JP4632239B2 - Beta titanium alloy material for cold working - Google Patents

Beta titanium alloy material for cold working Download PDF

Info

Publication number
JP4632239B2
JP4632239B2 JP2004317670A JP2004317670A JP4632239B2 JP 4632239 B2 JP4632239 B2 JP 4632239B2 JP 2004317670 A JP2004317670 A JP 2004317670A JP 2004317670 A JP2004317670 A JP 2004317670A JP 4632239 B2 JP4632239 B2 JP 4632239B2
Authority
JP
Japan
Prior art keywords
concentration
titanium alloy
base material
oxide film
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004317670A
Other languages
Japanese (ja)
Other versions
JP2006124810A (en
Inventor
功和 枩倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2004317670A priority Critical patent/JP4632239B2/en
Publication of JP2006124810A publication Critical patent/JP2006124810A/en
Application granted granted Critical
Publication of JP4632239B2 publication Critical patent/JP4632239B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、軽量かつ高強度のβチタン合金製部品の冷間鍛造用素材等として好適な冷間加工性に優れたβチタン合金材に関する。   The present invention relates to a β-titanium alloy material excellent in cold workability suitable as a material for cold forging of a light and high-strength β-titanium alloy part.

従来、引張強度が650MPaを超える高強度のチタン合金製の部品は、そのほとんどがTi−6mass%Al−4mass%V合金に代表されるα+β型チタン合金素材から切削加工により製造されていた。α+β型チタン合金は、一般的に冷間加工し難く、冷間鍛造用の素材としては向いていない。このため、α+β型チタン合金は、主として熱間鍛造や切削による加工の素材として用いられている。しかし、熱間鍛造では加熱炉等の大掛かりな設備が必要であり、しかも冷間鍛造に比べて加工精度が劣る。一方、切削加工は冷間鍛造に比べると作業効率が悪く、また材料の歩留が悪い。特に、頭付きボルトなどでは、削り落とす部分が多く、歩留りが大きく低下する。このため、鋼材に比べて材料コストの高いチタン合金の場合、非常に大きなコスト高の要因となる。   Conventionally, most high-strength titanium alloy parts having a tensile strength exceeding 650 MPa have been manufactured by cutting from an α + β-type titanium alloy material typified by a Ti-6 mass% Al-4 mass% V alloy. The α + β type titanium alloy is generally difficult to cold work and is not suitable as a material for cold forging. For this reason, α + β type titanium alloys are mainly used as materials for processing by hot forging or cutting. However, hot forging requires large equipment such as a heating furnace, and the processing accuracy is inferior to that of cold forging. On the other hand, cutting is less efficient than cold forging, and the yield of materials is poor. In particular, with a headed bolt or the like, there are many parts to be scraped off, and the yield is greatly reduced. For this reason, in the case of a titanium alloy whose material cost is higher than that of a steel material, it becomes a very high cost factor.

一方、Mo、V、Crなどのβ安定化元素を添加して、高温で安定なβ相を室温において発現させたβチタン合金は、α+β合金に対して、冷間加工性に優れ、また熱処理性にも優れるため、バネ,ボルト,ギアなどの素材として好適に用いられる。しかし、変形抵抗が大きく、非常に焼き付き易い材料なので、冷間鍛造用の素材として必ずしも適したものではなかった。   On the other hand, β-titanium alloys in which β-stabilizing elements such as Mo, V, Cr, etc. are added and a β-phase stable at high temperatures is developed at room temperature are superior to α + β alloys in terms of cold workability and heat treatment. Because of its excellent properties, it is suitably used as a material for springs, bolts, gears and the like. However, since the material has a large deformation resistance and is very easy to seize, it is not always suitable as a material for cold forging.

このため、冷間鍛造時の焼付きを抑制する手段として、種々のものが提案されている。例えば、βチタン合金素材の表面に化成処理被膜を形成したり、潤滑性金属被膜を付着させる方法が提案されている。一方、被膜自体が丈夫で比較的硬い被膜を形成する技術として、特公平6−37701号公報(特許文献1)、特許第2792021号公報(特許文献2)、特許第2792020号公報(特許文献3)には、大気中での加熱により素材表面に酸化被膜を形成し、これによって焼付き防止を図る技術が提案されている。これらの技術では、素材表面への酸化被膜の密着性を確保するため、750℃以下の温度で加熱処理が行われる。
特公平6−37701号公報 特許第2792021号公報 特許第2792020号公報
For this reason, various means have been proposed as means for suppressing seizure during cold forging. For example, a method of forming a chemical conversion coating on the surface of a β titanium alloy material or attaching a lubricating metal coating has been proposed. On the other hand, as techniques for forming a coating film that is strong and relatively hard, Japanese Patent Publication No. 6-37701 (Patent Document 1), Japanese Patent No. 2792021 (Patent Document 2), Japanese Patent No. 2792020 (Patent Document 3). ) Proposes a technique for preventing seizure by forming an oxide film on the surface of the material by heating in the atmosphere. In these techniques, heat treatment is performed at a temperature of 750 ° C. or lower in order to ensure adhesion of the oxide film to the surface of the material.
Japanese Examined Patent Publication No. 6-37701 Japanese Patent No. 2792021 Japanese Patent No. 2792020

しかしながら、化成処理被膜や潤滑性金属被膜は、βチタン合金素材に対する密着性が良好であるものの、強度が低いため、十分な耐焼付き性が得られていない。一方、酸化被膜は、硬い材質で被膜自体に問題はないものの、素材との密着性に問題があり、素材の変形に追随することができず、素材から剥離して地肌が露出するため、やはり十分な耐焼付き性が得られていない。特に、βチタン合金素材が650MPa以上と高強度である場合、鍛造時の面圧が高くなるので、上記いずれの被膜でも冷間鍛造に十分に対応可能な耐焼付き性が得られていない。
本発明はかかる問題に鑑みなされたもので、βチタン合金素材の強度が高い場合でも、冷間鍛造において優れた耐焼付き性を有する冷間加工用βチタン合金材及びその製造方法を提供することを目的とする。
However, although the chemical conversion coating and the lubricious metal coating have good adhesion to the β-titanium alloy material, they have low strength, so that sufficient seizure resistance is not obtained. On the other hand, the oxide film is a hard material and there is no problem with the film itself, but there is a problem with the adhesion with the material, it can not follow the deformation of the material, it peels off from the material and the background is exposed, so Sufficient seizure resistance is not obtained. In particular, when the β-titanium alloy material has a high strength of 650 MPa or more, the surface pressure at the time of forging becomes high, so that any of the above-mentioned coatings does not provide seizure resistance that can sufficiently cope with cold forging.
The present invention has been made in view of such a problem, and provides a β-titanium alloy material for cold working having excellent seizure resistance in cold forging even when the strength of the β-titanium alloy material is high, and a method for producing the same. With the goal.

本発明者は、βチタン合金を用いて、その表面に酸化被膜を形成すべく種々の温度で加熱実験を繰り返したところ、βチタン合金がAlを適量含有するものである場合、従来より高温で加熱すると、酸化被膜中に母材側から外表面側にかけてAl濃度が低濃度から高濃度に変化するAl濃度移行領域が形成されることを知見した。また、その最低濃度部と最高濃度部におけるAl濃度差が母材のAl量のある割合を超えると、Al濃度移行領域中の最高濃度部を含む酸化被膜の表層部が最低濃度部から剥離する一方、最低濃度部を含む酸化被膜の内層部が母材表面側に密着したまま残留することを知見し、これらの知見を基に本発明を完成するに至った。   The present inventor repeated a heating experiment at various temperatures to form an oxide film on the surface of the β titanium alloy. When the β titanium alloy contains an appropriate amount of Al, the heating temperature is higher than before. It has been found that when heated, an Al concentration transition region in which the Al concentration changes from a low concentration to a high concentration from the base material side to the outer surface side is formed in the oxide film. Further, when the Al concentration difference between the lowest concentration portion and the highest concentration portion exceeds a certain ratio of the Al content of the base material, the surface layer portion of the oxide film including the highest concentration portion in the Al concentration transition region is peeled off from the lowest concentration portion. On the other hand, it has been found that the inner layer portion of the oxide film including the lowest concentration portion remains in close contact with the base material surface side, and the present invention has been completed based on these findings.

すなわち、本発明の冷間加工用βチタン合金材は、Ti−15V−3Cr−3Sn−3Al合金(数値はmass%を示す。以下同様)、Ti−13V−11Cr−3Al合金、Ti−15Mo−5Zr−3Al合金、Ti−22V−4Al合金の内のいずれかの高強度βチタン合金で形成された母材の表面に酸化被膜が形成されたβチタン合金材であって、前記酸化被膜は、その平均厚さが5.0〜22μm であり、外表面側にAl濃度の最高濃度部が形成され、母材表面側にAl濃度の最低濃度部が形成されたAl濃度移行領域を有し、前記最高濃度部と最低濃度部におけるAl濃度の差が母材のAl濃度の30%以上とされたものである。前記母材のβチタン合金としては、引張強さが650MPa以上のものが好ましいThat is, the β-titanium alloy material for cold working of the present invention is Ti-15V-3Cr-3Sn-3Al alloy (the numerical value indicates mass%, the same applies hereinafter), Ti-13V-11Cr-3Al alloy, Ti-15Mo— A β-titanium alloy material in which an oxide film is formed on the surface of a base material formed of a high-strength β-titanium alloy of 5Zr-3Al alloy or Ti-22V-4Al alloy , The average thickness is 5.0 to 22 μm, and the Al concentration transition region has the Al concentration highest concentration portion formed on the outer surface side and the Al concentration lowest concentration portion formed on the base material surface side, The difference in Al concentration between the highest concentration portion and the lowest concentration portion is 30% or more of the Al concentration of the base material . The base titanium alloy preferably has a tensile strength of 650 MPa or more.

本発明のβチタン合金材によると、母材の表面に、外表面側にAl濃度の最高濃度部が、母材表面側に最低濃度部が形成されたAl濃度移行領域を有し、前記最高濃度部と最低濃度部におけるAl濃度の差が母材のAl濃度の30%以上とされた、所定平均厚さの酸化被膜が形成されるので、冷間加工の際に、前記Al濃度移行領域中の最高濃度部を含む酸化被膜の表層部が最低濃度部から容易に剥離する一方、最低濃度部を含む酸化被膜の内層部が母材表面に密着したまま残留する。前記剥離した酸化被膜の表層部は粉々に分断されて固体潤滑剤の役目を果たし、一方母材表面に密着したまま残留した内層部は薄いため密着性が良好で、母材の保護膜ないし潤滑膜として作用し、両者が相まって優れた耐焼付き性を発揮する。このため、従来冷間加工が難しかった650MPa以上の高強度のβチタン合金であっても、焼付きを防止しつつ、冷間鍛造を行うことができる。 According to the β titanium alloy material of the present invention, the surface of the base material has an Al concentration transition region in which the highest concentration part of the Al concentration is formed on the outer surface side and the lowest concentration part is formed on the surface side of the base material. Since an oxide film having a predetermined average thickness in which the difference in Al concentration between the concentration portion and the minimum concentration portion is 30% or more of the Al concentration of the base material is formed, the Al concentration transition region is formed during cold working. While the surface layer portion of the oxide film including the highest concentration portion is easily peeled off from the lowest concentration portion, the inner layer portion of the oxide film including the lowest concentration portion remains in close contact with the surface of the base material. The surface layer part of the peeled oxide film is divided into pieces to serve as a solid lubricant, while the inner layer part remaining in close contact with the surface of the base material is thin so that the adhesion is good, and the protective film or lubrication of the base material It acts as a film and exhibits excellent seizure resistance together. For this reason, cold forging can be performed while preventing seizure even with a high-strength β-titanium alloy of 650 MPa or more, which has conventionally been difficult to perform cold working.

上記冷間加工用βチタン合金材は、Ti−15V−3Cr−3Sn−3Al合金(数値はmass%を示す。以下同様)、Ti−13V−11Cr−3Al合金、Ti−15Mo−5Zr−3Al合金、Ti−22V−4Al合金の内のいずれかの高強度βチタン合金からなる母材を770〜980℃に加熱し、母材の表面に前記Al濃度移行領域を有する、所定平均厚さの酸化被膜を形成することにより容易に製造することができる。 The β-titanium alloy material for cold working is Ti-15V-3Cr-3Sn-3Al alloy (the numerical value indicates mass%, the same applies hereinafter), Ti-13V-11Cr-3Al alloy, Ti-15Mo-5Zr-3Al alloy heating a preform made of any high strength β titanium alloy of the Ti-22V-4Al alloy seven hundred seventy to nine hundred and eighty ° C., on the surface of the base having the Al concentration transition region, the oxidation of a predetermined average thickness It can be easily manufactured by forming a film.

本発明のβチタン合金材によれば、母材の表面に、Al濃度の差が母材のAl濃度の30%以上とされたAl濃度移行領域を有する、平均厚さが5.0〜22μm の酸化被膜が形成されるので、冷間加工の際に、Al濃度の最高濃度部を含む酸化被膜の表層部が最低濃度部から容易に剥離して固体潤滑剤を供給する一方、最低濃度部を含む酸化被膜の内層部が母材表面側に密着したまま残留して保護層ないし潤滑層として機能するので、母材に肌荒れを生じさせることなく、優れた耐焼付きを備え、冷間鍛造素材として好適である。 According to the β titanium alloy material of the present invention, the surface of the base material has an Al concentration transition region in which the difference in Al concentration is 30% or more of the Al concentration of the base material , and the average thickness is 5.0 to 22 μm. In the cold working, the surface layer part of the oxide film including the highest concentration part of the Al concentration easily peels from the lowest concentration part to supply the solid lubricant, while the lowest concentration part. Since the inner layer of the oxide film containing the metal layer remains in close contact with the surface of the base material and functions as a protective layer or lubricating layer , it has excellent seizure resistance without causing rough surface of the base material, and cold forging It is suitable as a material .

本発明のチタン合金材は、Alを1.0〜5.0mass%(以下、単に「%」と表示する。)の範囲内で含有する所定のβチタン合金からなる母材の表面に酸化被膜が形成されたβチタン合金材である。前記βチタン合金とは下記式で規定するMo当量が8.0以上、あるいはさらにZr又はSnを含み、残部がTi及び不純物からなるものをいう。なお、Mo当量とは、添加元素のβ安定化作用をMo量に換算して評価した値を意味する。下記式で[X]は元素Xの含有量(mass%)を意味する。
Mo当量=[Mo]+0.67[V]+0.44[W]+0.28[Nb]+0.22[Ta]+2.9[Fe]+1.6[Cr]-[Al]
The titanium alloy material of the present invention has an oxide film on the surface of a base material made of a predetermined β-titanium alloy containing Al within a range of 1.0 to 5.0 mass% (hereinafter simply referred to as “%”). Is a β-titanium alloy material formed. The β-titanium alloy is an alloy having a Mo equivalent defined by the following formula of 8.0 or more, or further containing Zr or Sn, with the balance being Ti and impurities. In addition, Mo equivalent means the value which converted and evaluated the (beta) stabilization effect | action of an additive element in Mo amount. In the following formula, [X] means the content (mass%) of the element X.
Mo equivalent = [Mo] +0.67 [V] +0.44 [W] +0.28 [Nb] +0.22 [Ta] +2.9 [Fe] +1.6 [Cr]-[Al]

前記母材として、Alを1.0〜5.0%の範囲内で含有するβチタン合金を用いる理由は、1.0%未満では後述する酸化被膜形成熱処理によってもAl濃度差が母材Al濃度の30%以上有するAl濃度移行領域を形成することが難しく、一方5.0%を超えるとチタン合金自体の冷間加工性が劣化するようになるからである。このため、母材チタン合金のAl濃度の下限を1.0%とし、好ましくは1.5%、より好ましくは2.0%とするのがよく、一方その上限を5.0%とし、好ましくは4.5%とするのがよい。 The reason why a β-titanium alloy containing Al in the range of 1.0 to 5.0% is used as the base material is that the difference in Al concentration is less than 1.0% due to the oxide film forming heat treatment described later. This is because it is difficult to form an Al concentration transition region having a concentration of 30% or more. On the other hand, when it exceeds 5.0%, the cold workability of the titanium alloy itself deteriorates. Therefore, the lower limit of the Al concentration of the base titanium alloy is 1.0%, preferably 1.5%, more preferably 2.0%, while the upper limit is 5.0%, preferably Is preferably 4.5%.

前記母材として、650MPa以上の高強度βチタン合金を用いて、冷間加工後に時効処理を施すことにより、母材強度より200〜600MPa程度高い高強度製品を得ることができる。このため、本発明では母材を形成するβチタン合金として、高強度βチタン合金であるTi−15V−3Cr−3Sn−3Al合金(数値はmass%を示す。以下同様)、Ti−13V−11Cr−3Al合金、Ti−15Mo−5Zr−3Al合金、Ti−22V−4Al合金を用いる。なお、βチタン合金の強度は、溶体化処理後の強度を意味する。 By using a high-strength β-titanium alloy of 650 MPa or higher as the base material and performing an aging treatment after cold working, a high-strength product that is about 200 to 600 MPa higher than the base material strength can be obtained. For this reason, in this invention, Ti -15V-3Cr-3Sn-3Al alloy (a numerical value shows mass%) which is a high intensity | strength beta titanium alloy as (beta) titanium alloy which forms a base material , Ti-13V-11Cr -3Al alloy, Ti-15Mo-5Zr-3Al alloy, Ti-22V-4Al alloy are used . In addition, the intensity | strength of (beta) titanium alloy means the intensity | strength after solution treatment.

前記酸化被膜は、外表面側にAl濃度の最高濃度部が形成され、母材表面側にAl濃度の最低濃度部が形成され、前記最低濃度部から最高濃度部にわたってAl濃度が連続的に変化したAl濃度移行領域を有する。前記最高濃度部と最低濃度部におけるAl濃度の差は母材のチタン合金のAl濃度の30%以上とされる。最高濃度部と最低濃度部とのAl濃度差が母材のAl濃度の30%未満であると、最高濃度部を含む酸化被膜の表層部が最低濃度を含む内層部より剥離し難くなり、冷間加工時に剥離して分断された酸化被膜による固体潤滑作用が劣化する。このため、Al濃度差は母材Al濃度の30%以上とし、好ましくは45%以上、より好ましくは50%以上とするのがよい。なお、上限は特に限定されない。   In the oxide film, the highest concentration part of Al concentration is formed on the outer surface side, the lowest concentration part of Al concentration is formed on the base material surface side, and the Al concentration continuously changes from the lowest concentration part to the highest concentration part. Having an Al concentration transition region. The difference in Al concentration between the highest concentration portion and the lowest concentration portion is 30% or more of the Al concentration of the base titanium alloy. If the Al concentration difference between the highest concentration portion and the lowest concentration portion is less than 30% of the Al concentration of the base material, the surface layer portion of the oxide film including the highest concentration portion is less likely to be peeled off than the inner layer portion including the lowest concentration. The solid lubricating action due to the oxide film peeled off and divided during the inter-working process deteriorates. For this reason, the Al concentration difference is 30% or more of the base material Al concentration, preferably 45% or more, and more preferably 50% or more. The upper limit is not particularly limited.

また、前記酸化被膜の膜厚は、5.0〜22μm とする。5.0μm 未満では酸化被膜の表層部の剥離量が減少し、総じて潤滑作用が不足するようになる。一方、25μm を超えると、剥離分断した酸化被膜のサイズが大きくなるため、母材に肌荒れが生じるようになる。
The thickness of the oxide film is 5.0 to 22 μm . If the thickness is less than 5.0 μm, the amount of peeling of the surface portion of the oxide film is reduced, and the lubricating action is generally insufficient. On the other hand, when the thickness exceeds 25 μm, the size of the oxide film separated by separation increases, and the base material becomes rough.

上記母材表面に酸化被膜を有するβチタン合金材は以下のようにして製造される。
まず、母材として溶体化処理されたβチタン合金を準備し、適宜、酸洗処理した後、酸化被膜形成熱処理を施す。酸化被膜形成熱処理は、従来の加熱温度に比して数十度高い770〜980℃で加熱する処理である。770℃未満では、酸化被膜中のAl濃度移行領域において母材のAl濃度の30%以上のAl濃度差のあるAl濃度移行領域を形成することが困難であり、一方980℃を超えると、保持時間にかかわらず、酸化被膜の厚さが過大になり、肌荒れが生じて好ましくない。酸化被膜の厚さは、保持時間によって調整されるが、通常、数分ないし数十分程度でよい。
The β titanium alloy material having an oxide film on the surface of the base material is manufactured as follows.
First, a solution solution treated β titanium alloy is prepared as a base material, and after an appropriate pickling treatment, an oxide film forming heat treatment is performed. The oxide film forming heat treatment is a process of heating at 770 to 980 ° C., which is several tens of degrees higher than the conventional heating temperature. If it is less than 770 ° C., it is difficult to form an Al concentration transfer region having an Al concentration difference of 30% or more of the Al concentration of the base material in the Al concentration transfer region in the oxide film. Regardless of the time, the thickness of the oxide film becomes excessive and rough skin is undesirable. The thickness of the oxide film is adjusted depending on the holding time, but it is usually about several minutes to several tens of minutes.

前記母材βチタン合金は任意の方法により製造されたものでよい。例えば、VAR(真空アーク溶解炉)などを用いて溶解し、溶融合金を鋳造して得られた鋳塊を1000℃〜1200℃に加熱し、必要に応じて均質化のために数時間から数十時間程度保持した後、70〜99%程度の圧下率で圧延、鍛造などの熱間塑性加工(粗加工)を行う。次いで、700℃〜1000℃に加熱し、50〜99.9%程度の圧下率で熱間塑性加工(仕上加工)行い、線材、板材等に加工する。   The base material β-titanium alloy may be manufactured by any method. For example, an ingot obtained by melting using a VAR (vacuum arc melting furnace) and casting a molten alloy is heated to 1000 ° C. to 1200 ° C., and if necessary, several hours to several hours for homogenization After holding for about 10 hours, hot plastic working (roughing) such as rolling and forging is performed at a rolling reduction of about 70 to 99%. Subsequently, it heats to 700 degreeC-1000 degreeC, performs hot plastic working (finishing process) by the reduction of about 50-99.9%, and processes to a wire, a board | plate material, etc.

本発明のβチタン合金材は、耐食性、比強度に優れ、良好な冷間加工性、特に耐焼付き性に優れるため、ボルト、自動車や自転車のギアや軸部品などの冷間鍛造用素材として好適なものである。なお、本発明のチタン合金材は、冷間鍛造に限らず、転造、プレス加工などの素材としても好適に用いられる。
以下、実施例を挙げて本発明を具体的に説明するが、本発明はかかる実施例によって限定的に解釈されるものではない。
The β-titanium alloy material of the present invention is excellent as a material for cold forging such as bolts, automobile and bicycle gears and shaft parts because it has excellent corrosion resistance and specific strength, and excellent cold workability, especially seizure resistance. It is a thing. In addition, the titanium alloy material of the present invention is not limited to cold forging, and is also suitably used as a material for rolling, pressing, and the like.
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated concretely, this invention is not limitedly interpreted by this Example.

下記組成の母材βチタン合金線材(線径7.8mmφ、引張強さ780MPa、酸洗仕上げしたもの)を準備し、所定の長さに切断してスラグ(円柱材)を製造し、大気中でバッチ炉を用いて、下記表1に示す熱処理条件で酸化被膜を母材表面に形成した。
このようにして得られたスラグに対して酸化被膜の厚さ方向のAlの濃度分布をEPMAによって分析し、酸化被膜の厚さ方向におけるAl濃度の最低値(最低濃度)、最高値(最高濃度)を測定し、最低値と最高値との濃度差を調べ、母材Al濃度に対する比(濃度比)を求めた。その結果を酸化被膜の厚さと共に表1に併せて示す。また、前記EPMAによるAl濃度分布の一例(試料No. 3及び9)を図1に示す。
・母材組成(Mo当量=11.8)
V:15.1%、3.0%Cr、3.0%Sn、3.1%Al、残部Ti
Prepare base material β titanium alloy wire (wire diameter: 7.8mmφ, tensile strength: 780MPa, pickled finish) with the following composition, cut to a predetermined length to produce slag (columnar material), Then, using a batch furnace, an oxide film was formed on the surface of the base material under the heat treatment conditions shown in Table 1 below.
The slag thus obtained was analyzed by EPMA for the Al concentration distribution in the thickness direction of the oxide film, and the minimum value (minimum concentration) and the maximum value (maximum concentration) of the Al concentration in the thickness direction of the oxide film. ) Was measured, the difference in concentration between the minimum value and the maximum value was examined, and the ratio (concentration ratio) to the base material Al concentration was determined. The results are shown in Table 1 together with the thickness of the oxide film. An example of Al concentration distribution by EPMA (sample Nos. 3 and 9) is shown in FIG.
-Base material composition (Mo equivalent = 11.8)
V: 15.1%, 3.0% Cr, 3.0% Sn, 3.1% Al, balance Ti

また、前記スラグを素材として、ヘッダー(ボルト製造装置)を用いてM8の六角穴付きボルトを冷間鍛造により製造し、焼付き発生の有無、製品表面の性状を目視観察した。その結果を表1に併せて示す。   Further, using the slag as a raw material, M8 hexagon socket head cap bolts were manufactured by cold forging using a header (bolt manufacturing apparatus), and the presence or absence of seizure and the properties of the product surface were visually observed. The results are also shown in Table 1.

また、上記と同様組成の母材βチタン合金線材(線径5.8mmφ、引張強さ780MPa、酸洗仕上げしたもの)を大気中でストランド炉を用いて、下記表2に示す熱処理条件で酸化被膜を母材表面に形成し、上記と同様にして酸化被膜の厚さ方向におけるAl濃度の濃度差を調べ、母材Al濃度に対する濃度比を求めた。また、ヘッダーを用いてM6の六角穴付きボルトを前記線材から連続的に冷間鍛造により製造し、焼付き発生の有無、製品表面の肌荒れを目視観察した。その結果を表2に併せて示す。   In addition, a base material β-titanium alloy wire (wire diameter: 5.8 mmφ, tensile strength: 780 MPa, pickled finish) having the same composition as above was oxidized in the atmosphere using a strand furnace under the heat treatment conditions shown in Table 2 below. A coating was formed on the surface of the base material, and the difference in Al concentration in the thickness direction of the oxide film was examined in the same manner as described above to determine the concentration ratio with respect to the base material Al concentration. In addition, M6 hexagon socket head cap bolts were continuously manufactured from the wire by cold forging using a header, and the presence or absence of seizure and the surface roughness of the product were visually observed. The results are also shown in Table 2.

表1及び表2より、熱処理温度を770〜980℃で行った発明例では、酸化被膜中のAl濃度差が母材の濃度に比して30%以上となっており、また冷間鍛造の結果も焼付きや肌荒れの発生は皆無であった。   From Table 1 and Table 2, in the invention example performed at a heat treatment temperature of 770 to 980 ° C., the Al concentration difference in the oxide film is 30% or more as compared with the concentration of the base material, and cold forging As a result, there was no occurrence of seizure or rough skin.

Figure 0004632239
Figure 0004632239

Figure 0004632239
Figure 0004632239

実施例におけるβチタン合金材の表面からの距離とAl濃度との関係を示す図である。It is a figure which shows the relationship between the distance from the surface of the beta titanium alloy material in an Example, and Al concentration.

Claims (2)

Ti−15V−3Cr−3Sn−3Al合金(数値はmass%を示す。以下同様)、Ti−13V−11Cr−3Al合金、Ti−15Mo−5Zr−3Al合金、Ti−22V−4Al合金の内のいずれかの高強度βチタン合金で形成された母材の表面に酸化被膜が形成されたβチタン合金材であって、
前記酸化被膜は、その平均厚さが5.0〜22μm であり、外表面側にAl濃度の最高濃度部が形成され、母材表面側にAl濃度の最低濃度部が形成されたAl濃度移行領域を有し、前記最高濃度部と最低濃度部におけるAl濃度の差が母材のAl濃度の30%以上とされた、冷間加工用βチタン合金材。
Ti-15V-3Cr-3Sn-3Al alloy (numerical values indicate mass%, the same applies hereinafter), Ti-13V-11Cr-3Al alloy, Ti-15Mo-5Zr-3Al alloy, Ti-22V-4Al alloy A β titanium alloy material in which an oxide film is formed on the surface of a base material made of such a high strength β titanium alloy,
The oxide film has an average thickness of 5.0 to 22 μm, an Al concentration transition in which the highest concentration portion of Al concentration is formed on the outer surface side, and the lowest concentration portion of Al concentration is formed on the base material surface side. A β-titanium alloy material for cold working, having a region, wherein the difference in Al concentration between the highest concentration portion and the lowest concentration portion is 30% or more of the Al concentration of the base material.
前記母材の引張強さが650MPa以上である請求項1に記載した冷間加工用βチタン合金材。 The β-titanium alloy material for cold working according to claim 1, wherein the base material has a tensile strength of 650 MPa or more.
JP2004317670A 2004-11-01 2004-11-01 Beta titanium alloy material for cold working Expired - Fee Related JP4632239B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004317670A JP4632239B2 (en) 2004-11-01 2004-11-01 Beta titanium alloy material for cold working

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004317670A JP4632239B2 (en) 2004-11-01 2004-11-01 Beta titanium alloy material for cold working

Publications (2)

Publication Number Publication Date
JP2006124810A JP2006124810A (en) 2006-05-18
JP4632239B2 true JP4632239B2 (en) 2011-02-16

Family

ID=36719829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004317670A Expired - Fee Related JP4632239B2 (en) 2004-11-01 2004-11-01 Beta titanium alloy material for cold working

Country Status (1)

Country Link
JP (1) JP4632239B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7025700B2 (en) 2018-09-25 2022-02-25 東芝ライテック株式会社 Mounting and lighting equipment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6266727B1 (en) * 2016-10-24 2018-01-24 トクセン工業株式会社 Metal wire for medical equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1150227A (en) * 1997-07-28 1999-02-23 Mitsubishi Materials Corp Formation of surface oxidized coating on ti alloy or machine parts made of ti alloy
JP2000256769A (en) * 1999-03-11 2000-09-19 Kobe Steel Ltd HIGH STRENGTH BETA Ti ALLOY EXCELLENT IN COLD WORKABILITY
JP2001107206A (en) * 1999-10-05 2001-04-17 Tokusen Kogyo Co Ltd beta TITANIUM ALLOY FINE WIRE AND ITS PRODUCTION METHOD
JP2003129152A (en) * 2001-08-16 2003-05-08 Kobe Steel Ltd Titanium alloy superior in hydrogen absorption resistance

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1150227A (en) * 1997-07-28 1999-02-23 Mitsubishi Materials Corp Formation of surface oxidized coating on ti alloy or machine parts made of ti alloy
JP2000256769A (en) * 1999-03-11 2000-09-19 Kobe Steel Ltd HIGH STRENGTH BETA Ti ALLOY EXCELLENT IN COLD WORKABILITY
JP2001107206A (en) * 1999-10-05 2001-04-17 Tokusen Kogyo Co Ltd beta TITANIUM ALLOY FINE WIRE AND ITS PRODUCTION METHOD
JP2003129152A (en) * 2001-08-16 2003-05-08 Kobe Steel Ltd Titanium alloy superior in hydrogen absorption resistance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7025700B2 (en) 2018-09-25 2022-02-25 東芝ライテック株式会社 Mounting and lighting equipment

Also Published As

Publication number Publication date
JP2006124810A (en) 2006-05-18

Similar Documents

Publication Publication Date Title
RU2725391C2 (en) Processing of alpha-beta-titanium alloys
CN112105751B (en) High strength titanium alloy
US5141566A (en) Process for manufacturing corrosion-resistant seamless titanium alloy tubes and pipes
JP5130850B2 (en) β-type titanium alloy
JP5287062B2 (en) Low specific gravity titanium alloy, golf club head, and method for manufacturing low specific gravity titanium alloy parts
KR102162947B1 (en) Improved free-machining wrought aluminium alloy product and manufacturing process thereof
CN111057903B (en) Large-size titanium alloy locking ring and preparation method thereof
WO2003104506A1 (en) β-TYPE TITANIUM ALLOY AND PROCESS FOR PRODUCING THE SAME
EP2476769A1 (en) Magnesium-lithium alloy, rolled material, formed article, and process for producing same
CN110983104A (en) High-strength high-plasticity heat-strength titanium alloy wire and processing and manufacturing method and application thereof
RU2536614C2 (en) Production of bars and thin wires from titanium-nickel system alloy with shape memory effect
JPH05117791A (en) High strength and high toughness cold workable titanium alloy
KR20230085948A (en) Creep Resistant Titanium Alloys
US6136103A (en) Copper-tin-titanium alloy
JP2005076098A (en) HIGH-STRENGTH alpha-beta TITANIUM ALLOY
JP4632239B2 (en) Beta titanium alloy material for cold working
JP2669004B2 (en) Β-type titanium alloy with excellent cold workability
JP4715048B2 (en) Titanium alloy fastener material and manufacturing method thereof
JP3118342B2 (en) Method of heating titanium and titanium alloy rolled material
JP3228134B2 (en) Method for producing pure titanium plate excellent in formability and seizure resistance
JP4371201B2 (en) β-type titanium alloy and method for producing the same
JPH0135068B2 (en)
JP3353618B2 (en) High strength titanium alloy
JP2004183079A (en) Titanium alloy and method for manufacturing titanium alloy material
JP2003201530A (en) High-strength titanium alloy with excellent hot workability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091112

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100929

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101110

R150 Certificate of patent or registration of utility model

Ref document number: 4632239

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees