vessel and air introduced into the core tube). And remove it outside the system. Since the drainage is done by air Recovery rate is improved. However, since the rejection force is so strong that the filtration membrane may be damaged, it is better to carry out the operation appropriately in view of the results of the basic washing and, if necessary, the chemical washing described later.
② 薬洗  ② Medicine washing
適当なインターバルにて基本洗浄を繰り返しても、 金属水酸化物 (ろ過膜 でほぼ完全に除去される) の一部は膜面に残留し、 該濾過膜に捕捉された有機物 とともにケーキ層を形成する。 更に中空糸の細孔内に析出した該金属水酸化物及 び該細孔内に捕捉された蛋白質等の有機巨大分子の一部もそこに残留するので、 ろ過抵抗は徐々に上昇する。 ろ過抵抗が限度以内であれば残留金属水酸化物等の すべてを取り除く必要はないが、 一旦溶解したものが希釈などにより再析出する 危険があるため、 この操作は、 それを実行する時には該金属水酸化物の除去がほ ぼ完璧に行われるようにすることが肝要である。 具体的なステツプは下記の通り である。  Even if the basic washing is repeated at appropriate intervals, a part of the metal hydroxide (which is almost completely removed by the filtration membrane) remains on the membrane surface and forms a cake layer together with the organic matter captured by the filtration membrane. I do. Further, the metal hydroxide precipitated in the pores of the hollow fiber and a part of organic macromolecules such as proteins trapped in the pores remain therein, so that the filtration resistance gradually increases. If the filtration resistance is within the limit, it is not necessary to remove all of the residual metal hydroxides, etc., but once dissolved, there is a risk of re-precipitation due to dilution, etc. It is imperative that hydroxide removal be performed almost perfectly. The specific steps are as follows.
A. 第 1の薬洗  A. First wash
a . 次亜塩素酸イオンを含有せしめた原水を基本洗浄における逆流洗浄と同 様のルートで圧力容器内に導入する (第 1の通薬工程) 。 この操作の前に行われ る逆流洗浄とは異なり、 圧力容器内に導入された次亜塩素酸イオン含有原水は中 空糸の細孔を通して該中空糸の 2次側にも導入させられる。 ここで、 該原水に含 有せしめられる次亜塩素酸イオンは、 金属水酸化物と共働して主に膜面にケーキ 層を形成する元凶たる有機物の酸化分解及び該有機物の一部としての微生物の殺 菌のためである。  a. Raw water containing hypochlorite ions is introduced into the pressure vessel through the same route as backwashing in the basic washing (first chemical passing process). Unlike the backwashing performed before this operation, the raw water containing hypochlorite ions introduced into the pressure vessel is also introduced into the secondary side of the hollow fiber through the pores of the hollow fiber. Here, the hypochlorite ion contained in the raw water cooperates with the metal hydroxide to mainly oxidatively decompose the organic substance that mainly forms a cake layer on the membrane surface and as a part of the organic substance. This is for killing microorganisms.
b . 該導入された次亜塩素酸ィォン含有原水を該圧力容器内に所定時間 ホールドする (第 1の保持工程) 。 この工程の目的は、 前記の有機物の酸化分解 及び微生物の殺菌をより少ない薬剤で実効あるものにするためである。  b. The introduced raw water containing hypochlorous acid is held in the pressure vessel for a predetermined time (first holding step). The purpose of this step is to make the oxidative decomposition of the organic substances and the disinfection of microorganisms effective with less chemicals.
c 前記の中空糸の 2次側に導入された次亜塩素酸イオン含有原水を基 本洗浄における逆圧洗浄と同様のルートで流す (第 1の逆圧薬洗工程) 。 このェ 程の目的は中空糸の細孔を閉塞している有機物の排除である。  c Flow the hypochlorite ion-containing raw water introduced into the secondary side of the hollow fiber through the same route as the back pressure cleaning in the basic cleaning (first back pressure washing step). The purpose of this step is to eliminate the organic substances that block the pores of the hollow fiber.
d . 該次亜塩素酸ィォン含有原水及び次亜塩素酸ィォンを含有せしめ ない原水 (ろ過水であってもよい。 以下同様) を順番に基本洗浄の逆流洗浄と同 様のルートで流す (第 1の逆流洗浄工程) 。 d. The raw water containing hypochlorous acid and the raw water not containing hypochlorous acid (filtrated water may be used in the same manner as described above) are used in the same way as the backwashing of the basic cleaning. Flow through the same route (first backwashing step).
このように、 ろ過操作とは逆の方向でろ過層に薬液 (次亜塩素酸イオン 含有原水) を流すことによってろ過層の内周側 (ろ過操作時の通水がろ過層の外 周側から内周側に向かってなされるので外周側に比し、 その汚染度は低い) ほど 高流速のフレッシュな薬液と接触せしめられることになり、 より清浄なろ過面が 維持されるので、 全体としてろ過性能の低下は殆どない。  In this way, the chemical solution (raw water containing hypochlorite ion) flows through the filtration layer in the opposite direction to the filtration operation, so that the inner perimeter of the filtration layer (water flow during the filtration operation is from the outer perimeter of the filtration layer). (The contamination level is lower than that on the outer side because it is directed toward the inner side.) The higher the flow rate, the more contact is made with a fresh chemical solution, and a cleaner filtration surface is maintained. There is almost no decrease in performance.
A. 第 2の薬洗  A. Second wash
次亜塩素酸イオンを酸に代えたことを除き第 1の薬洗と同様にしてこの操 作を行う。 尚、 この操作の目的は金属水酸化物の除去にあるので、 該酸としては 洗浄水中に所定濃度の水素イオンを供給し得るものであればよく、 具体的には塩 酸、 硫酸、 硝酸等の鉱酸ゃクェン酸等の一部の有機酸が挙げられる (ハンドリン グ性及び入手の容易さの点から塩酸を用いることが好ましい) 。  This operation is performed in the same manner as in the first chemical washing except that hypochlorite ion is replaced with acid. Since the purpose of this operation is to remove the metal hydroxide, the acid may be any one that can supply a predetermined concentration of hydrogen ions to the washing water, and specifically, hydrochloric acid, sulfuric acid, nitric acid, etc. And some organic acids such as mineral acid and citric acid (preferably hydrochloric acid from the viewpoint of easy handling and availability).
本発明によれば微生物を含む膜面及びろ過層汚染物質をほぼ完璧に除去し得る ので、 かん水又は海水を原水とした逆浸透法による淡水化処理の前処理操作とし て充分に使用し得る。 尚、 本発明にて生産されたろ過水は当然そのまま (更なる 前処理操作を要することなく) 逆浸透装置に供給することができる。 また、 その 特性から明らかなように、 本発明のシステムは、 河川水は勿論のこと、 廃水中の 不溶性固形分の除去法としても当然適用し得る。 尚、 説明の都合を優先し、 ここ まで本発明のシステムに用いる膜が限外ろ過膜であるとして説明してきたが、 本発明の思想は使用する膜の分画分子量がその要件ではない故、 適用し得る膜と しては限外ろ過膜に限定されず、 例えば M F膜や N F膜をも使用し得るものであ る。  According to the present invention, the contaminants on the membrane surface and the filtration layer containing microorganisms can be almost completely removed, so that they can be sufficiently used as a pretreatment operation for desalination treatment by reverse osmosis using brackish water or seawater as raw water. In addition, the filtered water produced in the present invention can be supplied to a reverse osmosis apparatus as it is (without requiring any further pretreatment). Further, as is clear from the characteristics, the system of the present invention can be naturally applied to a method for removing insoluble solids in wastewater as well as river water. It should be noted that priority is given to the convenience of explanation, and the membrane used in the system of the present invention has been described as an ultrafiltration membrane, but the idea of the present invention is that the molecular weight cut off of the membrane used is not a requirement, The applicable membrane is not limited to an ultrafiltration membrane, and for example, an MF membrane or an NF membrane may be used.
以下、 その実施態様の一つを示した図面を参照しつつ本発明を詳細に説明す る。  Hereinafter, the present invention will be described in detail with reference to the drawings showing one of the embodiments.
図 1に示したのが本発明の基本フロー (原水から不溶性の固形分が殆ど除去 された浄水を得るという本来の目的のためのフロー、 すなわちろ過操作時のフ ロー) である。 ここで、 符号 V 0は原水槽、 V Iは圧力容器、 V 2は洗浄水タン ク、 V 3は (圧縮空気の) 空気溜め、 V 4は浄水槽、 Pは原水ポンプである。 尚、 図中、 "塩素" と表示されているものは、 圧力容器: V 1の前流のそれがろ g Fig. 1 shows the basic flow of the present invention (the flow for the original purpose of obtaining purified water in which insoluble solids are almost completely removed from the raw water, that is, the flow for the filtration operation). Here, V 0 is a raw water tank, VI is a pressure vessel, V 2 is a washing water tank, V 3 is an air reservoir (for compressed air), V 4 is a water purification tank, and P is a raw water pump. In the figure, "Chlorine" is indicated in the pressure vessel: g
過層の洗浄操作の際のみに投入される次亜塩素酸イオン供給源としての塩素系薬 剤であり、 浄水槽: V 4の後流のそれが浄水の使用先、 例えば上水の場合などに 所望される蛇口での所要残留塩素濃度を満足させるために投入される塩素系薬剤 である。 また、 図中、 "塩酸" と表示されているものは、 ろ過層の洗浄操作の際 のみに投入される酸の代表としての塩酸である。 A chlorine-based chemical that is supplied only as a source of hypochlorite ion during the cleaning operation of the upper layer. Water purification tank: The downstream of V4 is where purified water is used, for example, in the case of clean water. It is a chlorine-based chemical that is added to satisfy the required residual chlorine concentration at the tap. Also, what is indicated as "hydrochloric acid" in the figure is hydrochloric acid as a representative of the acid that is supplied only during the operation of washing the filtration layer.
本発明では、 原水は、 原水ポンプ: Pにて所定の圧力に高められた後、 圧力 容器: V Iの一次側 (中空糸の外面、 すなわち膜面が露出している側) に送られ る。 図 2に示すように、 該圧力容器の内部には、 中空糸束からなる層: U F (以 下、 ろ過層という) がその中心部にその軸方向に延伸するように設けられた芯 管: Tの回りに均一な目開きとなるよう規則的且つ重畳的に巻回 ·保持 (その 表層の状態を示したのが図 3であり、 ある種織布のごとき形態である) されてお り、 一方、 該ろ過層を構成する中空糸の端部 (図示では両端であるが、 少なくと も一端であればよい) は仕切り : S 1、 S 2にて該圧力容器の内部と水密に区分 された空間である水室: V I I、 V I 2にその内腔 (限外ろ過膜装置の二次側と なる) を開放しているので、 該圧力容器に導入された原水は、 原水入口: Iから 該圧力容器内周面と該ろ過層の外周面との間に形成された外周空間: Wに入り 該ろ過層中を各中空糸の膜面にてろ過されつつ該芯管の方に向かって流れていく (ここで、 該芯管はそれに接続する配管に設けられた遮断弁にて盲をされた状態 におかれているので、 原水がこの管を介して該圧力容器の外部に直接排出される ことはない。 尚、 原水は該圧力容器に供給された全量が、 ろ過された水、 すなわ ち浄水として該水室から配管 (該水室としての空間形成のための蓋: C 1、 C 2 にその一端を連結されている) を経由して該圧力容器の系外に排出される。 この 浄水は、 洗浄水タンク: V 2 (このフローでは、 ろ過層洗浄操作における洗浄水 の送水手段として加圧空気を使用しているので、 浄水槽: V 4との間にこのタン クを設けているが、 勿論、 該洗浄水の送水手段としてはポンプを使用してもよ く、 その場合には、 該ポンプのサクシヨンを該浄水槽に連結する。 尚、 この洗浄 水タンクを個別に設けるシステム構成は、 後述するように膜面の洗浄操作におけ る空気による高速洗浄一空洗一を行うための加圧空気の空気溜めを別途有してい ることもその理由の一つである) を介して浄水槽: V 4に流れ込み、 そして使用 先に適当な手段、 例えばポンプと配管を経由して送られる。 In the present invention, the raw water is raised to a predetermined pressure by the raw water pump: P, and then sent to the primary side of the pressure vessel: VI (the outer surface of the hollow fiber, that is, the side where the membrane surface is exposed). As shown in FIG. 2, inside the pressure vessel, a layer composed of a bundle of hollow fibers: UF (hereinafter, referred to as a filtration layer) is provided at the center thereof so as to extend in the axial direction thereof. It is wound and held regularly and superimposed so as to have a uniform opening around T (Fig. 3 shows the state of the surface layer, which is in the form of a certain woven fabric). On the other hand, the ends of the hollow fibers constituting the filtration layer (both ends in the drawing, but at least one end are sufficient) are divided into water-tight sections at S 1 and S 2 from the inside of the pressure vessel. Water chamber: VII, VI 2 whose inner cavity (which is the secondary side of the ultrafiltration membrane device) is open, so that the raw water introduced into the pressure vessel has the raw water inlet: I From: an outer peripheral space formed between the inner peripheral surface of the pressure vessel and the outer peripheral surface of the filtration layer: W enters the filtration layer and the membrane surface of each hollow fiber in the filtration layer Flows toward the core pipe while being filtered at the same time (here, since the core pipe is blinded by a shut-off valve provided in a pipe connected to the core pipe, The raw water is not directly discharged to the outside of the pressure vessel through this pipe, and the whole amount of the raw water supplied to the pressure vessel is filtered water, that is, purified water, and the raw water is piped from the water chamber. The water is discharged to the outside of the pressure vessel via a lid for forming a space as a water chamber: one end of which is connected to C 1 and C 2. (In this flow, pressurized air is used as a means for sending the washing water in the filtration layer washing operation, so this tank is provided between the water purification tank: V4. A pump may be used as the water supply means. The system for separately providing the washing water tank is composed of a pressurized air for performing high-speed washing, air washing and air washing in the membrane surface washing operation as described later. Another reason for this is that the reservoir has a separate reservoir.) It is first sent via appropriate means, for example a pump and piping.
一方、 所定のろ過操作を完了すると、 ろ過層: UFは、 該ろ過層の表層 (外周 側表面を含む外周側の表層) 及び該ろ過層の内部並びに各中空糸の膜面上及び細 孔中) に捕捉された及びノ又は付着した不溶性の固形分を除去するための洗浄操 作に入る。 洗浄操作は、 適当なインターバルにて定常的に行う基本洗浄と必要に 応じてそれに付け加えられる追加洗浄とからなる (その際の水又は空気が流され るルートについては図 4参照) 。  On the other hand, when the predetermined filtration operation is completed, the filtration layer: UF becomes the surface layer of the filtration layer (the outer surface layer including the outer peripheral surface), the inside of the filtration layer, and on the membrane surface of each hollow fiber and in the pores. ) Enter a cleaning operation to remove insoluble solids trapped and adhered to the water. The washing operation consists of basic washing that is performed regularly at appropriate intervals and additional washing that is added to the washing as needed (see Fig. 4 for the route through which water or air flows).
(1) 基本洗浄  (1) Basic cleaning
予め洗浄水タンク V 2に貯えられたろ過水を使用する 「逆圧洗浄」 と、 該逆 圧洗浄に引き続いて行われる、 原水を洗浄水として利用する 「逆流洗浄」 とから 構成される。 尚、 以下の説明にて特記しない弁は、 すべてその状態が "閉" であ るものとする。  It is composed of “back-pressure washing” using filtered water previously stored in the washing water tank V 2, and “back-flow washing” performed following the back-pressure washing and using raw water as washing water. Note that all valves not specified in the following description shall be in the "closed" state.
1) 逆圧洗浄  1) Back pressure cleaning
洗浄水タンク : V 2に圧力をかけ (弁: CV5 "開" 。 尚、 CV7は空気 を必要とする操作を行う限り "開" であるものとする) 、 予め該洗浄水タンクに 貯留されたろ過水を水室: C 1、 C 2に供給し、 中空糸の内腔からその外面に向 けて所定の圧力 (原則としてろ過差圧の 3倍、 具体的には最大 300〜500 kP a) にて該ろ過水を流す (弁: CV3 "開" ) 。 尚、 洗浄時間は 10秒もあ れば充分である。  Rinse water tank: Apply pressure to V2 (valve: CV5 "open"; CV7 is assumed to be "open" as long as an operation that requires air is performed) and stored in the rinse water tank in advance Filtered water is supplied to the water chambers: C1 and C2, and a predetermined pressure is applied from the hollow fiber lumen to the outer surface of the hollow fiber (in principle, three times the filtration pressure difference, specifically 300 to 500 kPa ) To flow the filtered water (valve: CV3 "open"). A washing time of 10 seconds is sufficient.
2 ) 逆流洗浄  2) Backwash
芯管: Tから圧力容器: V 1の外周空間: Wに向けて原水を流す (弁: CV4及び CV3 "開" 、 原水ポンプ: P稼働) 。 尚、 洗浄水量はろ過層空間容 積の 3倍を標準とする。 尚、 この操作は、 「逆圧洗浄」を複数回繰り返した後で行 ラ。  Core pipe: From T to pressure vessel: Outer space of V1: Raw water flows toward W (valve: CV4 and CV3 "open", raw water pump: P operation). The washing water volume is 3 times the filtration layer space volume as standard. This operation is performed after “backwashing” is repeated several times.
(2) 追加洗浄  (2) Additional cleaning
高速流の圧縮空気 (正確には、 水と空気との気液混相流) によりろ過層に ショックを与えてろ過層を洗浄する 「空洗」 と、 薬剤を含有せしめた原水を使用 する 「薬洗」 とからなる。 原則として、 「空洗」 と 「薬洗」 はどちらか一方を前 記の基本洗浄を数回行った後で行う。 勿論、 必要に応じて両者をシリーズで行つ ^ Q A high-speed compressed air (more precisely, a gas-liquid mixed phase flow of water and air) shocks the filtration layer and cleans the filtration layer. “Empty washing”, and “pharmaceuticals that use raw water containing chemicals” Washing ". As a general rule, “empty washing” and “medicine washing” are performed after performing one of the above basic washings several times. Of course, do both in series as needed ^ Q
てもよい。 又、 「薬洗」 は、 使用する薬剤によって 「第 1の薬洗」 (薬剤:次亜 塩素酸イオン放出可能な薬剤、 例えば次亜塩素酸ソーダなど) と 「第 2の薬洗」 (薬剤:酸、 例えば塩酸等の鉱酸ゃクェン酸等の有機酸) とからなる (数字の順 にシリーズに行う) ) 。 You may. In addition, “washing” refers to “first washing” (drug: a drug capable of releasing hypochlorite ions, such as sodium hypochlorite) and “second washing” (drug depending on the chemical used). : An acid, for example, a mineral acid such as hydrochloric acid or an organic acid such as citric acid) (performed in series in numerical order)).
1) 空洗  1) Empty washing
芯管: Tの上部から圧力容器: V 1を約 3 barの圧縮空気 (空気溜め: V3より供給) で加圧 (弁: CV6 "開" ) した後、 弁: CV3を開放すること により該圧力容器内部の水を急速に排出する。 尚、 初期圧力: 500kPa、 排水 完了時圧力: lbar維持とした場合で、 数秒の空洗でもろ過層内の流速は外周部 でさえ約 75m/hと大きい (内周部では 28 Om/h) ので洗浄能力は充分である。  Core tube: From the top of T, pressure vessel: V1 is pressurized (valve: CV6 "open") with compressed air (air reservoir: supplied from V3) of about 3 bar, and then valve: CV3 is opened. Drain the water inside the pressure vessel rapidly. The initial pressure: 500 kPa, the pressure at the completion of drainage: lbar is maintained, and the flow velocity in the filtration layer is as large as about 75 m / h even at the outer periphery (in the inner periphery, 28 Om / h) even if the washing is performed for several seconds. Therefore, the cleaning ability is sufficient.
2) 薬洗  2) washing
下記のステップで構成する。 尚、 「第 1の薬洗」 と 「第 2の薬洗」 とは薬 剤を異にするだけゆえ、 「第 1の薬洗」 のみ以下に説明する (第 2の薬洗は、 下 記の説明の第 1を第 2と読み替えるものとする) 。  It consists of the following steps. Note that only the first wash is described below because the first wash is different from the second wash. (The second wash is described below.) The first of the description of the above shall be read as the second).
① 第 1の通薬工程  ① First drug delivery process
芯管: Tから圧力容器: VIの外周空間: Wに向けて次亜塩素酸イオン を含有せしめられた原水を流し (弁: 。 4及び〇 3 "開" 、 原水ポンプ: P 稼働) 、 該圧力容器の内部空間内の水が該次亜塩素酸イオン含有原水と置換した ことを確認したら原水の導入を停止する (弁: CV4及び CV3を閉鎖、 原水 ポンプ: P停止) 。 ここで、 次亜塩素酸イオンを原水に含有せしめるには、 図 1 に示すように該圧力容器に流入する原水に例えば次亜塩素酸ソーダを所定比率で 注入すればよい (濃度としては、 2〜20ppm、 好ましくは 5〜 1 Ορρπιとする。 尚、 「第 2の薬洗」 の場合におけるそれ (この場合には pH) は、 それぞれ 2. 5〜4. 0、 及び 2. 7〜3. 7である) 。 また前記の水の置換の完了は、 予め弁: CV3を通って排出される水の中の次亜塩素酸濃度(第 2の薬洗の場合 には PHで可)が所定濃度になるまでの時間を把握しておき、 その時間をタイマー にセットすればよい。 尚、 この工程においては、 該次亜塩素酸イオン含有原水を 中空糸の細孔を介して洗浄水タンク : V 2にも充満させる(弁: CV2を一時開 放し、 所定時間経過後にタイマーで又は該洗浄水タンクに液面調節計を装着しそ れからの信号にて閉鎖する)。 From the core tube: T to the pressure vessel: Outer space of VI: Raw water impregnated with hypochlorite ion is flowed toward W (valve: 4 and 〇3 "open", raw water pump: P operation) When it is confirmed that the water in the internal space of the pressure vessel has been replaced with the raw water containing hypochlorite ion, the introduction of the raw water is stopped (the valves: CV4 and CV3 are closed, and the raw water pump: P is stopped). Here, in order to make hypochlorite ions contained in raw water, for example, sodium hypochlorite may be injected into raw water flowing into the pressure vessel at a predetermined ratio as shown in FIG. 20 ppm, preferably 5 to 1 Ορρπι In the case of “second chemical washing”, the pH (in this case, pH) is 2.5 to 4.0, and 2.7 to 3. 7). In addition, the completion of the water replacement is determined in advance by a valve: until the concentration of hypochlorous acid in the water discharged through the CV3 (in the case of the second washing, PH can be used) reaches a predetermined concentration. You just need to know the time and set that time in the timer. In this step, the raw water containing hypochlorite ions is also filled in the washing water tank: V2 through the pores of the hollow fiber (valve: CV2 is temporarily opened, and after a predetermined time elapses, a timer or Attach a liquid level controller to the washing water tank. Will be closed at the traffic light).
② 第 1の保持工程  ② First holding process
前行程の最後の状態を所定時間ホールドする (次亜塩素酸イオンの濃度 が 5 ppmであれば通常の水の場合 5分間で充分である。 尚、 「第 2の薬洗」におけ るそれは、 pH 3で 5〜 1 0分おけば充分である) 。  Hold the last state of the previous process for a predetermined time. (If the concentration of hypochlorite ion is 5 ppm, 5 minutes for ordinary water is sufficient. In the "second chemical washing," A pH of 3 and 5 to 10 minutes is sufficient).
③ 第 1の逆圧薬洗  ③ First back pressure medicine wash
第 1の通薬工程で予め洗浄水タンク : V 2に貯留しておいた次亜塩素酸 イオン含有原水(正確には膜面を通過しているのでろ過水)を基本洗浄における「 逆圧洗浄」と同様のルートにて流す (弁: 〇 5及びじ 3 "開" )  Washing water tank in the first pass-through process: Hypochlorite ion-containing raw water stored in V2 (filtered water because it passes through the membrane surface to be precise) is backwashed in basic washing. (Valve: 〇5 and 33 "Open")
④ 第 1の逆流洗浄工程  ④ First backwash step
第 1の通薬工程における原水の圧力容器: V 1への導入と同様のルート で初めに次亜塩素酸イオン含有原水を、 所定時間後に原水そのものをそれぞれ流 す。 ここで次亜塩素酸ィォン含有の有無は水中にて次亜塩素酸ィオンを生成し得 る薬剤、 例えば次亜塩素酸ソーダ注入ポンプ (図示せず)の稼動—停止にて行えば よい。  Raw water pressure vessel in the first pass-through process: Raw water containing hypochlorite ions flows first, and raw water itself flows after a predetermined time, following the same route as the introduction to V1. Here, the presence or absence of the presence of hypochlorite may be determined by operating and stopping a chemical capable of generating hypochlorite in water, for example, a sodium hypochlorite injection pump (not shown).
因に、 標準的な洗浄操作 (逆圧洗浄→逆流洗浄—薬洗) の条件は、 下記の通り である。  The conditions for the standard washing operation (backwashing → backwashing – chemical washing) are as follows.
① 最少洗浄間隔 (逆圧洗浄) : 1回 3 0分 (条件としては更に回収率 9 5 % 以下)  ① Minimum cleaning interval (back-pressure cleaning): once 30 minutes (Condition: recovery rate is 95% or less)
② 最大洗浄間隔 (逆圧洗浄) : 1回 3時間 (条件としては更に回収率 9 5 % 以上)  (2) Maximum washing interval (back pressure washing): 3 hours for each time (condition is further recovery rate of 95% or more)
③ 逆流洗浄の頻度:少なくとも 1回 逆圧洗浄 4回 ④ 薬洗の頻度:少な くとも 1回 Z 1 2時間  ③ Backwash frequency: At least once Backwash four times ④ Chemical wash frequency: At least once Z 12 hours
【0 0 3 0】  [0 0 3 0]
試験例 - 1 (基本洗浄の効果の確認)  Test example-1 (Confirmation of basic cleaning effect)
1 . 原水  1. Raw water
水道水にカオリン (平均粒径: 3 ^ m)を分散させた水 (不溶性の固形分濃 度: 2, 0 0 0 ppm)を定量ポンプで水道水に注入した (目標不溶性の固形分濃 度: 5 0〜 2 5 0卯 。 2. 試験装置 Water (insoluble solids concentration: 2,000 ppm) in which kaolin (average particle size: 3 ^ m) was dispersed in tap water was injected into the tap water with a metering pump (target insoluble solids concentration). : 50 ~ 250. 2. Test equipment
図 4参照。 尚、 膜モジュール (図 2参照。 具体的には、 東洋紡 (株) 製の型 番: HM8AUFを使用) の詳細仕様は下記の通り。  See FIG. The detailed specifications of the membrane module (see Fig. 2. Specifically, model number: HM8AUF manufactured by Toyobo Co., Ltd. is used) are as follows.
① 圧力容器の外径: 5 B  ① Outer diameter of pressure vessel: 5 B
② 膜面積 : 38m2  ② Membrane area: 38m2
③ 中空糸: (外径) 300 ζπι, (内径) 200 m  ③ Hollow fiber: (outside diameter) 300 ζπι, (inside diameter) 200 m
3. 試験  3. Exam
水温: 23 :、 ろ過圧力: 100kPa、 ろ過流量: 0. 7m3/hで 1時間 52 分間ろ過操作を行った後、 下記の要領にて洗浄操作を行った。  Water temperature: 23: Filtration pressure: 100 kPa, Filtration flow rate: 0.7 m3 / h for 1 hour and 52 minutes, and then washing operation was performed as follows.
① 逆圧洗浄 (洗浄水:ろ過操作で得た洗浄水タンク (容量: 5 L)中の浄 水。 送水動力:エアタンクからの空気—圧力: 50 OkPa—。 時間: 10秒) 。  (1) Back pressure washing (Washing water: Purified water in the washing water tank (volume: 5 L) obtained by the filtration operation. Water supply power: Air from the air tank-Pressure: 50 OkPa-Time: 10 seconds).
② 逆洗 (洗浄水:原水。 流量:ろ過操作の 1. 3倍。 時間: 20秒) 。 (2) Backwashing (washing water: raw water. Flow rate: 1.3 times the filtration operation. Time: 20 seconds).
4. 試験結果 4. Test results
① 12サイクル運転後、 不溶性の固形分収支を調べたところ、 装置への流 入不溶性の固形分の回収率は 99 %以上であった (水回収率: 98. 0%) 。  (1) After 12 cycles of operation, the balance of the insoluble solids was examined. The recovery rate of the insoluble solids flowing into the equipment was over 99% (water recovery rate: 98.0%).
② 原水中の不溶性の固形分濃度を 67 ppm迄下げ、 ろ過操作時間を 6時間 に延長し、 12サイクル運転したが、 ろ過装置の異常閉塞もなくまったく問題が なかった (水回収率: 99. 3%) 。  ② The concentration of insoluble solids in the raw water was reduced to 67 ppm, the filtration operation time was extended to 6 hours, and the system was operated for 12 cycles, but there was no problem with no abnormal blockage of the filtration device (water recovery rate: 99. 3%).
③ いずれの場合も、 浄水の濁度は 0. 1以下であった (濁度測定法:工業 用水試験法— J I S K 0101—の 9. 濁度に準拠) 。  3) In each case, the turbidity of the purified water was 0.1 or less (according to 9. Turbidity of turbidity measurement method: Industrial water test method-JISK 0101-).
試験例一 2 (追加洗浄の効果の確認)  Test Example 1 (Confirmation of the effect of additional cleaning)
1. 原水  1. Raw water
琵琶湖の湖水を沖合い 200m水深 2mより採水し、 そのまま使用した。 そ の濁度は 5、 S Sは 16ppmであった。 尚、 S Sの大部分は有機物であった。  Lake Biwa was sampled 200 m offshore at a depth of 2 m and used as it was. Its turbidity was 5 and SS was 16 ppm. Most of S S was organic.
2. 試験装置  2. Test equipment
試験例一 1に同じ。  Same as Test Example 1.
3. 試験  3. Exam
下記の要領にて実施した。  The procedure was performed as follows.
① 逆圧洗浄 (水温: 18 :、 ろ過圧力: 10 OkPa、 ろ過流量: 0. 6 m3/hで、 3 0分間ろ過操作を行った後、 実施。 条件は試験例一 1に同じ) 。① Back pressure washing (Water temperature: 18: Filtration pressure: 10 OkPa, Filtration flow rate: 0.6 Performed after filtration for 30 minutes at m3 / h. The conditions are the same as in Test Example 1).
② 逆洗 (ろ過 +逆圧洗浄を 4回実施した後に 1回、 試験例一 1と同一条件 にて実施) (2) Backwashing (one time after performing filtration + backwashing four times, under the same conditions as Test Example 1)
③ 薬洗 (第 1の薬洗。 逆洗 2回実施した後に 1回、 下記の要領にて実施) ·第 1の通薬工程 (洗浄水:塩素を注入した原水一有効塩素: 5 ppm、 通 水方法:該洗浄水を中空糸の 2次側にも充満させることを除き逆洗に同じ、 通水 速度:ろ過操作の 0 . 5倍、 通水時間: 2分)  ③ Chemical washing (First chemical washing. Backwashing is performed twice and then once, following the procedure below) · First chemical passing process (washing water: raw water with chlorine injected, available chlorine: 5 ppm, Water passing method: Same as back washing except that the washing water is also filled in the secondary side of the hollow fiber. Water passing speed: 0.5 times the filtration operation, water passing time: 2 minutes)
•第 1の保持工程 (保持時間: 1 0分)  • 1st holding process (holding time: 10 minutes)
•第 1の逆圧薬洗工程 (洗浄水として、 第 1の通薬工程時の中空糸 2次側 に充満せしめた洗浄水を用いることを除き条件は逆圧洗浄に同じ)  • First back-pressure chemical washing process (The conditions are the same as the back-pressure washing except that the washing water filled in the secondary side of the hollow fiber during the first chemical passing process is used as the washing water.)
•第 1の逆流洗浄工程 (条件は逆流洗浄に同じ)  • First backwashing step (conditions are the same as for backwashing)
4 . 試験結果  4. Test results
① 約 1ヶ月の運転でも、 ろ過流量の低下は全く認められなかった。  ① No decrease in the filtration flow rate was observed at all even after about one month of operation.
② 基本洗浄のみではろ過流量が約 7 %低下するが、 第 1の薬洗を追加する ことによりろ過流量がほぼ初期の状態に回復することが確認された。  (2) The filtration flow was reduced by about 7% only with the basic cleaning, but it was confirmed that the filtration flow recovered to almost the initial state by adding the first chemical cleaning.
③ 原水中の S Sの構成成分がほとんど有機物であったため、 第 2の薬洗は 実施する必要がなかった。 産業上の利用可能性  (3) Since the constituents of SS in the raw water were mostly organic, there was no need to perform the second chemical washing. Industrial applicability
本発明によれば、 特別な前処理を必要とすることなく、 長期にわたってろ過を 行うことができ、 しかも、 ろ過操作において原水に塩素系薬剤の添加を必要とし ないので、 経済的且つ安全な浄水製造方法を提供し得る。  ADVANTAGE OF THE INVENTION According to this invention, it is possible to perform filtration for a long time without requiring special pretreatment, and furthermore, it is not necessary to add a chlorine-based chemical to raw water in the filtration operation, so that economical and safe water purification is possible. A manufacturing method may be provided.

Claims

請 求 の 範 囲 The scope of the claims
1 . 竪型円筒形の圧力容器の中心部にその軸方向に延伸するように配した芯管に 中空糸束を均一な目開きとなるよう規則的且つ重畳的に巻き付けてろ過層として なるホロ一ファイバー型の限外ろ過膜を用いた浄水製造方法であって、 ろ過操作 、 全量ろ過であること、 及び原水を該圧力容器の内周面と該ろ過層の外周面と の間に形成された外周空間から該芯管に向かって供給し、 該中空糸の内腔からろ 過水を抜き出すことによって行われること、 そして該中空糸の膜面を含む該ろ過 層の洗浄操作が、 該中空糸の内腔からその外側に向かってろ過水を流す逆圧洗浄 と該芯管より該外周空間に向かって供給される原水又はろ過水による逆流洗浄と からなる基本洗浄によって行われることを特徴とする方法。 1. Hollows that form a filtration layer by regularly and superimposingly winding a bundle of hollow fibers around a core tube arranged in the center of a vertical cylindrical pressure vessel so as to extend in the axial direction so as to have uniform openings. A method for producing purified water using a one-fiber ultrafiltration membrane, comprising: a filtration operation, total filtration, and raw water formed between an inner peripheral surface of the pressure vessel and an outer peripheral surface of the filtration layer. Is supplied from the outer peripheral space toward the core tube, and filtration water is extracted from the inner cavity of the hollow fiber. The washing operation of the filtration layer including the membrane surface of the hollow fiber is performed by the hollow fiber. It is characterized by being carried out by a basic washing consisting of back pressure washing in which filtered water flows from the lumen of the yarn toward the outside thereof and back washing with raw water or filtered water supplied from the core tube toward the outer peripheral space. how to.
2 . 前記のろ過層を構成する中空糸束の前記の圧力容器内部における充填可能空 間に対する充填率が少なくとも 0 . 5である請求の範囲第 1項に記載の方法。 2. The method according to claim 1, wherein a filling rate of a hollow fiber bundle constituting the filtration layer with respect to a fillable space inside the pressure vessel is at least 0.5.
3 . 前記のろ過基本洗浄の後で、 前記の芯管から前記の外周空間に向けて急激に 空気を流す空洗を更に行う請求の範囲第 1項又は第 2項に記載の方法。 3. The method according to claim 1 or 2, further comprising, after the filtration basic washing, performing an empty washing in which air is rapidly flown from the core tube toward the outer peripheral space.
4 . 前記の基本洗浄の後で、 前記の芯管からその中に次亜塩素酸イオンを含有せ しめた原水又はろ過水を前記の外周空間に向けて流す第 1の薬洗と、 該芯管から その中に酸を含有せしめた原水又はろ過水を該外周空間に向けて流す第 2の薬洗 を更に行う請求の範囲第 1項又は第 2項に記載の方法。  4. After the above-mentioned basic washing, a first chemical washing in which raw water or filtered water containing hypochlorite ions therein flows from the core tube toward the outer peripheral space, The method according to claim 1 or 2, further comprising performing a second chemical washing in which raw water or filtered water containing an acid therein is directed from the pipe toward the outer peripheral space.
5 . 前記の第 1の薬洗が、 前記の次亜塩素酸イオン含有原水又はろ過水を前記の 芯管から前記の外周空間に向かって流し、 前記の圧力容器内に該次亜塩素酸ィォ ン含有原水又はろ過水を導入する第 1の通薬工程と、 該導入された次亜塩素酸ィ オン含有原水又はろ過水を該圧力容器内に所定の時間とどめておく第 1の保持ェ 程と、 該第 1の通薬工程にて中空糸の細孔を介してろ過水側に移動せしめた該次 亜塩素酸イオン含有原水又はろ過水を該中空糸の内腔側からその外側に流す第 1 の逆圧薬洗工程と、 該次亜塩素酸イオン含有原水又はろ過水を該第 1の通薬工程 と同様のルートで流した後、 更に次亜塩素酸イオンを含まない原水又はろ過水を 同ルートで流す第 1の逆流洗浄工程とからなり、 前記の第 2の薬洗が、 前記の酸 含有原水又はろ過水を該芯管から該外周空間に向かって流し、 該圧力容器内に該 酸含有原水又はろ過水を導入する第 2の通薬工程と、 該導入された塩酸含有原水 又はろ過水を該圧力容器内に所定の時間とどめておく第 2の保持工程と、 該第 2 の通薬工程にて中空糸の細孔を介してろ過水側に移動せしめた該酸含有原水又は ろ過水を該中空糸の内腔側からその外側に流す第 2の逆圧薬洗工程と、 該酸含有 原水又はろ過水を該第 2の通薬工程と同様のルートで流した後、 更に酸を含まな い原水又はろ過水を同ルートで流す第 2の逆流洗浄工程とからなる請求の範囲第 4項に記載の方法。 5. The first chemical washing flows the hypochlorite ion-containing raw water or filtered water from the core tube toward the outer peripheral space, and places the hypochlorite solution in the pressure vessel. A first pass-through step for introducing raw water or filtered water containing carbon dioxide, and a first retention mechanism for keeping the introduced raw water or filtered water containing hypochlorite ion for a predetermined time in the pressure vessel. And transferring the hypochlorite ion-containing raw water or filtered water moved to the filtered water side through the pores of the hollow fiber in the first drug passing step from the lumen side of the hollow fiber to the outside thereof. After flowing the first reverse pressure chemical washing step, and flowing the raw water or filtered water containing hypochlorite ion along the same route as the first chemical passing step, further feed raw water or hypochlorite ion-free water. A first backwashing step of flowing filtered water through the same route, wherein the second chemical washing is performed using the acid-containing raw water or the filter. The supercooled water flows from the core tube toward the outer peripheral space, and the water flows into the pressure vessel. A second pass-through step of introducing acid-containing raw water or filtered water, a second holding step of keeping the introduced hydrochloric-acid-containing raw water or filtered water in the pressure vessel for a predetermined time, and A second counter-pressure washing step in which the acid-containing raw water or filtered water that has been moved to the filtered water side through the pores of the hollow fiber in the drug passing step flows from the lumen side of the hollow fiber to the outside; A second backflow washing step in which the acid-containing raw water or the filtered water is caused to flow along the same route as the second chemical passing step, and further, the acid-free raw water or the filtered water is caused to flow along the same route. The method of paragraph 4 above.
6 . 前記の第 1の保持工程における次亜塩素酸イオン含有原水又はろ過水のの次 亜塩素酸濃度が 2〜2 O ppmであり、 その保持時間が 2〜 2 0分であり、 前記の 第 2の保持工程における酸含有原水又はろ過水の pHが 2 . 5〜4 . 0であり、 そ の保持時間が 2〜 2 0分である請求の範囲第 5項に記載の方法。  6. The hypochlorous acid concentration of the hypochlorite ion-containing raw water or filtered water in the first holding step is 2 to 2 O ppm, the holding time is 2 to 20 minutes, 6. The method according to claim 5, wherein the pH of the acid-containing raw water or the filtered water in the second holding step is 2.5 to 4.0, and the holding time is 2 to 20 minutes.
7 . 前記の原水がかん水又は海水であり、 前記のろ過操作にて得られた浄水をそ のまま逆浸透法による淡水化処理の原料水として供給する請求の範囲第 1項乃至 第 6項のいずれか 1に記載の方法。  7. The method according to any one of claims 1 to 6, wherein the raw water is brackish water or seawater, and the purified water obtained by the filtration operation is supplied as it is as raw water for desalination treatment by a reverse osmosis method. The method according to any one of the preceding claims.
PCT/JP2000/001318 1998-06-30 2000-03-06 Method of producing purified water WO2001066238A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP10357258A JP2000079390A (en) 1998-06-30 1998-12-16 Purified water production
PCT/JP2000/001318 WO2001066238A1 (en) 1998-06-30 2000-03-06 Method of producing purified water
AU2000228292A AU2000228292A1 (en) 2000-03-06 2000-03-06 Method of producing purified water

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP18360598 1998-06-30
JP10357258A JP2000079390A (en) 1998-06-30 1998-12-16 Purified water production
PCT/JP2000/001318 WO2001066238A1 (en) 1998-06-30 2000-03-06 Method of producing purified water

Publications (1)

Publication Number Publication Date
WO2001066238A1 true WO2001066238A1 (en) 2001-09-13

Family

ID=27278735

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/001318 WO2001066238A1 (en) 1998-06-30 2000-03-06 Method of producing purified water

Country Status (2)

Country Link
JP (1) JP2000079390A (en)
WO (1) WO2001066238A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1019374C2 (en) * 2001-11-15 2003-05-16 Norit Holding N V Method for manufacturing a filter module, such a filter module, whether or not included in a filter system.

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000079390A (en) * 1998-06-30 2000-03-21 Kikai Kagaku Kenkyusho:Kk Purified water production
KR100430672B1 (en) * 2001-06-27 2004-05-10 (주) 세라컴 a back washing apparatus of ceramics membrane
TW536424B (en) * 2001-09-05 2003-06-11 Mitsubishi Rayon Co Water-clean cartridge, water-cleaner, and washing method of water-cleaner
JP4560701B2 (en) * 2002-03-05 2010-10-13 東洋紡績株式会社 Cleaning method for membrane filter module
KR101141514B1 (en) 2003-09-22 2012-05-08 지멘스 인더스트리, 인크. Backwash and cleaning method
EP2394731A1 (en) * 2004-12-24 2011-12-14 Siemens Industry, Inc. Cleaning in membrane filtration systems
JP2006281121A (en) * 2005-04-01 2006-10-19 Ngk Insulators Ltd Membrane filtration operating method of clarification water
NZ562786A (en) * 2005-04-29 2010-10-29 Siemens Water Tech Corp Chemical clean for membrane filter
MY146286A (en) 2005-08-22 2012-07-31 Siemens Industry Inc An assembly for water filtration using a tube manifold to minimise backwash
JP4804176B2 (en) * 2006-03-06 2011-11-02 ダイセン・メンブレン・システムズ株式会社 Seawater filtration
US9764288B2 (en) 2007-04-04 2017-09-19 Evoqua Water Technologies Llc Membrane module protection
CN109107392A (en) 2007-05-29 2019-01-01 懿华水处理技术有限责任公司 Use the Membrane cleaning of pulsed airlift pump
JP2009220018A (en) * 2008-03-17 2009-10-01 Metawater Co Ltd Method and device for cleaning membrane
EP2331242B1 (en) 2008-07-24 2018-09-05 Evoqua Water Technologies LLC Frame system for membrane filtration modules
AU2010257526A1 (en) 2009-06-11 2012-01-12 Siemens Industry, Inc Methods for cleaning a porous polymeric membrane and a kit for cleaning a porous polymeric membrane
CN102869432B (en) 2010-04-30 2016-02-03 伊沃夸水处理技术有限责任公司 Fluid flow distribution device
EP2618916A4 (en) 2010-09-24 2016-08-17 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
KR20140097140A (en) 2011-09-30 2014-08-06 에보쿠아 워터 테크놀로지스 엘엘씨 Isolation valve
US9604166B2 (en) 2011-09-30 2017-03-28 Evoqua Water Technologies Llc Manifold arrangement
CN104394965B (en) 2012-06-28 2016-11-23 伊沃夸水处理技术有限责任公司 encapsulating method
GB2520871B (en) 2012-09-26 2020-08-19 Evoqua Water Tech Llc Membrane securement device
US9962865B2 (en) 2012-09-26 2018-05-08 Evoqua Water Technologies Llc Membrane potting methods
KR20150059788A (en) 2012-09-27 2015-06-02 에보쿠아 워터 테크놀로지스 엘엘씨 Gas scouring apparatus for immersed membranes
US10427102B2 (en) 2013-10-02 2019-10-01 Evoqua Water Technologies Llc Method and device for repairing a membrane filtration module
JP2015071155A (en) * 2013-10-04 2015-04-16 三菱レイヨン株式会社 Wastewater treatment method and production method of terephthalic acid
JP2015073914A (en) * 2013-10-04 2015-04-20 三菱化学株式会社 Method for treating waste water, and method for producing terephthalic acid
CN107847869B (en) 2015-07-14 2021-09-10 罗门哈斯电子材料新加坡私人有限公司 Aeration device for a filtration system
JP6692701B2 (en) * 2016-06-03 2020-05-13 株式会社クラレ Hollow fiber membrane filtration device and cleaning method thereof
DE102017216030A1 (en) * 2017-09-12 2019-03-14 Fresenius Medical Care Deutschland Gmbh PROCESS FOR PROCESSING A PROTEIN-SUSPENSION OR PROTEIN-BASED SOLUTION
JP7237656B2 (en) * 2019-03-06 2023-03-13 旭化成株式会社 Hollow fiber membrane module and seawater filtration method using the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5220389A (en) * 1975-08-09 1977-02-16 Dainippon Toryo Co Ltd Process for operating a reverse osmosis or ultrafiltration device
JPS6351907A (en) * 1986-08-21 1988-03-05 Toshiba Corp Filter
JPH10337448A (en) * 1997-06-05 1998-12-22 Toyobo Co Ltd Hollow fiber type separation membrane element
JPH11156166A (en) * 1997-11-28 1999-06-15 Mitsubishi Heavy Ind Ltd Cleaning method for hollow fiber membrane module
JP2000079390A (en) * 1998-06-30 2000-03-21 Kikai Kagaku Kenkyusho:Kk Purified water production

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5220389A (en) * 1975-08-09 1977-02-16 Dainippon Toryo Co Ltd Process for operating a reverse osmosis or ultrafiltration device
JPS6351907A (en) * 1986-08-21 1988-03-05 Toshiba Corp Filter
JPH10337448A (en) * 1997-06-05 1998-12-22 Toyobo Co Ltd Hollow fiber type separation membrane element
JPH11156166A (en) * 1997-11-28 1999-06-15 Mitsubishi Heavy Ind Ltd Cleaning method for hollow fiber membrane module
JP2000079390A (en) * 1998-06-30 2000-03-21 Kikai Kagaku Kenkyusho:Kk Purified water production

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1019374C2 (en) * 2001-11-15 2003-05-16 Norit Holding N V Method for manufacturing a filter module, such a filter module, whether or not included in a filter system.
WO2003041847A1 (en) * 2001-11-15 2003-05-22 Norit Holding N.V. Filter module
US7351335B2 (en) 2001-11-15 2008-04-01 Norit Proces Technologie Holding B.V. Filter module

Also Published As

Publication number Publication date
JP2000079390A (en) 2000-03-21

Similar Documents

Publication Publication Date Title
WO2001066238A1 (en) Method of producing purified water
KR20070011407A (en) Process for producing ship ballast water, ship ballast water producing apparatus and use thereof
WO2001008790A1 (en) Chemical cleaning backwash for immersed filtering membranes
JP2002530188A (en) Filtration of water using immersion membrane
JPH06277664A (en) Method and apparatus for clarifying surface flowing water with membrane
JP2006297376A (en) Method for cleaning separation membrane
JP2010207800A (en) Filtration unit, and filtration apparatus including the same
WO2014103854A1 (en) Ballast water treatment device and back-washing method for ballast water treatment device
JP5147267B2 (en) Cleaning method for membrane filtration system
CN219907291U (en) Direct drinking water purifying system
JP2001038165A (en) Filtration process
JP3359687B2 (en) Cleaning method for filtration membrane module
JP4270644B2 (en) Operating method and cleaning method of spiral membrane element and spiral membrane module
JP2004057883A (en) Water cleaning method using external pressure type hollow fiber membrane module and apparatus therefor
WO2011108589A1 (en) Method for washing porous membrane module, and fresh water generator
JP6530931B2 (en) Method of desalting, method of cleaning demineralizer and demineralizer
CN210796018U (en) Phosphorus-containing cleaning wastewater treatment system for electrode foil
JP2007301469A (en) Water treatment method
JP2002028456A (en) Treatment system using spiral membrane module and operating method therefor
JP4454922B2 (en) Control method of filtration apparatus using hollow fiber type separation membrane
JP4583558B2 (en) Method of operating spiral membrane element and spiral membrane module
KR20140128841A (en) Apparatus for Cross cleaning water of membrane module and the operating method thereof
JP4583557B2 (en) Operating method and cleaning method of spiral membrane element and spiral membrane module
CN110862168A (en) Electrode foil phosphorus-containing cleaning wastewater treatment system and treatment process thereof
JP2001239136A (en) Treating system and operating method therefor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CN KR SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase