JP4635518B2 - Dye-sensitized solar cell electrode and dye-sensitized solar cell - Google Patents

Dye-sensitized solar cell electrode and dye-sensitized solar cell Download PDF

Info

Publication number
JP4635518B2
JP4635518B2 JP2004248674A JP2004248674A JP4635518B2 JP 4635518 B2 JP4635518 B2 JP 4635518B2 JP 2004248674 A JP2004248674 A JP 2004248674A JP 2004248674 A JP2004248674 A JP 2004248674A JP 4635518 B2 JP4635518 B2 JP 4635518B2
Authority
JP
Japan
Prior art keywords
dye
solar cell
sensitized solar
electrode
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004248674A
Other languages
Japanese (ja)
Other versions
JP2006066278A (en
Inventor
信吾 大野
芳典 岩淵
修 椎野
雅人 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2004248674A priority Critical patent/JP4635518B2/en
Publication of JP2006066278A publication Critical patent/JP2006066278A/en
Application granted granted Critical
Publication of JP4635518B2 publication Critical patent/JP4635518B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Landscapes

  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Description

本発明は色素増感型太陽電池用電極及び色素増感型太陽電池に係り、特に、基材上に透明導電膜が形成された色素増感型太陽電池用電極において、該透明導電膜よりも抵抗値の低い金属又は合金よりなるメッシュ状導電体を補助電極として設けることにより電極の低抵抗化を図った色素増感型太陽電池用電極であって、該補助電極の電解液による腐食の問題を改善した色素増感型太陽電池用電極と、この色素増感型太陽電池用電極を備える色素増感型太陽電池に関する。   The present invention relates to a dye-sensitized solar cell electrode and a dye-sensitized solar cell, and more particularly, in a dye-sensitized solar cell electrode in which a transparent conductive film is formed on a substrate, than the transparent conductive film. An electrode for a dye-sensitized solar cell in which a mesh-like conductor made of a metal or alloy having a low resistance value is provided as an auxiliary electrode to reduce the resistance of the electrode, and the problem of corrosion of the auxiliary electrode due to an electrolyte solution The present invention relates to an electrode for a dye-sensitized solar cell improved in the above and a dye-sensitized solar cell provided with the electrode for a dye-sensitized solar cell.

増感色素を吸着させた酸化物半導体を電極に用いて太陽電池を構成することは既に知られている。図4は、このような色素増感型太陽電池の一般的な構造を示す断面図である。図4に示す如く、ガラス基板等の基板1上にFTO(フッ素ドープ酸化スズ)、ITO(インジウムスズ酸化物)等の透明導電膜2が設けられ、この透明導電膜2上に分光増感色素を吸着させた金属酸化物半導体膜3が形成されている。この色素増感型半導体電極4と対向して間隔をあけて対向電極5が配置されており、図示しない封止材により色素増感型半導体電極4と対向電極5との間に電解質6が封入されている。7は、半導体電極4と対向電極5との間隔を維持するために周縁部に設けられた絶縁性のスペーサである。   It is already known that a solar cell is configured using an oxide semiconductor adsorbed with a sensitizing dye as an electrode. FIG. 4 is a sectional view showing a general structure of such a dye-sensitized solar cell. As shown in FIG. 4, a transparent conductive film 2 such as FTO (fluorine-doped tin oxide) or ITO (indium tin oxide) is provided on a substrate 1 such as a glass substrate, and a spectral sensitizing dye is formed on the transparent conductive film 2. A metal oxide semiconductor film 3 in which is adsorbed is formed. A counter electrode 5 is disposed opposite to the dye-sensitized semiconductor electrode 4 with a space therebetween, and an electrolyte 6 is sealed between the dye-sensitized semiconductor electrode 4 and the counter electrode 5 by a sealing material (not shown). Has been. Reference numeral 7 denotes an insulating spacer provided at the peripheral edge in order to maintain the distance between the semiconductor electrode 4 and the counter electrode 5.

色素吸着半導体膜3は、通常、色素を吸着させた酸化チタン薄膜よりなり、この酸化チタン薄膜に吸着されている色素が可視光によって励起され、発生した電子を酸化チタン微粒子に渡すことによって発電が行われる。対向電極4は、ガラス又はプラスチック等の基板上にITOやFTO等の透明導電膜が形成され、この透明導電膜上に、透明導電膜と増感色素との間の電子の授受を促進させるための触媒としての白金膜又は炭素膜が、透過率を低下させない程度の膜厚に形成されたものである。また、電解質6としては、酸化還元性物質、例えば、LiI、NaI、KI、CaIなどの金属ヨウ化物とヨウ素の組み合わせ、LiBr、NaBr、KBr、CaBrなどの金属臭化物と臭素の組み合わせ、好ましくは、金属ヨウ化物とヨウ素の組み合わせよりなる酸化還元性物質を、プロピレンカーボネートなどのカーボネート化合物、アセトニトリルなどのニトリル化合物等の溶媒に溶解してなる電解液が用いられている。 The dye-adsorbing semiconductor film 3 is usually composed of a titanium oxide thin film on which a dye is adsorbed. The dye adsorbed on the titanium oxide thin film is excited by visible light, and the generated electrons are transferred to titanium oxide fine particles to generate power. Done. In the counter electrode 4, a transparent conductive film such as ITO or FTO is formed on a substrate such as glass or plastic, and the transfer of electrons between the transparent conductive film and the sensitizing dye is promoted on the transparent conductive film. The platinum film or carbon film as the catalyst is formed to a thickness that does not decrease the transmittance. As the electrolyte 6, redox substances, for example, LiI, NaI, KI, combinations of metal iodides and iodine, such as CaI 2, LiBr, NaBr, KBr, the metal bromide and bromine, such as CaBr 2 combination, preferably Uses an electrolytic solution prepared by dissolving a redox substance composed of a combination of metal iodide and iodine in a solvent such as a carbonate compound such as propylene carbonate or a nitrile compound such as acetonitrile.

色素増感型太陽電池の対向電極や半導体電極の基板上に設ける透明導電膜として、ITO等の金属酸化物膜よりも抵抗値の低い金属又は合金膜を形成すると、電解液中のヨウ素等により、この膜が腐食を受けるため、このような膜を形成することはできない。また、色素増感型太陽電池用電極の薄肉軽量化のために、基板をガラス基板に比べて耐熱性の低い高分子フィルムとする場合、成膜時の制約の問題から、低抵抗の透明導電膜の形成が困難である。このため、従来においては、対向電極や半導体電極の透明導電膜としては、ITO等の金属酸化物膜が採用されているが、このような金属酸化物膜よりなる透明導電膜は、抵抗値が十分に低いものではなく、このことが色素増感型太陽電池の光電変換効率を下げる原因となっている。特に、大面積化を図る場合、この透明導電膜の抵抗による損失が光電変換効率低下の原因となっている。   When a metal or alloy film having a lower resistance than a metal oxide film such as ITO is formed as a transparent conductive film provided on the substrate of the counter electrode or semiconductor electrode of the dye-sensitized solar cell, iodine or the like in the electrolyte solution Since this film is subject to corrosion, such a film cannot be formed. In addition, in order to reduce the thickness and weight of the dye-sensitized solar cell electrode, when the substrate is a polymer film having a lower heat resistance than the glass substrate, a transparent conductive material with low resistance is caused by the problem of restrictions during film formation. Formation of the film is difficult. For this reason, conventionally, a metal oxide film such as ITO has been adopted as the transparent conductive film of the counter electrode and the semiconductor electrode, but the transparent conductive film made of such a metal oxide film has a resistance value. This is not sufficiently low, and this causes a decrease in the photoelectric conversion efficiency of the dye-sensitized solar cell. In particular, when the area is increased, the loss due to the resistance of the transparent conductive film causes a decrease in photoelectric conversion efficiency.

上記従来の問題点を解決し、抵抗値が十分に低く、しかも電解液による腐食も受け難い、色素増感型太陽電池の光電変換効率の向上に有効な色素増感型太陽電池用電極として、本出願人は先に、図3に示す如く、基材フィルム11上に透明導電膜14が形成されてなる色素増感型太陽電池用電極において、基材フィルム11と透明導電膜14との間に、透明導電膜よりも抵抗値の低いメッシュ状の導電体(以下、この導電体を「補助電極」と称す場合がある。)12を設けた色素増感型太陽電池用電極を提案した(特願2003−85559。以下「先願」という。)。   As an electrode for a dye-sensitized solar cell effective for improving the photoelectric conversion efficiency of a dye-sensitized solar cell, which solves the above-mentioned conventional problems, has a sufficiently low resistance value, and is not easily corroded by an electrolyte. As shown in FIG. 3, the applicant of the present invention previously described that the electrode for a dye-sensitized solar cell in which the transparent conductive film 14 is formed on the base film 11, is between the base film 11 and the transparent conductive film 14. In addition, a dye-sensitized solar cell electrode provided with a mesh-like conductor (hereinafter, this conductor may be referred to as “auxiliary electrode”) 12 having a lower resistance value than the transparent conductive film is proposed ( (Japanese Patent Application No. 2003-85559, hereinafter referred to as “prior application”).

この先願の色素増感型太陽電池用電極10であれば、透明導電膜14よりも抵抗値の低いメッシュ状導電体の補助電極12により、電極の低抵抗化を図ることができる。
特願2003−85559
With the dye-sensitized solar cell electrode 10 of the prior application, the resistance of the electrode can be reduced by the auxiliary electrode 12 made of a mesh conductor having a resistance value lower than that of the transparent conductive film 14.
Japanese Patent Application No. 2003-85559

上記先願の色素増感型太陽電池用電極10では、補助電極12が透明導電膜14に覆われているものの、腐食性の補助電極の電解液による腐食を確実に防止することはできない。特に、補助電極と透明導電膜と電解液とが接触して基材が形成されると、メッシュ状導電体の腐食が進行し易くなる。   In the dye-sensitized solar cell electrode 10 of the prior application, although the auxiliary electrode 12 is covered with the transparent conductive film 14, corrosion of the corrosive auxiliary electrode due to the electrolytic solution cannot be reliably prevented. In particular, when the auxiliary electrode, the transparent conductive film, and the electrolytic solution are in contact with each other to form a base material, the mesh-shaped conductor is easily corroded.

本発明は、基材上に、透明導電膜が形成された色素増感型太陽電池用電極であって、該透明導電膜よりも抵抗値の低い金属又は合金よりなるメッシュ状導電体を補助電極として設けることにより電極の低抵抗化を図った色素増感型太陽電池用電極において、該補助電極の電解液による腐食の問題をより一層確実に解決し、耐久性、信頼性に優れた色素増感型太陽電池用電極と、この色素増感型太陽電池用電極を備える色素増感型太陽電池を提供することを目的とする。   The present invention relates to an electrode for a dye-sensitized solar cell in which a transparent conductive film is formed on a substrate, and a mesh-like conductor made of a metal or alloy having a lower resistance value than the transparent conductive film is used as an auxiliary electrode. In the electrode for dye-sensitized solar cells, the resistance of the electrode is reduced by providing it as an electrode, and the problem of corrosion caused by the electrolyte of the auxiliary electrode is more reliably solved, and the dye sensitization with excellent durability and reliability is achieved. An object of the present invention is to provide a dye-sensitized solar cell including the electrode for a sensitive solar cell and the electrode for the dye-sensitized solar cell.

本発明(請求項1)の色素増感型太陽電池用電極は、基材上に、透明導電膜と、該透明導電膜よりも抵抗値の低い金属又は合金よりなるメッシュ状の補助電極とを設けた色素増感型太陽電池用電極であって、該透明導電膜と補助電極との間に半導体膜が形成され、透明導電膜/半導体膜/補助電極/基材の順に積層されていることを特徴とするものである。 The electrode for a dye-sensitized solar cell of the present invention (invention 1) comprises a transparent conductive film and a mesh auxiliary electrode made of a metal or alloy having a lower resistance value than the transparent conductive film on a substrate. a dye-sensitized solar cell electrode provided, the semiconductor film is formed between the transparent conductive film and the auxiliary electrode, that are stacked in this order of the transparent conductive film / semiconductor film / auxiliary electrode / substrate It is characterized by.

請求項2の色素増感型太陽電池用電極は、請求項1において、該半導体膜が金属酸化物よりなることを特徴とするものである。   The electrode for a dye-sensitized solar cell according to claim 2 is characterized in that, in claim 1, the semiconductor film is made of a metal oxide.

請求項3の色素増感型太陽電池用電極は、請求項2において、該半導体膜が酸化チタン、酸化ニオブ、酸化マグネシウム、酸化ケイ素及び酸化アルミニウムの少なくとも1種よりなることを特徴とするものである A dye-sensitized solar cell electrode according to claim 3 is characterized in that, in claim 2, the semiconductor film is made of at least one of titanium oxide, niobium oxide, magnesium oxide, silicon oxide, and aluminum oxide. There is .

請求項4の色素増感型太陽電池用電極は、請求項1ないし3のいずれか1項において、該透明導電膜がITO、FTO、ATO、AZO又はGZOであることを特徴とするものである。 Dye-sensitized solar cell electrode according to claim 4, in any one of claims 1 to 3, is characterized in that the transparent conductive film ITO, FTO, ATO, is AZO or GZO .

請求項の色素増感型太陽電池用電極は、請求項1ないしのいずれか1項において、該補助電極がアルミニウム、銅及び銀の少なくとも1種よりなることを特徴とするものである。 A dye-sensitized solar cell electrode according to a fifth aspect is characterized in that, in any one of the first to fourth aspects, the auxiliary electrode is made of at least one of aluminum, copper and silver.

請求項の色素増感型太陽電池用電極は、請求項1ないしのいずれか1項において、該補助電極の表面が不動態化されていることを特徴とするものである。 The electrode for a dye-sensitized solar cell according to claim 6 is the electrode according to any one of claims 1 to 5 , wherein the surface of the auxiliary electrode is passivated.

請求項の色素増感型太陽電池用電極は、請求項1ないしのいずれか1項において、該基材が高分子フィルムよりなることを特徴とするものである。 A dye-sensitized solar cell electrode according to a seventh aspect is characterized in that, in any one of the first to sixth aspects, the substrate is made of a polymer film.

本発明(請求項)の色素増感型太陽電池は、請求項1ないしのいずれか1項に記載の色素増感型太陽電池用電極を含むことを特徴とするものである。 The dye-sensitized solar cell of the present invention (invention 8 ) is characterized by including the dye-sensitized solar cell electrode according to any one of claims 1 to 7 .

本発明の色素増感型太陽電池用電極は、透明導電膜と補助電極との間に半導体膜を設け、透明導電膜と補助電極との直接接触を防止したものであり、透明導電膜、補助電極及び電解液による局部電池の形成が防止される。これにより、メッシュ状導電体よりなる補助電極の腐食が十分に防止される。   The electrode for a dye-sensitized solar cell according to the present invention has a semiconductor film provided between a transparent conductive film and an auxiliary electrode to prevent direct contact between the transparent conductive film and the auxiliary electrode. Formation of the local battery by the electrode and the electrolyte is prevented. Thereby, corrosion of the auxiliary electrode made of the mesh-like conductor is sufficiently prevented.

以下に図面を参照して本発明の色素増感型太陽電池用電極及び色素増感型太陽電池の実施の形態を詳細に説明する。   DESCRIPTION OF EMBODIMENTS Embodiments of an electrode for a dye-sensitized solar cell and a dye-sensitized solar cell according to the present invention will be described below in detail with reference to the drawings.

1は、本発明の色素増感型太陽電池用電極の実施の形態を示す斜視図である。図2(a)は参考例に係る色素増感型太陽電池用電極を示す斜視図であり、図2(b)は図2(a)のB−B線に沿う断面図である。 Figure 1 is a Ru perspective view showing an embodiment of a dye-sensitized solar cell electrode of the present invention. FIG. 2A is a perspective view showing a dye-sensitized solar cell electrode according to a reference example, and FIG. 2B is a cross-sectional view taken along line BB in FIG. 2A.

図1の色素増感型太陽電池用電極10Aは、基材フィルム11上に金属又は合金のメッシュよりなる補助電極12が設けられ、この上に透明半導体膜13が形成され、最表層として透明導電膜14が形成されている。   In the dye-sensitized solar cell electrode 10A of FIG. 1, an auxiliary electrode 12 made of a metal or alloy mesh is provided on a base film 11, a transparent semiconductor film 13 is formed thereon, and a transparent conductive film is formed as the outermost layer. A film 14 is formed.

基材フィルム11としては、透明性、複屈折の点で優れていることから、ポリカーボネート、ポリメチルメタアクリレート、ポリビニルクロライド、ポリスチレン、ポリエチレンテレフタレート等の高分子フィルムが用いられ、その厚さは通常12μm〜2mm程度である。   Since the base film 11 is excellent in transparency and birefringence, a polymer film such as polycarbonate, polymethyl methacrylate, polyvinyl chloride, polystyrene, or polyethylene terephthalate is used, and the thickness is usually 12 μm. About 2 mm.

補助電極12を形成する金属又は合金としては、透明導電膜14よりも抵抗値の低い材料であれば良く、特に制限はないが、一般的には、Ag、Ag合金(Ag/Pd、Ag/Nd、Ag/Au等)、Cu、Cu合金、Al、Al合金が好ましいが、Ni、Cr合金等であってもよい。   The metal or alloy forming the auxiliary electrode 12 may be any material having a lower resistance value than that of the transparent conductive film 14, and is not particularly limited, but generally Ag, Ag alloy (Ag / Pd, Ag / P) Nd, Ag / Au, etc.), Cu, Cu alloy, Al, Al alloy are preferable, but Ni, Cr alloy, etc. may be used.

補助電極12は、透明性を損なわない程度に薄膜状に形成することも考えられるが、そのような薄膜状に形成した膜状補助電極では、十分な低抵抗化の効果を得ることができないことから、図1に示す如く、メッシュ状に形成する。このメッシュ状補助電極12の線径や目開きについては特に制限はないが、線径が過度に細く、目開きが過度に大きいと十分な低抵抗化効果を得ることができず、逆に線径が過度に太く、目開きが過度に小さいと電極の透明性が損なわれる。従って、メッシュ状補助電極12の線径は10〜1000μm、目開き(電極面積に対する開口部の面積割合)は80%以上とすることが好ましい。なお、補助電極12の厚さ(高さ)は0.1〜10μm程度であることが好ましい。   Although it is conceivable that the auxiliary electrode 12 is formed in a thin film so as not to impair the transparency, the film-shaped auxiliary electrode formed in such a thin film cannot obtain a sufficiently low resistance effect. From FIG. 1, it is formed in a mesh shape. There are no particular restrictions on the wire diameter and mesh opening of the mesh-like auxiliary electrode 12, but if the wire diameter is excessively thin and the mesh opening is excessively large, a sufficient resistance reduction effect cannot be obtained, and conversely If the diameter is excessively large and the opening is excessively small, the transparency of the electrode is impaired. Therefore, it is preferable that the mesh auxiliary electrode 12 has a wire diameter of 10 to 1000 μm and an opening (area ratio of the opening to the electrode area) of 80% or more. In addition, it is preferable that the thickness (height) of the auxiliary electrode 12 is about 0.1 to 10 μm.

透明導電膜14は、酸化インジウム系のITO、酸化スズ系のFTO、ATO、酸化亜鉛系のAZO、GZO等の透明導電膜であって、その膜厚は、通常100〜1000nm程度であることが好ましい。   The transparent conductive film 14 is a transparent conductive film such as indium oxide-based ITO, tin oxide-based FTO, ATO, zinc oxide-based AZO, and GZO, and the film thickness is usually about 100 to 1000 nm. preferable.

この透明導電膜14は、スパッタ法により形成することが好ましく、特に酸素雰囲気ガスを用いた反応性スパッタ法で形成することが好ましい。スパッタ法であれば、基材フィルム11の耐熱温度以下の低温で、良好な低抵抗膜よりなる透明導電膜14を形成することができ、効率的である。   The transparent conductive film 14 is preferably formed by a sputtering method, and particularly preferably formed by a reactive sputtering method using an oxygen atmosphere gas. If it is a sputtering method, the transparent conductive film 14 which consists of a favorable low resistance film can be formed at the low temperature below the heat-resistant temperature of the base film 11, and it is efficient.

透明半導体膜13としては、酸化チタン、酸化ニオブ、酸化マグネシウム、酸化ケイ素、酸化アルミニウム等の金属酸化物膜を用いることができる。   As the transparent semiconductor film 13, a metal oxide film such as titanium oxide, niobium oxide, magnesium oxide, silicon oxide, or aluminum oxide can be used.

この半導体膜13は、スパッタリング法、好ましくは金属ターゲットを用いた反応性スパッタリング法により形成することができる。また、化学溶液を用いた析出法、過酸化物の塗布及び熱処理による方法、或いはゾル−ゲル法により形成することができる。特に、スパッタリング法であれば、緻密でバリア性に優れた半導体膜を形成することができる。   The semiconductor film 13 can be formed by a sputtering method, preferably a reactive sputtering method using a metal target. Further, it can be formed by a precipitation method using a chemical solution, a method of applying a peroxide and heat treatment, or a sol-gel method. In particular, a sputtering method can form a dense semiconductor film with excellent barrier properties.

半導体膜13は、薄過ぎると半導体膜13を形成したことによる局部電池形成防止効果を十分に得ることができず、厚過ぎると膜が割れやすくなることから0.1〜5μm程度とすることが好ましい。   If the semiconductor film 13 is too thin, the effect of preventing the formation of a local battery due to the formation of the semiconductor film 13 cannot be sufficiently obtained. If the semiconductor film 13 is too thick, the film is likely to be cracked. preferable.

このような半導体膜13を設けることにより、補助電極12と透明導電膜14とが直接に接触しなくなり、局部電池の形成を防止して補助電極12の劣化を防止することができる。   By providing such a semiconductor film 13, the auxiliary electrode 12 and the transparent conductive film 14 are not in direct contact with each other, so that the formation of a local battery can be prevented and deterioration of the auxiliary electrode 12 can be prevented.

図2に示す色素増感型太陽電池用電極10Bは、基材フィルム11上に透明導電膜14、透明半導体膜13及び保護膜付き補助電極12Aをこの順に設けたものである。保護膜付き補助電極12Aは、補助電極12を不働態膜を形成し易い金属又はその合金で形成して使用中に補助電極表面に保護膜15としての不働態膜を形成させるか、或いは、補助電極12の表面を酸化処理して保護膜15としての不働態膜を形成したものである。その他の基材フィルム11や透明導電膜14及び半導体膜13の構成、補助電極12の線径や目開き等は、図1におけると同様である。   A dye-sensitized solar cell electrode 10B shown in FIG. 2 is obtained by providing a transparent conductive film 14, a transparent semiconductor film 13, and an auxiliary electrode 12A with a protective film on a base film 11 in this order. The auxiliary electrode 12A with the protective film is formed by forming the auxiliary electrode 12 from a metal or an alloy thereof that can easily form a passive film, and forming a passive film as the protective film 15 on the auxiliary electrode surface during use. The surface of the electrode 12 is oxidized to form a passive film as the protective film 15. Other configurations of the base film 11, the transparent conductive film 14, and the semiconductor film 13, the wire diameters and openings of the auxiliary electrodes 12 are the same as those in FIG. 1.

図2の色素増感型太陽電池用電極10Bにおいて、不働態膜を形成し易い金属又は合金としては、Ti、Ni、Al等の1種よりなる金属、或いはこれらの1種又は2種以上を含む合金が挙げられる。   In the dye-sensitized solar cell electrode 10B of FIG. 2, as a metal or alloy that easily forms a passive film, one kind of metal such as Ti, Ni, Al or the like, or one or more of these may be used. Including alloys.

酸化処理により不働態膜を形成する場合であっても、補助電極12は上述のような不働態膜を形成し易い金属又は合金により形成されていることが好ましい。   Even when the passive film is formed by the oxidation treatment, the auxiliary electrode 12 is preferably formed of a metal or an alloy that easily forms the passive film as described above.

不働態膜形成のための酸化処理は、金属アノード処理、酸化性ガス雰囲気中での紫外線照射、或いは酸化性ガス雰囲気中でのプラズマ処理により行うことができる。ここで、酸化性ガス雰囲気とは、酸素、オゾン、或いはこれらのガスを含むガス雰囲気である。   The oxidation treatment for forming the passive film can be performed by metal anode treatment, ultraviolet irradiation in an oxidizing gas atmosphere, or plasma treatment in an oxidizing gas atmosphere. Here, the oxidizing gas atmosphere is oxygen, ozone, or a gas atmosphere containing these gases.

不働態膜は、補助電極12の表面に厚さ1〜50nm程度に形成されていることが好ましい。   The passive film is preferably formed on the surface of the auxiliary electrode 12 to a thickness of about 1 to 50 nm.

このような不働態膜よりなる保護膜15を形成することにより、補助電極12を電解液から確実に保護して、補助電極12の劣化を防止することができる。   By forming the protective film 15 made of such a passive film, it is possible to reliably protect the auxiliary electrode 12 from the electrolytic solution and prevent the auxiliary electrode 12 from deteriorating.

図2に示す色素増感型太陽電池用電極10Bにあっては、透明導電膜14よりも電解液側に配置される透明半導体膜13として、酸化チタンナノポーラス半導体膜を形成した場合には、この半導体膜13に半導体電極の半導体層としての機能を付与することができ、この色素増感型太陽電池用電極をそのまま色素増感型太陽電池用半導体電極とすることができる。   In the dye-sensitized solar cell electrode 10B shown in FIG. 2, when a titanium oxide nanoporous semiconductor film is formed as the transparent semiconductor film 13 disposed on the electrolyte side of the transparent conductive film 14, The semiconductor film 13 can be given a function as a semiconductor layer of a semiconductor electrode, and the dye-sensitized solar cell electrode can be used as it is as a dye-sensitized solar cell semiconductor electrode.

本発明の色素増感型太陽電池用電極は、特に透明導電膜上に白金薄膜が設けられた色素増感型太陽電池の対向電極に好適であり、この白金薄膜もスパッタリング法により形成されたものであることが好ましい。ただし、上記の通り、図2の態様において電解液側の半導体膜13として酸化チタンナノポーラス半導体膜を形成した色素増感型太陽電池用電極にあっては、色素増感型太陽電池用半導体電極としても好適に用いることができる。   The electrode for a dye-sensitized solar cell of the present invention is particularly suitable for a counter electrode of a dye-sensitized solar cell in which a platinum thin film is provided on a transparent conductive film, and this platinum thin film is also formed by sputtering. It is preferable that However, as described above, in the dye-sensitized solar cell electrode in which the titanium oxide nanoporous semiconductor film is formed as the electrolyte-side semiconductor film 13 in the embodiment of FIG. 2, the dye-sensitized solar cell semiconductor electrode is used. Can also be suitably used.

本発明の色素増感型太陽電池は、このような本発明の電極を用いて常法に従って組み立てられる。   The dye-sensitized solar cell of the present invention is assembled according to a conventional method using such an electrode of the present invention.

なお、本発明は、特に基材フィルムを用いたフィルムタイプの色素増感型太陽電池用電極に好適であるが、何らこれに限定されず、ガラス基板を用いた色素増感型太陽電池用電極にも適用することができる。   The present invention is particularly suitable for a film-type dye-sensitized solar cell electrode using a base film, but is not limited to this, and a dye-sensitized solar cell electrode using a glass substrate. It can also be applied to.

以下に、本発明に係るメッシュ状導電体よりなる補助電極12の好適な形成方法について、図5を参照して説明する。図5は本発明に係るメッシュ状導電体の製造手順の一例を示す模式的な断面図である。   Below, the suitable formation method of the auxiliary electrode 12 which consists of a mesh-shaped conductor which concerns on this invention is demonstrated with reference to FIG. FIG. 5 is a schematic cross-sectional view showing an example of the manufacturing procedure of the mesh conductor according to the present invention.

まず(1),(2)のように高分子フィルム21上に水等の溶剤に対して可溶な材料を用いてドット22を印刷する。次いで、(3)の通り、この高分子フィルム21のドット22上及びドット22間のフィルム露出面のすべてを覆うように導電材料層23を形成する。次に、このフィルム21を水等の溶剤によって洗浄する。この際、必要に応じ、超音波照射やブラシ、スポンジ等で擦るなどの溶解促進手段を併用してもよい。   First, as in (1) and (2), dots 22 are printed on the polymer film 21 using a material that is soluble in a solvent such as water. Next, as shown in (3), a conductive material layer 23 is formed so as to cover all of the exposed surfaces of the polymer film 21 on the dots 22 and between the dots 22. Next, the film 21 is washed with a solvent such as water. At this time, if necessary, dissolution accelerating means such as ultrasonic irradiation, rubbing with a brush, sponge or the like may be used in combination.

これにより、(4)の通り、可溶性のドット22が溶解し、このドット22上の導電材料もフィルム21から剥れて除去される。そして、ドット同士の間の領域に形成された導電材料よりなるメッシュ状導電体パターン24がフィルム21上に残る。このメッシュ状導電体パターン24は、ドット22間の領域を占めるものであるから、全体としてはメッシュ状となる。   Thereby, as shown in (4), the soluble dots 22 are dissolved, and the conductive material on the dots 22 is also peeled off from the film 21 and removed. Then, a mesh-like conductor pattern 24 made of a conductive material formed in a region between the dots remains on the film 21. Since the mesh-like conductor pattern 24 occupies the area between the dots 22, the mesh-like conductor pattern 24 has a mesh shape as a whole.

従って、ドット22間の間隙を狭くしておくことにより、線幅の小さいメッシュ状のメッシュ状導電体パターン24が形成される。また、各ドット22の面積を広くすることにより、開口率の大きなメッシュ状導電体パターン24が形成される。ドット22を形成するための前記水等に対して可溶な印刷材料は、微粒子を分散させる必要のないものであり、低粘性のもので足りる。この低粘性の印刷材料によれば、微細なドットパターンとなるようにドットを印刷することができる。   Therefore, by reducing the gap between the dots 22, a mesh-like mesh-like conductor pattern 24 having a small line width is formed. Further, by increasing the area of each dot 22, a mesh-like conductor pattern 24 having a large aperture ratio is formed. The printing material soluble in water or the like for forming the dots 22 does not need to disperse the fine particles, and a low viscosity material is sufficient. According to this low-viscosity printing material, dots can be printed so as to have a fine dot pattern.

なお、上記(4)の工程の後、必要に応じ仕上げ洗浄(リンス)し、乾燥を行う。   After the step (4), finish cleaning (rinsing) is performed as necessary, and drying is performed.

高分子フィルム21上に形成するドット22は印刷により形成されることが好ましい。印刷材料としては、ドット22を除去させる溶剤に対して可溶な材料の溶液が用いられる。このドット22を除去させる溶剤としては、有機溶剤であってもよいが、安価であると共に、環境への影響の点からして水が好ましい。水は、通常の水のほか、酸、アルカリ又は界面活性剤を含んだ水溶液であってもよい。この印刷材料には、印刷仕上り状況を確認し易くするために顔料や染料を混ぜてもよい。   The dots 22 formed on the polymer film 21 are preferably formed by printing. As the printing material, a solution of a material that is soluble in a solvent for removing the dots 22 is used. The solvent for removing the dots 22 may be an organic solvent, but water is preferable because it is inexpensive and has an impact on the environment. The water may be an aqueous solution containing an acid, an alkali or a surfactant in addition to normal water. This printing material may be mixed with a pigment or a dye to make it easy to check the print finish.

溶剤をこのように水とする関係からして、ドット22の形成材料としては水溶性の高分子材料が好ましくは、具体的にはポリビニルアルコールなどが好適である。   In view of the relationship that the solvent is water as described above, a water-soluble polymer material is preferable as a material for forming the dots 22, and specifically, polyvinyl alcohol or the like is preferable.

ドット22は、それらの間のフィルム露出領域がメッシュ状となるように印刷される。好ましくは、このフィルム露出領域の線幅が30μm以下となるように印刷される。印刷手法としてはグラビア印刷、スクリーン印刷、インクジェット印刷、静電印刷が好適であるが、細線化のためにはグラビア印刷が好適である。   The dots 22 are printed so that the film exposure area between them is a mesh. Preferably, the film exposure region is printed so that the line width is 30 μm or less. As a printing method, gravure printing, screen printing, inkjet printing, and electrostatic printing are suitable, but gravure printing is suitable for thinning.

ドット22の形状は、円、楕円、角形など任意であるが、角形特に正方形であることが好ましい。ドット22の印刷厚みは、特に限定されるものではないが、通常は0.1〜5μm程度とされる。   The shape of the dot 22 is arbitrary such as a circle, an ellipse, and a square, but is preferably a square, particularly a square. The printing thickness of the dots 22 is not particularly limited, but is usually about 0.1 to 5 μm.

ドット22の印刷後、好ましくは乾燥し、次いで前述の補助電極形成材料により導電材料層23を形成する。   After the dots 22 are printed, they are preferably dried, and then the conductive material layer 23 is formed using the auxiliary electrode forming material described above.

導電材料層23の形成手法としては、スパッタリング、イオンプレーティング、真空蒸着、化学蒸着などの気相メッキ法や、液相メッキ(電解メッキ、無電解メッキ等)、印刷、塗布などが例示されるが、広義の気相メッキ(スパッタリング、イオンプレーティング、真空蒸着、化学蒸着)又は液相メッキが好適である。   Examples of the method for forming the conductive material layer 23 include vapor phase plating methods such as sputtering, ion plating, vacuum vapor deposition, and chemical vapor deposition, liquid phase plating (electrolytic plating, electroless plating, etc.), printing, and application. However, vapor phase plating (sputtering, ion plating, vacuum deposition, chemical vapor deposition) or liquid phase plating in a broad sense is suitable.

この導電材料層23の形成後、前記の通り、溶剤好ましくは水を用いてドット22を除去し、必要に応じ乾燥して補助電極としてのメッシュ状導電体が形成される。   After the formation of the conductive material layer 23, as described above, the dots 22 are removed using a solvent, preferably water, and dried as necessary to form a mesh-like conductor as an auxiliary electrode.

なお、形成されたメッシュ状導電体に更に湿式メッキを行って湿式メッキ層を形成することにより、より一層の低抵抗化を図ることも可能である。   It is possible to further reduce the resistance by further wet-plating the formed mesh conductor to form a wet plating layer.

このようにして、補助電極としてのメッシュ状導電体を、基材面に、溶剤に対して可溶な物質によってドットを形成する第1の工程と、次いで基材面に溶剤に対して不溶な導電材料よりなる導電材料層を形成する第2の工程と、その後、基材面を溶剤と接触させてドット及びドット上の導電材料層を除去する第3の工程とを経て形成することにより、光の透過率が高く、導電性の高いメッシュ状導電体を、低温にて容易かつ効率的に形成することができる。即ち、溶剤に対して可溶性の材料として、低粘性の材料によってドットを印刷、形成することができる。このため、ドット間の間隔を著しく小さくするように微細で精微な印刷を施すことができる。このドット同士の間の細い領域は、後に導電性材料が残存してメッシュ状導電体となる領域であるから、本発明によると、著しく細い導電性メッシュパターンを高精度にて形成することができる。この線幅を小さくすることにより、メッシュの開口率を大きくとることができる。   Thus, the first step of forming the mesh-like conductor as the auxiliary electrode on the substrate surface with a substance soluble in the solvent, and then insoluble in the solvent on the substrate surface By forming through a second step of forming a conductive material layer made of a conductive material, and then a third step of contacting the substrate surface with a solvent to remove the dots and the conductive material layer on the dots, A mesh-like conductor having high light transmittance and high conductivity can be easily and efficiently formed at a low temperature. That is, dots can be printed and formed with a low-viscosity material as a material soluble in a solvent. For this reason, it is possible to perform fine and fine printing so that the interval between dots is remarkably reduced. Since the thin region between the dots is a region in which the conductive material remains later and becomes a mesh-like conductor, according to the present invention, an extremely thin conductive mesh pattern can be formed with high accuracy. . By reducing the line width, the mesh aperture ratio can be increased.

図5ではフィルム21上に補助電極を直接に形成しているが、フィルム上に透明導電膜及び半導体膜が形成されている場合にも同様にして補助電極を形成することができる。   Although the auxiliary electrode is directly formed on the film 21 in FIG. 5, the auxiliary electrode can be formed in the same manner when a transparent conductive film and a semiconductor film are formed on the film.

本発明の色素増感型太陽電池用電極の実施の形態を示す斜視図である。It is a perspective view which shows embodiment of the electrode for dye-sensitized solar cells of this invention. 図2(a)は参考例に係る色素増感型太陽電池用電極を示す斜視図であり、図2(b)は図2(a)のB−B線に沿う断面の拡大図である。2 (a) is a perspective view showing a dye-sensitized solar cell electrodes according to a reference example, FIG. 2 (b) is an enlarged view of a section taken along the line B-B shown in FIG. 2 (a) . 先願の色素増感型太陽電池用電極の実施の形態を示す斜視図である。It is a perspective view which shows embodiment of the electrode for dye-sensitized solar cells of a prior application. 色素増感型太陽電池の一般的な構造を示す断面図である。It is sectional drawing which shows the general structure of a dye-sensitized solar cell. メッシュ状導電体の製造手順の一例を示す模式的な断面図である。It is typical sectional drawing which shows an example of the manufacture procedure of a mesh-shaped conductor.

1 基板
2 透明導電膜
3 色素吸着半導体膜
4 色素増感型半導体電極
5 対向電極
6 電解質
7 スペーサ
10,10A,10B 色素増感型太陽電池用電極
11 基材フィルム
12 補助電極
12A 保護膜付き補助電極
13 透明半導体膜
14 透明導電膜
15 保護膜
21 基材フィルム(高分子フィルム)
22 ドット
23 導電材料層
24 メッシュ状導電体パターン
DESCRIPTION OF SYMBOLS 1 Substrate 2 Transparent conductive film 3 Dye adsorption semiconductor film 4 Dye sensitized semiconductor electrode 5 Counter electrode 6 Electrolyte 7 Spacer 10, 10A, 10B Dye sensitized solar cell electrode 11 Base film 12 Auxiliary electrode 12A Auxiliary with protective film Electrode 13 Transparent semiconductor film 14 Transparent conductive film 15 Protective film 21 Base film (polymer film)
22 dots 23 conductive material layer 24 mesh conductor pattern

Claims (8)

基材上に、透明導電膜と、該透明導電膜よりも抵抗値の低い金属又は合金よりなるメッシュ状の補助電極とを設けた色素増感型太陽電池用電極であって、
該透明導電膜と補助電極との間に半導体膜が形成され、
透明導電膜/半導体膜/補助電極/基材の順に積層されていることを特徴とする色素増感型太陽電池用電極。
On a substrate, a dye-sensitized solar cell electrode provided with a transparent conductive film and a mesh auxiliary electrode made of a metal or alloy having a lower resistance than the transparent conductive film,
A semiconductor film is formed between the transparent conductive film and the auxiliary electrode;
Transparent conductive film / semiconductor film / auxiliary electrode / dye-sensitized solar cell electrode, characterized in that it is laminated in the order of the substrate.
請求項1において、該半導体膜が金属酸化物よりなることを特徴とする色素増感型太陽電池用電極。   2. The dye-sensitized solar cell electrode according to claim 1, wherein the semiconductor film is made of a metal oxide. 請求項2において、該半導体膜が酸化チタン、酸化ニオブ、酸化マグネシウム、酸化ケイ素及び酸化アルミニウムの少なくとも1種よりなることを特徴とする色素増感型太陽電池用電極。   3. The dye-sensitized solar cell electrode according to claim 2, wherein the semiconductor film is made of at least one of titanium oxide, niobium oxide, magnesium oxide, silicon oxide, and aluminum oxide. 請求項1ないし3のいずれか1項において、該透明導電膜がITO、FTO、ATO、AZO又はGZOであることを特徴とする色素増感型太陽電池用電極。 In any one of claims 1 to 3, the transparent conductive film ITO, FTO, ATO, AZO, or dye-sensitized solar cell electrode, which is a GZO. 請求項1ないし4のいずれか1項において、該補助電極がアルミニウム、銅及び銀の少なくとも1種よりなることを特徴とする色素増感型太陽電池用電極。   5. The dye-sensitized solar cell electrode according to claim 1, wherein the auxiliary electrode is made of at least one of aluminum, copper, and silver. 請求項1ないし5のいずれか1項において、該補助電極の表面が不動態化されていることを特徴とする色素増感型太陽電池用電極。   6. The dye-sensitized solar cell electrode according to any one of claims 1 to 5, wherein the surface of the auxiliary electrode is passivated. 請求項1ないし6のいずれか1項において、該基材が高分子フィルムよりなることを特徴とする色素増感型太陽電池用電極。   7. The dye-sensitized solar cell electrode according to claim 1, wherein the substrate is made of a polymer film. 請求項1ないし7のいずれか1項に記載の色素増感型太陽電池用電極を含むことを特徴とする色素増感型太陽電池。   A dye-sensitized solar cell comprising the electrode for a dye-sensitized solar cell according to any one of claims 1 to 7.
JP2004248674A 2004-08-27 2004-08-27 Dye-sensitized solar cell electrode and dye-sensitized solar cell Expired - Fee Related JP4635518B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004248674A JP4635518B2 (en) 2004-08-27 2004-08-27 Dye-sensitized solar cell electrode and dye-sensitized solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004248674A JP4635518B2 (en) 2004-08-27 2004-08-27 Dye-sensitized solar cell electrode and dye-sensitized solar cell

Publications (2)

Publication Number Publication Date
JP2006066278A JP2006066278A (en) 2006-03-09
JP4635518B2 true JP4635518B2 (en) 2011-02-23

Family

ID=36112576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004248674A Expired - Fee Related JP4635518B2 (en) 2004-08-27 2004-08-27 Dye-sensitized solar cell electrode and dye-sensitized solar cell

Country Status (1)

Country Link
JP (1) JP4635518B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010282997A (en) * 2009-06-02 2010-12-16 Seiko Epson Corp Solar cell and method for manufacturing the same
CN101950691B (en) * 2010-09-28 2012-03-21 彩虹集团公司 Method for encapsulating dye sensitized solar cell module
JP2012212615A (en) * 2011-03-31 2012-11-01 Sony Corp Method for manufacturing photoelectric conversion element, photoelectric conversion element, and electronic apparatus
JP5712108B2 (en) * 2011-10-31 2015-05-07 株式会社フジクラ Dye-sensitized solar cell module
JP6418515B2 (en) * 2014-03-31 2018-11-07 イムラ・ジャパン株式会社 electrode
JP6278003B2 (en) * 2015-06-19 2018-02-14 コニカミノルタ株式会社 Organic electroluminescence device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000243465A (en) * 1999-02-22 2000-09-08 Aisin Seiki Co Ltd Photoelectric conversion element
JP2003197283A (en) * 2001-12-28 2003-07-11 Toppan Printing Co Ltd Dye sensitized solar battery
JP2004128267A (en) * 2002-10-03 2004-04-22 Fujikura Ltd Conductive glass substrate for photoelectric conversion element and method for manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000243465A (en) * 1999-02-22 2000-09-08 Aisin Seiki Co Ltd Photoelectric conversion element
JP2003197283A (en) * 2001-12-28 2003-07-11 Toppan Printing Co Ltd Dye sensitized solar battery
JP2004128267A (en) * 2002-10-03 2004-04-22 Fujikura Ltd Conductive glass substrate for photoelectric conversion element and method for manufacturing the same

Also Published As

Publication number Publication date
JP2006066278A (en) 2006-03-09

Similar Documents

Publication Publication Date Title
JP4797324B2 (en) Dye-sensitized solar cell electrode
JP4071719B2 (en) Conductive glass and photoelectric conversion element using the same
JPWO2005041216A1 (en) Transparent conductive substrate, dye-sensitized solar cell electrode, and dye-sensitized solar cell
JP5150818B2 (en) Dye-sensitized solar cell and method for producing the same
JP4620794B1 (en) Dye-sensitized solar cell
JP2006019278A (en) Dye sensitive solar battery utilizing photoelectric conversion element
JP2004128267A (en) Conductive glass substrate for photoelectric conversion element and method for manufacturing the same
JP5398205B2 (en) Dye-sensitized solar cell
JP2004296669A (en) Dye-sensitized solar cell and electrode therefor
JP4635518B2 (en) Dye-sensitized solar cell electrode and dye-sensitized solar cell
JP4951853B2 (en) Electrode substrate for dye-sensitized solar cell, method for producing the same, and dye-sensitized solar cell
JP4892197B2 (en) Electrode substrate for dye-sensitized solar cell, photoelectrode and counter electrode for dye-sensitized solar cell, and dye-sensitized solar cell
JP2005044544A (en) Substrate for transparent electrode, photoelectric conversion device, and dye-sensitized solar cell
US8298434B2 (en) Method of forming an electrode including an electrochemical catalyst layer
JP5427383B2 (en) Dye-sensitized solar cell with double-sided light reception
JP2007305351A (en) Method of manufacturing transparent electrode substrate for die-sensitized solar cell
JP2011108374A (en) Electrode for dye-sensitized solar cell, and dye-sensitized solar cell
JPWO2016182025A1 (en) Dye-sensitized solar cell with a collector electrode at the counter electrode
JP4788838B2 (en) Dye-sensitized solar cell
JP4789480B2 (en) Method for producing dye-sensitized photoelectric conversion element and paint for dye-sensitized photoelectric conversion element
JP5617468B2 (en) Mesh electrode substrate and dye-sensitized solar cell
JP2008117782A (en) Conductive glass and photoelectric conversion element using this
JP4554643B2 (en) Method for removing oxide semiconductor electrode material
JP2006083036A (en) Glass etching method, manufacturing method of transparent conductive substrate and photoelectric transducer
JP5593881B2 (en) Dye-sensitized solar cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101026

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101108

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees