JP4633703B2 - Proteolytic natural rubber production method - Google Patents

Proteolytic natural rubber production method Download PDF

Info

Publication number
JP4633703B2
JP4633703B2 JP2006288431A JP2006288431A JP4633703B2 JP 4633703 B2 JP4633703 B2 JP 4633703B2 JP 2006288431 A JP2006288431 A JP 2006288431A JP 2006288431 A JP2006288431 A JP 2006288431A JP 4633703 B2 JP4633703 B2 JP 4633703B2
Authority
JP
Japan
Prior art keywords
weight
natural rubber
parts
proteolytic
rubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006288431A
Other languages
Japanese (ja)
Other versions
JP2008106099A (en
Inventor
康之 田中
巖 谷山
文武 今泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2006288431A priority Critical patent/JP4633703B2/en
Publication of JP2008106099A publication Critical patent/JP2008106099A/en
Application granted granted Critical
Publication of JP4633703B2 publication Critical patent/JP4633703B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、固形のタンパク分解天然ゴムの製造法に関する。さらに詳しくは、天然ゴムラテックスの粒子表面及びセラム中に存在する蛋白質をケン化により分解し、生成したラテックスを凝固せしめて固形のタンパク分解天然ゴムを製造する方法に関する。 The present invention relates to the preparation of proteolytic natural rubber solid. More particularly, proteins present in natural rubber particle surface and serum latex was decomposed by saponification relates to how to produce the proteolytic natural rubber of a solid and coagulate the resulting latex.

近年、天然ゴムに含まれるアレルギー症状を引き起こす原因となる蛋白質を除去する天然ゴムラテックスの酵素処理技術が開発され、その技術で生産された脱タンパク天然ゴムラテックスは一部の医用手袋の原材料として実用に供されている。このラテックスを用いたゴム手袋は柔軟性に優れるという特徴があると言われている。脱蛋白質酵素としてプロテアーゼ等が使用されるのが一般的である(特許文献1および特許文献2参照)。また、天然ゴムの総窒素含有率が0.1重量%以下となるような脱蛋白質技術も提案されている(特許文献3参照)。
対アレルギー性が要求される用途は限られるが、脱蛋白質した天然ゴムの持つ、通常の天然ゴムよりはるかに良好な加工性が着目され、天然ゴムが使用されている工業製品、日常生活用品、スポーツ用品の用途においても原材料として使用できないか試験されてきた。しかしながら、良好な加工性の代償として、天然ゴムが本来持っている機械的強度、低発熱性、耐摩耗性が損なわれるという問題点が明らかになってきた。
In recent years, enzyme treatment technology for natural rubber latex that removes proteins that cause allergic symptoms contained in natural rubber has been developed. It is offered to. This rubber glove using latex is said to have excellent flexibility. In general, a protease or the like is used as a deproteinase enzyme (see Patent Document 1 and Patent Document 2). In addition, a deproteinization technique has been proposed in which the total nitrogen content of natural rubber is 0.1% by weight or less (see Patent Document 3).
Applications that require anti-allergic properties are limited, but attention has been paid to the processability of natural rubber, which is deproteinized, much better than ordinary natural rubber. It has been tested whether it can be used as a raw material in sports equipment applications. However, as a compensation for good processability, the problem that the mechanical strength, low heat build-up, and wear resistance inherent in natural rubber are impaired has become apparent.

これに対し、これらの特性を補償する技術も提案されている。その技術は天然ゴムラテックス中に約6%含まれる非ゴム成分の機能に着目したものである。そのための一つの方法は、非ゴム成分を固形ゴム相に残そうとするものである。固形の脱蛋白天然ゴムを得るのに、通常ラテックスから固形ゴムを得るために行われる凝固、乾燥という操作を使用するのではなく、ラテックスを濃縮、固化して固形ゴム化し、ラテックス中の非ゴム成分をゴム分に取り込もうとするものである(特許文献2および特許文献4参照)。また、固形ゴムを蛋白分解酵素と一緒にミキサーで混練りすることにより、脱蛋白を実行して同時に非ゴム分も固形ゴムに含有させようとする提案もある(特許文献5参照)。他の一つは、脱蛋白質ラテックスに非ゴム成分を添加し、それを凝固、乾燥する方法である(特許文献4および特許文献6参照)。また、脱蛋白操作を調節して、適度の脱蛋白処理を行うことにより目的とする性質の両立を図ろうとする試みもある(特許文献7および特許文献8参照)。これらの特許文献に共通していることは、分解された蛋白質由来物質を含む非ゴム分を除くと天然ゴムの特性が失われるということである。すなわち、分解された蛋白質由来物質を含む非ゴム成分を如何にして固形ゴム相に残留させるか、ということが課題であり、それが天然ゴムに固有の特性を発現させるための鍵を握っているという技術的判断である。   On the other hand, techniques for compensating for these characteristics have also been proposed. The technology focuses on the function of the non-rubber component contained in natural rubber latex by about 6%. One way to do this is to leave the non-rubber component in the solid rubber phase. Rather than using solidification and drying operations that are usually performed to obtain solid rubber from latex to obtain solid deproteinized natural rubber, the latex is concentrated and solidified to form solid rubber, and non-rubber in latex The component is to be taken into the rubber component (see Patent Document 2 and Patent Document 4). In addition, there is a proposal that a solid rubber is kneaded with a proteolytic enzyme in a mixer so that deproteinization is performed and a non-rubber component is also contained in the solid rubber at the same time (see Patent Document 5). The other is a method of adding a non-rubber component to deproteinized latex and coagulating and drying it (see Patent Document 4 and Patent Document 6). There is also an attempt to achieve both of the intended properties by adjusting the deproteinization operation and performing an appropriate deproteinization treatment (see Patent Document 7 and Patent Document 8). What is common to these patent documents is that the properties of natural rubber are lost when the non-rubber component containing the decomposed protein-derived substance is removed. In other words, the issue is how to leave the non-rubber component containing the decomposed protein-derived substance in the solid rubber phase, which holds the key to developing the unique properties of natural rubber. This is a technical judgment.

天然ゴムの蛋白質を分解する技術としては上記の酵素処理以外にも、アルカリによる鹸化反応も知られている。
いずれの分解手法を用いるにしても、天然ゴムの蛋白質を分解するということは、天然ゴムラテックス中のゴム粒子表面に存在する蛋白質の膜を破壊することであり、その破壊により加工性が向上するとされている。工業的な見地から、生産性が高く実用性のある方法は、ラテックス状態で目的とする蛋白質を分解したタンパク分解天然ゴムラテックスを生成させ、それを酸などの凝固剤を加えて凝固する操作で固形ゴムを得る、というものである。したがって、この生産工程を前提にして、目標とするタンパク分解天然ゴム、すなわち天然ゴム本来の機械的強度、低発熱性、耐摩耗性などの特徴を持ちながら良加工性という両立した特性の天然ゴムとその製造方法が求められる。
特開平6−56906号公報 特開2003−41055号公報 特開平6−329838号公報 特開2003−313366号公報 特開2003−2902号公報 特開2004−107578号公報 国際公開WO03/082925パンフレット 特開2004−262973号公報
In addition to the above-described enzyme treatment, a saponification reaction with alkali is also known as a technique for degrading the protein of natural rubber.
Regardless of which degradation method is used, degrading the natural rubber protein means destroying the protein film present on the surface of the rubber particles in the natural rubber latex. Has been. From an industrial point of view, a highly productive and practical method is to produce a proteolytic natural rubber latex in which the target protein is decomposed in a latex state and coagulate it by adding a coagulant such as an acid. It is to obtain solid rubber. Therefore, on the premise of this production process, the target proteolytic natural rubber, that is, natural rubber with the characteristics of good workability while having the characteristics of natural rubber, such as mechanical strength, low heat generation, and wear resistance. And a manufacturing method thereof.
JP-A-6-56906 JP 2003-41055 A JP-A-6-329838 JP 2003-313366 A JP 2003-2902 A JP 2004-107578 A International Publication WO03 / 082925 Pamphlet JP 2004-262773 A

本発明の目的は、タンパク分解天然ゴムの課題であるゴムの物性と加工性に見られる二律背反性の問題を解決して、優れた加工性や生産性を有するとともに、優れた機械的強度、低発熱性、耐磨耗性を示す高機能の固形のタンパク分解天然ゴムの製造法を提供することにある。 The object of the present invention is to solve the trade-off problem seen in the physical properties and processability of rubber, which is a problem of proteolytic natural rubber, and has excellent processability and productivity, as well as excellent mechanical strength, low It is an object of the present invention to provide a method for producing a highly functional solid proteolytic natural rubber exhibiting heat generation and wear resistance.

本発明の他の目的は、天然ゴム粒子表面及びセラム中に存在する蛋白質をケン化反応により分解し、その分解された蛋白質由来物質を含む非ゴム成分を固形ゴム相に選択的に含有させて上記の如き諸特性を備えた高機能のタンパク分解天然ゴムを得るための工業的に優れた方法を提供することにある。   Another object of the present invention is to decompose a protein present on the surface of natural rubber particles and serum by a saponification reaction and selectively contain a non-rubber component containing the decomposed protein-derived substance in the solid rubber phase. An object of the present invention is to provide an industrially excellent method for obtaining a high-performance proteolytic natural rubber having various characteristics as described above.

本発明のさらに他の目的及び利点は以下の説明から明らかになろう。   Other objects and advantages of the present invention will become apparent from the following description.

本発明によれば、本発明の上記目的及び利点は、第1に、
天然ゴムラテックスに、その中の固形ゴム分100重量部に対し、0.01〜1.0重量部となる量のポリオキシエチレンアルキルエーテル硫酸塩を添加し次いで1.0〜7.0重量部となる量の水酸化ナトリウムを添加したのち、20〜40℃の温度で6〜72時間または40〜70℃の温度で0.5〜6時間攪拌下にケン化反応を行いしかる後、かくして得られたケン化されたラテックスにギ酸を添加してpHを4.5〜5.5に調整し次いで固形ゴム分100重量部に対し0.05〜0.50重量部のポリアクリル酸エステル系高分子凝集剤を添加して天然ゴムに含まれるタンパク質の分解度が50〜100%であり且つ窒素含有が0.3重量%を超え0.6重量%以下であるタンパク分解天然ゴムを凝集させて生成せしめる、ことを特徴とするタンパク質分解天然ゴムの製造法によって達成される。
According to the present invention, the above objects and advantages of the present invention are as follows.
To the natural rubber latex, polyoxyethylene alkyl ether sulfate is added in an amount of 0.01 to 1.0 part by weight with respect to 100 parts by weight of the solid rubber therein, and then 1.0 to 7.0 parts by weight. After an amount of sodium hydroxide is added, the saponification reaction is carried out with stirring at a temperature of 20 to 40 ° C. for 6 to 72 hours or at a temperature of 40 to 70 ° C. for 0.5 to 6 hours. Formic acid was added to the resulting saponified latex to adjust the pH to 4.5 to 5.5, and then 0.05 to 0.50 parts by weight of polyacrylate ester based on 100 parts by weight of solid rubber. was added molecular flocculant resolution of proteins contained in natural rubber is 50 to 100% and nitrogen content are aggregated proteolytic natural rubber is less than 0.6 wt% greater than 0.3% by weight allowed to produce Te, it It is achieved by the preparation of proteolytic natural rubber characterized.

本発明によれば、本発明の上記目的および利点は、第2に、
天然ゴムラテックスに、その中の固形ゴム分100重量部に対し、0.20〜2.0重量部となる量のポリオキシエチレンアルキルエーテル硫酸塩を添加し次いで1.0〜7.0重量部となる量の水酸化ナトリウムを添加したのち、20〜40℃の温度で6〜72時間または40〜70℃の温度で0.5〜6時間攪拌下にケン化反応を行いしかる後、かくして得られたケン化されたラテックスに硫酸を添加してpHを3.0〜4.0に調整し次いで固形ゴム100重量部に対し0.01〜0.20重量部のポリアクリル酸エステル系高分子凝集剤を添加して天然ゴムに含まれるタンパク質の分解度が50〜98%であり且つ窒素含有率が0.02重量%以上0.12重量%未満であるタンパク分解天然ゴムを凝集させて生成せしめることを特徴とするタンパク分解天然ゴムの製造方法によって達成される。
According to the present invention, the above objects and advantages of the present invention are secondly,
Polyoxyethylene alkyl ether sulfate in an amount of 0.20 to 2.0 parts by weight is added to natural rubber latex with respect to 100 parts by weight of the solid rubber content, and then 1.0 to 7.0 parts by weight. After an amount of sodium hydroxide is added, the saponification reaction is carried out with stirring at a temperature of 20 to 40 ° C. for 6 to 72 hours or at a temperature of 40 to 70 ° C. for 0.5 to 6 hours, and thus obtained. The resulting saponified latex was added with sulfuric acid to adjust the pH to 3.0 to 4.0, and then 0.01 to 0.20 parts by weight of a polyacrylate polymer based on 100 parts by weight of the solid rubber Produced by agglomerating proteolytic natural rubber with a flocculant added, the degree of degradation of the protein contained in natural rubber is 50-98%, and the nitrogen content is 0.02% or more and less than 0.12% Special feature It is achieved by the method for producing a proteolytic natural rubber to.

本発明によれば、本発明の上記目的および利点は、第3に、
天然ゴムラテックスに、その中の固形ゴム分100重量部に対し、0.20〜2.0重量部となる量のポリオキシエチレンアルキルエーテル硫酸塩を添加し次いで1.0〜7.0重量部となる量の水酸化ナトリウムを添加したのち、20〜40℃の温度で24〜72時間または40〜70℃の温度で2〜6時間攪拌下にケン化反応を行いしかる後、かくして得られたケン化されたラテックスにギ酸を添加してpHを3.5〜4.5未満に調整し次いで固形ゴム100重量部に対し0.01〜0.20重量部のポリアクリル酸エステル系高分子凝集剤を添加して天然ゴムに含まれるタンパク質の分解度が80%を超え98%以下であり且つ窒素含有率が0.12〜0.3重量%であるタンパク分解天然ゴムを凝集させて生成せしめることを特徴とするタンパク分解天然ゴムの製造方法によって達成される。
According to the present invention, the above objects and advantages of the present invention are thirdly,
Polyoxyethylene alkyl ether sulfate in an amount of 0.20 to 2.0 parts by weight is added to natural rubber latex with respect to 100 parts by weight of the solid rubber content, and then 1.0 to 7.0 parts by weight. After adding an amount of sodium hydroxide to be obtained, the saponification reaction was carried out with stirring at a temperature of 20 to 40 ° C. for 24 to 72 hours or at a temperature of 40 to 70 ° C. for 2 to 6 hours, and thus obtained. Formic acid was added to the saponified latex to adjust the pH to less than 3.5 to 4.5, and then 0.01 to 0.20 parts by weight of polyacrylate polymer aggregates per 100 parts by weight of the solid rubber A proteolytic natural rubber having a degree of degradation of the protein contained in the natural rubber of more than 80% and not more than 98% and a nitrogen content of 0.12 to 0.3% by weight is aggregated and produced. That features It is achieved by the method for producing a proteolytic natural rubber.

本発明により製造されるタンパク分解天然ゴム(以下、本発明のタンパク分解天然ゴムという)では、加工性を支配する蛋白質の分解度と機械的強度などを支配する分解された蛋白質由来物質を含む非ゴム成分の含有量が特定範囲に制御されている。そのため、本発明により製造されるタンパク分解天然ゴム及びそれを含むゴム組成物は加工性に優れ、例えば、タイヤ等のゴム製品を製造するに際し生産性を高めることができる。同時に、伸長結晶性の発現と促進効果、老防効果、加硫促進効果等の天然ゴムの特徴が維持され、しかも耐磨耗性を低下させずに低ロス性に優れているという特性も有している。このように、本発明によれば、タンパク分解天然ゴムにおいて課題となっている二律背反、すなわち加工性と機械的強度、低発熱性、耐摩耗性を両立させた優れた特長を持つ天然ゴムが提供される。 The proteolytic natural rubber produced by the present invention (hereinafter referred to as the proteolytic natural rubber of the present invention) contains a non-degraded protein-derived substance that governs the degree of degradation and mechanical strength of the protein that governs processability. The content of the rubber component is controlled within a specific range. Therefore, the proteolytic natural rubber produced according to the present invention and the rubber composition containing the same are excellent in processability, and, for example, productivity can be increased when producing rubber products such as tires. At the same time, the characteristics of natural rubber, such as the expression and promotion of elongation crystallinity, anti-aging effect, and vulcanization acceleration, are maintained, and it also has the property of being excellent in low loss without reducing wear resistance. is doing. As described above, according to the present invention, there is provided a natural rubber having an excellent feature in which the trade-off, which is a problem in proteolytic natural rubber, that is, workability, mechanical strength, low heat build-up, and wear resistance are compatible. Is done.

本発明のタンパク分解天然ゴムは、タンパク質の分解度が50〜100%であり且つ窒素含有率が0.3重量%を超え0.6重量%以下であるタンパク分解天然ゴム(以下第1タンパク分解天然ゴムという)と、タンパク質の分解度が50〜98%であり且つ窒素含有率が0.02〜0.3重量%であるタンパク分解天然ゴム(以下第2タンパク分解天然ゴムという)を包含する。
第1タンパク分解天然ゴムと第2タンパク分解天然ゴムは、共通して、タンパク質の分解度が50%以上である。
先に述べた通り、天然ゴム粒子表面及びセラム中に存在する蛋白質を分解することによりタンパク分解天然ゴムの加工性が向上するので、この分解度が加工性の指標となる。加工性をムーニー粘度とその緩和時間で代表させ分解度と相関してみると、蛋白質の分解度が50%以上であれば加工性が通常の天然ゴムより優れていることが判明した。蛋白質の分解度が80%以上であるのがより好ましい。
The proteolytic natural rubber of the present invention has a protein degradation degree of 50 to 100% and a nitrogen content of more than 0.3% by weight and not more than 0.6% by weight (hereinafter referred to as first proteolytic rubber). Natural rubber) and proteolytic natural rubber (hereinafter referred to as second proteolytic natural rubber) having a protein degradation degree of 50 to 98% and a nitrogen content of 0.02 to 0.3% by weight. .
The first proteolytic natural rubber and the second proteolytic natural rubber have a protein degradation degree of 50% or more in common.
As described above, the processability of the proteolytic natural rubber is improved by degrading the protein present on the surface of the natural rubber particles and in the serum, and this degree of degradation becomes an index of processability. When the processability is represented by Mooney viscosity and its relaxation time and correlated with the degree of degradation, it was found that if the degree of protein degradation is 50% or more, the processability is superior to ordinary natural rubber. More preferably, the degree of protein degradation is 80% or more.

総窒素含有は、分解された蛋白質由来物質を含む非ゴム成分の含有量の代用特性と考えられるが、本発明のタンパク分解天然ゴムでは、上記のとおり0.02〜0.6重量%の範囲にある。上記の蛋白質の分解度の範囲内の天然ゴムを用いてコンパウンドを作成しこれを加硫した加硫物の物性、例えば引っ張り強さ、低発熱性、耐摩耗性を測定すると、天然ゴムと同等以上の特性を示す。 The total nitrogen content is believed to substitute characteristic of the content of non-rubber components including the degraded protein derived materials, the proteolytic natural rubber of the present invention, the as 0.02 to 0.6 wt% the Is in range. When the properties of the vulcanizate, such as tensile strength, low heat build-up, and wear resistance, obtained by vulcanizing the compound with natural rubber within the above range of protein degradation, it is equivalent to natural rubber. The above characteristics are shown.

第1タンパク分解天然ゴムと第2タンパク分解天然ゴムとを比較すると、窒素含有が比較的高い第1タンパク分解天然ゴムは低発熱性や耐摩耗性が優れる傾向を示すので、低発熱性や耐摩耗性が重要視される用途に好適に用いられる。一方、窒素含有が比較的低い第2タンパク分解天然ゴムは柔軟性に優れるのでソフト感や柔軟性も要求される用途に好適に使用される。 Comparing the first and the proteolytic natural rubber and a second proteolytic natural rubber, since the first proteolytic natural rubber nitrogen content is relatively high exhibits a tendency that low heat build-resistance and wear resistance is excellent, low heat build-Ya It is suitably used for applications where wear resistance is important. On the other hand, is suitably used for applications is also required softness and flexibility is relatively low second proteolytic natural rubber nitrogen content is excellent in flexibility.

第2タンパク分解天然ゴムには二つのグループがあり、一つは蛋白質分解度が50〜98%で窒素含有が0.02重量%以上0.12重量%未満のもの(以下第1グループという)、もう一つはタンパク質分解度が80%を超え98%以下で窒素含有が0.12〜0.3重量%のもの(以下第2グループという)である。 There are two groups of the second proteolytic natural rubber, one with a proteolysis degree of 50-98% and a nitrogen content of 0.02% to less than 0.12% by weight (hereinafter referred to as the first group). ), and the other is intended nitrogen content of 0.12 to 0.3 wt% protein hydrolysis degree of 98% or less than 80% (hereinafter referred to the second group).

次に、本発明の製造法について説明する。   Next, the manufacturing method of this invention is demonstrated.

本発明のタンパク分解天然ゴムは、天然ゴムラテックスを特定の界面活性剤の存在下にケン化反応に付して天然ゴムラテックスに含まれるタンパク質を分解してタンパク分解天然ゴムラテックスを得るケン化反応工程と、そのラテックスに特定の酸と特定の高分子凝集剤を添加して凝固および固化によりタンパク分解天然ゴム(以下固形ゴム)を得る仕上げ工程の2工程より成る製造方法によって製造することができる。
ケン化反応工程は、アニオン界面活性剤であるポリオキシエチレンアルキルエーテル硫酸塩の存在下、水酸化ナトリウムで天然ゴムラテックスの粒子表面及びセラム中に存在する蛋白質を分解することで行われる。ケン化反応の反応温度は20〜70℃が好ましく、反応時間は0.5〜72時間が好ましい。
水酸化ナトリウムの使用量はラテックス中の固形ゴム分100重量部に対して0.1〜7.0重量部が好ましい。なお、水酸化ナトリウムは予め10〜30%(w/v)の水溶液に調製して使用するのが好ましい。
The proteolytic natural rubber of the present invention is a saponification reaction in which a natural rubber latex is subjected to a saponification reaction in the presence of a specific surfactant to decompose proteins contained in the natural rubber latex to obtain a proteolytic natural rubber latex. It can be manufactured by a manufacturing method comprising two steps: a process and a finishing process in which a specific acid and a specific polymer flocculant are added to the latex to obtain a proteolytic natural rubber by solidification and solidification. .
A saponification reaction process is performed by decomposing | disassembling the protein which exists in the particle | grain surface of natural rubber latex and a serum with sodium hydroxide in presence of polyoxyethylene alkyl ether sulfate which is an anionic surfactant. The reaction temperature of the saponification reaction is preferably 20 to 70 ° C., and the reaction time is preferably 0.5 to 72 hours.
The amount of sodium hydroxide used is preferably 0.1 to 7.0 parts by weight with respect to 100 parts by weight of the solid rubber in the latex. In addition, it is preferable to prepare and use sodium hydroxide in an aqueous solution of 10 to 30% (w / v) in advance.

ポリオキシエチレンアルキルエーテル硫酸塩としては、例えばポリオキシエチレンC12〜C18アルキルエーテル硫酸塩が好ましい。また塩としては、例えばNa塩、K塩、Ca塩の如き金属塩、アンモニウム塩およびアミン塩が好ましい。
ポリオキシエチレンアルキルエーテル硫酸塩としては、例えばポリオキシエチレンラウリルエーテル硫酸塩、ポリオキシエチレンミリスチルエーテル硫酸塩、ポリオキシエチレンステアリルエーテル硫酸塩が好ましく、就中ポリオキシエチレンラウリルエーテル硫酸ナトリウム塩が特に好ましい。
ポリオキシエチレンアルキルエーテル硫酸塩の使用量は、天然ゴムラテックス中の固形ゴム分100重量部に対し、0.01〜3.0重量部が好ましい。
As the polyoxyethylene alkyl ether sulfate, for example, polyoxyethylene C 12 -C 18 alkyl ether sulfate is preferable. Further, as the salt, for example, metal salts such as Na salt, K salt and Ca salt, ammonium salt and amine salt are preferable.
As the polyoxyethylene alkyl ether sulfate, for example, polyoxyethylene lauryl ether sulfate, polyoxyethylene myristyl ether sulfate, and polyoxyethylene stearyl ether sulfate are preferable, and polyoxyethylene lauryl ether sulfate sodium salt is particularly preferable. .
The amount of polyoxyethylene alkyl ether sulfate used is preferably 0.01 to 3.0 parts by weight per 100 parts by weight of the solid rubber in the natural rubber latex.

上記界面活性剤の使用量を少なくするほど得られるタンパク分解天然ゴムの総窒素含有量を高くでき、多くするほど総窒素含有量を低くできる。一方、特定の蛋白質分解度のタンパク分解天然ゴムを生成するためには、主として、反応温度、反応時間および水酸化ナトリウムの使用量を調節するのが好ましい。一般に反応温度を高くするほど、反応時間を長くするほどそして水酸化ナトリウムの使用量を多くするほど蛋白質の分解度を向上させることができる。
また、ケン化反応の操作においてポリオキシエチレンアルキルエーテル硫酸塩と水酸化ナトリウムの添加順序は、得られるタンパク分解天然ゴムの総窒素含有量と蛋白質分解度を制御するのに影響するので、本発明では先ずポリオキシエチレンアルキルエーテル硫酸塩を添加し次いで水酸化ナトリウム添加する方法が採られる。総窒素含有量と蛋白質分解度を、上記範囲に制御するためである。
The total nitrogen content of the proteolytic natural rubber obtained can be increased as the amount of the surfactant used is decreased, and the total nitrogen content can be decreased as the amount is increased. On the other hand, in order to produce a proteolytic natural rubber having a specific degree of proteolysis, it is preferable to mainly adjust the reaction temperature, the reaction time, and the amount of sodium hydroxide used. In general, the higher the reaction temperature, the longer the reaction time, and the greater the amount of sodium hydroxide used, the more the protein degradation can be improved.
Further, in the operation of the saponification reaction, the order of addition of polyoxyethylene alkyl ether sulfate and sodium hydroxide affects the control of the total nitrogen content and proteolysis degree of the resulting proteolytic natural rubber. Then, the method of adding polyoxyethylene alkyl ether sulfate first and then adding sodium hydroxide is taken. This is because the total nitrogen content and the degree of proteolysis are controlled within the above ranges.

仕上げ工程は凝固操作であり、好ましくは常温例えば10〜40℃で操作される。
凝固操作は、好ましくは二段階で行なわれる。一段目の工程(1)では、タンパク分解天然ゴムラテックスに酸を添加してpHを調整する。このとき、ラテックスと酸を均一に混合してゴム粒子を不安定とし、全体をクリーム状とする。この操作で重要なことはラテックスに局所的なクリーミング(クリーム化)を起こさせないことである。そのために、第1に、酸を希釈して使用するのが好ましく、添加する酸のpHが、例えば0.5〜3.5となるように希釈して使用することが望ましい。また、第2に、液全体を緩やかに流動させる撹拌を行い、均一混合状態を達成するのが望ましい。このとき、クリーム中の固形分濃度(Solid Content)は、20重量%以下として操作するのが好ましく、そのためにラテックスを予め水で希釈しておくのが好ましい。クリームのpHは3.0〜6.5が好ましく、より好ましくは3.5〜5.5である。
酸としては、ギ酸または硫酸が用いられる。
A finishing process is solidification operation, Preferably it operates at normal temperature, for example, 10-40 degreeC.
The coagulation operation is preferably performed in two stages. In the first step (1), an acid is added to the proteolytic natural rubber latex to adjust the pH. At this time, latex and acid are uniformly mixed to make the rubber particles unstable, and the whole is made creamy. What is important in this operation is that the latex does not cause local creaming. Therefore, first, it is preferable to dilute and use an acid, and it is desirable to dilute and use so that the pH of the acid to add may be 0.5-3.5, for example. Secondly, it is desirable to achieve a uniform mixed state by stirring the whole liquid gently. At this time, it is preferable to operate the solid content concentration (Solid Content) in the cream at 20% by weight or less. For this purpose, it is preferable to dilute the latex with water in advance. The pH of the cream is preferably 3.0 to 6.5, more preferably 3.5 to 5.5.
As the acid, formic acid or sulfuric acid is used.

次に、二段目の工程(2)では、工程(1)において調製されたクリームにポリアクリル酸エステル系高分子凝集剤を添加し、クリーム中の固形分を凝集・凝固させ、例えば0.5〜20cm大のいわゆるクラムを生成させる。この高分子凝集剤は、不安定になったゴム粒子を凝集・凝固させ、さらに、同時にセラム中に存在する非ゴム成分を凝集してゴム粒子と合一させ固形ゴム相に移行させる作用に優れている。この操作においても局所凝集・凝固を防ぐために、ポリアクリル酸エステル系高分子凝集剤を希釈した水溶液に調整して使用するのが好ましい。これにより固形分の凝集が均一に起こりしかも生成したクラムが多孔性となる。この際、凝固を促進させるため、および生成したクラムを多孔性を保ちつつスラリー状で分散させるために、反応系の適度の液流動が必要である。そのためには、通常使用される撹拌装置を用いるのが有利である。ポリアクリル酸系高分子凝集剤の添加量はラテックス中のゴム成分100重量部に対し、好ましくは0.01〜0.5重量部である。なお、この工程で生成するスラリーの固形分濃度(Solid Content)はポリアクリル酸系高分子凝集剤の希釈水溶液の添加により低下するが特に調節の必要はない。また、pHも同様に調節の必要はない。   Next, in the second step (2), a polyacrylic acid ester type polymer flocculant is added to the cream prepared in the step (1) to coagulate and solidify the solid content in the cream. A so-called crumb of 5-20 cm in size is produced. This polymer flocculant is excellent in the action of agglomerating and coagulating unstable rubber particles, and at the same time aggregating non-rubber components present in the serum and coalescing with the rubber particles to transfer to the solid rubber phase. ing. Also in this operation, in order to prevent local flocculation / coagulation, it is preferable to use the polyacrylic acid ester-based polymer flocculant adjusted to a diluted aqueous solution. As a result, the solid content is uniformly aggregated and the generated crumb becomes porous. At this time, in order to promote solidification and to disperse the produced crumb in a slurry state while maintaining porosity, an appropriate liquid flow of the reaction system is required. For this purpose, it is advantageous to use a commonly used stirring device. The addition amount of the polyacrylic acid type polymer flocculant is preferably 0.01 to 0.5 parts by weight with respect to 100 parts by weight of the rubber component in the latex. In addition, although the solid content concentration (Solid Content) of the slurry produced | generated at this process falls by addition of the dilute aqueous solution of a polyacrylic acid type polymer flocculant, it is not necessary to adjust in particular. Similarly, the pH need not be adjusted.

この手順の凝固操作により、セラム水中にある非ゴム成分を容易に固形ゴム相に移行させることが可能となる。加えて、この操作の利点は凝固操作条件を調節することにより、セラム水中の非ゴム成分の固形ゴム相への含有量を制御できることにある。
この凝固操作は工業的に連続操作で行うのが容易である。連続操作によれば生産性の高い工業的プロセスを提供することが出来る。連続操作の一例を添付図面の図1に図示した。図1の例においては、ラテックスと酸を均一混合させるために、多段の撹拌羽根を設置した円筒形のクリーム槽が用いられ、多孔性クラムを生成させそれを安定分散させるための凝固槽としては、セラム水を循環させ槽内の液を強制流動させる様式の凝固槽が用いられている。これらのクリーム槽と凝固槽の様式や形状および槽内の液の混合・撹拌様式は、目的とする機能を達成すればよく、例示したものに限定されるものではない。たとえば、クリーム槽としては撹拌羽根付きでなくスタティックミキサーを設置した円筒を使用してもよいし、蓋のない樋型の槽に邪魔板を設けた形状でもよい。凝固槽の形状も箱型でなく円形槽とし、液流動は大型の撹拌羽根を緩やかに回転させる様式でもよい。また、必ずしも二つの装置を必要とするのではなく、一つの装置内で二つの段階の
操作を行うことも可能である。たとえば、クリーム槽として邪魔板を設けた蓋のない樋型の槽を用い凝固槽と一体化できる。
By this solidification operation, it is possible to easily transfer the non-rubber component in the serum water to the solid rubber phase. In addition, the advantage of this operation is that the content of the non-rubber component in the serum water in the solid rubber phase can be controlled by adjusting the coagulation operation conditions.
This solidification operation is easy to carry out industrially in a continuous operation. The continuous operation can provide an industrial process with high productivity. An example of continuous operation is illustrated in FIG. 1 of the accompanying drawings. In the example of FIG. 1, a cylindrical cream tank provided with multistage stirring blades is used to uniformly mix the latex and acid, and as a coagulation tank for generating a porous crumb and stably dispersing it. A coagulation tank is used that circulates serum water and forces the liquid in the tank to flow. The form and shape of the cream tank and the coagulation tank, and the mixing / stirring mode of the liquid in the tank are not limited to those exemplified as long as the intended function is achieved. For example, as the cream tank, a cylinder provided with a static mixer instead of a stirring blade may be used, or a bowl-shaped tank without a lid may be provided with a baffle plate. The shape of the coagulation tank is not a box shape but a circular tank, and the liquid flow may be a mode in which a large stirring blade is gently rotated. In addition, two devices are not necessarily required, and two-stage operations can be performed in one device. For example, a bowl-shaped tank without a lid provided with a baffle plate can be used as a cream tank and integrated with the coagulation tank.

本発明のタンパク分解天然ゴムのうち、天然ゴムに含まれるタンパク質の分解度が50〜100%であり且つ窒素含有率が0.3重量%を超え0.6重量%以下である第1タンパク分解天然ゴムは、上記製造法において、より具体的に、次のようにして製造することができる。
ラテックスに、その中の固形ゴム分100重量部に対し、0.01〜1.0重量部となる量のポリオキシエチレンアルキルエーテル硫酸塩を添加し、次いで1.0〜7.0重量部となる量の水酸化ナトリウムを添加したのち、20〜40℃の温度で6〜72時間または40〜70℃の温度で0.5〜6時間、攪拌下にケン化反応を実施する。その後、かくして得られたケン化されたラテックスにギ酸を添加してpHを4.5〜5.5に調整し、次いで固形ゴム分100重量部に対し0.05〜0.50重量部のポリアクリル酸エステル系高分子凝集剤を添加してタンパク分解天然ゴムを凝集せしめて取得する。
Of the proteolytic natural rubber of the present invention, a first proteolytic protein having a degree of degradation of 50 to 100% in the natural rubber and a nitrogen content of more than 0.3% by weight and not more than 0.6% by weight. More specifically, natural rubber can be produced as follows in the above production method.
An amount of 0.01 to 1.0 part by weight of polyoxyethylene alkyl ether sulfate is added to the latex with respect to 100 parts by weight of the solid rubber, and then 1.0 to 7.0 parts by weight. After adding an amount of sodium hydroxide, the saponification reaction is carried out with stirring at a temperature of 20-40 ° C. for 6-72 hours or at a temperature of 40-70 ° C. for 0.5-6 hours. Thereafter, formic acid was added to the saponified latex thus obtained to adjust the pH to 4.5 to 5.5, and then 0.05 to 0.50 parts by weight of the polyrubber with respect to 100 parts by weight of the solid rubber. Acquired by aggregating proteolytic natural rubber by adding an acrylate polymer flocculant.

また、本発明のタンパク分解天然ゴムのうち、天然ゴムに含まれるタンパク質の分解度が50〜98%であり且つ窒素含有率が0.02〜0.3重量%と少ない第2タンパク分解天然ゴムは同様に、次のようにして製造することができる。
まず、窒素含有が0.02重量%以上0.12重量%未満と比較的少ない第1グループのものの製造条件は以下の通りである。ラテックスに、その中の固形ゴム分100重量部に対し、0.20〜2.0重量部となる量のポリオキシエチレンアルキルエーテル硫酸塩を添加し、次いで1.0〜7.0重量部となる量の水酸化ナトリウムを添加したのち、20〜40℃の温度で6〜72時間または40〜70℃の温度で0.5〜6時間、攪拌下にケン化反応を実施する。その後、かくして得られたケン化されたラテックスに硫酸を添加してpHを3.0〜4.0に調整し次いで固形ゴム100重量部に対し0.01〜0.20重量部のポリアクリル酸エステル系高分子凝集剤を添加してタンパク分解天然ゴムを凝集せしめて取得する。
In addition, among the proteolytic natural rubbers of the present invention, the second proteolytic natural rubber has a degree of protein degradation in the natural rubber of 50 to 98% and a low nitrogen content of 0.02 to 0.3% by weight. Similarly, can be produced as follows.
First, the production conditions for the first group having a relatively low nitrogen content of 0.02 wt% or more and less than 0.12 wt% are as follows. To the latex, a polyoxyethylene alkyl ether sulfate in an amount of 0.20 to 2.0 parts by weight is added to 100 parts by weight of the solid rubber in the latex, and then 1.0 to 7.0 parts by weight. After adding an amount of sodium hydroxide, the saponification reaction is carried out with stirring at a temperature of 20-40 ° C. for 6-72 hours or at a temperature of 40-70 ° C. for 0.5-6 hours. Thereafter, sulfuric acid was added to the saponified latex thus obtained to adjust the pH to 3.0 to 4.0, and then 0.01 to 0.20 parts by weight of polyacrylic acid with respect to 100 parts by weight of the solid rubber. Acquired by aggregating proteolytic natural rubber by adding an ester polymer flocculant.

また、タンパク質の分解度が80%を超え98%以下と比較的高くさらに窒素含有率が0.12〜0.3重量%と比較的多い第2グループのものは、ラテックスに、その中の固形ゴム分100重量部に対し、0.20〜2.0重量部となる量のポリオキシエチレンアルキルエーテル硫酸塩を添加し、次いで1.0〜7.0重量部となる量の水酸化ナトリウムを添加したのち、20〜40℃の温度で24〜72時間または40〜70℃の温度では2〜6時間、攪拌下にケン化反応を実施する。こうして得られたケン化テックスにギ酸を添加してpHを3.5〜4.5未満に調整し次いで固形ゴム100重量部に対し0.01〜0.20重量部のポリアクリル酸エステル系高分子凝集剤を添加してタンパク分解天然ゴムを凝集することにより容易に得ることができる。 Moreover, those resolution of proteins is relatively high further nitrogen content and 98% or less than 80% of the relatively large second group and 0.12 to 0.3% by weight, the latex solids therein Polyoxyethylene alkyl ether sulfate in an amount of 0.20 to 2.0 parts by weight is added to 100 parts by weight of rubber, and then sodium hydroxide in an amount of 1.0 to 7.0 parts by weight is added. After the addition, the saponification reaction is carried out with stirring at a temperature of 20 to 40 ° C. for 24 to 72 hours or at a temperature of 40 to 70 ° C. for 2 to 6 hours. To the saponified tex thus obtained, formic acid was added to adjust the pH to less than 3.5 to 4.5, and then 0.01 to 0.20 parts by weight of a polyacrylate ester-based high amount with respect to 100 parts by weight of the solid rubber. It can be easily obtained by adding a molecular flocculant to agglomerate the proteolytic natural rubber.

上記のように、本発明方法によれば、蛋白質の分解度と蛋白質由来物質を含む非ゴム成分の含有量(窒素含有量)を、それぞれ、50−100%および0.02〜0.6重量%の範囲で個別に調節したタンパク分解天然ゴムを得ることができる。これは従来言われている、蛋白質の分解度と窒素含有量の一義的な関係から脱却できることを意味し、本発明によれば加工性が良好で且つ機械的強度、低発熱性、耐摩耗性に優れるという二律背反の関係を解決した高機能のタンパク分解天然ゴムを提供できる。   As described above, according to the method of the present invention, the degree of protein degradation and the content (nitrogen content) of the non-rubber component containing the protein-derived substance are 50-100% and 0.02-0.6 wt, respectively. %, It is possible to obtain proteolytic natural rubber individually adjusted in the range of%. This means that it is possible to escape from the unambiguous relationship between the degree of protein degradation and the nitrogen content, which has been said conventionally, and according to the present invention, the workability is good and the mechanical strength, low heat build-up, and wear resistance are improved. Highly functional proteolytic natural rubber that solves the trade-off between being excellent in

合せて、本発明によれば上記タンパク分解天然ゴムの優れた性能を生かして他のゴム成分と配合したゴム組成物が提供される。
本発明に係るゴム組成物において併用されるゴム成分としては、通常の天然ゴム及びジエン系合成ゴムが挙げられ、ジエン系合成ゴムとしては、例えばスチレン−ブタジエン共重合体(SBR)、ポリブタジエン(BR)、ポリイソプレン(IR)、ブチルゴム(IIR)、エチレン−プロピレン−ジエン三元共重合体及びこれらの混合物等が挙げられる。
本発明のゴム組成物は、タイヤ用途を始め、防振ゴム、ベルト、ホースその他の工業品等の用途にも用いることができる。
以下に実施例を挙げて、本発明を詳しく説明するが、これらの実施例はなんら本発明を限定するものではない。
In addition, according to the present invention, there is provided a rubber composition blended with other rubber components by taking advantage of the excellent performance of the proteolytic natural rubber.
Examples of the rubber component used together in the rubber composition according to the present invention include ordinary natural rubber and diene synthetic rubber. Examples of the diene synthetic rubber include styrene-butadiene copolymer (SBR) and polybutadiene (BR). ), Polyisoprene (IR), butyl rubber (IIR), ethylene-propylene-diene terpolymer, and mixtures thereof.
The rubber composition of the present invention can be used for applications such as anti-vibration rubber, belts, hoses and other industrial products as well as tire applications.
EXAMPLES The present invention will be described in detail below with reference to examples, but these examples do not limit the present invention.

実施例1〜5および比較例1
実施例の各試料の作成手順は次のとおりである。なお、比較例1の試料は下記の手順の(1)を省略して作成した。
Examples 1 to 5 and Comparative Example 1
The procedure for preparing each sample in the example is as follows. The sample of Comparative Example 1 was prepared by omitting (1) in the following procedure.

(1)新鮮天然ゴムラテックス(FL−latex)を固形ゴム分濃度(DRC)30%(w/v)に調整した後、先ず、表2に記載の所定のphl(DRC30%(w/v)のラテックス100容量部に対する固形分量)となる量のEmal−E水溶液を添加し、撹拌混合状態で30分間保持する。この間に該ラテックスの温度を所定の反応温度に調節する。 (1) After adjusting fresh natural rubber latex (FL-latex) to a solid rubber content concentration (DRC) of 30% (w / v), first, the predetermined phl (DRC 30% (w / v) described in Table 2) The amount of Emal-E aqueous solution to be a solid content with respect to 100 parts by volume of latex) is added, and the mixture is kept for 30 minutes with stirring and mixing. During this time, the temperature of the latex is adjusted to a predetermined reaction temperature.

(2)次いで表2に記載の所定のphlとなる量のNaOH水溶液を加えて、ケン化反応を行い、ケン化ラテックスを得た。 (2) Next, a saponification reaction was carried out by adding a NaOH aqueous solution in an amount corresponding to the predetermined ph described in Table 2 to obtain a saponified latex.

(3)ケン化ラテックス(比較例においてはFL−latex)をDRC15%(w/v)に希釈した後、ゆっくり撹拌しながらギ酸または硫酸を添加してpHを表2に記載の所定の値に調整した。 (3) After diluting the saponified latex (FL-latex in the comparative example) to DRC 15% (w / v), formic acid or sulfuric acid was added with slow stirring to bring the pH to the predetermined value described in Table 2. It was adjusted.

(4)更に表2に記載の所定のphr(ラテックス中の固形ゴム100重量部に対する固形分量としての高分子凝集剤)となる様に高分子凝集剤水溶液を加えた。(5)この試料を脱水、洗浄し、老化防止剤のエマルジョン(BHTの1%(w/v)エマルジョン)に浸漬した後、乾燥し、固形ゴムとした。
表1には試料作成に用いたラテックスと薬液を示した。
表2には反応条件と凝固条件を示した。
表3には実施例と比較例の物性測定項目とその試験法を示した。
表4には実施例と比較例1の物性を示した。表4の実施例から明らかなごとく、この操作法によれば、タンパク質の分解度と含有される総窒素の量を自在に調節できることが分かる。また、比較例1との比較では、この様にして調製されたタンパク分解天然ゴムは加工性に優れることを示している。
(4) Further, an aqueous polymer flocculant solution was added so as to be a predetermined phr described in Table 2 (polymer flocculant as a solid content with respect to 100 parts by weight of solid rubber in the latex). (5) The sample was dehydrated, washed, dipped in an anti-aging agent emulsion (1% (w / v) emulsion of BHT), and then dried to obtain a solid rubber.
Table 1 shows the latex and chemicals used for sample preparation.
Table 2 shows reaction conditions and coagulation conditions.
Table 3 shows physical property measurement items and test methods of Examples and Comparative Examples.
Table 4 shows the physical properties of Examples and Comparative Example 1. As is apparent from the examples in Table 4, it can be seen that according to this operating method, the degree of protein degradation and the amount of total nitrogen contained can be freely adjusted. Further, the comparison with Comparative Example 1 shows that the proteolytic natural rubber prepared in this way is excellent in processability.

Figure 0004633703
Figure 0004633703

Figure 0004633703
Figure 0004633703

Figure 0004633703
Figure 0004633703

Figure 0004633703
Figure 0004633703

実施例6〜10および比較例2
実施例1〜5および比較例1のタンパク分解天然ゴムを用いて、コンパウンド(ゴム組成物)を作製し、温度145℃、33分間の条件で加硫して加硫ゴムを得た。
表5にはコンパウド作成の配合(重量部)を示した。
表6にはコンパウンド(ゴム組成物)の物性評価項目とその試験方法を示した。
表7にはコンパウンド(ゴム組成物)の評価結果を示した。表7から明らかのごとく、本発明における実施例は比較例と比べて、タンパク分解天然ゴムの欠点といわれる強度、低ロス性そして耐摩耗性において天然ゴムの特徴を維持するだけでなく、より優れていることが判る。また、コンパウンドムーニー粘度が低く加工性に優れていることも明らかである。
Examples 6 to 10 and Comparative Example 2
A compound (rubber composition) was produced using the proteolytic natural rubbers of Examples 1 to 5 and Comparative Example 1, and vulcanized at a temperature of 145 ° C. for 33 minutes to obtain a vulcanized rubber.
Table 5 shows the composition (parts by weight) for preparing the compound.
Table 6 shows the physical property evaluation items of the compound (rubber composition) and the test method thereof.
Table 7 shows the evaluation results of the compound (rubber composition). As is apparent from Table 7, the examples of the present invention not only maintain the characteristics of natural rubber in terms of strength, low loss and wear resistance, which are the disadvantages of proteolytic natural rubber, but are superior to the comparative examples. You can see that It is also clear that the compound Mooney viscosity is low and the processability is excellent.

Figure 0004633703
Figure 0004633703

Figure 0004633703
Figure 0004633703

Figure 0004633703
Figure 0004633703

連続凝固プロセスの一例を示す説明図Explanatory drawing showing an example of continuous solidification process

Claims (4)

天然ゴムラテックスに、その中の固形ゴム分100重量部に対し、0.01〜1.0重量部となる量のポリオキシエチレンアルキルエーテル硫酸塩を添加し次いで1.0〜7.0重量部となる量の水酸化ナトリウムを添加したのち、20〜40℃の温度で6〜72時間または40〜70℃の温度で0.5〜6時間攪拌下にケン化反応を行いしかる後、かくして得られたケン化されたラテックスにギ酸を添加してpHを4.5〜5.5に調整し次いで固形ゴム分100重量部に対し0.05〜0.50重量部のポリアクリル酸エステル系高分子凝集剤を添加して天然ゴムに含まれるタンパク質の分解度が50〜100%であり且つ窒素含有が0.3重量%を超え0.6重量%以下であるタンパク分解天然ゴムを凝集させて生成せしめる、ことを特徴とするタンパク質分解天然ゴムの製造法。 To the natural rubber latex, polyoxyethylene alkyl ether sulfate is added in an amount of 0.01 to 1.0 part by weight with respect to 100 parts by weight of the solid rubber therein, and then 1.0 to 7.0 parts by weight. After an amount of sodium hydroxide is added, the saponification reaction is carried out with stirring at a temperature of 20 to 40 ° C. for 6 to 72 hours or at a temperature of 40 to 70 ° C. for 0.5 to 6 hours. Formic acid was added to the resulting saponified latex to adjust the pH to 4.5 to 5.5, and then 0.05 to 0.50 parts by weight of polyacrylate ester based on 100 parts by weight of solid rubber. was added molecular flocculant resolution of proteins contained in natural rubber is 50 to 100% and nitrogen content are aggregated proteolytic natural rubber is less than 0.6 wt% greater than 0.3% by weight To generate Preparation of proteolytic natural rubber characterized. 天然ゴムラテックスに、その中の固形ゴム分100重量部に対し、0.20〜2.0重量部となる量のポリオキシエチレンアルキルエーテル硫酸塩を添加し次いで1.0〜7.0重量部となる量の水酸化ナトリウムを添加したのち、20〜40℃の温度で6〜72時間または40〜70℃の温度で0.5〜6時間攪拌下にケン化反応を行いしかる後、かくして得られたケン化されたラテックスに硫酸を添加してpHを3.0〜4.0に調整し次いで固形ゴム100重量部に対し0.01〜0.20重量部のポリアクリル酸エステル系高分子凝集剤を添加して天然ゴムに含まれるタンパク質の分解度が50〜98%であり且つ窒素含有が0.02重量%以上0.12重量%未満であるタンパク分解天然ゴムを凝集させて生成せしめることを特徴とするタンパク分解天然ゴムの製造方法。 Polyoxyethylene alkyl ether sulfate in an amount of 0.20 to 2.0 parts by weight is added to natural rubber latex with respect to 100 parts by weight of the solid rubber content, and then 1.0 to 7.0 parts by weight. After an amount of sodium hydroxide is added, the saponification reaction is carried out with stirring at a temperature of 20 to 40 ° C. for 6 to 72 hours or at a temperature of 40 to 70 ° C. for 0.5 to 6 hours. The resulting saponified latex was added with sulfuric acid to adjust the pH to 3.0 to 4.0, and then 0.01 to 0.20 parts by weight of a polyacrylate polymer based on 100 parts by weight of the solid rubber produced by decomposition of the proteins contained in natural rubber is 50 to 98% and nitrogen content are aggregated proteolytic natural rubber is less than 0.02 wt% or more 0.12% by weight addition of flocculant Special feature The production method of proteolytic natural rubber to be. 天然ゴムラテックスに、その中の固形ゴム分100重量部に対し、0.20〜2.0重量部となる量のポリオキシエチレンアルキルエーテル硫酸塩を添加し次いで1.0〜7.0重量部となる量の水酸化ナトリウムを添加したのち、20〜40℃の温度で24〜72時間または40〜70℃の温度で2〜6時間攪拌下にケン化反応を行いしかる後、かくして得られたケン化されたラテックスにギ酸を添加してpHを3.5〜4.5未満に調整し次いで固形ゴム100重量部に対し0.01〜0.20重量部のポリアクリル酸エステル系高分子凝集剤を添加して天然ゴムに含まれるタンパク質の分解度が80%を超え98%以下であり且つ窒素含有0.12〜0.3重量%であるタンパク分解天然ゴムを凝集させて生成せしめることを特徴とするタンパク分解天然ゴムの製造方法。 Polyoxyethylene alkyl ether sulfate in an amount of 0.20 to 2.0 parts by weight is added to natural rubber latex with respect to 100 parts by weight of the solid rubber content, and then 1.0 to 7.0 parts by weight. After adding an amount of sodium hydroxide to be obtained, the saponification reaction was carried out with stirring at a temperature of 20 to 40 ° C. for 24 to 72 hours or at a temperature of 40 to 70 ° C. for 2 to 6 hours, and thus obtained. Formic acid was added to the saponified latex to adjust the pH to less than 3.5 to 4.5, and then 0.01 to 0.20 parts by weight of polyacrylate polymer aggregates per 100 parts by weight of the solid rubber A proteolytic natural rubber having a degree of degradation of the protein contained in the natural rubber of more than 80% and not more than 98% and a nitrogen content of 0.12 to 0.3% by weight is aggregated and produced. That features The production method of proteolytic natural rubber. 上記ケン化反応と凝集操作を連続的に行い固化したタンパク分解天然ゴムを多孔性クラムが分散したスラリーとして生成せしめる請求項1〜3のいずれかに記載の方法。 The method according to any one of claims 1 to 3 , wherein the proteolytic natural rubber solidified by continuously performing the saponification reaction and the coagulation operation is produced as a slurry in which porous crumbs are dispersed.
JP2006288431A 2006-10-24 2006-10-24 Proteolytic natural rubber production method Expired - Fee Related JP4633703B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006288431A JP4633703B2 (en) 2006-10-24 2006-10-24 Proteolytic natural rubber production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006288431A JP4633703B2 (en) 2006-10-24 2006-10-24 Proteolytic natural rubber production method

Publications (2)

Publication Number Publication Date
JP2008106099A JP2008106099A (en) 2008-05-08
JP4633703B2 true JP4633703B2 (en) 2011-02-16

Family

ID=39439736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006288431A Expired - Fee Related JP4633703B2 (en) 2006-10-24 2006-10-24 Proteolytic natural rubber production method

Country Status (1)

Country Link
JP (1) JP4633703B2 (en)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4691389B2 (en) * 2005-04-28 2011-06-01 住友ゴム工業株式会社 Proteolytic natural rubber and composition containing the same
JP4603615B2 (en) * 2009-01-30 2010-12-22 住友ゴム工業株式会社 Rubber composition and tire for covering tread or carcass cord
JP4598853B2 (en) * 2008-12-15 2010-12-15 住友ゴム工業株式会社 Natural rubber, method for producing the same, rubber composition, and pneumatic tire using the same
EP2377892B1 (en) 2008-12-15 2014-05-14 Sumitomo Rubber Industries, Ltd. Natural rubber and manufacturing method thereof, rubber composition and pneumatic tire utilizing the same, modified natural rubber and manufacturing method thereof, and rubber composite for covering threads or carcass cords and pneumatic tire utilizing the same
JP4810568B2 (en) * 2008-12-15 2011-11-09 住友ゴム工業株式会社 Modified natural rubber and method for producing the same
JP2010144001A (en) * 2008-12-17 2010-07-01 Sumitomo Rubber Ind Ltd Method for manufacturing natural rubber
JP2010248276A (en) * 2009-04-10 2010-11-04 Bridgestone Corp Rubber cement composition and pneumatic tire using the same
JP5567295B2 (en) * 2009-07-01 2014-08-06 住友ゴム工業株式会社 Puncture sealant
US8476348B2 (en) 2009-09-01 2013-07-02 National University Corporation Nagaoka University Of Technology Protein-free natural rubber, latex thereof, and method for manufacturing said rubber and latex
CN102115554B (en) * 2010-01-04 2014-09-10 住友橡胶工业株式会社 Rubber composition for tire and studless tire
JP5216028B2 (en) * 2010-01-18 2013-06-19 住友ゴム工業株式会社 Rubber composition for inner liner and pneumatic tire
JP5216029B2 (en) * 2010-01-27 2013-06-19 住友ゴム工業株式会社 Rubber composition for sidewall, insulation or breaker cushion, production method thereof and pneumatic tire
JP5503310B2 (en) * 2010-01-27 2014-05-28 住友ゴム工業株式会社 Run-flat tire rubber composition and run-flat tire
JP5216045B2 (en) * 2010-04-30 2013-06-19 住友ゴム工業株式会社 Tire rubber composition and heavy duty tire
JP5123342B2 (en) * 2010-03-17 2013-01-23 住友ゴム工業株式会社 Tire rubber composition and heavy duty tire
JP5503396B2 (en) * 2010-04-27 2014-05-28 住友ゴム工業株式会社 Rubber composition for clinch apex or bead apex, production method thereof and pneumatic tire
JP5503395B2 (en) * 2010-04-27 2014-05-28 住友ゴム工業株式会社 Heavy duty vehicle tread rubber composition and heavy duty vehicle tire
JP5508121B2 (en) * 2010-04-30 2014-05-28 住友ゴム工業株式会社 Tire rubber composition and heavy duty tire
JP5503413B2 (en) * 2010-05-28 2014-05-28 住友ゴム工業株式会社 Rubber composition for tire and pneumatic tire
JP5086457B2 (en) 2010-05-28 2012-11-28 住友ゴム工業株式会社 Rubber composition for breaker and pneumatic tire
JP5567401B2 (en) * 2010-06-09 2014-08-06 住友ゴム工業株式会社 Tire rubber composition and heavy duty tire
JP5002680B2 (en) * 2010-06-10 2012-08-15 住友ゴム工業株式会社 Modified natural rubber, process for producing the same, rubber composition and pneumatic tire
JP5020353B2 (en) * 2010-06-10 2012-09-05 住友ゴム工業株式会社 Natural rubber, method for producing the same, rubber composition and pneumatic tire
EP2581390B1 (en) * 2010-06-10 2015-01-14 Sumitomo Rubber Industries, Ltd. Modified natural rubber, method for producing same, rubber composition, and pneumatic tire
JP5411214B2 (en) 2011-07-28 2014-02-12 住友ゴム工業株式会社 Rubber composition for tread, method for producing the same, and tire for heavy load
JP5466684B2 (en) 2011-10-25 2014-04-09 住友ゴム工業株式会社 Clinch apex rubber composition and pneumatic tire
JP5469151B2 (en) 2011-11-11 2014-04-09 住友ゴム工業株式会社 Rubber composition for pneumatic tire and pneumatic tire
JP5616369B2 (en) 2012-01-24 2014-10-29 住友ゴム工業株式会社 Rubber composition for tire and pneumatic tire
JP5948118B2 (en) * 2012-04-16 2016-07-06 株式会社ブリヂストン Method for producing natural rubber, method for producing rubber composition containing natural rubber, and method for producing tire
JP2014133829A (en) 2013-01-10 2014-07-24 Sumitomo Rubber Ind Ltd Composite body and production method of the same, rubber composition, and pneumatic tire
JP5814410B2 (en) 2014-03-17 2015-11-17 住友ゴム工業株式会社 Rubber composition for studless tire and studless tire

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003082925A1 (en) * 2002-03-28 2003-10-09 Bridgestone Corporation Natural rubber, rubber composition and pneumatic tire
JP2004262973A (en) * 2003-02-13 2004-09-24 Bridgestone Corp Natural rubber and rubber composition using the same
WO2005012365A1 (en) * 2003-08-04 2005-02-10 Thai Rubber Latex Corporation (Thailand) Public Company Limited Deproteinized natural rubber, its composition and use thereof
JP2005082766A (en) * 2003-09-10 2005-03-31 Bridgestone Corp Pneumatic tire
JP2006307018A (en) * 2005-04-28 2006-11-09 Yasuyuki Tanaka Protein-degraded natural rubber and composition containing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003082925A1 (en) * 2002-03-28 2003-10-09 Bridgestone Corporation Natural rubber, rubber composition and pneumatic tire
JP2004262973A (en) * 2003-02-13 2004-09-24 Bridgestone Corp Natural rubber and rubber composition using the same
WO2005012365A1 (en) * 2003-08-04 2005-02-10 Thai Rubber Latex Corporation (Thailand) Public Company Limited Deproteinized natural rubber, its composition and use thereof
JP2005082766A (en) * 2003-09-10 2005-03-31 Bridgestone Corp Pneumatic tire
JP2006307018A (en) * 2005-04-28 2006-11-09 Yasuyuki Tanaka Protein-degraded natural rubber and composition containing the same

Also Published As

Publication number Publication date
JP2008106099A (en) 2008-05-08

Similar Documents

Publication Publication Date Title
JP4633703B2 (en) Proteolytic natural rubber production method
JP4691389B2 (en) Proteolytic natural rubber and composition containing the same
JP2012184354A (en) Unvulcanized rubber composition, manufacturing method thereof, and pneumatic tire
JP6675176B2 (en) Manufacturing method of wet masterbatch
JP6195504B2 (en) Rubber composition
WO2013108436A1 (en) Method for producing rubber wet masterbatch, rubber wet masterbatch, and rubber composition including rubber wet masterbatch
JP2014091810A (en) Rubber wet master batch and production method of the same, rubber composition, and pneumatic tire
JP2005194503A (en) Method for producing rubber from rubber latex
JP6918492B2 (en) How to manufacture rubber wet masterbatch
JP4466767B2 (en) Manufacturing method of natural rubber masterbatch
JP6979858B2 (en) Masterbatch manufacturing method, tire rubber composition manufacturing method and tire manufacturing method
JP2007217677A (en) Method for producing natural rubber and/or synthetic isoprene rubber masterbatch using powder rubber and filler
JP2016160315A (en) Manufacturing method of wet master batch and wet master batch manufactured by the method
JP6880657B2 (en) Masterbatch manufacturing method
JP5250206B2 (en) Method for producing natural rubber and / or synthetic isoprene rubber masterbatch using microbially decomposed powder rubber
JP2007197549A (en) Method for producing carbon black-containing rubber wet master batch, and rubber composition and tire
JP2018109100A (en) Method for producing rubber wet master batch
JP6181426B2 (en) Masterbatch, production method, rubber composition and pneumatic tire
JP6377979B2 (en) Manufacturing method of rubber wet masterbatch
JP2015129236A (en) Method for producing composite material
JP2012207088A (en) Rubber wet master batch and method of producing the same, rubber composition, and pneumatic tire
JP6761723B2 (en) Manufacturing method of tire parts
JP6820180B2 (en) Manufacturing method of tread rubber for retread and manufacturing method of rehabilitated tire
JP2012158668A (en) Diene-based rubber wet masterbatch, method for producing the same, unvulcanized rubber composition and pneumatic tire
JP6959124B2 (en) How to manufacture rubber wet masterbatch

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080423

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20080423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080423

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080806

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101117

R150 Certificate of patent or registration of utility model

Ref document number: 4633703

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees